
Template-based Synthesis of Instruction-Level Abstractions for SoC Verification

Pramod Subramanyan, Yakir Vizel, Sayak Ray and Sharad Malik
Department of Electrical Engineering, Princeton University.

Abstract—Contemporary integrated circuits are complex
system-on-chip (SoC) designs consisting of programmable cores
along with accelerators and peripherals controlled by firmware
running on the cores. The functionality of the SoC is implemented
by a combination of firmware and hardware components. As
a result, verifying these two components separately can miss
bugs while attempting to formally verify the full SoC design
considering both firmware and hardware is not scalable.

An abstraction that can be used instead of the cycle-accurate
and bit-precise hardware implementation can be helpful in
scalably verifying system-level properties of SoCs. However, con-
structing such an abstraction to capture all the required details
and interactions is error-prone, tedious and time-consuming.
Another challenge is ensuring correctness of the abstraction so
that properties proven using it are valid.

In this paper, we introduce a methodology for SoC verification.
We synthesize an instruction-level abstraction (ILA) that precisely
captures updates to all firmware-accessible states spanning the
cores, accelerators and peripherals. The synthesis algorithm uses
a blackbox simulator to synthesize the ILA from a template
specification. A “golden-model” generated from the ILA is used
to verify whether the hardware implementation matches the
ILA. We demonstrate the methodology using a small SoC design
consisting of the 8051 microcontroller and two cryptographic
accelerators. The methodology uncovered 14 bugs.

I. INTRODUCTION

Today’s integrated circuits are complex system-on-chip
(SoC) designs consisting of one or more programmable cores,
several accelerators and peripheral devices [17]. The overall
functionality of the SoC is determined by firmware that runs on
the cores and orchestrates the operation of the accelerators and
peripheral devices. Attempting to formally verify the complete
SoC with all its hardware components and firmware is not
scalable for even very small designs.

Firmware sits “below” the operating system and interacts
closely with the hardware. Both firmware and hardware make
many assumptions about the behavior of the other component.
As a result, verifying the two components separately requires
explicitly enumerating these assumptions and verifying that the
other component satisfies these assumptions. An example from
a commercial SoC highlighting the importance of capturing
these interactions is provided in [21]. A series of I/O write
operations could be executed by malicious firmware leaving
a cryptographic accelerator in a “confused” state after which
sensitive cryptographic keys could be exfiltrated. The bug was
due to certain implicit assumptions made by hardware about
the timing of firmware I/O writes. These were violated by the
malicious code sequence.

This work was supported in part by C-FAR, one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA.

A. Abstractions for SoC Verification
A general technique for making SoC verification tractable

is to use an abstraction that accurately models all updates
to firmware-accessible hardware states [9, 16, 25, 26]. When
verifying properties involving firmware, the abstraction is used
instead of the bit-precise cycle-accurate hardware model.

Although the idea of constructing abstractions for firmware
verification is attractive, there are several challenges in apply-
ing the technique in practice. Firmware interacts with hardware
components in a myriad of ways. For the abstraction to be
useful, it needs to model all these interactions and capture all
updates to firmware-accessible states.
• Firmware usually controls accelerators in the SoC by

writing to memory-mapped registers within the acceler-
ators. These registers may set the mode of operation of
the accelerator, the location of the data to be processed,
or return the current state of the accelerator’s operation.
The abstraction needs to model these “special” reads and
writes to the memory-mapped I/O space correctly.

• Once operation is initiated, the accelerators step through
a high-level state machine that implements the data
processing functionality. Transitions of this state machine
may depend on responses from other SoC components,
the acquisition of semaphores, external inputs, etc. These
state machines have to be modeled to ensure there are
no bugs involving race conditions or malicious external
input that cause unexpected transitions or deadlocks.

• Another concern is preventing compromised/malicious
firmware from accessing sensitive data. To prove that
such requirements are satisfied, the abstraction needs to
capture issues such as a sensitive value being copied into
a firmware-accessible temporary register.

We argue that manually constructing an abstraction which
captures these details, as proposed for example in [25, 26], is
not practical because it is error-prone, as well as tedious and
very time-consuming. Abstractions that focus on specific types
of properties, like the control flow graph from [16], can ease
certain verification concerns, but this does not capture all the
requirements mentioned above. A third alternative is to verify
the firmware using a software model of the hardware [9]. This
too misses bugs present in the hardware implementation but
not the software model.

The problem with these approaches is correctness of the
abstraction. If the hardware implementation is not consistent
with the abstraction, properties proven using it are not valid.

B. Synthesizing Instruction-Level Abstractions
In this paper, we propose a general methodology for con-

structing correct abstractions for SoC verification. The abstrac-

tion captures all updates to firmware-accessible states which
includes the architectural state of the cores, memory-mapped
and I/O addressable registers in the accelerators and peripheral
devices as well as high-level state machines that model the
operation of the cores and other hardware components.

Template ILA

Synthesis Algorithm

ILA

Si
m

ul
at

o
r

Golden Model

Model Checker

R
TL

 M
od

el

R
ef

in
em

en
t

R
el

at
io

n
s

Verif loop

Sy
st

e
m

-L
ev

el

V
er

ifi
ca

ti
o

n

Fig. 1: Block Diagram of Template-Based Synthesis of Instruction-
Level Abstractions

We call this an instruction-level abstraction or ILA. The
insight is that firmware can only view changes in system
state at the granularity of instructions. So it is sufficient to
model hardware components of the SoC at this granularity.
Then, the ILA of an SoC is a product of deterministic finite
state transition systems that are abstractions of each of the
SoCs hardware components constructed at the granularity of
instructions. For example, Figure 2 shows an ILA that is a
product of three finite state transition systems: a processor,
accelerator and an I/O peripheral. The ILA for the processor
is analogous to an instruction-granularity control flow graph,
while for the accelerator it is an instruction-granularity high-
level state machine. If we construct an ILA and prove it is an
overapproximation of the hardware components, system-level
properties proven using the ILA will be valid.

