Formal Co-Validation of Low-Level
Hardware/Software Interfaces

Alex Horn! Michael Tautschnig! Celina Val?> Lihao Liang!
Tom Melham! Jim Grundy® Daniel Kroening®

LUniversity of Oxford
2University of British Columbia

3Intel Corporation

October 22, 2013

Motivation

The New Product Firmware

Consider this scenario:

e The product won't function unless there is firmware! So ideally ...

e But the hardware won't be available until shortly before release.

Our focus: how can we formalize hardware/software interfaces?

Current techniques

Well-known firmware development techniques in industry include:

e Using an older version of the hardware (if any!)
o hard to debug, can hide latent firmware bugs, no guarantee
e Virtual platforms

o faster turnaround times, easier to debug and test
o but generally too big to formally analyze

Current techniques

Well-known firmware development techniques in industry include:

e Using an older version of the hardware (if any!)
o hard to debug, can hide latent firmware bugs, no guarantee
e Virtual platforms

o faster turnaround times, easier to debug and test
o but generally too big to formally analyze

|dea: Verifiable Virtual Platform

Current techniques

Well-known firmware development techniques in industry include:

e Using an older version of the hardware (if any!)
o hard to debug, can hide latent firmware bugs, no guarantee

e Virtual platforms
o faster turnaround times, easier to debug and test
o but generally too big to formally analyze

|dea: Verifiable Virtual Platform

How to model hardware/software interfaces so existing software
engineering principles apply but also formal methods

(See also question posed by Per Bjesse (Synopsys) during FMCAD 2010)

VVP: Verifiable Virtual Platform

realistic ® open source ® concurrent

B Hardware/Software Interface

Interrupt!

<4 QEMU Hardware
Model in C

Software threads model untimed delays

Outline

An Ethernet MAC concurrency bug
A real bug firmware developers care about

Problem statement and contribution

Technical details
Few glimpses at a verifiable virtual platform

Experiments and conclusion
Download Me!

GNU/Linux + Open Cores Ethernet MAC

Explain known kernel bug due to concurrency (i.e. asynchronous
operations) in the hardware/software interface.

Firmware

Ethernet MAC

Concurrency bug

Interrupt source: Interrupt mode?

Buffer descriptors:
W

0jojofojofojofo]o]

r

Initially, assume the firmware is in polling mode (i.e. 0x) and “there
are no new RX frames” (yet).

Concurrency bug
Interrupt source: Interrupt mode?

Buffer descriptors:
W

1/ofojofo|o]o]o]o]

A new RX frame arrives changing the interrupt source from 0, to 1.
The arrival of an RX frame gives us a “nonempty” buffer descriptor.

Concurrency bug

Interrupt source: Interrupt mode?

Buffer descriptors:

w

1|1

0fojofojofo]o]

Repeat but notice that the Open Cores Ethernet MAC always sets the
interrupt source register as new RX frames arrive (15, has become 1.).

Concurrency bug
Interrupt source: Interrupt mode?

Buffer descriptors:
W

lo[1]oo]o]o|o]o]o0]

The firmware reads one “nonempty” buffer descriptor changing it to
be “empty” again.

Concurrency bug

Interrupt source:

Interrupt mode?

Buffer descriptors:

w

0

1|1

0jojojojo]o]

But simultaneously new RX frames can arrive.

Concurrency bug

Interrupt source:

Interrupt mode?

Buffer descriptors:

w

[0]o

0jojojojo]o]

As before, the firmware continues to consume these ...

Concurrency bug

Interrupt source: Interrupt mode?

Buffer descriptors:

w

[0Jo]o

0jojojojo]o]

. until it detects that there aren’'t any more RX frames to consume.
So assume it initiates a procedure now to switch to interrupt mode.

Concurrency bug

Interrupt source: Interrupt mode?

Buffer descriptors:

w

[oJo]o

0fojofo]o]

Asynchronous operation: a fraction of a second later a new RX
frame arrives and changes 14 to 1 as well as the buffer descriptor.

Concurrency bug
Interrupt source: Interrupt mode?

Buffer descriptors:
W

lojofo|1]o]o|o]o]o0]

Since firmware is not in interrupt mode vyet, it fails to detect the
intermittent RX frame; it continues by clearing interrupt sources (0Of).

