Challenges in Bit-Precise Reasoning

Armin Biere
Johannes Kepler University
Linz, Austria

Aina Niemetz, Andreas Frohlich, Gergely Kovasznai, Mathias Preiner

FMCAD 2014

€

SMT-COMP - Mozilla Firefox

SMT-COMP

QF_BV

&0 www.smkcomp.org

o

o

v C| (B~ Google

Q & B8

»

Competition results for the QF_BV division as of Fri Jun 27 16:49:23 EDT 2014

Competition benchmarks = 2488 (fotal = 32500, unknown status = 28138, trivial = 546)

Division COMPLETE: The winner is Boolector - BRONZE medal winner

CPUTI
ot - "M Weighted
Solver Errors | Solved Remaining medal score
Solved solved .
) weight = 3.396
instances)
Boolector 0| 2361 127 0 138077.59 3.058
STP-CryptoMiniSat4 0| 2283 205 0 190660.82 2.859
[CVC4-with-bugfix] 0| 2237 251 0 139205.24 2.745
[MathSAT] 0] 2199 289 0 262349.39 2.653
[£3] 0] 2180 308 0 214087.66 2.607
CVC4 0| 2166 322 0 87954.62 2.574
4Simp 0] 2121 367 0 187966.86 2.468
SONOLAR 0| 2026 462 0 174134.49 2.252
Yices2 0| 1770 718 0 159991.55 1.718
abziz_min_features 9| 2155 324 0 134385.22 2.548
abziz_all_features 9| 2093 386 0 122540.04 2.403

€

SMT-COMP - Mozilla Firefox
&

SMT-COMP *x

v C||B~ Google Q w B8

&0 www.smkcomp.org

QF_ABV

Competition results for the QF_ABV division as of Fri Jun 27 16:49:23 EDT 2014

Competition benchmarks = 6457 (total = 15091, unknown status = 4130, trivial = 4423)

Division COMPLETE: The winner is Boolector (justification)

CPU Time
Not (on Weighted
Solver Errors | Solved Remaining medal score
Solved solved .
. weight=23.8
instances)
Boolector 0| 6413 44 o| 5317627 3
(justification)
Boolector (dual 0| 6410 a7 0| 69040.03 3
propagation)
[MathSAT] 0| 6394 63 0 73535.00 3
SONOLAR 0| 6386 71 0 53248.38 3
CVC4 0| 6352 105 0 78865.09 3
[£3] 0| 6351 106 0 53957.15 3
Yices2 1| 6410 46 0 37112.15 3
Kleaver-STP 56| 5827 574 0 1120.08 3
Kleaver-portfolio 91| 5799 567 0 3403.29 3

Last modified: Wed 16 Jul 2014 19:3

 XHTML (ad
- 1.0 %u cs

Almost All Binary Search Implementations are Broken 3/32

int bsearch (int » a, 1int n, 1int e) {

int 1 = 0, r = n;

if (!n) return 0O; int main (void) {

while (1 + 1 < r) { int n = INT_MAX;
printf ("1=%d r=%d\n", 1, r); int *x a = calloc (n, 4);
int m= (1L + r) / 2; (void) bsearch (a, n, 1);
if (e < a[m]) r = m; }
else 1 = m;

} S ./bsearch

return al[l] == e; 1=0 r=2147483647

} 1=1073741823 r=2147483647

Segmentation fault

Syntax 4/32

® common “word-level” operators QF BV standard SMTLIB2 format

constants: Ox7fffffff, variables: fixed size bitvectors bool x[32]
predicates: equality “x=y”, inequality “x <y” (signed & unsigned)

bit-wise logical ops: negation, conjunction, xor ~x X &y x "y

word operators: slicing “x|l : r|”, concatenation “xoy”

conditional operator or if-then-else operator “c ?t:¢”

zero extension and sign extension

shift operators: left shift, arithmetic/logical right shift, rotation

basic arithmetic operators: negation (1-complement), addition, multiplication

overflow checking for addition and multiplication

derived arith. ops: unary minus (2-complement), substraction, division, modulo

m extended word-level operators (QF)[A][UF]BV

uninterpreted functions “UF”, arrays “A” with read / write operators

with quantifiers (no “QF ")

Modelling with Bit-Vectors

= allows to capture bit-precise semantics precisely
= RTL-level / word-level for HW
= assembler or C level for SW
but beware: int in Java has 2-complement semantics

® arrays used to model memories in HW or pointers in SW
= Jow-level (flat) memory model

= “writable” extension of uninterpreted functions (UF C A)

= extensional arrays:
check satisfiability assuming equality of (updated) arrays

a = write (b, j, v) Aread (a,) #V
in this example extensionality could be removed by substitution