PR
O

C A
C

C
I/

O

Fig. 2: Instruction-Level Abstraction

To enable the abstraction to be easily constructed in a semi-
automated manner, we build on recent progress in syntax-
guided synthesis [1, 11, 19]. We propose synthesizing the ILA

from a template. Instead of manually constructing the complete
abstraction, the verification engineer now has the much easier
task of writing a template that partially defines the operation
of the hardware components. The synthesis framework infers
the complete abstraction and fills in the missing details by
using a blackbox simulator of the hardware components.

The term blackbox simulator means the simulator can be
used to find the next state and outputs of the system given
its current state and input values, but it is not possible to
“look inside” the simulator and get a full-definition of the
system’s behavior.1 Simulators are often constructed during
SoC design for validation purposes, e.g., simulation-based
testing of firmware. In principle, it may be possible to extract
an abstraction of the SoC through automated analysis of
the simulator, however, in practice, due to the scale and
complexity of the codebase it is not possible to do so. Our
work constructs an abstraction of the system in this scenario.2

To validate the abstraction and ensure that the hardware
implementation conforms to the abstraction, we automatically
generate a “golden model” from the abstraction. A set of
temporal refinement relations are model checked to ensure
that the behavior of the implementation matches the behavior
of the golden model. If the refinement relations are proven,
we have a guarantee that the abstraction is a correct over-
approximation of the hardware components and any properties
proven using the abstraction are in fact valid. If the proof fails,
we get counterexamples that can be used to “fix” either the
implementation or the template.

Figure 1 is an overview of the methodology. The blue-boxes
show the components that are provided by the verification
engineer. We assume that the register-transfer level (RTL)
model and a simulator are already available; these are gray.
Automatically generated artifacts are green and off-the-shelf
tools are red. The synthesis algorithm is in yellow.

C. Contributions

We introduce a general methodology for template-based
synthesis of instruction-level abstractions for SoC verification.
The methodology has three advantages. It helps verification
engineers easily construct correct abstractions that are useful
in verifying system-level properties of SoCs.

We introduce a parameterized synthesis framework that
allows scalable synthesis of the complex functionality in
modern SoCs and a language for template-based synthesis that
is tailored to modeling hardware components. We show how
correctness of the synthesized abstraction can be verified.

Finally, we present a case study applying the methodology
to the verification of a simple SoC design consisting of the
8051 microcontroller and two cryptographic accelerator cores.
We discuss construction of the instruction-level abstraction
and describe the bugs found during verification. The synthesis
framework and experimental artifacts are available online [5].

1The blackbox simulator is akin the I/O oracle in [11].
2The hardware (RTL) implementation can also be used for simulation if a

dedicated simulator is not available.

II. DEFINITIONS AND FORMAL MODEL

We model the hardware implementation as a deterministic
finite state transition system. Let B = {0, 1} be the Boolean
domain. The state space is defined by the union of two sets
of Boolean variables encoding the states: X = XF ∪ XM .
XF = {x1, x2, . . . , xm} represent the firmware-accessible
states. XM = {u1, u2, . . . , un} is the microarchitectural state,
and is not visible to the firmware. For example, in a micro-
processor core, XF will contain the architectural registers and
program counter while XM may contain the pipeline registers
and reorder buffer. The transition system is then defined as the
tuple M = (X, I, Init , T). I is the set of external inputs to the
transition system. Init is a predicate over X and defines the
initial states of the transition system. T (I,X, Y) defines the
transition relation where Y is the set of next-state variables.

The instruction-level abstraction is also modeled as a de-
terministic finite state transition system. The state space of
the abstraction is defined over the set of variables XA. All
firmware-accessible states are included in XA so XF ⊆ XA.
The transition system is then defined by the tuple MA =
(XA, IA, InitA, TA) where IA, InitA and TA(IA, XA, YA) are
analogously defined. We also define the blackbox simulation
function eval : I × XA 7→ YA. eval(I, XA) = YA iff
TA(I, XA, YA) is true. Here I, XA and YA are specific values
of I , XA and YA respectively.

III. SYNTHESIZING INSTRUCTION-LEVEL ABSTRACTIONS

The synthesis problem is to construct the finite state tran-
sition system MA = (XA, I, InitA, TA) using the blackbox
simulation function eval. One potential solution to this prob-
lem is to use results on learning finite state automata [2, 18].
Unfortunately the running time of these algorithms grows as
a polynomial function of the number of states in the system.
Since a typical hardware component has 2m states with m
state variables and m is in the range of hundreds, thousands
or even more, these algorithms are not practical.

We tackle the problem using two insights. The first is
that it is reasonable to expect the verification engineer to
identify the state variables of the ILA: XA. We then build on
recent progress in syntax-guided synthesis [1] to synthesize the
transition relation TA from a template. The challenge here is
that the transition relation for a hardware component is likely
too complex to synthesize directly. For instance, consider
the transition relation for the ILA of a microprocessor. The
inputs to the relation will be all state the processor can
access: all data registers, all memory, all external I/O ports,
the program counter, flag register, etc. The relation captures
the functionality of each opcode by performing a “case-split”
for each opcode, which can take hundreds of different values.
Synthesis algorithms are currently limited to templates with a
few tens to hundreds of synthesis elements [1, 8, 11]. Since
the opcode can take hundreds of different values, synthesizing
the complete transition relation appears to be out of reach.

