
Formal Co-Validation of Low-Level
Hardware/Software Interfaces

Alex Horn1 Michael Tautschnig1 Celina Val2 Lihao Liang1

Tom Melham1 Jim Grundy3 Daniel Kroening1

1University of Oxford

2University of British Columbia

3Intel Corporation

October 22, 2013

Motivation

TheNewProduct$ Firmware$

Consider this scenario:
• The product won’t function unless there is firmware! So ideally ...

• But the hardware won’t be available until shortly before release.

Our focus: how can we formalize hardware/software interfaces?

Current techniques

Well-known firmware development techniques in industry include:

• Using an older version of the hardware (if any!)
◦ hard to debug, can hide latent firmware bugs, no guarantee

• Virtual platforms
◦ faster turnaround times, easier to debug and test
◦ but generally too big to formally analyze

Idea: Verifiable Virtual Platform
How to model hardware/software interfaces so existing software
engineering principles apply but also formal methods

(See also question posed by Per Bjesse (Synopsys) during FMCAD 2010)

Current techniques

Well-known firmware development techniques in industry include:

• Using an older version of the hardware (if any!)
◦ hard to debug, can hide latent firmware bugs, no guarantee

• Virtual platforms
◦ faster turnaround times, easier to debug and test
◦ but generally too big to formally analyze

Idea: Verifiable Virtual Platform

How to model hardware/software interfaces so existing software
engineering principles apply but also formal methods

(See also question posed by Per Bjesse (Synopsys) during FMCAD 2010)

Current techniques

Well-known firmware development techniques in industry include:

• Using an older version of the hardware (if any!)
◦ hard to debug, can hide latent firmware bugs, no guarantee

• Virtual platforms
◦ faster turnaround times, easier to debug and test
◦ but generally too big to formally analyze

Idea: Verifiable Virtual Platform
How to model hardware/software interfaces so existing software
engineering principles apply but also formal methods

(See also question posed by Per Bjesse (Synopsys) during FMCAD 2010)

VVP: Verifiable Virtual Platform

Hardware/So*ware	
 Interface	

realis4c	
 �	
 open	
 source	
 �	
 concurrent	

Low-­‐level	
 So*ware	

from	
 GNU/Linux	

QEMU	
 Hardware	

Model	
 in	
 C	

ψ ?!?
Φ...!
 Interrupt!

So*ware	
 threads	
 model	
 un4med	
 delays	

Φ1!
 Φ2?

assert(…)	

Outline

An Ethernet MAC concurrency bug
A real bug firmware developers care about

Problem statement and contribution

Technical details
Few glimpses at a verifiable virtual platform

Experiments and conclusion
Download Me!

GNU/Linux + Open Cores Ethernet MAC

Explain known kernel bug due to concurrency (i.e. asynchronous
operations) in the hardware/software interface.

Concurrency bug

0a 0x

Interrupt source: Interrupt mode?

0 0 0 0 0 0 0 0 0

Buffer descriptors:

r

w

Initially, assume the firmware is in polling mode (i.e. 0x) and “there
are no new RX frames” (yet).

Concurrency bug

1b 0x

Interrupt source: Interrupt mode?

1 0 0 0 0 0 0 0 0

Buffer descriptors:

r

w

A new RX frame arrives changing the interrupt source from 0a to 1b.
The arrival of an RX frame gives us a “nonempty” buffer descriptor.

Concurrency bug

1c 0x

Interrupt source: Interrupt mode?

1 1 0 0 0 0 0 0 0

Buffer descriptors:

r

w

Repeat but notice that the Open Cores Ethernet MAC always sets the
interrupt source register as new RX frames arrive (1b has become 1c).

Concurrency bug

1c 0x

Interrupt source: Interrupt mode?

0 1 0 0 0 0 0 0 0

Buffer descriptors:

r

w

The firmware reads one “nonempty” buffer descriptor changing it to
be “empty” again.

Concurrency bug

1d 0x

Interrupt source: Interrupt mode?

0 1 1 0 0 0 0 0 0

Buffer descriptors:

r

w

But simultaneously new RX frames can arrive.

Concurrency bug

1d 0x

Interrupt source: Interrupt mode?

