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» Formal verification circumvents costly bugs

» Automated verification of floating-point circuits at gate level is
still a major challenge

» The proposed algebraic technique is a fully automated
verification for floating-point circuits
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Modeling a Circuit as Grobner Bases

» Modeling Logic Gates:

z=—a=>g:=—2+1—a z=aPb=>g:=—z+4+a+b—2ab
z=aAb=g:=—2z+ab z=aVb=g:=—2+a+b—ab

» Full Adder Example:

S

Cout

leading monomial tail terms

e v
g1 = —Cout(—%4T3 + T4 +x3) go:=-—-5—2T1c+ 21 +C
g3 := —T4 + Tac g4 :=—w3+ab

gs :=—x2—ab+a+b g = —21—2ab+a+b
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Modeling a Circuit as Grobner Bases
» Modeling Logic Gates:
z=-a=>g:=—z2+1—a z=a®Pb=>g:=—z+4+a+b—2ab

z=aANb=g:=—z+ab z=aVb=g:=—2+a+b—ab

» Full Adder Example:

leading monomial tail terms

hY e
g1 1= —Cout(—T4T3 + T4 + x3) go:=—s—2x1c+2x1+¢C
g3 := —x4 + TacC gy := —x3+ab
gs:=—x2—ab+a+b g6 '=—r1 —2ab+a+b

» Leading monomials are relatively prime = The model is
Grobner bases
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» Following Full Adder Example: specification polynomial
Pri= —2Ccout —S+c+b+ta

» Its model
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Ideal Membership Testing

» Following Full Adder Example: specification polynomial
Pri= —2Ccont —S+c+b+a

» Its model
g1 = —Cout(—%4Z3 + T4 + x3) g2 :=—5—2z1c+ 21 +cC
g3 := —X4 + x2C gy := —x3+ab
g5;:—x2—ab+a—i—b 96::—x1—2ab+a—|—b

» Recursive Division:
EELEN 2x3x9¢ — 203 — 2x9Cc + 21— 21 + b+ a LN
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Ideal Membership Testing

» Following Full Adder Example: specification polynomial
Pr = —2Ccout —S+c+b+a

» Its model
g1 1= —Cout(=24%3 + T4 + x3) g2 := —s —2r1c+ T +C
g3 = —x4 + xaC g4 = —x3+ab
gs:=—-zy—ab+a+b go := —r1 —2ab+a+b

» Recursive Division:
9 990cba — 2x9c + 2710 — 11 — 2ba + b+ a
% s 901c— 21 + deba — 2ca — 2¢b — 2ab+b+a -2 0
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» Full adder model revealing carry terms:
g1:—s+c+b+a+4cba — 2cb — 2ca — 2ba
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Reverse Engineering

» Based on detecting carry bits propagation within arithmetic units
(integer adders and multipliers)
» Full adder model revealing carry terms:
g1:—s+c+b+a+4dcba — 2¢b — 2ca — 2ba
g2 1 —Cout — 2¢ba + cb + ca + ba
» Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components
» Model rewriting is required for:
» Revealing carry terms
» Removing vanishing monomials (redundant monomials that
always evaluate to zero)

» Abstraction by Gaussian elimination, for the full adder:

202+ 91 = gt —2Cout —S+c+b+a
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Reverse Engineering: 1) Model Rewriting

> XOR rewriting preserves inputs and outputs of chains of XOR
gates

» Parallel Adder Model:
CQZDQ\/(XQ/\Dl)\/(XQ/\Xl/\Do) = g1 :=
—co + XoX1asbaarbraoby — XoX1a1b1apby — Xo X1asbaagby —
Xoasbaarby + XoX1apbg + X2a1b1 + azbs
so=Xo®D 1 go = —82 — 2c1 X2 + cl + Xo
c1 = D1 vV (Xl AN Do):> gs ‘= —Cl—Xlalblaobo + X1a0b0 + a1b1

I

s1=X1Dcy = g4 = —81 — 2¢9 X1 + o+ X1
co = Dy = g5 := —co + agbo

SOZX() = (6 := —80+X0

Xi=a; Db, = Gh—i—1 = —X; — 2a;b; + b; + a;
D; = a; Nb; = gr—i = —D; +ab;
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Reverse Engineering: 1)Model Rewriting

» Common rewriting preserves shared variables between
polynomials

» Parallel adder model after XOR rewriting:
g1 := —c2 + X2 Xyapbo + X2a101 + azby

gs ‘= —S2 — 201X2 + cl + X2
g3 = —c1 + X1apbg + a1by
g4 = —81 — 2c0X1 + o+ X1
gs := —co + aobo

ge = —so + Xo

g7 = —Xo — 2agbg + by + ag
gs = —X1 —2a1b1 + b1 +ay
g9 = —Xo — 2a2by + by + as
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Reverse Engineering: 1)Model Rewriting

» Common rewriting preserves shared variables between
polynomials

» Parallel adder model after XOR rewriting:
g1 := —c2 + X2 Xyapbo + X2a101 + azby

gs ‘= —S2 — 201X2 + cl + X2
g3 := —c1 + X1apbg + a1by
g4 i— —81 — 2COX1 +co + X1
g5 = —Co + agby
ge = —so + Xo
g7 = —Xo — 2agbg + by + ag
gs ‘= 7X1 — 2a1b1 + bl + ay
go := —Xo — 2a2by + by + ao