® quantifiers (and lambdas) are even more powerful than arrays

= typical scenario
= symbolic execution of a program

= bounded model checking of an RTL model

5/32

Bit-Blasting of 4-Bit Addition 6/32

addition of 4-bit numbers x,y with result s also 4-bit: s=Xx+Yy

[S3,S2,S1,S0]4 — [X3,X2,X1,X()]4+ [y37y27y17y0]4

53, -]2 = FullAdder(x3,y3,¢2)

:Sl,Cl:z g FullAdder xl,yl,co)

(

52,c2]2 = FullAdder(xp,y2,¢1)
(
(

:S(),C():z = FuIlAdder X0,Y0,)
where

[s,0]n = FullAdder(x,y,i) with
s = x"y i

o = (xAY)V(A)V(YAD) = (x+y+i)>2)

And-Inverter-Graphs (AIG) 7/32

widely adopted bit-level intermediate representation
= gsee for instance our AIGER format http:/fmv.jku.at/aiger

= used in Hardware Model Checking Competition (HWMCC)
= also used in the structural track in (ancient) SAT competitions

" many companies use similar techniques
basic logical operators: conjunction and negation

DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compacitly stored as LSB in pointer

automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

or even SAT sweeping, full reduction, etc ... see ABC system from Berkeley

XOR as AlIG 8/32

X Y

negation/sign are edge attributes
not part of node

xTy = (XAY)V(xAY) = XAY)A(XAY)

Bit-Stuffing Techniques for AlGs in C 0/32

typedef struct AIG AIG;

struct AIG
{
enum Tag tag; /* AND, VAR */
void *datal2];
int mark, level; /* traversal */
AIG *next; /* hash collision chain */

}i

#define sign_aig(aig) (1 & (unsigned) aiq)

#define not_aig(aig) ((AIG*) (1 ~ (unsigned) aig))
#define strip aig(aig) ((AIG*) (~1 & (unsigned) aig))
#fdefine false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof (unsigned) == sizeof (voidx)

A4

=0 I 4
PR
AR e R
A
oue Ao ne
42X
g e‘\aﬁn <
JIP.0vosCans
o&‘\qu &
-
RO A<
No
.05 0R0RT R
4o (<4
N o
@ . k p 00@4 ORER:
“ - \ @VO@‘. &
@‘@ . . S g @)ﬂ &

4-bit adder
/02N
3
S
PR
o

vector of length 16 shifted by bit-vector of length 4

bit

Tseitin Transformation: Encode Circuit to CNF

CNF
0 >
1=
a 2/” ’
C—— v

oN(x—a)N(x—=c)N(x<—alc)A ...

oN(XVa)\N(XVc)AN(xVaVve)A ...

o N

13/32

Boolector Architecture 14/32

[BTOR j\ ,[j
subst Expr
parse 02 +
[SMT2]—» *[Expr j—» slice synthesize
rewrite - +
o1 orm
SMT 03 [AIG(VeC) j
O1 = bottom up simplification v
O2 = global but almost linear encode
O3 = normalizing (often non-linear) [defauli] Y
CNF]

SAT Solver
Lingeling / PicoSAT / MiniSAT

Internal Expression Types 15/32

enum BtorNodeKind

{

BTOR_BV_CONST_NODE = 1, BTOR_SLL_NODE = 11,
BTOR_BV_VAR_ NODE = 2, BTOR_SRL_NODE = 12,
BTOR_PARAM NODE = 3, BTOR_UDIV_NODE = 13,
BTOR_SLICE_NODE = 4, BTOR_UREM_NODE = 14,
BTOR_AND_NODE = b, BTOR_CONCAT_NODE = 15,
BTOR_BEQ_NODE = b, BTOR_APPLY_NODE = 1o,
BTOR_FEQ_NODE = 7, BTOR_LAMBDA_NODE =17,
BTOR_ADD_NODE = 8, BTOR_BCOND_NODE = 18,
BTOR_MUL_NODE = 9, BTOR_ARGS_NODE =19,
BTOR_ULT_NODE = 10 BTOR_UF_NODE = 20,

~

BTOR_PROXY_ NODE = 21
Y

Further Boolector Rewriting Internals

m fast parallel substitution

collects top-level variable assignments (equalities)

collects boolean (bit-width 1) top-level constraints (embedded constraints)
normalize arithmetic equalities and try to isolate variables (Gauss)

one pass substitution restricted to output-cone of substituted variables
needs occurrence check, equalities between non-variable terms not used
so only partially simulates congruence closure

but works nice for typical SSA form encodings

® boolean skeleton preprocessing

encode boolean (bit-width 1) part into SAT solver
use SAT preprocessing to extract forced units (backbone)