0 0 1 0 0 0 0 0 0

Buffer descriptors:

r

w

As before, the firmware continues to consume these ...

Concurrency bug

1d 0x

Interrupt source: Interrupt mode?

0 0 0 0 0 0 0 0 0

Buffer descriptors:

r

w

... until it detects that there aren’t any more RX frames to consume.
So assume it initiates a procedure now to switch to interrupt mode.

Concurrency bug

1e 0x

Interrupt source: Interrupt mode?

0 0 0 1 0 0 0 0 0

Buffer descriptors:

r

w

Asynchronous operation: a fraction of a second later a new RX
frame arrives and changes 1d to 1e as well as the buffer descriptor.

Concurrency bug

0f 0x

Interrupt source: Interrupt mode?

0 0 0 1 0 0 0 0 0

Buffer descriptors:

r

w

Since firmware is not in interrupt mode yet, it fails to detect the
intermittent RX frame; it continues by clearing interrupt sources (0f).

Concurrency bug

0f 1y

Interrupt source: Interrupt mode?

0 0 0 1 0 0 0 0 0

Buffer descriptors:

r

w

The firmware continues by enabling interrupts (1y). But an interrupt
is only raised once another RX frame arrives, problem.

Polling to interrupt mode switch (bug)

Firmware Ethernet MAC Wire

New RX frame?

No

New RX frame!

Clear interrupt source!

Enable interrupt mode!

Polling to interrupt mode switch (fix)

Firmware Ethernet MAC Wire

New RX frame?

No

New RX frame!

Clear interrupt source!

New RX frame?

Yes

Stay in polling mode

Problem statement and contribution

Problem:

• Many firmware bugs can go undetected when
hardware and software are verified in isolation.

Contribution:

• Three realistic and open-source benchmarks to
scientifically study firmware verification.

• Practical evidence that a verifiable virtual platform
is a feasible concept to verify hardware/software
interfaces.

Benchmarks to study firmware verification
TMP105:	
 Temperature	
 Sensor	
 MC146818A:	
 Real-­‐<me	
 clock	

Ethernet	
 MAC	

Experimental setup

Overview of work flow:

1. Extract QEMU hardware model and Linux driver

2. Manually add runtime assertions in C

3. If necessary, introduce concurrency in QEMU + Linux code
◦ Use new CBMC concurrency source code annotations
◦ Encode any concurrency as symbolic partial orders (CAV’13)

4. SAT solver finds satisfying assignment (i.e. bug) or not.

Real-time clock (RTC)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Special-purpose registers that require an ancillary manipulation of bits
to read and write time, date and alarm data.

RTC benchmark code

Project Files LOC

Linux Kernel 3.6
∼ 14, 000 (.h) ∼ 107∼ 17, 000 (.c)

QEMU 1.2
∼ 600 (.h) ∼ 700, 000∼ 1, 500 (.c)

QEMU hardware model of RTC
5 (.h) ∼ 1, 000
5 (.c)

Linux x86 RTC driver and model
∼ 300 (.h) ∼ 20, 000

8 (.c)

Combined RTC benchmark
0 (.h) ∼ 6, 000
1 (.c)

assert(…)	
 Example Assertion

1void cmos ioport write (void ∗opaque,
2 uint32 t addr, uint32 t data)
3{
4 RTCState ∗s = opaque;
5 if ((addr & 1) == 0) {
6 s–>io info = OUTB 0x70; // for temporal property
7 s−>cmos index = data & 0x7f;
8 } else {
9 switch(s−>cmos index) {

10 case RTC SECONDS ALARM:

12#ifdef RTC BENCHMARK PROP 9
13 assert((s–>cmos data[RTC REG B] & REG B SET)
14 == REG B SET);
15#endif

17 ...

assert(…)	
 Example Assertion

1void cmos ioport write (void ∗opaque,
2 uint32 t addr, uint32 t data)
3{
4 RTCState ∗s = opaque;
5 if ((addr & 1) == 0) {
6 s–>io info = OUTB 0x70; // for temporal property
7 s−>cmos index = data & 0x7f;
8 } else {
9 switch(s−>cmos index) {

10 case RTC SECONDS ALARM:

