An SMT-based Approach to Fair Termination Analysis

Javier Esparza, Philipp J. Meyer

Technische Universität München
Fair Termination Analysis

- Fair termination: No non-fair infinite execution sequence σ.
- PSPACE-complete for boolean programs.
Fair Termination Analysis

- Fair termination: No non-fair infinite execution sequence σ.
- PSPACE-complete for boolean programs.

SMT-Based Approach

- Incomplete method based on reduction to feasibility of linear arithmetic constraints.
- Strengthened with refinement cycle which adds mixed linear and boolean constraints.
- Similar method previously applied for safety properties (An SMT-based Approach to Coverability Analysis, CAV14).
Lamport’s 1-bit Algorithm for Mutual Exclusion

\begin{align*}
\textbf{procedure} \text{ Process 1} & \\
\text{begin} & \\
\quad b_1 & := 0 \\
\quad \textbf{while} \ true \ \textbf{do} & \\
\quad p_1: & b_1 := 1 \\
\quad p_2: & \textbf{while} b_2 = 1 \ \textbf{do} \text{ skip} \ \textbf{od} \\
\quad p_3: & (\ast \text{ critical section } \ast) \\
\quad & b_1 := 0 \\
\quad \textbf{od} & \\
\text{end} & \\
\textbf{procedure} \text{ Process 2} & \\
\text{begin} & \\
\quad b_2 & := 0 \\
\quad \textbf{while} \ true \ \textbf{do} & \\
\quad q_1: & b_2 := 1 \\
\quad q_2: & \textbf{if} b_1 = 1 \ \textbf{then} \\
\quad q_3: & b_2 := 0 \\
\quad q_4: & \textbf{while} b_1 = 1 \ \textbf{do} \text{ skip} \ \textbf{od} \\
\quad & \textbf{goto} q_1 \\
\quad q_5: & (\ast \text{ critical section } \ast) \\
\quad & b_2 := 0 \\
\quad \textbf{od} & \\
\text{end} &
\end{align*}
Property: If both processes are executed infinitely often, then the first process should enter the critical section (p_3) infinitely often.
Property: If both processes are executed infinitely often, then the first process should enter the critical section (p_3) infinitely often.
Property: If both processes are executed infinitely often, then the first process should enter the critical section (p_3) infinitely often.
Abstract View of the Model

Property: For every infinite transition sequence σ, we have
\[
\varphi(\sigma) = \bigvee_{i=1}^{4} (s_i \in \inf(\sigma)) \land \bigvee_{i=1}^{7} (t_i \in \inf(\sigma)) \implies s_2 \in \inf(\sigma).
\]
Loop Sequences

\[\{ p_1, nb_1, nb_2, q_1 \} \xrightarrow{t_1 t_6 t_7 s_1 t_1 t_2 t_3 s_2 t_5 s_3 t_4} \{ p_1, nb_1, nb_2, q_1 \} \]
Loop Sequences

\[\{p_1, nb_1, nb_2, q_1\} \xrightarrow{t_1 t_6 t_7 s_1 t_1 t_2 t_3 s_2 t_5 s_3 t_4} \{p_1, nb_1, nb_2, q_1\} \]

\[#\sigma = (\#t_1 \ #t_2 \ #t_3 \ #t_4 \ #t_5 \ #t_6 \ #t_7 \ #s_1 \ #s_2 \ #s_3 \ #s_4) \]
Loop Sequences

\[
\{p_1, nb_1, nb_2, q_1\} \xrightarrow{t_1 t_6 t_7 s_1 t_1 t_2 t_3 s_2 t_5 s_3 t_4} \{p_1, nb_1, nb_2, q_1\}
\]

\[
\#\sigma = \begin{pmatrix} #t_1 & #t_2 & #t_3 & #t_4 & #t_5 & #t_6 & #t_7 & #s_1 & #s_2 & #s_3 & #s_4 \end{pmatrix} = \begin{pmatrix} 2 \end{pmatrix}
\]
Loop Sequences

\[\{ p_1, nb_1, nb_2, q_1 \} \xrightarrow{t_1 t_6 t_7 s_1 t_1 t_2 t_3 s_2 t_5 s_3 t_4} \{ p_1, nb_1, nb_2, q_1 \} \]

\[\#\sigma = \begin{pmatrix} \#t_1 & \#t_2 & \#t_3 & \#t_4 & \#t_5 & \#t_6 & \#t_7 & \#s_1 & \#s_2 & \#s_3 & \#s_4 \\ 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \]
Loop Sequences

\[\{p_1, nb_1, nb_2, q_1\} \xrightarrow{t_1t_6t_7s_1t_1t_2t_3s_2t_5s_3t_4} \{p_1, nb_1, nb_2, q_1\} \]

