Thomas A. Henzinger, Arjun Rad.

Thorsten Tarrach (joint work with Pavol Cerny, Ashutosh Gupta,
Leonid Ryzhyk and Roopsha Samanta)

Synchronisation Synthesis for
Concurrent Programs

Introduction: Concurrency bugs

hakrishna, -

| BINTU N AUSTRIA

Institute of Science and Technology

Preventing regressions by using good traces

@ Concurrency bugs are hard to find and fix

@ We attempt to fix them automatically using synthesis

@ Specification:

Sequentially

Our

Correct

correct program

Specification:
assertions in
the code

synthesis

add
atomic sections,
wait-notifies;
reorder commands

program

asSertions pass
in all schedulings

for concurrency

Atomic sections example

@ This example requires two atomic sections to be fixed

@ With a linear trace we cannot infer where to place atomic sections

11 = X)lQ =

tl = F
thread?

init: x = 0;
threadl

A: 11 = x

B: 11++

C: x =11

D: t1 =T

@ Using a happens-before relationship we can in
e An atomic section is denoted by a loop inside a thread (it is created by adding an edge)

1: 12 =
2: 12++
3: X =
4. asse

X

X 11++/12++
7

12 X

= 11 x = 12

rt(—t1Vx==2)

L

tl1 = T| |assert(..)

‘er atomic sections after two iterations

11 = x 12 = x 11 = x 12 = x 11 = x 12 = x
T / o] (Oe / o))| 190
X =\'11 | X ="12 X ="11 N X =\'12 X =\'11 Hx = 12
1:1\'= T'>asse£t("J tlv= TP asse;t(“J 1:1\'= T‘>asse£t(m)

(a) Tteration 1

11l = xF—12 = x 11 = xpF— 12 = x 11l = x¢— 12 = x
] | 120 (T | aze | | amee | | 120

X =\'11 X = 12 X =\’11 "X = 12 X = 11—/ x = 12

tlv= TP asse;t(uj 1',1”= T'>asse£t(") t1 - TP asse£t(m)

(b) [teration 2

Reordering example

init: IntrMask=0; ready=0; handled=0
intr thread

M: IntrMask = 1 R: await(IntrMask==1)
S: handled = ready

T: assert(handled)

init thread

N: ready = 1

IM

Il
—_

 await (IM==1)

ready = 1k

handled = ready

@ We remove edges from the partial order it M; N=N; M

e If such an edge is readded to create a cycle it means the two corresponding statements will be swapped in

the program

IM =1

 await (IM==1)

ready = 1k

handled = ready

assert(handled)

assert(handled)

IM =1

 await (IM==1)

ready = 1k

handled = ready

assert(handled)

Synthesis algorithm outline

new
progra

Program correct?

yes

no

5l TTiaya@ b o et e e

ba@/ \g';ood

I Return program

new
constraints

Learn constraints
(possible fixes)

Analyse good trace

External

model checker
most time-

consumaing step

_

Represent trace as a
happens-before relation

(zeneralise relation

| into partial-order

| Introduce a

| tion to eliminate the bad traces

cycle into the rela-

@ Reordering can cause init: x =0; y=0; z=0
regressions threadl thread2 thread3

e By analysing a good trace we can 1: await (x==1) A: x=1 n: await(z==1)
identity possible regressions before 2: await (y==1) B: y=1 p: assert (y==1)
reordering instructions 3. assert(z==1) C: z=1

1: it (x==1 A:x=1
await (x)\ X 1:await (x==1) k— A:x=1

T \ n:await(z==1)
2:await (y==1 Biy=1p !
await (y==1) ST 2:await (y==1) —B:y=1 -
V s p:assert (y==1)

3:await(z==1) —{ C:z=1

~ T
.

3:assert(z==1) HC:z=1

A;B;1;2;3 bem &
- causes assertion 3 to iy analyse good trace A;B;C;1;2;3;n;p

fail
. @ Blue edges indicate data-flow dependencies of
@ 2 possible fixes: swap B <+ C or .
awaits, red of asserts
swap A <+ C

@ We learn not to reorder B;C and n;p to protect

o swapping B <> C can lead to the data-flow into assertion p

assertion p failing
@ After good trace analysis only the correct fix A <+ C remains

Conclusion

@ We consider reorderings as fixes

@ We generalise the counter-example trace to capture the cause of the error
@ We pervent regressions by analysing good traces

Recent: Better trace generalisation

@ Trace generalisation is crucial to the success of the synthesis

@ Trace generalisation should capture the core of the bug
o Idea: Represent traces as a Boolean formula over happens-before constraints

global: x, withdrawal, deposit, balance, deposited, withdrawn
init: x = balance; deposited = O; withdrawn = 0O

T
thread withdraw:

localvars: temp

W,: temp = balance

W,: balance = temp - withdrawal
Ws: withdrawn = 1

thread deposit:

localvars: temp

D,: temp = balance

D,: balance = temp + deposit
D;: deposited = 1

thread checkresult:
C,: assume (deposited == 1 A withdrawn == 1)
C,: assert (balance == x + deposit - withdrawal)

Original Trace: m = W,,D,, W,, W5, D,, D5, C4, C,
Representation of bad interleavings of 7

NV = hb(W,,D,) A hb(D,,W,)

Representation of good interleavings of 7r:

’7\[7% — hb(D27 wl) V hb<w27 Di)

@ We introduce rewrite rules on N7 for synthesis, e.g.
hb(X;, Y) V RB(Y,, X)) VY i<j k<

10Ck(X[i,j]7 Y[k,@]) \% w
The ADD.LOCK rewriting rule yields 1ock(w[1,2], D[LQ])

ADD.LOCK

References

1] A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean 6] M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided

Programs with an Application to C. In C'AV. 2000. synthesis of synchronization. In POFL, 2010.

2] A. Gupta, T. Henzinger, A. Radhakrishna, S. Roopsha, and ~ [7] P. Cerny, K. Chatterjee, T. Henzinger, A. Radhakrishna, and
T Tarrach. Succinct Representation of Concurrent Trace Sets. R. Singh. Quantitative synthesis for concurrent programs. In
In POPL, 2015. CAV, 2011.

3] B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair [8] P. Cerny, T. Henzinger, A. Radhakrishna, L. Ryzhyk, and
as a Game. In CAV, 2005. T. Tarrach. Efficient Synthesis for Concurrency by

4] R. Samanta, J. Deshmukh, and A. Emerson. Automatic Semantics-Preserving Transformations. In C'AV, 2013,

Generation of Local Repairs for Boolean Programs. In 9] P. Cerny, T. Henzinger, A. Radhakrishna, L. Ryzhyk, and
FMCAD, 2008. T. Tarrach. Regression-free Synthesis for Concurrency. In
CAV, 2014.

5] A. Solar-Lezama, C. Jones, and R. Bodik. Sketching
concurrent data structures. In PLDI 2008.