Our solution is to simplify the synthesis problem by
eliminating the “case-split” structure. The synthesis frame-
work starts with a template, i.e., a specification containing

“holes” [1, 19] and a synthesis parameter. Synthesis is done
for each value of the parameter and the complete transition
relation combines the individually synthesized elements.

A. Synthesis Problem Formulation

To synthesize the ILA, the verification engineer constructs
a template transition relation TA(S, I,XA, YA). S is the set of
synthesis variables which have to be assigned appropriately to
make the template TA equivalent to TA. The synthesis problem
is parameterized over the parameter pi where i = 1, 2, . . . N .
pi is a family of predicates defined on XA such that p1∨p2∨
· · · ∨ pN = 1 and (i 6= j) =⇒ ¬(pi ∧ pj). For each i, the
synthesis algorithm uses the function eval : I × XA 7→ YA
and attempts to find an assignment Si to S such that ∀I,XA :
pi =⇒

(
TA(Si, I,XA, YA) ⇐⇒ TA(I,XA, YA)

)
. The

conjunction of these relations yields the ILA TA.
A formal definition of the parameterized synthesis problem

is as follows. Find S1 . . . SN such that for all I,XA, YA:(N∧
i=1

(
pi =⇒ TA(Si, I,XA, YA)

))
⇐⇒ TA(I,XA, YA)

Consider the example of synthesizing an ILA for a mi-
croprocessor. The template transition relation expresses the
different ways in which architectural state can be updated
by each instruction. The synthesis parameter is the currently
executing opcode, therefore, the predicate pi would be defined
over the ROM values pointed to by the current program
counter. The predicate p0 would be true when the opcode
0 is being executed, predicate p1 would be true for opcode
1 and so on. Synthesis is done for each opcode and the
conjunction (p0 =⇒ TA(S0, I,XA, YA) ∧ · · · ∧ (pN =⇒
TA(SN, I,XA, YA)) defines the operation of the microproces-
sor under every possible opcode. This is the complete ILA.

B. Template Language Definition

The transition relation is defined using the template lan-
guage shown in Figure 3. To easily model hardware behavior,
a number of primitives to manipulate Boolean and bitvector
values are included in the language. It also models memory-
like structures (RAM/ROM/register files) and uninterpreted
functions from bitvectors to bitvectors.

The template consists of a list of statements. Each statement
is either an assignment or an output statement. An output
statement indicates this identifier is one of the outputs of
the transition relation. The constructs bool, bv, mem and
func create Boolean, bitvector, memory and function variables
of the appropriate sizes, respectively. A memory variable is
specified with two parameters: the bitvector size of the address
and the bitvector size of the data cells. A function variable is a
map from a bitvector of size in width to a bitvector of size
out width. bvop and boolop represent all usual bitvector
and boolean operators: and, or, not, addition, subtraction etc.

Synthesis is supported using three constructs. The choice
construct takes a list of expressions as its argument and
specifies that the synthesized ILA must replace the choice
construct with one of the argument expressions. For example,

〈template〉 ::= 〈stmt〉 ; 〈template〉
| 〈empty〉

〈stmt〉 ::= 〈id〉 ← 〈exp〉
| output 〈id〉

〈exp〉 ::= 〈bv-exp〉 | 〈bool-exp〉 | 〈mem-exp〉

〈bv-exp〉 ::= 〈id〉 | bv width | bvcnst value width
| bvop 〈bv-exp〉 ...
| if 〈bool-exp〉 then 〈bv-exp〉 else 〈bv-exp〉
| readmem 〈mem-exp〉 〈bv-exp〉
| apply 〈func-exp〉 〈bv-exp〉
| choice 〈id〉 [〈bv-exp〉 〈bv-exp〉 ...]
| read-slice-choice 〈id〉 〈bv-exp〉 length
| bv-in-range 〈bv-exp〉 〈bv-exp〉

〈bool-exp〉 ::= 〈id〉 | bool | true | false
| boolop 〈bool-exp〉 ...
| 〈bv-exp〉 == 〈bv-exp〉 | 〈bv-exp〉 6= 〈bv-exp〉
| if 〈bool-exp〉 then 〈bool-exp〉 else 〈bool-exp〉
| choice 〈id〉 [〈bool-exp〉 〈bool-exp〉 ...]

〈mem-exp〉 ::= 〈id〉
| mem addr width data width
| write-mem 〈mem-exp〉 〈bv-exp〉 〈bv-exp〉
| if 〈bool-exp〉 then 〈mem-exp〉 else 〈mem-exp〉
| choice 〈id〉 [〈mem-exp〉 〈mem-exp〉 ...]

〈func-exp〉 ::= 〈id〉
| func 〈id〉 in width out width

Fig. 3: Template Language Grammar

suppose we want to model an 8-bit ALU that performs
addition, subtraction and the increment operations. This is
written as:
ALUINC ← SRC1 + bvcnst 1 8
ALUADD ← SRC1 + SRC2
ALUSUB ← SRC1 - SRC2
ALURESULT ← choice ALUOP [ALUINC ALUADD ALUSUB]

The read-slice-choice has bitvector b and width k as ar-
guments and synthesizes an expression that extracts bits i to
i + k − 1 of b for some index i. In other words, it provides
a convenient way to operate on slices of bitvectors without
specifying the indices of the slice. For example, if one of the
bits in the PSW register is the carry flag, we can write this as
follows: CY ← read-slice-choice CYF PSW 1.

