
Design and

Technology

Solutions

Routing under Constraints

Alexander Nadel
Intel, Israel

FMCAD

Mountain View CA, USA

October 4, 2016

1

Design and

Technology

Solutions
2

2"PhysicalDesign" by Linear77 - Own work. Licensed under CC BY 3.0 via

Wikimedia Commons - https://commons.wikimedia.org/wiki/File:PhysicalDesign.png#/media/File:PhysicalDesign.png

Design and

Technology

Solutions
3

2"PhysicalDesign" by Linear77 - Own work. Licensed under CC BY 3.0 via

Wikimedia Commons - https://commons.wikimedia.org/wiki/File:PhysicalDesign.png#/media/File:PhysicalDesign.png

Routing

Design and

Technology

Solutions
4

Outline

3

Unsolved crafted and industrial RUC instances are routed!

DRouter through SAT Solver Surgery

A*-based decision strategy
(emulates constraints!)

Graph conflict analysis
Net restarting &
net swapping

Bit-Vector / SAT Encoding

Doesn’t scale

Routing under Constraints (RUC): Problem Formalization

Goal: Design a Scalable Design Rule-aware Router

Design and

Technology

Solutions
5

4

Abboud et al, OR Spectrum’08

Design and

Technology

Solutions
6

Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

Design and

Technology

Solutions
7

Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Design and

Technology

Solutions
8

Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Design and

Technology

Solutions
9

Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Design and

Technology

Solutions
10

Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Terminals

Design and

Technology

Solutions
11

Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Disjoint Nets Ni  V

Design and

Technology

Solutions
12

Routing: Output

6

Input Output

Design and

Technology

Solutions
13

Routing: Output

6

Input Output

1. Each net is spanned by a tree,
called the net routing

2. Net routings can’t intersect
3. Optimization: minimize the total

routing length

Design and

Technology

Solutions
14

Routing: Output

6

Input Output

1. Each net is spanned by a tree,
called the net routing

2. Net routings can’t intersect
3. Optimization: minimize the total

routing length

It is NP-hard to find:

1. Shortest solution for one multi-terminal net (Steiner tree problem)

2. Any solution for many multi-terminal nets

Design and

Technology

Solutions
15

Design Rules

• Routing is to satisfy design rules

– Originating in the manufacturing requirement

7

Design and

Technology

Solutions
16

Design Rules

• Routing is to satisfy design rules

– Originating in the manufacturing requirement

• Example “short” rule:

– The 2 vertices of any edge can’t belong to two distinct
net routings

7

Short rule is violated for these edges

Design and

Technology

Solutions
17

Design Rules

• Routing is to satisfy design rules

– Originating in the manufacturing requirement

• Example “short” rule:

– The 2 vertices of any edge can’t belong to two distinct
net routings

7

Short rule is violated for these edges

When the short rule is on, this example is UNSAT

Design and

Technology

Solutions
18

Industrial Approach:
Rip-Up and Reroute

• Nets are routed one-by-one

– Using A*

– s-t shortest-path given costs’ under-approximation

– A*Dijkstra if no costs’ under-approximation is provided

– Trying to heuristically obey design rules

• Violations are allowed, hence the initial solution
might be problematic

– Net routings might intersect

– Design rules might be violated

• Clean-up is applied

– Rip-up: problematic net routings are removed

– Reroute: un-routed nets are attempted again

18

Design and

Technology

Solutions
19

The Problem with the Current
Solution

• Design rule violations persist

– Manual clean-up is carried out

9

Some violations still persist Time-to-market is impacted

Design and

Technology

Solutions
20

Potential Solution

10

Constraint Solving

Design and

Technology

Solutions
21

Potential Solution

10

Constraint Solving

Next: formalizing Routing under Constraints

Design and

Technology

Solutions
22

Routing Induces Assignment

11

Edge variables

Bool e: edge activity

Design and

Technology

Solutions
23

12

Design and

Technology

Solutions
24

13

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Design and

Technology

Solutions
25

Routing Induces Assignment

14

Bool v: activity status
Bit-vector n: net id

( for inactive vertices)