® replace sliced variables by new variables

® eliminate unconstrained sub-expressions

= optionally perform full beta reduction

® these expensive global rewriting steps iterated until completion

16/32

Inprocessing 17/32

B preprocessing interleaved with search or between incremental calls
= Boolector inprocessing only in each incremental SAT call

= Lingeling explicitly interleaves preprocessing with CDCL search

= incremental word-level solving
= through Boolector API only (currently)

= requires user to specify incremental usage initially

= disables unconstrained optimization and slice elimination

B preprocessing/inprocessing in SAT solver
= quite powerful

= need to maintain mapping of AlG nodes to CNF variables

= CNF variables eliminated by SAT solver can not be reused

Make Use of Inprocessing/Preprocessing SAT Solving

m don’tdoit

® our solution: clone SAT solver
= triggered after (fixed) conflict limit is reached

= cloned SAT solver can make full use of preprocessing

= except that it can not propagate back learned clauses to parent

® various papers by Nadel, Ryvchin, Strichman SAT’12, SAT’14:
= bring back clauses with eliminated but reused variables

= only works for bounded variable elimination (DP, BVE, SateL.ite)

= needs support from SAT solver (best version requires to maintain proofs)

m gctually cloning useful for many other things: Treengeling

18/32

Bit-Blasting Explodes

show commutativity of bit-vector addition for bit-width 1 million:

set—logic QF_BV)

declare-fun x () (_ BitVec 1000000))
declare-fun y () (_ BitVec 1000000))
assert (distinct (bvadd x y) (bvadd y x)))

~ o~ o~ o~

size of SMT2 file: 138 bytes

bit-blasting with our SMT solver Boolector
= rewriting turned off

= except structural hashing
= produces AIGER circuits of file size 103 MB

Tseitin transformation leads to CNF in DIMACS format of size 1 GB

19/32

Complexity of Bit-Vector Logics 20/32

= SMT2 bit-vector logic QF BV
= quantifier free bit-vector logic

= all common operators (incl. multiplication, division etc.)

= without uninterpreted functions nor arrays nor with macros (define-fun)

m classical bogus argument
= bit-blast formula (polynomially in bit-width)

= check with SAT solver, thus in NP

= any CNF is a bit-vector formula, thus NP hard

= however bit-blasting is really exponential

= since bit-width is encoded logarithmically:
(declare—fun x () (. BitVec 1000000))

= same for constants: Ox7fffffff

® we claim this is a fundamental difference: word-level vs. bit-level

Complexity Results Overview

from our SMT’12 paper (extended journal version submitted):

quantifiers
no yes
uninterpreted functions uninterpreted functions
no yes no yes
NP NP PSPACE | NEXPTIME
QF BV1 | QF UFBV1 BV1 UFB1
: unary obvious Ackermann [TACAS'10] [FMCAD’10]
encoding
NEXPTIME | NEXPTIME 2NEXPTIME
QF BV2 | QF UFBV2 ? UFBV2
binary [SMT’12] [SMT’12] [SMT’12]

QF = “quantifier free”
BV1 = “unary encoded bit-vectors”

UF = “uninterpreted functions”

BV = “bit-vector logic”

BV2 = “binary encoded bit-vectors”

21/32

Some Complexity Classes

= P
= problems with polynonmially time-bounded algorithms

= pbounds measured in terms of input (file) size

m NP
= same as P but with non-determininistic choice
" needs a SAT solver

= PSPACE
= as P but space-bounded

= QBF falls in this class, but also model checking (bit-level)

= NEXPTIME
= same as NP but with exponential time

= P C NP C PSPACE C NEXPTIME
= usually itis assumed: P # NP

= jtis further known: NP # NEXPTIME

22/32

NEXPTIME

PSPACE

NP

P

Complexity Concretely 23/32

= NP problems
= anything which can be (polynomially) encoded into SAT

= combinational equivalence checking, bounded model checking

= PSPACE problems
= anything which can be encoded (polynomially) into QBF

= orinto (bit-level) symbolic model checking

= sequential equivalence checking, combinational synthesis or bounded games

= NEXPTIME problems
= anything which can be encoded exponentially into SAT

= first-order logic Bernays-Schonfinkel class (EPR): no functions, 3*V* prefix
= QBF with explicit dependencies (Henkin Quantifiers): DQBF

= partial observation games, black-box bounded model checking

= bit-vector logics: QF_BV2

NEXPTIME Completeness 24/32

B QF _BV2 contained in NEXPTIME
= bit-blast (single exponentially)
= give resulting formula to SAT solver