\[\#\sigma = (\begin{array}{cccccccccccc} #t_1 & #t_2 & #t_3 & #t_4 & #t_5 & #t_6 & #t_7 & #s_1 & #s_2 & #s_3 & #s_4 \\ 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{array}) \]
Necessary Condition for Loops

\[X = \begin{pmatrix} \#t_1 & \#t_2 & \#t_3 & \#t_4 & \#t_5 & \#t_6 & \#t_7 & \#s_1 & \#s_2 & \#s_3 & \#s_4 \\ t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4 \end{pmatrix} \]
Necessary Condition for Loops

\[X = \left(\begin{array}{cccccccc}
 #t_1 & #t_2 & #t_3 & #t_4 & #t_5 & #t_6 & #t_7 & #s_1 & #s_2 & #s_3 & #s_4 \\
 t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4
 \end{array} \right) \]
Necessary Condition for Loops

\[X = \begin{pmatrix} #t_1 & #t_2 & #t_3 & #t_4 & #t_5 & #t_6 & #t_7 & #s_1 & #s_2 & #s_3 & #s_4 \\ t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4 \end{pmatrix} \]

\[q_1 : \quad t_4 + t_7 = t_1 \]
Necessary Condition for Loops

\[X = \begin{pmatrix}
 \#t_1 & \#t_2 & \#t_3 & \#t_4 & \#t_5 & \#t_6 & \#t_7 & \#s_1 & \#s_2 & \#s_3 & \#s_4 \\
 t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4
\end{pmatrix} \]

\[q_1 : \quad t_4 + t_7 = t_1 \]
Necessary Condition for Loops

\[X = \begin{pmatrix}
#t_1 & #t_2 & #t_3 & #t_4 & #t_5 & #t_6 & #t_7 & #s_1 & #s_2 & #s_3 & #s_4 \\
 t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4
\end{pmatrix} \]

\[q_1 : \quad t_4 + t_7 = t_1 \]

\[q_2 : \quad t_1 = t_2 + t_6 \]

Diagram of a loop with transitions labeled with \(t_1, t_2, t_3, t_4, t_5, t_6, t_7 \) and states labeled with \(q_1, q_2, q_3, q_4, q_5 \).
Necessary Condition for Loops

\[X = \begin{pmatrix}
#t_1 & #t_2 & #t_3 & #t_4 & #t_5 & #t_6 & #t_7 & #s_1 & #s_2 & #s_3 & #s_4 \\
t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4
\end{pmatrix} \]

\[q_1 : \quad t_4 + t_7 = t_1 \]
\[q_2 : \quad t_1 = t_2 + t_6 \]
\[q_3 : \quad t_2 = t_3 \]
\[q_4 : \quad t_3 = t_4 \]
\[q_5 : \quad t_6 = t_7 \]
Necessary Condition for Loops

\[p_1 : \ s_3 = s_1 \]
\[p_2 : \ s_1 = s_2 \]
\[p_3 : \ s_2 = s_3 \]

\[b_2 : \ t_1 = t_3 + t_7 \]
\[nb_2 : \ t_3 + t_7 = s_1 \]

\[b_1 : \ s_1 = s_3 \]
\[nb_1 : \ s_3 = s_1 \]

\[q_1 : \ t_4 + t_7 = t_1 \]
\[q_2 : \ t_1 = t_2 + t_6 \]
\[q_3 : \ t_2 = t_3 \]
\[q_4 : \ t_3 = t_4 \]
\[q_5 : \ t_6 = t_7 \]
Termionation Constraints

- Accumulate constraints in matrix form as $C \cdot X = 0$.
- If there is an infinite transition sequence σ, then the following constraints have a solution X:

\[
\mathcal{C} :: \begin{cases}
C \cdot X = 0 \\
X \geq 0 \\
X \neq 0
\end{cases}
\]

- If the constraints have no solution, then the program is terminating.
- A solution X is realizable if there is a sequence σ with $\#\sigma = X$.
Fair Termination Constraints

- Fairness condition given by boolean formula φ over $t \in \inf(\sigma)$.
- If the program is not fairly terminating, then there is an infinite transition sequence σ satisfying $\sigma \models \neg \varphi$.
- Add constraint $\neg \varphi(X)$ to \mathcal{C} for fair termination constraints.

