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Almost All Binary Search Implementations are Broken 3/32

int bsearch (int * a, int n, int e) {

int l = 0, r = n;

if (!n) return 0; int main (void) {

while (l + 1 < r) { int n = INT_MAX;

printf ("l=%d r=%d\n", l, r); int * a = calloc (n, 4);

int m = (l + r) / 2; (void) bsearch (a, n, 1);

if (e < a[m]) r = m; }

else l = m;

} $ ./bsearch

return a[l] == e; l=0 r=2147483647

} l=1073741823 r=2147483647

Segmentation fault
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Syntax 4/32

common “word-level” operators QF BV standard SMTLIB2 format

constants: 0x7fffffff, variables: fixed size bit vectors bool x[32]

predicates: equality “x = y”, inequality “x≤ y” (signed & unsigned)

bit-wise logical ops: negation, conjunction, xor ˜x x & y x ˆ y

word operators: slicing “x[l : r]”, concatenation “x◦ y”

conditional operator or if-then-else operator “c ? t : e”

zero extension and sign extension

shift operators: left shift, arithmetic/logical right shift, rotation

basic arithmetic operators: negation (1-complement), addition, multiplication

overflow checking for addition and multiplication

derived arith. ops: unary minus (2-complement), substraction, division, modulo

extended word-level operators (QF )[A][UF]BV

uninterpreted functions “UF”, arrays “A” with read / write operators

with quantifiers (no “QF ”)
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Modelling with Bit-Vectors 5/32

allows to capture bit-precise semantics precisely

RTL-level / word-level for HW

assembler or C level for SW
but beware: int in Java has 2-complement semantics

arrays used to model memories in HW or pointers in SW

low-level (flat) memory model

“writable” extension of uninterpreted functions (UF ⊆ A)

extensional arrays:

check satisfiability assuming equality of (updated) arrays

a = write (b, j, v) ∧ read (a, j) 6= v
in this example extensionality could be removed by substitution

quantifiers (and lambdas) are even more powerful than arrays

typical scenario

symbolic execution of a program

bounded model checking of an RTL model
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Bit-Blasting of 4-Bit Addition 6/32

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, · ]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0,0)

where

[ s , o ]2 = FullAdder(x,y, i) with

s = x ˆ y ˆ i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)
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And-Inverter-Graphs (AIG) 7/32

widely adopted bit-level intermediate representation

see for instance our AIGER format http://fmv.jku.at/aiger

used in Hardware Model Checking Competition (HWMCC)

also used in the structural track in (ancient) SAT competitions

many companies use similar techniques

basic logical operators: conjunction and negation

DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compactly stored as LSB in pointer

automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

or even SAT sweeping, full reduction, etc . . . see ABC system from Berkeley
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XOR as AIG 8/32

yx

negation/sign are edge attributes
not part of node

x ˆ y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)
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Bit-Stuffing Techniques for AIGs in C 9/32

typedef struct AIG AIG;

struct AIG

{

  enum Tag tag;                 /* AND, VAR */

  void *data[2];

  int mark, level;              /* traversal */

  AIG *next;                    /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)

Challenges in Bit-Precise Reasoning @ FMCAD’14
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Tseitin Transformation: Encode Circuit to CNF 13/32

CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .
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Boolector Architecture 14/32

Expr

SAT Solver

BTOR

SMT2 Expr

parse O2

subst

norm

slice

O3

synthesize

AIG(Vec)

CNF

O1 = bottom up simplification

O3 = normalizing (often non−linear) [default]

O1

rewrite

encode

Lingeling / PicoSAT / MiniSAT

SMT1

O2 = global but almost linear
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Internal Expression Types 15/32

enum BtorNodeKind

{

BTOR_BV_CONST_NODE = 1, BTOR_SLL_NODE = 11,

BTOR_BV_VAR_NODE = 2, BTOR_SRL_NODE = 12,

BTOR_PARAM_NODE = 3, BTOR_UDIV_NODE = 13,

BTOR_SLICE_NODE = 4, BTOR_UREM_NODE = 14,

BTOR_AND_NODE = 5, BTOR_CONCAT_NODE = 15,

BTOR_BEQ_NODE = 6, BTOR_APPLY_NODE = 16,

BTOR_FEQ_NODE = 7, BTOR_LAMBDA_NODE = 17,

BTOR_ADD_NODE = 8, BTOR_BCOND_NODE = 18,

BTOR_MUL_NODE = 9, BTOR_ARGS_NODE = 19,

BTOR_ULT_NODE = 10, BTOR_UF_NODE = 20,

BTOR_PROXY_NODE = 21

};
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Further Boolector Rewriting Internals 16/32