12#ifdef RTC BENCHMARK PROP 9
13 assert((s–>cmos data[RTC REG B] & REG B SET)
14 == REG B SET);
15#endif

17 ...

assert(…)	
 Example Assertion

1void cmos ioport write (void ∗opaque,
2 uint32 t addr, uint32 t data)
3{
4 RTCState ∗s = opaque;
5 if ((addr & 1) == 0) {
6 s–>io info = OUTB 0x70; // for temporal property
7 s−>cmos index = data & 0x7f;
8 } else {
9 switch(s−>cmos index) {

10 case RTC SECONDS ALARM:

12#ifdef RTC BENCHMARK PROP 9
13 assert((s–>cmos data[RTC REG B] & REG B SET)
14 == REG B SET);
15#endif

17 ...

Found bug in RTC hardware model

http://git.qemu.org/?p=qemu.git;a=commit;h=02c6ccc6dde90dcbf5975b1cfe2ab199e525ec11

Also found bug in TMP105 hardware model

http://git.qemu.org/?p=qemu.git;a=commit;h=cb5ef3fa1871522a0886627033459e94bd537fb7

Experiments

Hardware/software interface properties formally checked on an
individual basis:

• 11 RTC properties within a few minutes

• 17 TMP105 properties in less than 15 minutes

• 3 Ethernet MAC properties in sequential code within a few minutes

• 7 Ethernet MAC properties in concurrent code within a few hours1

1After publication, we found a bug in CBMC’s implementation of the partial
order concurrency encoding but continue to improve the code. At the present
time, we cannot reproduce the results with CBMC for the concurrent model of the
Ethernet MAC.

Download Me!

Conclusion:
• Formal verification of hardware/software interface properties

written in C code
◦ Executable code leverages well-established testing principles in industry
◦ Apply multi-path (i.e. CBMC-style) symbolic execution and symbolic

partial order encodings to handle concurrency in hardware/software

• Open-source prototype of a verifiable virtual platform (VVP)
◦ Provides an object of study for software engineers

All code and documentation is openly available now.

Source code, data sheets and experiments can be downloaded at
http://www.cprover.org/firmware/.

Thank you.

http://www.cprover.org/firmware/

Download Me!

Conclusion:
• Formal verification of hardware/software interface properties

written in C code
◦ Executable code leverages well-established testing principles in industry
◦ Apply multi-path (i.e. CBMC-style) symbolic execution and symbolic

partial order encodings to handle concurrency in hardware/software

• Open-source prototype of a verifiable virtual platform (VVP)
◦ Provides an object of study for software engineers

All code and documentation is openly available now.

Source code, data sheets and experiments can be downloaded at
http://www.cprover.org/firmware/.

Thank you.

http://www.cprover.org/firmware/

Symbolic partial order encoding with CBMC

(Not to be confused with partial order reduction.)

Static Single
Assignment Form

Symbolic Event
Structure

Symbolic Partial
Orders

Source Code

X:=1;

Decision Procedure

(SAT/SMT)
CAV’13

RTC/QEMU: QDev and QOM Simplifications

Domain knowledge required:

system bus

hpet fw-cfg i440FX-pci-host

pci.0

i440FX PIIX3

isa.0

isa-fdc i8042 mc146181rtc

piix3-ide

ide.0 ide.1

piix3-usb-uhci

usb.0

PIIX4 PM

i2c

smbus-eeprom etc.

cirrus-vga

ioapic apic

Related work by Kai Cong et al.

Recent Kai Cong, Fei Xie, and Li Lei publications:

• Symbolic Execution of Virtual Devices (QSIC, 2013).
◦ Single-path (KLEE-style) symbolic execution
◦ Doesn’t symbolically co-execute virtual device and driver
◦ Suggests a way to automatically extract QEMU hardware models

• Automatic Concolic Test Generation with Virtual Prototypes for
Post-silicon Validation (ICCAD, 2013).
◦ Uses QEMU and KLEE
◦ Records concrete hardware/software interactions

	An Ethernet MAC concurrency bug
	A real bug firmware developers care about

	Problem statement and contribution
	Technical details
	Few glimpses at a verifiable virtual platform

	Experiments and conclusion
	Download Me!

