

Comparing Different Functional Allocations in Automated Air Traffic Control Design

FMCAD 2015, September 27-30

Cristian Mattarei¹, Alessandro Cimatti¹, Marco Gario¹, Stefano Tonetta¹, and Kristin Y. Rozier²

> ¹Fondazione Bruno Kessler, Trento, Italy ²University of Cincinnati, Ohio, USA

Air Traffic Control: Chicago-region Air Sector

Air Traffic Control: Chicago-region Air Sector

Air Traffic Control: Functional Allocation Questions

Collision Avoidance	TCAS/ACAS-X	On-Board
Tactical Separation	Controller/ATC	On-Ground -> Distributed? On-Board?
Strategic Separation	Controller/ATC	On-Ground -> Distributed? On-Board?

NASA project: NextGen of the Air Traffic Control

- Need for a more robust, reliable, and safe approach
- A lot of different perspectives to be taken into account e.g., political and environmental impact, cost analysis, usability, safety, ...
- Different **function allocations**, and implementations need to be analyzed

NASA NextGen of ATC: The Functional Allocation Project

- Provide a partial order over the set of ways to allocate system functions, from a safety point of view
- Rely on a Formal Validation, Verification, and Safety Assessment approach, based on symbolic model checking
- Define formal model and system requirements from a preliminary design of the system architecture

NASA NextGen of ATC: The Functional Allocation Project

In this work

- Formal modeling of a set of different possible functional allocations
- Adaptation of Formal Validation, Verification, and Safety Assessment to compare early system designs
- Real-world case study from a tight collaboration with "Flight Dynamics, Trajectory and Controls Branch" of NASA Ames https://es-static.fbk.eu/projects/nasa-aac/

Formal Modeling for Comparative Analysis

Functional Allocation: GSEP and SSEP

Current Approach:

Only Ground Separated Aircraft (GSEP)

_	Collision Avoidance Tactical Separation		tion	Strategic Separation
TCAS/ACAS-X				
ATC				

With additional distributed Conflict Detection and Resolution (CD&R) on-board: Ground and Self Separated Aircraft (SSEP)

	Collision Avoidance	Tactical Separation		Strategic Separation
TCAS/ACAS-X				
ATC				Backup
CD&R OnBoard				Primary

Formal Modeling: Conflict Areas

- Abstract concrete trajectories with Conflict Areas (CA)
- Two aircraft are in the same conflict area if their trajectories intersect in a given interval of time
- Example: if AC_1 and AC_2 follow T_{J2} and T_{j3} they are in the same Conflict Area

Formal Modeling: Time Windows

- Four different time windows:
 - Conflict Avoidance: Current
 - Tactical Separation: Near and Mid
 - Strategic Separation: Far
- The passage of a unit of time causes a window shifting
- A Loss of Separation (LOS) occurs when two aircraft are in the same CA in the current time window

Formal Modeling: System Components

- GSEP: Ground Separated Aircraft
- SSEP: Self Separated Aircraft with CD&R (Conflict Detection and Resolution) on-board
- ADS-B: Automatic Dependent Surveillance Broadcast

Formal Modeling: Scenarios Instantiation

Scenario Code	GSEPs	SSEPs	#Bool Vars
G	3	0	122
M1	3	1	185
M2	2	2	193
M3	1	3	201
S	0	3	146
ALL	3	3	353

- Non-Mixed (only G/SSEP) and Mixed (both G/SSEP) operations considered
- Multiple implementation options (Enabled or Disabled)
 - GSEP-Far: GSEPs send Far intentions over ADS-B Out
 - SSEP-Far: SSEPs send Far intentions to ATC.