Fairness for Lamport’s Algorithm

$$\varphi(\sigma) = \bigvee_{i=1}^{4} (s_i \in \inf(\sigma)) \land \bigvee_{i=1}^{7} (t_i \in \inf(\sigma)) \implies s_2 \in \inf(\sigma)$$

$$\neg \varphi(X) = (s_1 + s_2 + s_3 + s_4 > 0) \land (t_1 + t_3 + t_4 + t_5 + t_6 + t_7 > 0) \land (s_2 = 0)$$
Fair Termination Constraints

\[s_3 = s_1 \quad t_4 + t_7 = t_1 \quad s_1 \geq 0 \quad t_1 \geq 0 \]
\[s_1 = s_2 \quad t_1 = t_2 + t_6 \quad s_2 \geq 0 \quad t_2 \geq 0 \]
\[s_2 = s_3 \quad t_2 = t_3 \quad s_3 \geq 0 \quad t_3 \geq 0 \]
\[t_3 = t_4 \quad t_4 \geq 0 \]
\[t_6 = t_7 \quad t_5 \geq 0 \]
\[s_1 = s_3 \quad t_1 = t_3 + t_7 \quad t_6 \geq 0 \]
\[s_3 = s_1 \quad t_3 + t_7 = s_1 \quad t_7 \geq 0 \]

\[s_1 + s_2 + s_3 + s_4 + t_1 + t_3 + t_4 + t_5 + t_6 + t_7 > 0 \]

\[(s_1 + s_2 + s_3 + s_4 > 0) \land \]
\[(t_1 + t_3 + t_4 + t_5 + t_6 + t_7 > 0) \land \]
\[(s_2 = 0) \]
Fair Termination Constraints: Solution

\[X = \begin{pmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \]

\[s_3 = s_1 \quad t_4 + t_7 = t_1 \quad s_1 \geq 0 \quad t_1 \geq 0 \]
\[s_1 = s_2 \quad t_1 = t_2 + t_6 \quad s_2 \geq 0 \quad t_2 \geq 0 \]
\[s_2 = s_3 \quad t_2 = t_3 \quad s_3 \geq 0 \quad t_3 \geq 0 \]
\[t_3 = t_4 \quad t_6 = t_7 \quad t_4 \geq 0 \quad t_5 \geq 0 \]
\[s_1 = s_3 \quad t_1 = t_3 + t_7 \quad t_6 \geq 0 \]
\[s_3 = s_1 \quad t_3 + t_7 = s_1 \quad t_7 \geq 0 \]

\[s_1 + s_2 + s_3 + s_4 + t_1 + t_3 + t_4 + t_5 + t_6 + t_7 > 0 \]

\[(s_1 + s_2 + s_3 + s_4 > 0) \land \]
\[(t_1 + t_3 + t_4 + t_5 + t_6 + t_7 > 0) \land \]
\[(s_2 = 0) \]
Fair Termination Constraints: Solution

\[X = \begin{pmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & s_1 & s_2 & s_3 & s_4 \end{pmatrix} \]

\(X = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \)
Solution realizable?

\(X \) realized by \(\sigma \) with \(\inf(\sigma) = \{s_4, t_5\} \).
Solution realizable?

X realized by σ with $\text{inf}(\sigma) = \{s_4, t_5\}$.

Diagram:

- p_1 to s_1
- p_2 to s_4
- p_3 to s_2
- b_1 to s_1 and back to b_1
- nb_1 to s_3 and back to nb_1
- t_4, t_6
- q_1 to t_7
- q_2 to t_6
- q_3 to t_3
- q_4 to t_5
- t_2, t_5
- t_4, t_6
- s_4 to t_1 and t_3, t_7
- nb_2 to s_2 and back to nb_2
- s_2 to t_1 and t_3, t_7
- s_3 to p_1 and p_2
- s_4 to p_2 and p_3
- s_2 to p_3
- t_2, t_5
Refinement Component

q_1, q_4 and b_2 are in mutual exclusion.
Refinement Component

q_1, q_4 and b_2 are in mutual exclusion.
Refinement Component

q_1, q_4 and b_2 are in mutual exclusion.
Refinement Component

q_1, q_4 and b_2 are in mutual exclusion.
Refinement Constraint

\(X \) realized by \(\sigma \) with \(\inf(\sigma) = \{s_4, t_5\} \).
Refinement Constraint

X not realizable \Rightarrow Generate refinement constraint δ.
Refinement Constraint

$$\delta = (s_4 = 0) \lor (t_5 = 0) \lor (t_1 + t_3 + t_4 + t_7 > 0)$$
Refinement Loop

\mathcal{C} sat?

Obtain solution X.

Refinement component to discard X?