= show QF B2 NEXPTIME hardness by reducing DQBF to QF BV2

Vxo,X1,X2,X3,X4 Jeg(xg,X1,X2,X3),e1(xX1,X2,X3,X%4) @

1. replace DQBF variables by 32 bit-vector variables Xl.m],E][.3 2]

2. replace conjunction, disjunction, negation, by bit-wise operations

3. add independence constraints, e.g., ey independent from x4: “eglx, = eolx’

4. enumerate all combinations of universal variables (function-table):
= these combinations are called binary magic numbers Mlm :Xl.[

= used for “cofactoring” too: (E([fz] & ME 2]) = (E([)32] & ~Mfz])»l

32]

= binary magic numbers can be generated polynomially

Bit-Wise Operators and Shifting Neighbouring Bits Only 25/32

= NP complete: QF BV2,,,
= equality and all bit-wise operators

= similar to well-known Ackermann reduction:
domain can be restricted to be the same size as the number of variables

thus bit-vector sizes can be reduced to logarithm of number of variables
= adapted from Johannsen [PhD Thesis '02] to binary encoding

= PSPACE complete: QF BV2,,
= only allow operators which relate neighbouring bits:
base operators: equality, inequality, bit-wise ops, shift-by-one
extended operators: addition, multiplication by constants, single-bit-slices etc.
= encode in symbolic model checking logarithmically in bit-width

= adapted from Spielmann, Kuncak [I[JCAR’12] to fixed size bit-vectors
related to early work by Bernard Boigelot

= extensions to a larger sub-set

®m see our CSR’12, SMT’13 papers (as well as our journal draft)

Commutativity of Bit-Vector Addition in SMV 26/32

MODULE main

VAR
Cc : boolean; —— carry ’"bvadd x y’
d : boolean; —— carry ’"bvadd y x’
X : boolean; -- x0, x1,
y : boolean; -- v0, vi1,
ASSIGN
init (c¢) := FALSE;
init (d) := FALSE;
ASSIGN
next (c) = c & x | ¢ &y | X & y;
next (d) (= d &y | d & x | v & X;
DEFINE
o :=c != (x !=Y);
p :=d = (y != x);
SPEC

27/32

Commutativity of Bit-Vector Addition in AIGER

AIGER_NEVER_0

2

|

0 »‘.a
?a\.arf’
oy

9
(€,
&

A

OL

'.6

Model Checking 28/32

® companies reluctant to publish word-level models
= thus we do not really have benchmarks

= also need properties
= no publically available flow from HDL to word-level models

® front-ends do not give us proper word-level models
= originally designed with bit-blasting in mind

= much more choices on word-level modelling languages

® sequential extension of BTOR (see our BPR'08 paper)
= we are working on a new sequential version of BTOR

= AIGER style

Lambdas 29/32

® |lambda’s can be used to represent array updates (e.g. UCLID)
®m our DIFTS’13 paper: lemmas-on-demand for lambdas

® various applications:

= write(a,i,e):
Aj.ite(i= j,e,read(a,j))

= memset(a,i,n,e):
Aj.ite(i< jAj<i+n,eread(a,j))

= memcpy(a,b,i,k,n):
Aj.itelk < jANj<k+n,read(a,i+ j—k),read(b, j))

= equivalence checking of different address logic in HW

Dual Propagation 30/32

® |emmas-on-demand
= originally proposed by [DeMoura’03]

= implements a CEGAR loop: extremely lazy CDCL(T) / DPLL (T)
= checks model guessed by SAT solver for theory consistency

= used in Boolector for arrays and lambdas

® use dont’care reasoning to obtain partial models
= shorter lemmas

= related to generalization in IC3

= future work: online version

= see our FMCAD’14 paper

Boolector 31/32

® new 2.0 release for FMCAD’14: http:/fmv.jku.at/boolector
® support for lambdas [DIFTS13] and uninterpreted functions
® had to remove support for extensional arrays

® way faster model generation

®= C and Python interface

= model based tester

= |atest Lingeling

= cloning

FMCAD’14, Thursday, 16:15 - 16:45
Aina Niemetz, Mathias Preiner and Armin Biere.
Turbo-Charging Lemmas on Demand with Don’t Care Reasoning.

Boolector 32/32

® new 2.0 release for FMCAD’14: http:/fmv.jku.at/boolector
® support for lambdas [DIFTS13] and uninterpreted functions
® had to remove support for extensional arrays

® way faster model generation

®= C and Python interface

= model based tester

= latest Lingeling Thank You!

= cloning

FMCAD’14, Thursday, 16:15 - 16:45
Aina Niemetz, Mathias Preiner and Armin Biere.
Turbo-Charging Lemmas on Demand with Don’t Care Reasoning.