Vertex variables

Design and

Technology

Solutions
26

15

Design and

Technology

Solutions
27

16

0, 0, 0, 0, 0, 1,1 0, 0, 0, 0,

0, 0, 0, 0, 0, 1,1 0, 0, 0, 0,

0, 0, 0, 0, 0, 1,1 0, 0, 0, 0,

0, 0, 0, 0, 0, 1,1 0, 0, 0, 0,

0, 0, 0, 0, 0, 1,1 0, 0, 0, 0,

1,0 1,0 1,0 1,0 1,0 1,1 1,0 1,0 1,0 1,0

0, 0, 0, 0, 1,0 1,1 1,0 0, 0, 0,

0, 0, 0, 0, 1,0 1,1 1,0 0, 0, 0,

0, 0, 0, 0, 1,0 1,1 1,0 0, 0, 0,

0, 0, 0, 0, 1,0 1,0 1,0 0, 0, 0,

Design and

Technology

Solutions
28

Modeling Routing under
Constraints

• Design rules can be easily expressed in BV logic

– Variables:

– Edge & vertex activities

– Vertex nids

– Any auxiliary variables

• “Short” rule example

– For every edge e=(v,u): v  u  nid(v)=nid(u)

Short rule is violated for these edges

Design and

Technology

Solutions
29

Routing under Constraints
(RUC): Problem Formulation

18

Design and

Technology

Solutions
30

Routing under Constraints
(RUC): Problem Formulation

18

Design and

Technology

Solutions
31

Routing under Constraints
(RUC): Problem Formulation

18

Input

Design and

Technology

Solutions
32

Routing under Constraints
(RUC): Problem Formulation

18

1. Graph G(V,E)

2. Disjoint Nets Ni  V

Input

Design and

Technology

Solutions
33

Routing under Constraints
(RUC): Problem Formulation

18

1. Graph G(V,E)

2. Disjoint Nets Ni  V

Input

A quantifier-free
bit-vector formula F(V  E  N  A)

- V : vertex activity
- E : edge activity
- N : vertex net id
- A : any auxiliary variables

(represents the design rules)

Design and

Technology

Solutions
34

Routing under Constraints
(RUC): Problem Formulation

18

1. Graph G(V,E)

2. Disjoint Nets Ni  V

Input

A quantifier-free
bit-vector formula F(V  E  N  A)

- V : vertex activity
- E : edge activity
- N : vertex net id
- A : any auxiliary variables

(represents the design rules)

Output: a model to F, which induces a routing:

- e=(v,u) is active 

- v and u are active, and

- nid(v) = nid(u)

- For each net i: active vertices with nid i and

active edges span the net’s terminals

- Optional optimization requirement: the overall

weight of active edges is as small as possible

Design and

Technology

Solutions
35

Solving Attempt: Encoding into
Bitvector Logic / SAT

19

Design and

Technology

Solutions
36

Solving Attempt: Encoding into
Bitvector Logic / SAT

• For 2-terminal nets:

19

Design and

Technology

Solutions
37

Solving Attempt: Encoding into
Bitvector Logic / SAT

• For 2-terminal nets:

- e=(v,u) is active 

- v and u are active, and

- nid(v) = nid(u)

19

Design and

Technology

Solutions
38

Solving Attempt: Encoding into
Bitvector Logic / SAT

• For 2-terminal nets:

- e=(v,u) is active 

- v and u are active, and

- nid(v) = nid(u)

– A terminal has one active neighbor edge

19

Design and

Technology

Solutions
39

Solving Attempt: Encoding into
Bitvector Logic / SAT

• For 2-terminal nets:

- e=(v,u) is active 

- v and u are active, and

- nid(v) = nid(u)

– A terminal has one active neighbor edge

– An active non-terminal has two active neighbor edges

19

Design and

Technology

Solutions
40

Solving Attempt: Encoding into
Bitvector Logic / SAT

• For 2-terminal nets:

- e=(v,u) is active 

- v and u are active, and

- nid(v) = nid(u)

– A terminal has one active neighbor edge

– An active non-terminal has two active neighbor edges

• For n-terminal nets:

– Encode directed trees

– Using edge directions

19

Design and

Technology

Solutions
41

Solving Attempt: Encoding into
Bitvector Logic / SAT

• For 2-terminal nets:

- e=(v,u) is active 

- v and u are active, and

- nid(v) = nid(u)

– A terminal has one active neighbor edge

– An active non-terminal has two active neighbor edges

• For n-terminal nets:

– Encode directed trees

– Using edge directions

19

Design and

Technology

Solutions
42

20

SAT Solver’s Internals

Design and

Technology

Solutions
43

20

Decision Strategy
(Conflict-driven)

SAT Solver’s Internals

Design and

Technology

Solutions
44

20

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

SAT Solver’s Internals

Design and

Technology

Solutions
45

20

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

SAT Solver’s Internals

Conflict Analysis &
Learning

Design and

Technology

Solutions
46

20

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

SAT Solver’s Internals

Conflict Analysis &
Learning

Backtracking

No conflict

Design and

Technology

Solutions
47

20

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

SAT Solver’s Internals

Conflict Analysis &
Learning

Backtracking

No conflict

Design and

Technology

Solutions
48

20

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

SAT Solver’s Internals

Conflict Analysis &
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict

Design and

Technology

Solutions
49

SAT  DRouter through

Surgery

21

Design and

Technology

Solutions
50

22

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict

SAT  DRouter

Design and

Technology

Solutions
51

22

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict

SAT  DRouter

Design and

Technology

Solutions
52

22

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict
A*-based Router

SAT  DRouter

Design and

Technology

Solutions
53

22

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict
A*-based Router

Graph-based
Learning

SAT  DRouter

Design and

Technology

Solutions
54

22

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

SAT  DRouter

Design and

Technology

Solutions
55

22

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

SAT  DRouter

Design and

Technology

Solutions
56

DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Design and

Technology

Solutions
57

DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

Design and

Technology

Solutions
58

DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

1. Edge consistency

• e=(v,u) is active 

• v and u are active

• nid(v) = nid(u)

Design and

Technology

Solutions
59

DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

1. Edge consistency

• e=(v,u) is active 

• v and u are active

• nid(v) = nid(u)

2. User-provided constraints modelling

design rules

Design and

Technology

Solutions
60

DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

1. Edge consistency

• e=(v,u) is active 

• v and u are active

• nid(v) = nid(u)

2. User-provided constraints modelling

design rules

That’s it! What about disconnected

terminals???

Routing correctness is guaranteed by

the decision strategy!

Design and

Technology

Solutions
61

1-Net Example

24

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Design and

Technology

Solutions
62

1-Net Example

24

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Design and

Technology

Solutions
63

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Design rules

Design and

Technology

Solutions
64

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

σ (sugg.)

Path Suggestion

(not an actual SAT decision)

Design and

Technology

Solutions
65

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

σ (sugg.)

Activate edge in sugg.

SAT

Decision

Design and

Technology

Solutions
66

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

σ-violation

Activate edge in sugg.

Design and

Technology

Solutions
67

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

σ-violation

Activate edge in sugg.

A* search

for new σ

Design and

Technology

Solutions
68

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Path found

Activate edge in sugg.

Design and

Technology

Solutions
69

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No -violation
Path found

Target is part of path?

no

Repeat

Activate edge in sugg.

Design and

Technology

Solutions
70

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No -violation
Path found

Target is part of path?

no

Repeat

Activate edge in sugg.

BCP

Design and

Technology

Solutions
71

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No -violation
Path found

Target is part of path?

no

Repeat

Activate edge in sugg.

BCP

Design and

Technology

Solutions
72

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Activate edge in sugg.

x

σ-violation
No -violation

Target is part of path?

no

Repeat

Design and

Technology

Solutions
73

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Activate edge in sugg.

x

σ-violation

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat

Design and

Technology

Solutions
74

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Activate edge in sugg.

x

σ-violationAdd conflicting clause: vertex cut (2,0)  (3,1)

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat

Design and

Technology

Solutions
75

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Activate edge in sugg.

x

σ-violationAdd conflicting clause: vertex cut (2,0)  (3,1)
1UIP conflict clause: (2,0)  ¬(3,2)

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat

Design and

Technology

Solutions
76

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Activate edge in sugg.

x

σ-violationAdd conflicting clause: vertex cut (2,0)  (3,1)
1UIP conflict clause: (2,0)  ¬(3,2)

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat

Design and

Technology

Solutions
77

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

Activate edge in sugg.