The final synthesis operator is bv-in-range which synthe-
sizes a bitvector value within the specified range. Somewhat
surprisingly, we found this minimal set of synthesis operators
to be sufficiently expressive for our case study.3 It is very easy
to add more synthesis primitives.

C. Synthesis Algorithm

The synthesis procedure first “compiles” the template into
a satisfiability modulo theory (SMT) formula which uses

3This finding is consistent with SKETCH where the supported “holes” are
of only three types: index expressions, lookup tables and bitmasks.

the theories of bitvectors, arrays and uninterpreted func-
tions with equality. Most elements in the template lan-
guage can be mapped to SMT using a straightforward re-
cursive algorithm. The synthesis primitives: choice, read-
slice-choice and bv-in-range require special treatment. These
primitives introduce new synthesis variables, whose val-
ues have to be inferred by the synthesis procedure. As
an example consider the choice primitive. The statement
choice id [c1 c2 . . . ck] is converted to the SMT for-
mula ITE(id1, c1, ITE(id2, c2, ITE(id3, c3, . . . , ck))) where
id1 . . . idk−1 are Boolean synthesis variables.

Algorithm 1 Synthesis Algorithm
Function: synthesize .
Inputs: TA(S, I,XA, YA), pi and eval.
Output: Si

1: j ← 1
2: T1 = TA(S1, I,XA, YA1)
3: T2 = TA(S2, I,XA, YA2)
4: F 1 = pi ∧ T1 ∧ T2
5: while sat [F j ∧ (YA1 6= YA2)] do
6: (Ij, Xj)← SATASSIGNMENTI,XA(F

j)
7: Yj ← eval(Ij, Xj)
8: Tj

1 ← SUBSTITUTE(T1, I = Ij, XA = Xj, YA1 = Yj)
9: Tj

2 ← SUBSTITUTE(T2, I = Ij, XA = Xj, YA2 = Yj)
10: F j+1 ← F j ∧ Tj

1 ∧ Tj
2

11: j ← j + 1
12: end while
13: Si ← SATASSIGNMENTS1(F

j)

The translation procedure yields the SMT formula
TA(S, I,XA, YA) which is then synthesized using Algo-
rithm 1. The key idea is to repeatedly find distinguishing
inputs [11] while ensuring the simulation input/output values
observed thus far are satisfied. A distinguishing input for
S1 and S2 is an assignment to I and XA such that the
TA transitions to a different states with S1 and S2. The
distinguishing input is found in line 6. Next we use eval to find
the correct next-state Yi and assert that the next distinguishing
input must satisfy this transition (line 10). When no more
distinguishing inputs can be found, then all assignments to
S define the same transition relation and we pick one of these
assignments in line 13.

1) Template Bugs: We say the template TA and param-
eters pi can express the relation TA if for all i: pi =⇒
TA(I,XA, YA) is a member of the set of relations defined by
{s ∈ B|S| | TA(s, I,XA, YA)}. If pi =⇒ TA(I,XA, YA)
does not belong to this family of relations, we say that the TA
and pi cannot express TA.

We refer to the scenario when TA and pi cannot express TA
as a template bug. A template bug may result in the call to the
SMT solver in line 13 to be unsatisfiable. When this happens,
our synthesis framework prints out the unsat core of F j . In
our experience, examining the simulation inputs and outputs
present in the unsat core is sufficient to identify the bug. The
algorithm may also return an incorrect transition relation and
this will be discovered either when verifying the ILA (see §IV)
or when verifying system-level properties using the ILA.

2) Simulator Bugs: Since eval models a simulator and real-
world simulators may contain bugs, it is possible that eval
is not equivalent to the idealized transition relation TA, i.e.,
eval(I, XA) = YA ⇐⇒ TA(I, XA, YA) does not hold. This
will also either cause an unsatisfiable result or an incorrect
transition relation. The former can be debugged using the unsat
core of F j while the latter will be detected during verification.

3) Correctness of Algorithm 1: In the absence of template
bugs and if eval is equivalent to TA, we have the following
result about Algorithm 1.
(Theorem) If TA and pi can express TA and eval(I, XA) = YA
⇐⇒ TA(I, XA, YA) then

(
∧Ni=1 (pi =⇒ TA(Si, I,XA, YA))

)
⇐⇒ TA(I,XA, YA).

IV. VERIFYING THE INSTRUCTION-LEVEL ABSTRACTION

Once we have ILA, the next step is to verify that it correctly
abstracts the hardware implementation. Our first attempt at
this might be to verify properties of the form G(xa = xf)
where xa ∈ XA and xf ∈ XF are elements of the firmware-
accessible states present in both the abstraction and the
implementation. Unfortunately, this property is likely to be
false for most internal state in hardware designs. Consider
an accelerator design. The ILA may only model a high-level
state machine of the accelerator which “executes” an entire
operation in one transition but the implementation will step
through many intermediate states to accomplish the equivalent.
The property is likely invalid during these intermediate states.

