Quantified Bounded Model Checking for Rectangular Hybrid Automata

Luan Nguyen¹, Djordje Maksimovic², Taylor T. Johnson¹, Andreas Veneris² TORONTO

¹University of Texas at Arlington, Arlington, TX USA, ²University of Toronto, Ontario, Canada

Overview

he University of Texas **ARLINGTON**_{TM}

- ✤ QBMC: a quantified bounded model checking for Rectangular Hybrid Automata (BMC) (RHA)
 - encodes the BMC problem for RHA in a quantified form
 - performs QBMC by querying the Z3 SMT ٠ solver via its Python API and use its quantifierhandling procedures [1]
 - implemented as a module within HyST [2] •

Experimental Results

Bad States: $P \triangleq \bigvee_{i=0}^{k} \neg (\text{Loc}_i = \text{Loc}_2 \rightarrow x \ge 2.5)$
$a_1 = 0, b_1 = 1, a_2 = 0, b_2 = 2$

	Tools L		$k \leq 32$		$k \le 64$		$k \leq 128$	
	10015	L	Time (sec)	Mem (MB)	Time (sec)	Mem (MB)	Time (sec)	Mem (MB)
2]	QBMC	2	1.11	27.2	3.68	39.4	19.9	91.2
	dReach	2	86.7	102.4	1176.4	284.7	20034	829.2
	HyComp	2	0.4	97.3	0.6	101.8	1.44	109.3

Discrete locations: 4^N

Discrete state-spaces: $(N + 1)(4N)^N$

✤ Fischer mutual exclusion protocol

Algorithm

✤ Quantified free BMC for Hybrid Automata

 $\Phi(\mathbf{k}) \triangleq I(\mathbf{V}_0) \land \bigwedge_{i=0}^{k-1} T_i(\mathbf{V}, \mathbf{V}') \land (\bigvee_{i=0}^k P(\mathbf{V}_i))$

- $I(V_0)$: initial set of states
- $T_i(V, V') \triangleq D_i(V, V') \lor T_i(V, V')$: transition (discrete or continuous trajectory) between consecutive pairs of sets of states
- $P(V_i)$: a safety specification at iteration *i*

QBMC for Hybrid Automata

 $\Omega(\mathbf{k}) \triangleq \exists V_0, V_1, \dots, V_k, \delta \forall t \exists V, V' \mid I(V_0) \land$ $T(V, V') \land$ $\bigwedge_{i=0}^{k-1} t_{i+1} \rightarrow [(\mathbf{V} = \mathbf{V}_i) \land (\mathbf{V}' = \mathbf{V}_{i+1})]$ $\wedge (\bigvee_{i=0}^{k} P(\mathbf{V}_{i}))$

- δ : the real time elapse in the trajectories
- $t = \langle t_1, t_2, \dots, t_{\lfloor \log_2 k \rfloor} \rangle$: index each iteration of the BMC of hybrid automata H

Tools	L	$k \leq 4$		$k \leq 8$		k ≤ 16	
10015		Time (sec)	Mem (MB)	Time (sec)	Mem (MB)	Time (sec)	Mem (MB)
	9^{2}	3.7	52.2	5.1	52.3	25.9	52.7
QBMC	9^{3}	15.5	65.6	31.3	87.5	1091.5	144.5
	9^{4}	256.1	702.8	1062.1	708.9	43578	1196.2
	9^{2}	0.8	121.9	1.33	132.8	9.5	170.5
HyComp	9^3	2.7	307.9	12.81	380.8	192.8	771.4
	9^{4}	63.9	2655.4	N/A	M/O	N/A	M/O

QBMC & examples are available online at: <u>http://www.verivital.com/hyst/cfv2015.zip</u>

Conclusion

- present a new SMT-based verification technique that encodes the BMC problem for RHA in a quantified form, which also subsumes this encoding for timed automata
- present preliminary experimental results included such as Fischer and Lynch-Shavit mutual exclusion, and compare to dReach and HyComp
- In future, we will investigate more general ٠ classes of hybrid automata

References

[1] L. De Moura and N. Bjørner, "Z3: An efficient SMT solver," inProc of 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS '08/ETAPS '08. Springer-Verlag, 2008, pp. 337-340

[2] S. Bak, S. Bogomolov, and T. T. Johnson, "HyST: A source transformation and translation tool for hybrid automaton models," in Proc. of the 18th Intl. Conf. on Hybrid Systems: Computation and Control (HSCC). ACM, 2015.