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Introduction

I Formal verification circumvents costly bugs

I Automated verification of floating-point circuits at gate level is
still a major challenge

I The proposed algebraic technique is a fully automated
verification for floating-point circuits
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Algebraic Decision Procedure

I Ideal Membership Testing:
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Modeling a Circuit as Gröbner Bases

I Modeling Logic Gates:

z = ¬a⇒ g := −z + 1− a z = a⊕ b⇒ g := −z + a+ b− 2ab
z = a ∧ b⇒ g := −z + ab z = a ∨ b⇒ g := −z + a+ b− ab

g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b
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↘ ↙
g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Leading monomials are relatively prime =⇒ The model is
Gröbner bases

6



Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:
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Ideal Membership Testing

I Following Full Adder Example: specification polynomial
pr := −2ccout − s+ c+ b+ a

I Its model

g1 := −cout −x4x3 + x4 + x3 g2 := −s− 2x1c+ x1 + c
g3 := −x4 + x2c g4 := −x3 + ab
g5 := −x2 − ab+ a+ b g6 := −x1 − 2ab+ a+ b

I Recursive Division:
g4−−−→ 2x2cba− 2x2c+ 2x1c− x1 − 2ba+ b+ a
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g6−−−→ 0
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Reverse Engineering
I Based on detecting carry bits propagation within arithmetic units

(integer adders and multipliers)
I Full adder model revealing carry terms:

g1 : −s+ c+ b+ a+ 4cba− 2cb− 2ca− 2ba
g2 : −cout − 2cba+ cb+ ca+ ba

I Identifying subsets of polynomials that share carry terms,
therefore, model arithmetic components

I Model rewriting is required for:
I Revealing carry terms
I Removing vanishing monomials (redundant monomials that

always evaluate to zero)
I Abstraction by Gaussian elimination, for the full adder:

2g2 + g1 → gr : −2cout − s+ c+ b+ a
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Reverse Engineering: 1) Model Rewriting

I XOR rewriting preserves inputs and outputs of chains of XOR
gates

I Parallel Adder Model:
c2 = D2 ∨ (X2 ∧D1) ∨ (X2 ∧X1 ∧D0) =⇒ g1 :=
−c2 +X2X1a2b2a1b1a0b0 −X2X1a1b1a0b0 −X2X1a2b2a0b0 −
X2a2b2a1b1 +X2X1a0b0 +X2a1b1 + a2b2

s2 = X2 ⊕ c1 =⇒ g2 := −s2 − 2c1X2 + c1 +X2

c1 = D1 ∨ (X1 ∧D0)=⇒ g3 := −c1−X1a1b1a0b0 +X1a0b0 + a1b1
s1 = X1 ⊕ c0 =⇒ g4 := −s1 − 2c0X1 + c0 +X1

c0 = D0 =⇒ g5 := −c0 + a0b0
s0 = X0 =⇒ g6 := −s0 +X0

Xi = ai ⊕ bi =⇒ gk−i−1 := −Xi − 2aibi + bi + ai
Di = ai ∧ bi =⇒ gk−i := −Di + aibi
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Reverse Engineering: 1)Model Rewriting

I Common rewriting preserves shared variables between
polynomials

I Parallel adder model after XOR rewriting:
g1 := −c2 +X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2 − 2c1X2 + c1 +X2

g3 := −c1 +X1a0b0 + a1b1
g4 := −s1 − 2c0X1 + c0 +X1

g5 := −c0 + a0b0
g6 := −s0 +X0

g7 := −X0 − 2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I X0, c0 and c1 will be eliminated
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Reverse Engineering: 2) Extracting Arithmetic
Units

I Parallel adder model after common rewriting:
g1 := −c2+X2X1a0b0 +X2a1b1 + a2b2

g2 := −s2−2X2X1a0b0 − 2X2a1b1 +X2 +X1a0b0+a1b1
g4 := −s1−2X1a0b0 + a0b0 +X1

g6 := −s0 +−2a0b0 + b0 + a0
g8 := −X1 − 2a1b1 + b1 + a1
g9 := −X2 − 2a2b2 + b2 + a2

I Abstraction by Gaussian elimination:
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Arithmetic Sweeping

Reverse
Engineering

Arithmetic
Sweeping

G′wG

G

sG

Deducing
Relationships

G′wG

Membership
Testing

Internal
Relationships

G′wG

Model
Simplification

Equivelance/
Inconsistency

sGG′

16



Deducing Relationships

DPU2DPU1

DPU3 DPU4

C1 Netlist C2 Netlist

Transitive

Fan-in

Transitive

Fan-in

I Partitioning the combined model based on the extracted
arithmetic information
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Deducing and Testing Relationships

DPU2DPU1

−x+ x̂
G′
−−−→+ r

Transitive

Fan-in

Transitive

Fan-in

I Deducing and testing bit relationships between variables of the
transitive fan-in of arithmetic units
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Deducing and Testing Relationships

DPU2DPU1

−2n−1sn−1 − · · · − s0+2n−1ŝn−1 + · · ·+ ŝ0
wG−−−−→+ r

I Testing the word relationship between output variables of
compared arithmetic units, using the abstracted polynomials
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Model Simplification

DPU3 DPU4

C1 Netlist C2 Netlist

I Merging proved equivalent variables simplifies the combined
model dramatically

I Therefore, testing output relationships wrt. the simplified model
is computationally feasible
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Experimental Results

Simple Multiplier
Complex

Multiplier

EXP

Adder

EXP

Adder

Normalize & Round

Optimized-

Normalize & Round

Left Hand Side Right Hand Side

eaeb eaebfafb fafb

fpep f̂pêp

Figure: Compared FP Multiplier Circuits
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Experimental Results

Multiplier FP operand Commercial ABC ACEC
Architecture # bits (h:m:s) (h:m:s) (h:m:s)

SP-CT-BK 16 00:08:50 TO 00:01:42
SP-WT-CH 16 00:09:08 TO 00:01:44

SP-CT-BK 24 TO TO 00:17:49
SP-WT-CH 24 TO TO 00:25:58

SP-CT-BK 32 TO TO 02:24:01
SP-WT-CH 32 TO TO 03:41:43

SP→ Simple Partial Product

WT→Wallace Tree

CT→ Compressor Tree

CH→ Carry Look Ahead
Adder

BK→ Brent-Kung Adder

TO=100 Hour
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Conclusion

I New algebraic equivalence checking technique for circuits that
combine data-path and control logic

I New reverse engineering algorithm to extract and abstract
arithmetic components

I Arithmetic sweeping based on input and output boundaries of the
abstracted components

I Efficient polynomial representation (negative-Davio
decomposition)

I Checking equivalence of large floating-point multipliers which
cannot be verified by state-of-art equivalence checkers

I Verifying heavy optimized circuits and dealing with
non-equivalent circuits are still major challenges
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