Formal Validation and Verification

Formal Validation

- Pure Airspace as Uncontrolled System and CD&R agents (ATC, and CD&R on-board) as Controllers
- Separated Validation for Uncontrolled System and Controllers
- All 37 properties CTL and LTL properties validated using nuXmv model checker

Formal Verification

- 93 LTL properties verified, using nuXmv, on all 20 possible configurations (of the controlled system) by varying:
 - Number of involved GSEPs and SSEPs aircraft
 - Information sharing implementation
- Outcome: table representing pass/fail results

Formal Safety Analysis

Formal Validation and Verification

Formal Safety Assessment

Formal Safety Assessment: Fault Tree Analysis

- Fault Tree Analysis as Minimal Cutsets Computation [Bozzano et al. CAV15] via xSAP
- CS={f₁,...,f_n} is a cutset of M, φ if there exists a counterexample π of M ⊨ φ that triggers f₁,...,f_n
- A Cutset CS is Minimal iff $\forall CS' \subset CS, CS'$ is not a cutset of M, φ

Formal Validation, Verification, and Safety Assessment Process

- Formal Requirements and Model Validation
 Outcome: positive results for all checks
- Formal Model Verification
 - Outcome: table where the cell i, j expresses whether the configuration i satisfies or not the property j.
- Formal Safety Assessment
 - Outcome: a Fault Tree for each pair of configuration, property... How do we compare them?

Formal Safety Assessment: Minimal Cutsets Comparison

MCS	3GSEPs-1SSEP (M1)		2GSEPs-2S		
Cardinality	GFar	¬GFar	GFar	−GFar	
0	0	0	0	0	
1	5	5	5	5	
2	12	15	12	16	•••
3	33	24	35	23	
	•		•••		

- Impact on the "Loss of Separation" when varying the sharing of GSEPs Far intentions (GFar):
 - Same number of single point of failure (5)
 - While double failure increases (¬GFar), triple failures decreases

Formal Safety Assessment: Minimal Cutsets Comparison

- Analyze set relations between Minimal Cutsets i.e., MCS are set of set of faults
- Compare the MCS with TLE as "LoS between SSEP and GSEP" varying GSEP-Far (GF) information sharing:

— MCS_{GF} = {<...>, {F_{ATC}, ATC.F_mid_res}, {F_{ATC}, ATC.F_far_res}, {F_{ATC}, G.F_comm_adsb}, {F_{ATC}, S.cdr.F_future_resolve, S.cdr.F_resolve_detection} Formal Safety Assessment: Reliability Function Evaluation

- Set relation over Minimal Cutsets might be inconclusive i.e., two sets can be incomparable
- From Minimal Cutsets to Reliability Function (P(TLE): $\mathbb{R}^n \mapsto \mathbb{R}$) [Bozzano et al. ICECCS15], assuming no faults dependency
- Analyze under which condition one Reliability Function dominates the others

Formal Safety Assessment: Reliability Function Evaluation

- Loss of Separation between SSEPs and GSEPs as TLE, varying P(failure ATC) and P(failure ADS-B). Other probability of failures are fixed
- Still conceptual design, thus numerical values are not yet defined

Conclusion and Future Works

Conclusion

- Modeling of a real-world case study, from a conceptual architecture description
- Application and tailoring of a comprehensive Formal Validation, Verification, and Safety Assessment process to evaluate different functional allocations
- Collaboration with "Flight Dynamics, Trajectory and Controls Branch" of NASA Ames to support decision making

Future Works

- Extend the modeling to cope with the whole set of Functional Allocations and Scenarios i.e., > 1600
- Integration with Compositional Modeling and Verification
- Evaluation of overlapped supervision i.e., with more than one ATC
- Analysis of the impact of Unmanned Autonomous Systems

Thank you!

Comparing Different Functional Allocations in Automated Air Traffic Control Design

- Modeling with Conflict Areas and Time Windows
- Formal Validation and Verification, controlled and uncontrolled system
- Safety analysis via minimal cutsets and reliability function computation
- Website: https://es-static.fbk.eu/projects/nasa-aac/

Cristian Mattarei - mattarei@fbk.eu