A. Verifying Abstraction Correctness

When considering the internal state of the hardware com-
ponents, we verify the ILA by defining refinement relations
as proposed by McMillan [14]: G(cond =⇒ xa = xf). The
predicate cond specifies when the equivalence between state
in the ILA and the corresponding state in the implementation
holds. For example, in a pipelined microprocessor, we might
expect that when an instruction commits, the architectural state
of the implementation matches the ILA. Defining the refine-
ment relations as above allows compositional verification [12].
Consider the property ¬(φ U (cond ∧ (xa 6= xf))) where φ
states that all refinement relations hold until time t− 1. This
is equivalent to the above property, but we can abstract away
irrelevant parts of φ when proving equivalence of xa and xf .

For state variables that are outputs of hardware components
being modeled, we expect that ILA outputs always match the
implementation. In this case, the property is G(xa = xf).

1) Discussion of Verification Issues: One part of our case
study is a pipelined microcontroller with limited specula-
tive execution. Our refinement relations are of the form
G(inst finished =⇒ (xa = xf)), i.e., the state of the
ILA and implementation must match when each instruction
commits. The other part of the case study involves the verifi-
cation of two cryptographic accelerators. Here the refinement
relations are: G(hlsm state changed =⇒ xa = xf).

If we had to verify a superscalar processor, the ILA would
execute multiple instructions in each transition. The exact
number of instructions to be executed with each transition is an

output of the implementation and an input to the abstraction.
The property would state that after these many instructions are
executed, the states of the ILA and implementation match.

B. Verification Correctness

If we prove the refinement relations for all outputs of the
ILA and implementation: G(xa = xf), then we know that
the ILA and implementation have identical externally-visible
behavior. Hence any properties proven about the behavior of
the external inputs and outputs of the ILA are also valid for
the implementation.

In practice, proving the property G(xa = xf) for all
external outputs may not be scalable, so we will have to adopt
McMillan’s compositional approach. We prove refinement
relations of the form ¬(φ U (cond ∧ xia 6= xif)) for internal
state and use these to prove the equivalence of the outputs.

If these compositional refinement relations are proven for
all firmware-visible state in the ILA and implementation, then
we know that all firmware-visible state updates are equivalent
between the ILA and the implementation. Further, we know
that transitions of the high-level of state machines in the ILA
are equivalent to those in the implementation. These properties
guarantee that firmware/hardware interactions in the ILA are
equivalent to the implementation, capturing the requirements
mentioned in Section I-A.

V. EVALUATION

This section describes the evaluation methodology, the
example SoC used as a case study, and then presents the
synthesis and verification results.

A. Evaluation Methodology

We implemented the template-based synthesis framework
as a Python library using the Z3 SMT solver [4]. Besides
synthesis of the ILA, the library also provides a set of func-
tions for generating behavioral Verilog corresponding to the
“golden model”. This is used to verify that the ILA matches
the implementation. We have made the synthesis framework,
template abstractions, synthesized ILA, Verilog netlists and
other experimental artifacts available online [5].

We used a slightly-modified version of the open source
Yosys [24] tool to synthesize netlists from behavioral Verilog.
We used ABC [22] for property verification. Experiments
were run on Intel(R) Xeon(R) E5645 and E3-1230 CPUs. The
E5645 has 12 cores and 128 GB of RAM, while the E3-1230
has 6 cores and 32 GB of RAM. All experiments were run on
Ubuntu Linux v12.04.

1) Example SoC Structure: A block diagram of the example
SoC is shown in Figure 4. It consists of the 8051 micro-
controller and two cryptographic accelerators. The register-
transfer level (RTL) Verilog implementation of the 8051 was
taken from OpenCores.org [23]. We used i8051sim from UC
Riverside as a blackbox instruction-level simulator of the
8051 [13]. One accelerator implements encryption/decryption
using the Advanced Encryption Standard (AES) [7]. This
is from OpenCores.org [10]. The second accelerator [20]

implements the SHA-1 cryptographic hash function [6]. We
wrote interface modules that “expose” the AES and SHA-1
accelerators to the 8051 using a memory-mapped I/O interface.

ARB

I/
O

 P
o

rt
s

ROM

8051 µc

RAM

REG ALU

AES SHA

XRAM

Fig. 4: Example SoC Block Diagram

2) Firmware Programming Interface: The firmware run-
ning on the 8051 initiates operation of the accelerators by writ-
ing the addresses of the data to be encrypted/decrypted/hashed
to memory-mapped registers within the accelerators. Operation
is started by writing to the start register which is also memory-
mapped. Once the operation is started, the accelerators use
direct memory access (DMA) to fetch the data from the ex-
ternal memory (XRAM), perform the operation and write the
result back to XRAM. The processor determines completion
by polling a memory-mapped status register.

3) Verification Objectives: In this work we focus on pro-
ducing a verified ILA of the SoCs hardware components. The
objectives here are to verify that each instruction in the 8051
is executed according to the ILA, firmware programming the
cryptographic accelerators by reading/writing to appropriate
memory-mapped registers produces the expected results and
that the implementation of the cryptographic accelerators
matches the high-level state machines in the ILA. We do not
verify correctness of encryption or hashing itself.

B. Verifying the Example SoC

We performed the verification in a modular manner by
constructing two ILAs: one for the 8051 microcontroller and
another for the arbiter, XRAM, AES and SHA modules. The
insight here is that the 8051 communicates with the accel-
erators and XRAM by reading/writing to XRAM addresses.
So from the perspective of the 8051, it is sufficient to show
that all instructions that modify the internal state of the
8051 are executed correctly and instructions which read/write
XRAM produce the correct results at the external memory
interface. What happens after these instructions “leave” the
external memory interface - whether they modify the XRAM
or start AES encryption, or return the current state of the SHA
accelerator - need not be considered in this model. For the
accelerators and the XRAM, we construct a separate ILA and
the only instructions we need to consider here are reads and
writes to XRAM addresses. In this ILA, we verify that these
operations produce the expected results.

