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Preventing regressions by using good traces

@ Concurrency bugs are hard to find and fix

@ We attempt to fix them automatically using synthesis

@ Specification:
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Atomic sections example

@ This example requires two atomic sections to be fixed

@ With a linear trace we cannot infer where to place atomic sections

11 = X)lQ =

tl = F
thread?

init: x = 0;
threadl

A: 11 = x

B: 11++

C: x =11

D: t1 =T

@ Using a happens-before relationship we can in
e An atomic section is denoted by a loop inside a thread (it is created by adding an edge)

1: 12 =
2: 12++
3: X =
4. asse

X

X 11++/12++
7

12 X

= 11 x = 12

rt(—t1Vx==2)

L

tl1 = T| |assert(..)

‘er atomic sections after two iterations
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Reordering example

init: IntrMask=0; ready=0; handled=0
intr thread

M: IntrMask = 1 R: await(IntrMask==1)
S: handled = ready

T: assert(handled)

init thread

N: ready = 1

IM

Il
—_

 await (IM==1)

ready = 1k

handled = ready

@ We remove edges from the partial order it M; N=N; M

e If such an edge is readded to create a cycle it means the two corresponding statements will be swapped in

the program

IM =1

 await (IM==1)

ready = 1k

handled = ready

assert(handled)

assert(handled)

IM =1

 await (IM==1)

ready = 1k

handled = ready

assert(handled)

Synthesis algorithm outline
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@ Reordering can cause init: x =0; y=0; z=0
regressions threadl thread2 thread3

e By analysing a good trace we can 1: await (x==1) A: x=1 n: await(z==1)
identity possible regressions before 2: await (y==1) B: y=1 p: assert (y==1)
reordering instructions 3. assert(z==1) C: z=1

1: it (x==1 A:x=1
await (x )\ X 1:await (x==1) k— A:x=1

T \ n:await(z==1)
2:await (y==1 Biy=1p !
await (y==1) ST 2:await (y==1) —B:y=1 -
V s p:assert (y==1)

3:await(z==1) —{ C:z=1

~ T
.

3:assert(z==1) HC:z=1

A;B;1;2;3 bem &
- causes assertion 3 to iy analyse good trace A;B;C;1;2;3;n;p

fail
. @ Blue edges indicate data-flow dependencies of
@ 2 possible fixes: swap B <+ C or .
awaits, red of asserts
swap A <+ C

@ We learn not to reorder B;C and n;p to protect

o swapping B <> C can lead to the data-flow into assertion p

assertion p failing
@ After good trace analysis only the correct fix A <+ C remains

Conclusion

@ We consider reorderings as fixes

@ We generalise the counter-example trace to capture the cause of the error
@ We pervent regressions by analysing good traces

Recent: Better trace generalisation

@ Trace generalisation is crucial to the success of the synthesis

@ Trace generalisation should capture the core of the bug
o Idea: Represent traces as a Boolean formula over happens-before constraints

global: x, withdrawal, deposit, balance, deposited, withdrawn
init: x = balance; deposited = O; withdrawn = 0O

T
thread withdraw:

localvars: temp

W,: temp = balance

W,: balance = temp - withdrawal
Ws: withdrawn = 1

thread deposit:

localvars: temp

D,: temp = balance

D,: balance = temp + deposit
D;: deposited = 1

thread checkresult:
C,: assume (deposited == 1 A withdrawn == 1)
C,: assert (balance == x + deposit - withdrawal)

Original Trace: m = W,,D,, W,, W5, D,, D5, C4, C,
Representation of bad interleavings of 7

NV = hb(W,,D,) A hb(D,,W,)

Representation of good interleavings of 7r:

’7\[7% — hb(D27 wl) V hb<w27 Di)

@ We introduce rewrite rules on N7 for synthesis, e.g.
hb(X;, Y) V RB(Y,, X)) VY i<j k<

10Ck(X[i,j]7 Y[k,@]) \% w
The ADD.LOCK rewriting rule yields 1ock(w[1,2], D[LQ])

ADD.LOCK
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