Generate refinement constraint δ. unsat
Refinement Loop

\[C \text{ sat?} \rightarrow \text{unsat} \rightarrow \text{terminating} \]
Refinement Loop

\[C \text{ sat?} \quad \overset{\text{unsat}}{\longrightarrow} \quad \text{terminating} \]

\[\text{sat} \quad \overset{}{\longrightarrow} \quad \text{Obtain solution } X. \]
Refinement Loop

Refinement component to discard X?

Obtain solution X.

\mathcal{C} sat? \(\xrightarrow{\text{unsat}}\) terminating \(\xrightarrow{\text{sat}}\)

Refinement Loop

\(C \) sat? → unsat → terminating

\(C \) sat? → sat

Obtain solution \(X \).

inconclusive ← no

Refinement component to discard \(X \)?
Refinement Loop

\[C \text{ sat?} \]

- \text{unsat} \rightarrow \text{terminating}
- \text{sat}

Obtain solution \(X \).

Generate refinement constraint \(\delta \).

\text{yes} \rightarrow \text{inconclusive}

\text{no} \rightarrow \text{Refinement component to discard } X?
Refinement Loop

\[\mathcal{C} := \mathcal{C} \cup \{ \delta \} \]

Generate refinement constraint \(\delta \).

\(\mathcal{C} \) sat?

Unsat \(\rightarrow \) terminating

Sat

Obtain solution \(X \).

Refinement component to discard \(X \)?

Yes \(\rightarrow \) inconclusive

No \(\rightarrow \) yes

Yes

inconclusive

no

Refinement component to discard \(X \)?
Experimental Evaluation

Benchmarks

- IBM/SAP — Workflow nets from business process models
 - 1976 examples
 - 1836 terminating

- Erlang — Models from the verification of Erlang programs
 - 50 examples, up to 66950 places and 213626 transitions
 - 33 terminating

- Literature — Selected examples from the literature
 - 5 examples, with unbounded variables
 - All terminating

- Classical — Classic asynchronous programs for mutual exclusion and distributed algorithms
 - 5 examples, scalable in number of processes
 - All fairly terminating
Rate of Success

<table>
<thead>
<tr>
<th></th>
<th>1264</th>
<th>572</th>
<th>33</th>
<th>5</th>
<th>5</th>
<th>1879</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erlang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rate of Success

- IBM: 1264 terminating, 1263 w/o refinement
- SAP: 572 terminating, 571 w/o refinement
- Erlang: 33 terminating, 27 w/o refinement
- Literature: 5 terminating, 0 w/o refinement
- Classical: 5 terminating, 0 w/o refinement
- Total: 1879 terminating, 1861 w/o refinement
Rate of Success

<table>
<thead>
<tr>
<th></th>
<th>IBM</th>
<th>SAP</th>
<th>Erlang</th>
<th>Literature</th>
<th>Classical</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1264</td>
<td>1264</td>
<td>572</td>
<td>33</td>
<td>5</td>
<td>5</td>
<td>1879</td>
</tr>
<tr>
<td>1263</td>
<td>1263</td>
<td>571</td>
<td>27</td>
<td>5</td>
<td>5</td>
<td>1873</td>
</tr>
<tr>
<td>1861</td>
<td></td>
<td></td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>1861</td>
</tr>
</tbody>
</table>

IBM: terminating w/o refinement w/o refinement
SAP: terminating w/o refinement with refinement
Erlang: terminating w/o refinement with refinement
Literature: terminating with refinement
Classical: terminating with refinement
Total: terminating w/o refinement with refinement
Performance on Positive Examples

Execution time (s) vs Number of places graph with a time limit marker.
Performance on Positive Examples

![Graph showing execution time vs. number of places. The x-axis represents the number of places on a logarithmic scale, ranging from 10^0 to 10^5. The y-axis represents execution time (s) on a logarithmic scale, ranging from 10^{-2} to 10^4. There are data points indicating execution times of 3 seconds, 11 seconds, and 8 minutes, which are marked with red circles. The graph also includes a red horizontal line representing the time limit.](image-url)
Performance on Negative Examples

![Graph showing execution time vs. number of places]
Performance on Negative Examples

![Graph showing the relationship between execution time (s) and number of places with a time limit of 5 seconds and 1000 places as constraints.](image)
Refinement Steps

![Graph showing refinement steps vs. number of places.](image_url)
Comparison with SPIN on Scaled Classical Suite

![Graph comparing SPIN and Petrinizer performance on various classical algorithms.](image)

- SPIN (s)
- Petrinizer (s)

- Leader Election
- Snapshot
- Lamport
- Peterson
- Szymanski

- time limit/out of memory
Summary

- Fast and effective technique for proving fair termination
- Incomplete, but high degree of completeness
- Large instances can be handled
- Constraints can be used as a certificate of fair termination