» Xy, cg and ¢; will be eliminated
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
g1 = —C2

g2 = —S2 + X2 + Xiapbo+a1 b
gq = —81—2X71a0bg + agby + X1

gs ‘= —S0 + —2(10b0 + bo + Qg

gs = —X1 —2a1b1 + b1 +ay

go = —Xo — + b2 +az
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Reverse Engineering: 2) Extracting Arithmetic

Units

» Parallel adder model after common rewriting:

= —C2

= —38o + X5 + Xqagbo+aiby
= —81—2X a09by + agby + X1

= —809 + —2apby + by + ag

g1

g2
ga
ge
gs
99

= 7X1 — 2a1b1 —+ b1 —+ aq

=—-Xo— + b2 + a2

» Abstraction by Gaussian elimination:
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
g1 = —c2
g2 1= —S2 + X2 + Xyapbotaiby
g4 = —s1—2X1a0bo + aobp + X1
g6 = —So + —2apby + bo + ao
gs = —X1 —2a1b1 + b1 + @
go = —Xo — + by +as
» Abstraction by Gaussian elimination:
291 + 92 = Gres ' = —2co -
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
91 = —Co

g2 = —$2 + Xo + Xyapbo+aiby
94 := —s1—2Xaobo + agbo + X1

ge := —So + —2apby + by + ag

gs = —X1 —2a1b1 + b1 +ay

go == —Xo — + b2+ az

» Abstraction by Gaussian elimination:
o P

— —

291 + 92 = Gres := _202 >></\ _
— 7 S 0101

82 o X mehr—2X + X2 + Xjagbo+aiby
/ \
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
g1 = —C2
g2 1= —S3 + X2 + Xiapbo+a1by
g4 = —8172X1(1,0b0 + (lobo + X1
g6 :=— —So + 72a0b0 + b() + ap
gs = —X1 — 2(L1b1 + b1 + aq

g9 = —Xo — + by + as
» Abstraction by Gaussian elimination:
Gres = —2c2 — 52 + X2 + Xjaobo +aiby
20res+ 94 = Gres := —4co—255—51+2Xo+ X3 +2a1b1+agbg
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
g1 = —c
g2 1= —382 + X2 + Xiapbo+aiby
ga = —s1—2X a0bo + agby + X1
g6 := —80 + —2agbg + bg + ag
gs = —X1 —2a1b1 + b1 + a1

go := —Xo — + b2 +az
» Abstraction by Gaussian elimination:
Gres := —4co — 289 — 51 +2Xo + X3 +2a1b1+agby
20res + g6 = Gres =
—8cy — 459 — 281 — sg +4Xs + 2X, +4a1b1 + by + ag
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
g1 = —c
g2 1= —382 + X2 + Xiapbo+aiby
ga = —s1—2X a0bo + agby + X1
g6 := —80 + —2agbg + bg + ag
gs = —X1 —2a1b1 + b1 + a1

go = —Xo — + b2+ as
» Abstraction by Gaussian elimination:
Jres := —8co — 489 — 281 — 89 +4 X2 +2X, +4a1by + by + ag
Gres + 298 = Gres :=
—8cy — 489 — 281 — 8¢ + 4X>5 + 2b1 + 2a1 + by + ag
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Reverse Engineering: 2) Extracting Arithmetic
Units

» Parallel adder model after common rewriting:
g1 = —C2
g2 ‘= —S82 + X2 + Xl(l,obo+(1,1b1
g4 = —s1—2X1a0bo + apby + X1
ge = —So + —2aoby + by + ag
gs = —X1 —2a1b1 + b1 + a1

go = —Xo — + by + as
» Abstraction by Gaussian elimination:
Gres := —8co — 489 — 281 — 59 + 4 X + 2b1 4 2a1 + by + ag
Gres + 499 —

[ res = —8Co — 489 — 281 — Sg + 4by + 4as + 2b1 + 2a1 + by + CL()J
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Arithmetic Sweeping
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Deducing Relationships

C1 Netlist C5 Netlist

» Partitioning the combined model based on the extracted
arithmetic information
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Deducing and Testing Relationships

.G
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» Deducing and testing bit relationships between variables of the
transitive fan-in of arithmetic units
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Deducing and Testing Relationships

DPU1 DPU2

-1 1A N wG
—2" sy 1 — e — 802" S, 1+ Sg —— T

» Testing the word relationship between output variables of
compared arithmetic units, using the abstracted polynomials
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Model Simplification

C4 Netlist C'5 Netlist
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» Merging proved equivalent variables simplifies the combined
model dramatically
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Model Simplification

C1 Netlist C5 Netlist

» Merging proved equivalent variables simplifies the combined
model dramatically

» Therefore, testing output relationships wrt. the simplified model
is computationally feasible
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Experimental Results

Multiplier FPoperand ~ Commercial ABC ACEC

Architecture # bits (h:m:s) (h:m:s) (h:m:s)

SP-CT-BK 16 00:08:50 TO 00:01:42
SP-WT-CH 16 00:09:08 TO 00:01:44
SP-CT-BK 24 TO TO 00:17:49
SP-WT-CH 24 TO TO 00:25:58
SP-CT-BK 32 TO TO 02:24:01
SP-WT-CH 32 TO TO 03:41:43

SP — Simple Partial Product
WT — Wallace Tree
CT — Compressor Tree

CH — Carry Look Ahead
Adder

BK — Brent-Kung Adder

TO=100 Hour
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Conclusion

» New algebraic equivalence checking technique for circuits that
combine data-path and control logic

» New reverse engineering algorithm to extract and abstract
arithmetic components

» Arithmetic sweeping based on input and output boundaries of the
abstracted components

» Efficient polynomial representation (negative-Davio
decomposition)

» Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

» Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges
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