Exploiting Craig Interpolants in Unbounded Model Checking of Hardware Designs

Danilo Vendraminnetto

Formal Methods Group, Politecnico di Torino, Italy.
Outline

• Background
 • Verification of hardware designs
 • Craig Interpolants in UMC

• Contributions
 • Redundancy removal and reduction in UNSAT proofs and ITPs
 • Heuristic procedure for scalable *ITP compaction*
 • Abstraction and refinement techniques for ITPs
 • Heuristic procedure for abstracting *without resorting to resolution proofs*

• Experimental results & Conclusions
ITP Proof Compaction

- Proof reduction
 - Recycle-pivots [Bar-Inal & al. HVCo8]
 - Exploiting proof topology:
 proof node chains

- Logic synthesis manipulations on the proof
 - Constant propagation
 - BDD-based sweeping (for equivalences)
 - Observability Don’t Care (lightweight)
ITP Circuit Compaction

- Proof into AIG
 - ODC (structural)
 - Logic synthesis
 - rewrite / refactor
 - using ABC tool
 - AIG balance
 - ITE-based decomposition
 - iff necessary
Interpolant Abstraction

- ITP+: take on improved Craig’s interpolation
- Incremental computation of interpolants using alternative techniques
 - Equivalence classes, mutual implications of state variables
 - Cube-based over-approximation, based on the detection of those state variables that are stuck at constant values

\[\text{To}^+ (V') = \text{ITP}(\text{From} \land T, \text{Cone}^k) \]
ITP⁺ - Abst. by iterative refinement

\[
\text{IMG}^+_{\text{Adq}} \ (\text{From}, \ T, \ \text{Cone}^k) \\
\text{To}^+ = \text{Full_state_space} \\
\text{Foreach Class} \in \text{Abstraction_classes} \\
\quad \text{Select abstraction} \\
\quad \text{To}^+_{\text{Class}} = \text{IMG}^+ \text{ using abstraction} \\
\quad \text{To}^+ = \text{To}^+ \land \text{To}^+_{\text{Class}} \\
\quad \text{if UNSAT}(\text{To}^+ \land \text{Cone}^k) \text{ return } \text{To}^+ \\
\text{return } (\text{To}^+ \land \text{ITP}(\text{From} \land T, \ \text{Cone}^k))
\]
ITP+ - Abstraction classes

- **Tightening** abstraction classes
 - Equivalent state variables
 - Constant state variables
 - SAT-based enumeration

- **Loosening** abstraction classes
 - Localization abstraction
 - Ternary abstraction
ITP+ - Constant state variables

From T

V, V', W

$V_i' = 1 \ ?$

If yes, simplify...

Refine: literal invariant

$T_{o+} = T_{o+} \land V_i'$

Simplify cone as well (constant prop.)...
Some experimental results...

- Interpolant abstraction
Come to my poster presentation for more details and experimental results
Thanks for your attention
Some experimental results...

- Interpolant compaction
Conclusions

- ITP-based MC heavily relies on scalability
- We developed effective techniques to improve standard ITPs.
 - Scalable techniques, applied incrementally
- Best suited as a second engine
 - Hard-to-prove properties (hard for IC3)
 - Explosion of standard interpolation
 - Can afford extra time (for memory)