1) Synthesizing the 8051 ILA: We constructed a template
ILA of the 8051 which is parameterized over the opcode

and models all 256 opcodes of the microcontroller and other
elements of architectural state including the internal RAM
which contains the register banks, the accumulator and other
registers. We used i8051sim as the blackbox simulator.

Note this is equivalent to synthesizing the instruction set
architecture (ISA) of the 8051. Our methodology ensures
that the constructed ILA specification is precisely-defined and
correct; this is a significant challenge in practice. For example,
Godefroid et al. [8] report that ISA documents only partially
define some instructions and leave some state undefined. They
report instances where implementation behavior contradicts
the ISA document and cases where implementation behavior
changes between different generations of the same processor-
family. Our methodology avoids all of these pitfalls.

Model LoC Size
Template ILA ≈ 650 30 KB
C++ instruction-level simulator ≈ 3000 106 KB
Behavioral Verilog implementation ≈ 9600 360 KB

TABLE I: Lines of code (LoC) and size in bytes of each model.

As an indication of the effort involved in building the
model, Table I compares the size of the template ILA with
the simulator and the RTL implementation. The template ILA
is significantly smaller than both the simulator and the RTL.
Table II shows the execution time for synthesis of each element
of architectural state. We report the average and maximum
values over all 256 opcodes. Except for the internal RAM, all
other elements are synthesized with a few seconds.

2) Verifying the 8051 ILA: We first attempted to verify
the 8051 by generating a large monolithic golden model that
implemented the entire functionality of the processor in a
single cycle. The IRAM in this model was abstracted from
a size of 256 bytes to 16 bytes. This abstracted golden model
was generated automatically using the synthesis library. We
manually implemented the abstraction reducing the size of the
IRAM in the RTL implementation.

We used this golden model to verify properties of the form
G(inst finished =⇒ xa = xf). For the external outputs of
the processor, e.g., the external ram address and data outputs,
the properties were of the form G(output valid =⇒ xa =
xf). Verification was done using bounded model checking
(BMC) with ABC using the bmc3 command. After fixing
some bugs and disabling the remaining (17) buggy instruc-
tions, we were able to reach a bound of 17 cycles after 5
hours of execution.

State AVG/MAX State AVG/MAX
Time (s) Time (s)

ACC 4.3/8.5 B 3.6/5.1
DPH 2.7/5.0 DPL 2.6/4.4
IRAM 1245.7/14043.6 P0 1.8/2.7
P1 2.4/3.8 P2 2.2/3.5
P3 2.7/4.6 PC 6.3/141.2
PSW 7.3/15.9 SP 2.8/5.0
XRAM/addr 0.4/0.4 XRAM/dataout 0.3/0.4

TABLE II: Synthesis execution time for 8051 ILA.

To improve scalability, we generated a set of “per-
instruction” golden models which only implement the state
updates for one of the 256 opcodes, the implementation of the
other 255 opcodes is abstracted away. We then verified a set
of properties of the form: ¬(φ U(inst finished ∧ opcode =
oi∧xa 6= xf)). Here φ states that all architectural state matches
until time t − 1. We then attempted to verify five important
properties stating that: (i) PC, (ii) accumulator, (iii) the IRAM,
(iv) XRAM data output and (iv) XRAM address must be equal
for the golden model and the implementation.

Property BMC bounds Proofs
CEX ≤ 20 ≤ 25 ≤ 30 ≤ 35

PC 0 0 25 10 204 96
ACC 1 0 8 39 191 56
IRAM 0 0 10 36 193 1
XRAM/dataout 0 0 0 0 239 238
XRAM/addr 0 0 0 0 239 239

TABLE III: Results with per-instruction golden model.

Results for these verification experiments are shown in
Table III. Each row of the table corresponds to a particular
property. Columns 2-6 show the bounds reached by BMC
within 2000 seconds. For example, the first row shows that
for 25 instructions, the BMC was able to reach a bound
between 21 to 25 cycles without a counterexample; for 10
instructions, it achieved a bound between 26 to 30 cycles and
for the remaining 204 instructions, the BMC reached a bound
between 31 and 35 cycles. The last column shows the number
of instructions for which we could prove the property. These
proofs were done using the pdr command which implements
the IC3 algorithm [3] with a time limit of 1950 seconds. Before
running pdr, we preprocessed the netlists using the gate-level
abstraction [15] technique with a time limit of 450 seconds.

We believe all instructions and all architectural states can
be proven to match the ILA with some verification effort. We
will have to apply the appropriate abstractions and possibly
specify a few intermediate lemmas. Due to limited time we
were unable to perform these proofs for all cases, so we report
the partial results shown above. Yet, the current results do
substantiate our claim that the ILA can be proven correct.

3) Bugs Found During 8051 Verification: In the simulator,
we found 5 bugs in total. Bugs in CJNE, DA and DIV instruc-
tions were due to signed integers being used where unsigned
values were expected. Another was a typo in AJMP and the
last was a mismatch between RTL and the simulator when
dividing by zero. These bugs were found during synthesis.

An interesting bug in the template was for the POP instruc-
tion. The POP <operand> instruction updates two items of
state: (1) <operand> = RAM[SP] and (2) SP = SP -
1. But what if operand is SP? The RTL set SP using (1)
while the ILA used (2). This was discovered during model
checking and the ILA was changed to match the RTL. This
shows one of the benefits of our methodology: all state updates
are precisely-defined and consistent between the ILA and RTL.