fast parallel substitution
collects top-level variable assignments (equalities)

collects boolean (bit-width 1) top-level constraints (embedded constraints)

normalize arithmetic equalities and try to isolate variables (Gauss)

one pass substitution restricted to output-cone of substituted variables

needs occurrence check, equalities between non-variable terms not used

so only partially simulates congruence closure

but works nice for typical SSA form encodings

boolean skeleton preprocessing
encode boolean (bit-width 1) part into SAT solver

use SAT preprocessing to extract forced units (backbone)

replace sliced variables by new variables

eliminate unconstrained sub-expressions

optionally perform full beta reduction

these expensive global rewriting steps iterated until completion
Challenges in Bit-Precise Reasoning @ FMCAD’14



Inprocessing 17/32

preprocessing interleaved with search or between incremental calls

Boolector inprocessing only in each incremental SAT call

Lingeling explicitly interleaves preprocessing with CDCL search

incremental word-level solving

through Boolector API only (currently)

requires user to specify incremental usage initially

disables unconstrained optimization and slice elimination

preprocessing/inprocessing in SAT solver

quite powerful

need to maintain mapping of AIG nodes to CNF variables

CNF variables eliminated by SAT solver can not be reused

Challenges in Bit-Precise Reasoning @ FMCAD’14



Make Use of Inprocessing/Preprocessing SAT Solving 18/32

don’t do it

our solution: clone SAT solver

triggered after (fixed) conflict limit is reached

cloned SAT solver can make full use of preprocessing

except that it can not propagate back learned clauses to parent

various papers by Nadel, Ryvchin, Strichman SAT’12, SAT’14:

bring back clauses with eliminated but reused variables

only works for bounded variable elimination (DP, BVE, SateLite)

needs support from SAT solver (best version requires to maintain proofs)

actually cloning useful for many other things: Treengeling

Challenges in Bit-Precise Reasoning @ FMCAD’14



Bit-Blasting Explodes 19/32

show commutativity of bit-vector addition for bit-width 1 million:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(assert (distinct (bvadd x y) (bvadd y x)))

size of SMT2 file: 138 bytes

bit-blasting with our SMT solver Boolector

rewriting turned off

except structural hashing

produces AIGER circuits of file size 103 MB

Tseitin transformation leads to CNF in DIMACS format of size 1 GB

Challenges in Bit-Precise Reasoning @ FMCAD’14



Complexity of Bit-Vector Logics 20/32

SMT2 bit-vector logic QF BV

quantifier free bit-vector logic

all common operators (incl. multiplication, division etc.)

without uninterpreted functions nor arrays nor with macros (define-fun)

classical bogus argument

bit-blast formula (polynomially in bit-width)

check with SAT solver, thus in NP

any CNF is a bit-vector formula, thus NP hard

however bit-blasting is really exponential

since bit-width is encoded logarithmically:
(declare-fun x () ( BitVec 1000000))

same for constants: 0x7fffffff

we claim this is a fundamental difference: word-level vs. bit-level
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Complexity Results Overview 21/32

from our SMT’12 paper (extended journal version submitted):

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding unary

NP

QF BV1
obvious

NP

QF UFBV1
Ackermann

PSPACE

BV1
[TACAS’10]

NEXPTIME
UFB1

[FMCAD’10]

binary

NEXPTIME
QF BV2

[SMT’12]

NEXPTIME

QF UFBV2
[SMT’12]

?

2NEXPTIME
UFBV2
[SMT’12]

QF = “quantifier free” UF = “uninterpreted functions” BV = “bit-vector logic”

BV1 = “unary encoded bit-vectors” BV2 = “binary encoded bit-vectors”
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Some Complexity Classes 22/32

P
problems with polynonmially time-bounded algorithms

bounds measured in terms of input (file) size

NP
same as P but with non-determininistic choice

needs a SAT solver

PSPACE
as P but space-bounded

QBF falls in this class, but also model checking (bit-level)

NEXPTIME
same as NP but with exponential time

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME
usually it is assumed: P 6= NP

it is further known: NP 6= NEXPTIME

P

NEXPTIME

PSPACE

NP
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Complexity Concretely 23/32

NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schönfinkel class ( EPR ): no functions, ∃∗∀∗ prefix

QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF BV2
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NEXPTIME Completeness 24/32