Concurrency bug
Interrupt source: Interrupt mode?

Buffer descriptors:
W

lojofo|1]o]o|o]o]o0]

The firmware continues by enabling interrupts (1,). But an interrupt
is only raised once another RX frame arrives, problem.

Polling to interrupt mode switch (bug)

Ethernet MAC

] New RX frame?

New RX framel

Polling to interrupt mode switch (fix)

Ethernet MAC

] New RX frame?

New RX framel

_éii] Stay in polling mode

Problem statement and contribution
Problem:

e Many firmware bugs can go undetected when
hardware and software are verified in isolation.

Contribution:
e Three realistic and open-source benchmarks to
scientifically study firmware verification.

 Practical evidence that a verifiable virtual platform

is a feasible concept to verify hardware/software
interfaces.

Benchmarks to study firmware verification

MC146818A: Real-time clock TMP105: Temperature Sensor

D) {i’ Texas cnpscae
mororoLa INSTRUMENTS e THP105

SEMICONDUCTORS MC146818A

Digital Temperature Sensor

_Advance Information] cmos with Two-Wie Inerface

heck for Samples: THP105

B —— FEATURES
o e i G ReaL TE ook - SUPPORTS 1.8V FC™ BUS DESCRIPTION
708 A . WO ADDRESSES The TP105 is a two-wire, serial output mperature
——— sensor avaibe in a WCSP package. Requiing no
5 . DIGITAL OUTPUT: TwoWie Soris mariace amal componant, e TP10S is coae
- RESOLUTION: - to 12-Bits, User-Selectable reading fomperatues wi a resoluin of 00625
 Recunaer The TMP105 features a TwoWire interface that is

‘SMBus-compatie, with the TMP105 allowing up o
two devices on orie bus. The TMP105 foatures an
‘SMBus Alert function.

The TMP105 is ideal for extended temperature
measurement in a variety of communicaton,

- $2.0°C (max) from ~25°C 10 +85'

5044, 1.5A Standby

_

prc I
pter, consumer, enionmentl nduskal and
TOVe iCmeniaion sppcatons.
A e ot . g, o 270 e oo o cposion ovr
e ety G .| 2.1 Etheret Core 10 ports emperaiurs ange of 40°C 1o 125°C

L= The Bibrnec 7 Core s oo types of signals o comect o medic
' WISHBONE sigals o conaeet o the Hest Inrtace

Ml Masagement signals t consect 1 he PHY.

Rt signals (for estin diffrt it o the Ethemct I Core

pHvac

o gt e ot s 2:1.1 Host Interface Ports ea—

“The bl below contains th commen prs connecting the Etheret TP Core 1 he Host

Inctace. Te Host Inrfce is WISHBONE Rev. B complss. o

sa 0

o2

Ethernet MAC ‘ o]

s

2_ Gpen source procesor emulator

Download

Experimental setup

Overview of work flow:

1. Extract QEMU hardware model and Linux driver

2. Manually add runtime assertions in C

3. If necessary, introduce concurrency in QEMU + Linux code
o Use new CBMC concurrency source code annotations

o Encode any concurrency as symbolic partial orders (CAV'13)

4. SAT solver finds satisfying assignment (i.e. bug) or not.

Real-time clock (RTC)

DS —>
RIW ——>

AS —>

ADO-AD7

Bus
Interface

|

(=

Clock/
Calendar
Update

BCD/
Binary
Increment

neg

A, B, C, D
(4 Bytes)

Clock, Alarm,
Calendar RAM
(10 Bytes)

D

User RAM
(50 Bytes)

Special-purpose registers that require an ancillary manipulation of bits

to read and write time, date and alarm data.