In the RTL model, we found a total of 7+1 bugs. One of
these is an entire class of bugs related to the forwarding of

special function register (SFR) values from an in-flight instruc-
tion to its successor. This affects 17 different instructions and
all bit-addressable architectural state. We partially fixed this.
A complete fix appears to require significant effort.

Another interesting issue was due to reads from re-
served/undefined SFR addresses. The RTL returned the previ-
ous value stored in a temporary buffer. This is an example of
the methodology detecting and preventing unintended leakage
of information through undefined state.

4) Synthesizing XRAM+AES+SHA ILA: The template ILA
for the cryptographic accelerators models the high-level state
machines (HLSM) for each accelerator. The synthesis param-
eter is the current state of the HLSM of the two accelerators.
The template also models reads/write operations from the
processor which read/write the external RAM or internal
registers in the accelerators. The AES and SHA functions were
modeled using uninterpreted functions.

Model LoC Size
Template ILA ≈ 500 26 KB
Python HLSM simulator ≈ 400 14 KB
Behavioral Verilog implementation ≈ 2800 87 KB

TABLE IV: Lines of code and size of each model.

The sizes of the model are shown in Table IV. Table V
shows the time to synthesize each element of the abstraction’s
state space. Synthesis can be completed in about an hour.

5) Verifying the XRAM+AES+SHA ILA: As before, we
generated a Verilog golden model for the XRAM+AES+SHA
ILA. We reduced the size of the XRAM in the ILA and
the implementation to just one byte because we were not
looking to prove correctness of reads and writes to the XRAM.
We then attempted to prove a set of properties of the form
G(hlsm state change =⇒ (xa = xf)). We were able
to prove that the AES:State, AES:Addr, and AES:Len in the
implementation matched the ILA using the pdr command. For
other firmware-visible state, BMC found no property violation
up to 199 cycles with a time limit of one hour.

VI. RELATED WORK

Syntax-Guided Synthesis: Our work builds on recent progress
in syntax-guided synthesis which is surveyed in [1]. The
synthesis primitives we introduce are similar to the idea
of “holes” and the ?? operator proposed in SKETCH [19].

State AVG/MAX State AVG/MAX
Time (s) Time (s)

AES:Addr 0.5/1.0 AES:BytesProcessed 0.6/1.5
AES:Ctr 0.6/1.6 AES:EncData 0.4/0.4
AES:Key0 0.7/1.7 AES:Key1 0.6/1.5
AES:Len 0.4/0.9 AES:ReadData 0.4/0.5
AES:State 0.8/2.0 Dataout 91.9/345.2
SHA:BytesProcessed 0.3/0.5 SHA:Digest 0.3/0.3
SHA:Len 0.4/0.4 SHA:RDAddr 0.4/0.4
SHA:Readdata 81.9/588.3 SHA:State 0.3/0.4
SHA:WRAddr 0.4/0.5 XRAM 22.4/58.1

TABLE V: Synthesis execution time for XRAM+AES+SHA ILA.

The synthesis algorithm is based on oracle-guided synthesis
from [11]. Our contribution is in the application of synthesis to
constructing abstractions for verification and the parameterized
formulation which makes synthesizing the ILA tractable.
Synthesizing Abstractions: Godefroid et al. [8] synthesize
a symbolic model for a subset of the ALU instructions in
an x86-core using input/output samples. They cannot verify
the correctness of the synthesized model, so it may or may
not correspond to the implementation. As such, it is insuf-
ficient for our scenario where we wish to use the model for
system-level verification with strong guarantees of correctness.
Furthermore, our synthesis framework can be used to model
general hardware components while they focus on a specific
part of the microprocessor: the ALU result and flag outputs.
Verifying Abstraction Correctness: The refinement relations
we use in proving that the abstraction and the implementa-
tion match are from [12, 14]. In [12], Jhala and McMillan
show how refinement relations can be defined to prove the
correctness of an out-of-order superscalar processor. While
these verification techniques are very important, these are not
the focus of our paper. We focus on synthesizing abstractions.
To verify their correctness, we can leverage the rich body of
work in hardware verification.
SoC Verification: One approach to compositional SoC ver-
ification is by Xie et al. [25, 26]. They suggest manually
constructing a “bridge” specification that along with a set of
hardware properties can be used to verify software components
that rely on these properties. Our methodology makes it easy
to construct the equivalent of the bridge specifications. It has
the added benefit of ensuring the abstraction is correct.

Horn et al. [9] suggests symbolic execution on a software
model that contains both firmware and software models of
hardware components. This approach is complementary to
ours because it can used for early-design stage verification,
when an RTL model may not be available. However, once the
RTL model is constructed, there is no easy way of ensuring
that the software model and the RTL are in agreement. This
is the critical challenge addressed by our work.

VII. CONCLUSION

Modern SoCs consist of a number of programmable cores
and many accelerators and peripheral devices which are con-
trolled by firmware running on the cores. The functionality of
the SoC is derived by this combination of firmware and hard-
ware. Verifying such SoCs is challenging because formally
verifying the complete SoC with firmware and hardware is not
scalable, while verifying the two separately may miss bugs.