QF BV2 contained in NEXPTIME

bit-blast (single exponentially)

give resulting formula to SAT solver

show QF B2 NEXPTIME hardness by reducing DQBF to QF BV2

∀x0,x1,x2,x3,x4 ∃e0(x0,x1,x2,x3),e1(x1,x2,x3,x4) ϕ

1. replace DQBF variables by 32 bit-vector variables X [32]
i ,E [32]

j

2. replace conjunction, disjunction, negation, by bit-wise operations

3. add independence constraints, e.g., e0 independent from x4: “e0|x4 = e0|x4”

4. enumerate all combinations of universal variables (function-table):

these combinations are called binary magic numbers M[32]
i = X [32]

i

used for “cofactoring” too: (E [32]
0 & M[32]

4 ) = (E [32]
0 & ˜M[32]

4 )>>1

binary magic numbers can be generated polynomially
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Bit-Wise Operators and Shifting Neighbouring Bits Only 25/32

NP complete: QF BV2bw

equality and all bit-wise operators

similar to well-known Ackermann reduction:

domain can be restricted to be the same size as the number of variables

thus bit-vector sizes can be reduced to logarithm of number of variables

adapted from Johannsen [PhD Thesis ’02] to binary encoding

PSPACE complete: QF BV2bw,<<1

only allow operators which relate neighbouring bits:

base operators: equality, inequality, bit-wise ops, shift-by-one

extended operators: addition, multiplication by constants, single-bit-slices etc.

encode in symbolic model checking logarithmically in bit-width

adapted from Spielmann, Kuncak [IJCAR’12] to fixed size bit-vectors
related to early work by Bernard Boigelot

extensions to a larger sub-set

see our CSR’12, SMT’13 papers (as well as our journal draft)
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Commutativity of Bit-Vector Addition in SMV 26/32

MODULE main

VAR

c : boolean; -- carry ’bvadd x y’

d : boolean; -- carry ’bvadd y x’

x : boolean; -- x0, x1, ...

y : boolean; -- y0, y1, ...

ASSIGN

init (c) := FALSE;

init (d) := FALSE;

ASSIGN

next (c) := c & x | c & y | x & y;

next (d) := d & y | d & x | y & x;

DEFINE

o := c != (x != y);

p := d != (y != x);

SPEC

AG (o = p)
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Commutativity of Bit-Vector Addition in AIGER 27/32
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Model Checking 28/32

companies reluctant to publish word-level models

thus we do not really have benchmarks

also need properties

no publically available flow from HDL to word-level models

front-ends do not give us proper word-level models

originally designed with bit-blasting in mind

much more choices on word-level modelling languages

sequential extension of BTOR (see our BPR’08 paper)

we are working on a new sequential version of BTOR

AIGER style
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Lambdas 29/32

lambda’s can be used to represent array updates (e.g. UCLID)

our DIFTS’13 paper: lemmas-on-demand for lambdas

various applications:

write(a, i,e):
λ j . ite(i = j,e,read(a, j))

memset(a, i,n,e):
λ j . ite(i≤ j∧ j < i+n,e,read(a, j))

memcpy(a,b, i,k,n):
λ j . ite(k ≤ j∧ j < k+n,read(a, i+ j− k),read(b, j))

equivalence checking of different address logic in HW

. . .
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Dual Propagation 30/32

lemmas-on-demand

originally proposed by [DeMoura’03]

implements a CEGAR loop: extremely lazy CDCL(T) / DPLL (T)

checks model guessed by SAT solver for theory consistency

used in Boolector for arrays and lambdas

use dont’care reasoning to obtain partial models

shorter lemmas

related to generalization in IC3

future work: online version

see our FMCAD’14 paper
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Boolector 31/32

new 2.0 release for FMCAD’14: http://fmv.jku.at/boolector

support for lambdas [DIFTS’13] and uninterpreted functions

had to remove support for extensional arrays

way faster model generation

C and Python interface

model based tester

latest Lingeling

cloning

FMCAD’14, Thursday, 16:15 - 16:45

Aina Niemetz, Mathias Preiner and Armin Biere.
Turbo-Charging Lemmas on Demand with Don’t Care Reasoning.
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new 2.0 release for FMCAD’14: http://fmv.jku.at/boolector

support for lambdas [DIFTS’13] and uninterpreted functions

had to remove support for extensional arrays

way faster model generation

C and Python interface

model based tester

latest Lingeling Thank You!
cloning

FMCAD’14, Thursday, 16:15 - 16:45

Aina Niemetz, Mathias Preiner and Armin Biere.
Turbo-Charging Lemmas on Demand with Don’t Care Reasoning.
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