RTC benchmark code L Nt \EJ

\J\Ag —

Project Files LOC

. ~ 14,000 (.h) 7

Linux Kernel 3.6 ~17.000 (.c) ~ 10
~ 600 (.h)

QEMU 1.2 ~1,500 (.c) ~ 700,000
5 (.h)

QEMU hardware model of RTC 5 (o) ~ 1,000

Linux x86 RTC driver and model ~ 302 EE; ~ 20,000
. 0 (.h)

Combined RTC benchmark 1 (o) ~ 6,000

Example Assertion

1void cmos_ioport_write (void xopaque,
2 uint32_t addr, uint32_t data)
3{

4 RTCState *s = opaque;

5 if ((addr & 1) ==0) {

6 s—>io_info = OUTB_0x70; // for temporal property

7 s—>cmos_index = data & Ox7f;

8 } else {

9 switch(s—>cmos_index) {

10 case RTC_SECONDS_ALARM:

12 #ifdef RTC_BENCHMARK_PROP_9

13 assert((s—>cmos_data[RTC_REG_B] & REG_B_SET)
14 —= REG_B_SET);

1s #endif

17

Example Assertion

1void cmos_ioport_write (void xopaque,
2 uint32_t addr, uint32_t data)
3{

4 RTCState *s = opaque;

5 if ((addr & 1) ==0) {

6 s—>io_info = OUTB_0x70; // for temporal property

7 s—>cmos_index = data & Ox7f;

8 } else {

9 switch(s—>cmos_index) {

10 case RTC_SECONDS_ALARM:

n#ifdef RTC_.BENCHMARK_PROP_9

13 assert((s—>cmos_data[RTC_REG_B] & REG_B_SET)
14 —= REG_B_SET);

1s #endif

17

Example Assertion

1void cmos_ioport_write (void xopaque,
2 uint32_t addr, uint32_t data)
3{

4 RTCState *s = opaque;

5 if ((addr & 1) ==0) {

6 s—>io_info = OUTB_0x70; // for temporal property

7 s—>cmos_index = data & Ox7f;

8 } else {

9 switch(s—>cmos_index) {

10 case RTC_SECONDS_ALARM:

12 #ifdef RTC_BENCHMARK_PROP_9

13 assert((s—>cmos_data[RTC_REG_B] & REG_B_SET)
14 —= REG_B_SET);

1s #endif

17

Found bug in RTC hardware model

ric: Only call ric_set_cmos when Register B SET flag is disabled.

author Alex Horn <alex.hornfcs.ox.ac.uk>

Mon, 26 Nov 2012 16:32:54 +0000 (17:32 +0100)
committer Anthony Liguori <aliguorifus.ibm.com>

Tue, 27 Nov 2012 17:04:33 +0000 (11:04 -0600)

commit 02c6cccedded0debf5975blefe2abl99e525ecll
tree 0a4286587fa357224cdaebebcl4f£2255b9b84ef tree | snapshot
parent 03a36£17d7788e4ale07b3341b18028aa0206845 commit | diff

rte: Only call rtc_set_cmos when Register B SET flag is disabled.

This bug occurs when the SET flag of Register B is enabled. When an RTC
data register (i.e. any of the ten time/calender CMOS bytes) is set, the
data is (as expected) correctly stored in the cmos_data array. However,
since the SET flag is enabled, the function rtc_set_time is not invoked.
As a result, the field base_rtc in RTCState remains uninitialized. This
causes a problem on subsequent writes which can end up overwriting data.
To see this, consider writing data to Register A after having written
data to any of the RTC data registers; the following figure illustrates
the call stack for the Register A write operation:

+- cmos_io port write
+=-=- check_update_timer
+ get_next_alarm
+- -- rtc_update_time

In rtc_update_time, get guest_rtc calculates the wrong time and
overwrites the previcusly written RTC data register values.

Signed-off-by: Alex Horn <alex.hornBcs.ox.ac.uk>
Signed-off-by: Paclo Bonzini <pbonzini@redhat.com>
Signed-off-by: Anthony Liguori <aliguorifus.ibm.com>

http://git.qemu.org/?p=qemu.git;a=commit;h=02c6ccc6dde90dcbf5975b1cfe2ab199e525ec11

Also found bug in TMP105 hardware model

tmp105: Fix I12C protocol bug

author Andreas Fdrber <andreas.faerber@web.de>

Wed, 16 Jan 2013 00:57:56 +0000 (01:57 +0100)
committer Anthony Liguori <aliquori@us.ibm.com>

Wed, 16 Jan 2013 18:14:20 +0000 (12:14 -0600)

commit cb5ef3fal871522a088662703345%9e94bd537£b7
tree ec94c5b0£0514297227ebbdelale432f2affe5a2 lree | snapshot
parent 6d0b430176e3571af0el1596276078£05bfelc5as commit | diff

tmpl05: Fix I2C protocol bug

An early length postincrement in the TMP105's I2C TX path led to
transfers of more than one byte to place the second byte in the third
byte's place within the buffer and the third byte to get discarded.