In this paper, we introduced a methodology for SoC verifi-
cation that synthesizes an instruction-level abstraction (ILA) of
the SoC. The ILA captures updates to all firmware-accessible
states in the SoC and can be used instead of the bit-precise
cycle-accurate hardware model while proving system-level
properties involving firmware and hardware. One advantage
of our methodology is that the ILA is verifiably correct.
A set of refinement relations are defined to prove that the
behavior of the ILA matches the implementation. The other

advantage is that instead of specifying the complete ILA, the
verification has the much easier task of writing a template
ILA which partially defines the operation of the hardware
components, and the synthesis algorithm is able to synthesize
the missing details. We demonstrated the applicability of our
methodology by using it to verify a small SoC consisting of
the 8051 microcontroller and two cryptographic accelerators.
The verification process uncovered several bugs substantiating
our claim that the methodology is effective.

REFERENCES
[1] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A

Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design, 2013.

[2] D. Angluin. Learning Regular Sets from Queries and Counterexamples.
Information and Computing, November 1987.

[3] A. R. Bradley. SAT-based Model Checking Without Unrolling. In
Verification, Model Checking, and Abstract Interpretation, 2011.

[4] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Tools
and Algorithms for the Construction and Analysis of Systems, 2008.

[5] Experimental artifacts and synthesis framework source code. https://
bitbucket.org/spramod/fmcad-15-soc-ila, 2015.

[6] NIST FIPS. 180-2: Secure Hash Standard (SHS). Technical report,
National Institute of Standards and Technology, 2001.

[7] NIST FIPS. 197: Announcing the Advanced Encryption Standard (AES).
Technical report, 2001.

[8] P. Godefroid and A. Taly. Automated Synthesis of Symbolic Instruction
Encodings from I/O Samples. In Programming Language Design and
Implementation, 2012.

[9] A. Horn, M. Tautschnig, C. Val, L. Liang, T. Melham, J. Grundy,
and D. Kroening. Formal co-validation of low-level hardware/software
interfaces. In Formal Methods in Computer-Aided Design, Oct 2013.

[10] H. Hsing. http://opencores.org/project,tiny aes, 2014.
[11] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided

component-based program synthesis. In International Conference on
Software Engineering, 2010.

[12] R. Jhala and K. L. Mcmillan. Microarchitecture verification by compo-
sitional model checking. In Computer-Aided Verification, 2001.

[13] R. Lysecky, T. Givargis, G. Stitt, A. Gordon-Ross, and K. Miller. http:
//www.cs.ucr.edu/∼dalton/i8051/i8051sim/, 2001.

[14] K. L McMillan. Parameterized verification of the FLASH cache coher-
ence protocol by compositional model checking. In Correct Hardware
Design and Verification Methods. Springer, 2001.

[15] Alan Mishchenko, Niklas Een, Robert Brayton, Jason Baumgartner, Hari
Mony, and Pradeep Nalla. GLA: Gate-level Abstraction Revisited. In
Design, Automation and Test in Europe, 2013.

[16] M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz. Formal Hard-
ware/Software Co-verification by Interval Property Checking with Ab-
straction. In Design Automation Conference, 2011.

[17] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux,
P. P. Pande, C. Grecu, and A. Ivanov. System-on-Chip: Reuse and
Integration. Proceedings of the IEEE, 94(6), 2006.

[18] R. E. Schapire. The Design and Analysis of Efficient Learning Algo-
rithms. MIT Press, 1992.

[19] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
Combinatorial sketching for finite programs. In Architectural Support
for Programming Languages and Operating Systems, 2006.

[20] J. Strömbergson. https://github.com/secworks/sha1, 2014.
[21] P. Subramanyan and D. Arora. Formal Verification of Taint-Propagation

Security Properties in a Commercial SoC Design. In Design, Automation
and Test in Europe, 2014.

[22] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. http://www.eecs.berkeley.edu/
∼alanmi/abc/, 2014.

[23] S. Teran and J. Simsic. http://opencores.org/project,8051, 2013.
[24] Clifford Wolf. http://www.clifford.at/yosys/, 2015.
[25] F. Xie, X. Song, H. Chung, and Ranajoy N. Translation-based Co-

verification. In Formal Methods and Models for Co-Design, 2005.
[26] F. Xie, G. Yang, and X. Song. Component-based Hardware/Software Co-

verification for Building Trustworthy Embedded Systems. volume 80,
May 2007.

https://bitbucket.org/spramod/fmcad-15-soc-ila
https://bitbucket.org/spramod/fmcad-15-soc-ila
http://opencores.org/project,tiny_aes
http://www.cs.ucr.edu/~dalton/i8051/i8051sim/
http://www.cs.ucr.edu/~dalton/i8051/i8051sim/
https://github.com/secworks/sha1
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://opencores.org/project,8051
http://www.clifford.at/yosys/

	Introduction
	Abstractions for SoC Verification
	Synthesizing Instruction-Level Abstractions
	Contributions

	Definitions and Formal Model
	Synthesizing Instruction-Level Abstractions
	Synthesis Problem Formulation
	Template Language Definition
	Synthesis Algorithm
	Template Bugs
	Simulator Bugs
	Correctness of Algorithm 1

	Verifying the Instruction-Level Abstraction
	Verifying Abstraction Correctness
	Discussion of Verification Issues

	Verification Correctness

	Evaluation
	Evaluation Methodology
	Example SoC Structure
	Firmware Programming Interface
	Verification Objectives

	Verifying the Example SoC
	Synthesizing the 8051 ILA
	Verifying the 8051 ILA
	Bugs Found During 8051 Verification
	Synthesizing XRAM+AES+SHA ILA
	Verifying the XRAM+AES+SHA ILA

	Related Work
	Conclusion