σ-violationAdd conflicting clause: vertex cut (2,0)  (3,1)
1UIP conflict clause: (2,0)  ¬(3,2)

(2,0)  ¬(3,2)

x

Graph conflict (s and t can’t be connected)

Learn & Backtrack

No -violation

Target is part of path?

no

Repeat

Design and

Technology

Solutions
78

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No σ-violation

Graph conflict

Learn & Backtrack

Target is part of path?

no

Repeat

Activate edge in sugg.

x

(2,0)  ¬(3,2)

σ-violation

Design and

Technology

Solutions
79

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No σ-violation

Graph conflict

Learn & Backtrack

Target is part of path?

no

Repeat

Activate edge in sugg.

x

(2,0)  ¬(3,2)

σ-violation

Design and

Technology

Solutions
80

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No σ-violation

Graph conflict

Learn & Backtrack
DONE!

Target is part of path?

(yes!)

no

Repeat

Activate edge in sugg.

x

(2,0)  ¬(3,2)

σ-violation

Design and

Technology

Solutions
81

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path:

A* from s->t

Real path

x

x

σ (sugg.)

A* search

for new σ

No σ-violation
Path found

Graph conflict

Learn & Backtrack
DONE!

Target is part of path?

(yes!)

no

Repeat

Activate edge in sugg.

x

Result:

Path that

follows

constraints!

(2,0)  ¬(3,2)

σ-violation

Design and

Technology

Solutions
82

Multiple Nets Handling

30

Design and

Technology

Solutions
83

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

30

Design and

Technology

Solutions
84

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

30

Design and

Technology

Solutions
85

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

30

Design and

Technology

Solutions
86

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30

Design and

Technology

Solutions
87

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30

Design and

Technology

Solutions
88

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30

Design and

Technology

Solutions
89

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30

Design and

Technology

Solutions
90

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

30

Design and

Technology

Solutions
91

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
92

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
93

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
94

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

- Graph conflict
- black is blocked

- Early conflict detection
- Check for graph conflicts

after routing each terminal
- Learn a conflict clause &
re-route

Design and

Technology

Solutions
95

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
96

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
97

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
98

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
99

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
100

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
101

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
102

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
103

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

Design and

Technology

Solutions
104

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

• Too slow! Solution: dynamic
net reordering!

31

Design and

Technology

Solutions
105

DRouter

32

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Design and

Technology

Solutions
106

DRouter

32

Decision Strategy
(Conflict-driven)

Boolean Constraint
Propagation

Conflict Analysis &
Learning

Backtracking

No conflict
A*-based Router

Graph-based
Learning

Net
Swapping

Net
Restarting

Time-to-flip? Time-to-

restart?

Design and

Technology

Solutions
107

Net Swapping

• Example Order 2:

– Red

33

Design and

Technology

Solutions
108

Net Swapping

• Example Order 2:

– Red

33

Design and

Technology

Solutions
109

Net Swapping

• Example Order 2:

– Red

33

Design and

Technology

Solutions
110

Net Swapping

• Example Order 2:

– Red

33

Design and

Technology

Solutions
111

Net Swapping

• Example Order 2:

– Red

33

Design and

Technology

Solutions
112

Net Swapping

• Example Order 2:

– Red

33

Net Swapping:

After N conflicts, swap the order between:

the first blocked net i

the blocking net j

{A,j,B,i,C}  {A,i,j,B,C}

Design and

Technology

Solutions
113

Net Swapping

• Example Order 2:

– Red

• Flip:

– Red

33

Swapped

Net Swapping:

After N conflicts, swap the order between:

the first blocked net i

the blocking net j

{A,j,B,i,C}  {A,i,j,B,C}

Design and

Technology

Solutions
114

Net Swapping

• Example Order 2:

– Red

• Flip:

– Red

33

Swapped

Net Swapping:

After N conflicts, swap the order between:

the first blocked net i

the blocking net j

{A,j,B,i,C}  {A,i,j,B,C}

Design and

Technology

Solutions
115

Net Swapping

• Example Order 2:

– Red

• Flip:

– Red

33

Swapped

Net Swapping:

After N conflicts, swap the order between:

the first blocked net i

the blocking net j

{A,j,B,i,C}  {A,i,j,B,C}

Design and

Technology

Solutions
116

Net Swapping

• Example Order 2:

– Red

• Flip:

– Red

33

Swapped

Net Swapping:

After N conflicts, swap the order between:

the first blocked net i

the blocking net j

{A,j,B,i,C}  {A,i,j,B,C}

Design and

Technology

Solutions
117

Net Restarting

• Example Order 2:

– Red

34

Design and

Technology

Solutions
118

Net Restarting

• Example Order 2:

– Red

34

Design and

Technology

Solutions
119

Net Restarting

• Example Order 2:

– Red

34

Design and

Technology

Solutions
120

Net Restarting

• Example Order 2:

– Red

34

Design and

Technology

Solutions
121

Net Restarting

• Example Order 2:

– Red

34

Design and

Technology

Solutions
122

Net Restarting

• Example Order 2:

– Red

34

Net Restarting

Restart and move the blocked net to the top

(after M conflicts for that net)

Design and

Technology

Solutions
123

Net Restarting

• Example Order 2:

– Red

• Flip:

– Red

34

Moved to

the top

Net Restarting

Restart and move the blocked net to the top

(after M conflicts for that net)

Design and

Technology

Solutions
124

Net Restarting

• Example Order 2:

– Red

• Flip:

– Red

34

Moved to

the top

Net Restarting

Restart and move the blocked net to the top

(after M conflicts for that net)

Design and

Technology

Solutions
125

Net Restarting

• Example Order 2:

– Red

• Flip:

– Red

34

Moved to

the top

Net Restarting

Restart and move the blocked net to the top

(after M conflicts for that net)

Design and

Technology

Solutions
126

Net Restarting

• Example Order 2:

– Red

• Flip:

– Red

34

Moved to

the top

Net Restarting

Restart and move the blocked net to the top

(after M conflicts for that net)

Design and

Technology

Solutions
127

Net Swapping vs. Net
Restarting

• Swapping is local

• Restarting is global

• In practice both techniques are crucial

• Strategy:

– Swap for some time

– If it doesn’t work, restart

35

Design and

Technology

Solutions
128

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

36

Design and

Technology

Solutions
129

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

36

Design and

Technology

Solutions
130

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

36

Clock Routing

Design and

Technology

Solutions
131

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

36

Design and

Technology

Solutions
132

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

• Reduction to finding bounded-path in graph

36

Design and

Technology

Solutions
133

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

• Reduction to finding bounded-path in graph

• SAT solver surgery: graph-aware decision
strategy & graph conflict analysis

36

Design and

Technology

Solutions
134

Related Work 1: Clock Routing
Erez & Nadel, CAV’15

• Reduction to finding bounded-path in graph

• SAT solver surgery: graph-aware decision
strategy & graph conflict analysis

• The decision strategy:

– Emulates constraints!

– Guides the solver towards the solution

– Considers additional optimization requirements

36

Design and

Technology

Solutions
135

Related Work 2: Monosat Solver
Bayless & Bayless & Hoos & Hu, AAAI’15

37

Design and

Technology

Solutions
136

Related Work 2: Monosat Solver
Bayless & Bayless & Hoos & Hu, AAAI’15

• Can reason about graph predicates & SAT/BV

37

Design and

Technology

Solutions
137

Related Work 2: Monosat Solver
Bayless & Bayless & Hoos & Hu, AAAI’15

• Can reason about graph predicates & SAT/BV

• Graph conflict analysis

37

Design and

Technology

Solutions
138

Related Work 2: Monosat Solver
Bayless & Bayless & Hoos & Hu, AAAI’15

• Can reason about graph predicates & SAT/BV

• Graph conflict analysis

• Shortest-path decision heuristic can be
optionally applied

37

Design and

Technology

Solutions
139

Related Work 2: Monosat Solver
Bayless & Bayless & Hoos & Hu, AAAI’15

• Can reason about graph predicates & SAT/BV

• Graph conflict analysis

• Shortest-path decision heuristic can be
optionally applied

• Path-finding (routing for one 2-terminal net) is
conceptually similar in Monosat and DRouter

– Main difference:

– Lazy A* in DRouter vs.