Fix this by explictly incrementing the length after the checks but
before the callback is called, which again checks the length.

Adjust the Coding Style while at it.

Signed-off-by: Alex Horn <alex.horn@cs.ox.ac.uk>
Signed-off-by: Andreas Pédrber <andreas.faerber@web.de>
Reviewed-by: Anthony Liguori <aliguorifus.ibm.com>
Signed-off-by: Anthony Liguori <aliguorifus.ibm.com>

http://git.qemu.org/?p=qemu.git;a=commit;h=cb5ef3fa1871522a0886627033459e94bd537fb7

Experiments

Hardware/software interface properties formally checked on an
individual basis:

e 11 RTC properties within a few minutes

e 17 TMP105 properties in less than 15 minutes

e 3 Ethernet MAC properties in sequential code within a few minutes

e 7 Ethernet MAC properties in concurrent code within a few hours?

L After publication, we found a bug in CBMC's implementation of the partial
order concurrency encoding but continue to improve the code. At the present
time, we cannot reproduce the results with CBMC for the concurrent model of the

Ethernet MAC.

Download Mel!

Conclusion:

e Formal verification of hardware/software interface properties
written in C code
o Executable code leverages well-established testing principles in industry
o Apply multi-path (i.e. CBMC-style) symbolic execution and symbolic

partial order encodings to handle concurrency in hardware/software

e Open-source prototype of a verifiable virtual platform (VVP)

o Provides an object of study for software engineers

All code and documentation is openly available now.

Source code, data sheets and experiments can be downloaded at
http://www.cprover.org/firmware/.

http://www.cprover.org/firmware/

Download Mel!

Conclusion:
e Formal verification of hardware/software interface properties
written in C code
o Executable code leverages well-established testing principles in industry
o Apply multi-path (i.e. CBMC-style) symbolic execution and symbolic
partial order encodings to handle concurrency in hardware/software

e Open-source prototype of a verifiable virtual platform (VVP)
o Provides an object of study for software engineers

All code and documentation is openly available now.

Source code, data sheets and experiments can be downloaded at
http://www.cprover.org/firmware/.

Thank you.

http://www.cprover.org/firmware/

Symbolic partial order encoding with CBMC

(Not to be confused with partial order reduction.)

Source Code
X:=1;

Static Single Symbolic Event Symbolic Partial
Assignment Form ——— Structure —— Orders

ro =1 (m1) W x clock,,1

\ Decision Procedure /

CAV’'13 (SAT/SMT)

RTC/QEMU: QDev and QOM Simplifications

Domain knowledge required:

system bus

’ hpet TMMFX pci- hom‘ aplc

cirrus-vga

i440FX

| PIIX3

|
[isa‘\.O] (ide.0) (ide.1] (usb.0)

’ isa-fdc ‘ ’ i8042 ‘ | mcl46181rtc | ’ smbus-eeprom etc. ‘

’ piix3-ide ‘ ’ piix3-usb-uhci ‘

Related work by Kai Cong et al.

Recent Kai Cong, Fei Xie, and Li Lei publications:
e Symbolic Execution of Virtual Devices (QSIC, 2013).
o Single-path (KLEE-style) symbolic execution
o Doesn’t symbolically co-execute virtual device and driver
o Suggests a way to automatically extract QEMU hardware models

e Automatic Concolic Test Generation with Virtual Prototypes for
Post-silicon Validation (ICCAD, 2013).

o Uses QEMU and KLEE

o Records concrete hardware/software interactions

	An Ethernet MAC concurrency bug
	A real bug firmware developers care about

	Problem statement and contribution
	Technical details
	Few glimpses at a verifiable virtual platform

	Experiments and conclusion
	Download Me!

