
Accelerating Invariant Generation

Kumar Madhukar, Björn Wachter, Daniel Kroening
Matt Lewis and Mandayam Srivas

Tata Research Development and Design Center
University of Oxford

Chennai Mathematical Institute

Formal Methods in Computer-Aided Design
September 27-30, 2015

1 / 16

Background

I program analyzers often rely on invariant generation to reason
about loops

I unrolling is ineffective for non-trivial programs

I acceleration summarizes loops by computing a closed-form
representation

I derive loop “accelerators” from the closed-form

2 / 16

This paper

I two conjectures:

1. accelerators support the invariant synthesis performed by
program analyzers, irrespective of the underlying
approach

2. analyzers supported by acceleration outperform other
state-of-the-art tools performing similar analysis

I is an experimental evaluation of our conjectures

3 / 16

An example

#define a 2

int main()
unsigned int i, j, n, sn = 0;
j = i;

while(i < n)
sn = sn + a;
i++;

assert((sn == (n-j)*a) || sn == 0);

4 / 16

Acceleration

I general case is as difficult as the original verification problem

I transitive closure is rarely effectively computable

I frequently not possible to obtain a precise accelerator

I can be over-approximative or under-approximative

I often tuned to the analysis technique to be applied
subsequently

e.g., abstract interpretation or predicate abstraction

5 / 16

Our acceleration method

I based on templates; uses polynomials of degree 2

I relies on constraint solvers to compute accelerators

I added to the programs as additional paths, with a
non-deterministic choice

I the transformation preserves safety - the acceleration neither
over- nor under-approximates

6 / 16

Accelerated example

int nondet_int(); unsigned nondet_uint();
#define a 2

int main()
unsigned int i, j, n, k, sn = 0;
j = i;
while(i < n)
if(nondet_int()) // accelerate

k = nondet_uint(); sn = sn + k*a; i = i + k;
assume(i <= n); // no overflow

else // original body
sn = sn + a; i++;

assert((sn == (n-j)*a) || sn == 0);
7 / 16

Experimental setup: benchmarks

I 201 benchmarks: 138 safe, 63 unsafe

I InvGen and Dagger benchmark suites

I benchmark suite listed in “Beautiful Interpolants” paper at
CAV 2013

I the loops category in SV-COMP 2015

I acceleration benchmarks in the regression suite of Cbmc

I removed some examples: those not supported by the
acceleration (arrays in general), those with syntax errors

8 / 16

Experimental setup: tools

I compared Cbmc and Impara (with and without
acceleration)

I very different techniques: Cbmc is a bounded model checker;
Impara uses LAwI

I compared accelerated results with Ufo and CPAchecker

I Ufo: abstract interpretation with numerical domains +
ability to generalize using interpolants, in an abstraction
refinement loop

I CPAchecker: broad portfolio of techniques: interpolation,
abstract interpretation, predicate abstraction, etc.

9 / 16

Experimental setup: overall

I dual-core machine running at 2.73 GHz with 2 GB RAM

I timeout after 60 seconds

I benchmarks, tool-specific options and results available at

http://www.cmi.ac.in/~madhukar/fmcad15

10 / 16

http://www.cmi.ac.in/~madhukar/fmcad15

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75
Ufo SV-COMP 2014 52 2 18 2 127 86
Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79
Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

Score = (2·correct proofs) − (12·wrong proofs)+correct
alarms−(6·wrong alarms) - as per SV-COMP 2015.

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I Impara + Acceleration clearly outperforms Impara, Ufo
and CPAchecker

I increase in correct proofs as well as correct alarms

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I CPAchecker comes close in the number of correct proofs

I uses a broad portfolio of techniques

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I both Impara and Cbmc are characterized by very weak
invariant inference

I expected to benefit substantially from acceleration

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I benefit for tools making a monolithic SAT query (e.g.,
Cbmc) is evident

I many more proofs and counterexamples with a far lesser
unwinding

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I acceleration would help Ufo and CPAchecker as well

I an interpolation procedure on a loop unwinding gets overly
specific interpolants (Beyer et al., PLDI 2007)

I presenting transitive closure of loop to the interpolating
procedure helps

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99

+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I wrong proofs for CPAchecker mainly arise from deriving
mathematical-integer invariants

I these invariants do not hold in presence of overflows

11 / 16

Results

Tools
Number of instances

Scorecorrect wrong correct wrong no
proofs proofs alarms alarms results

CPAchecker 1.3.4 83 16 35 14 53 −75

Ufo SV-COMP 2014 52 2 18 2 127 86

Cbmc r4503 32 0 35 0 134 99
+ Acceleration 53 0 45 12 91 79

Impara 0.2 78 1 36 15 71 90

+ Acceleration 86 0 47 12 56 147

I the score dips for Cbmc + Acceleration, as compared to
Cbmc, due to the wrong alarms (that are heavily penalized at
SV-COMP)

I miscategorized as safe; actually unsafe due to overflow

11 / 16

Acceleration helps generalization in LAwI

int main()
unsigned int n = nondet_uint();
int x = n;
int y = 0;

// loop invariant: x + y == n
while(x > 0)
x = x - 1;
y = y + 1;

assert(y == n);

I Without acceleration, Impara falls back to loop unwinding

I gets the loops invariant for the accelerated program

12 / 16

Caveats

I only an experimental evaluation

I over “academic” benchmarks

I couldn’t actually try accelerated benchmarks on other tools;
Cbmc’s acceleration works on goto-binaries

I there is a --dump-c option (experimental)

13 / 16

Conclusion

I quantified the benefits of acceleration for checking safety
properties

I source-level transformation enables integration with other
invariant generation techniques

I better quantifier handling should boost it further

I invariants over the interval domain may help in ruling out
overflows

14 / 16

References

I D. Kroening, M. Lewis, and G. Weissenbacher,
“Under-approximating loops in C programs for fast
counterexample detection,” in Computer Aided Verification
(CAV), ser. LNCS, vol. 8044. Springer, 2013.

I D. Kroening, M. Lewis, and G. Weissenbacher, “Proving
safety with trace automata and bounded model checking,” in
Formal Methods (FM), ser. LNCS, vol. 9109. Springer, 2015.

15 / 16

Thank you!

Questions?

16 / 16

Thank you!

Questions?

16 / 16