– Eager incremental Ramalingam-Reps in Monosat

• RUC can be easily expressed in Monosat
language

37

Design and

Technology

Solutions
140

Monosat vs. DRouter for
Routing under Constraints

38

Design and

Technology

Solutions
141

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Design and

Technology

Solutions
142

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
143

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
144

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
145

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Conflict

Design and

Technology

Solutions
146

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
147

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
148

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
149

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
150

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
151

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
152

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
153

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Design and

Technology

Solutions
154

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
155

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
156

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
157

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Conflict

Design and

Technology

Solutions
158

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
159

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
160

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
161

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
162

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
163

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
164

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
165

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
166

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
167

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
168

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
169

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
170

Monosat vs. DRouter for
Routing under Constraints

• Monosat’s algorithms are not routing-aware

– No net re-ordering

– Graph conflict analysis for routing is inefficient

38

Routing in DRouter (net

swapping&restarting are off)

Routing in Monosat

Design and

Technology

Solutions
171

Experimental Results on
Crafted Instances

• Solvers:
– Drouter (default)
– Drouter – R: no net restarting
– Drouter – S: no net swapping
– Drouter – SR: no net swapping, no net restarting
– Monosat (default)
– Monosat + D: shortest-path decision strategy is on
– BV: reduction to BV

• Instances:
– 120 solid grid graphs of size M  20

– M  {3,5,7}

– 20 random 2-terminal nets
– Generate C * |V| random binary clauses v  u

– v,u  V
– C  {0,0.1,0.2,0.3}

39

Design and

Technology

Solutions
172

40

0

5

10

15

20

25

30

0
10

20
30

#
 S

O
L
V

E
D

DROUTER

DROUTER-R

DROUTER-S

DROUTER-SR

MONOSAT

MONOSAT+D

BV

Design and

Technology

Solutions
173

40

0

5

10

15

20

25

30

0
10

20
30

#
 S

O
L
V

E
D

DROUTER

DROUTER-R

DROUTER-S

DROUTER-SR

MONOSAT

MONOSAT+D

BV

- Full-fledged DRouter only can solves all the instances

- Both net restarting and net swapping are essential!

Design and

Technology

Solutions
174

40

0

5

10

15

20

25

30

0
10

20
30

#
 S

O
L
V

E
D

DROUTER

DROUTER-R

DROUTER-S

DROUTER-SR

MONOSAT

MONOSAT+D

BV

- Full-fledged DRouter only can solves all the instances

- Both net restarting and net swapping are essential!

- Monosat and BV can’t solve a single instance

Design and

Technology

Solutions
175

DRouter on Industrial
Instances

• Run DRouter on difficult clips from Intel designs

– Couldn’t be routed cleanly by 2 industrial routers

41

Design and

Technology

Solutions
176

DRouter on Industrial
Instances

• Run DRouter on difficult clips from Intel designs

– Couldn’t be routed cleanly by 2 industrial routers

41

Area in m2 Nets Vertices Constraints Time in sec. Memory in Gb.

24 110 42,456 484,008 25 0.7

24 230 42,456 484,008 391 1.0

32 352 63,740 667,764 705 2.2

129 788 127,480 2,669,056 14,733 6.5

129 891 127,480 2,669,056 92,950 6.5

Design and

Technology

Solutions
177

Conclusion

• DRouter: design-rule-aware router

– SAT solver surgery:

– Decision heuristic  A*-based router

– Conflict analysis enhanced with graph reasoning

– Restarts  net swapping & net restarting

• Solves instances which can’t be solved by
existing tools

– Including clips from real Intel designs

42

