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Outline

3

Unsolved crafted and industrial RUC instances are routed!

DRouter through SAT Solver Surgery

A*-based decision strategy 
(emulates constraints!)

Graph conflict analysis
Net restarting & 
net swapping

Bit-Vector / SAT Encoding

Doesn’t scale

Routing under Constraints (RUC): Problem Formalization

Goal: Design a Scalable Design Rule-aware Router
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4

Abboud et al, OR Spectrum’08
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Routing: Input
(AKA Steiner Tree Packing Problem)
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Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Terminals
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Routing: Input
(AKA Steiner Tree Packing Problem)

5

Input

A graph G(V,E)

Disjoint Nets Ni  V
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Routing: Output
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Input Output
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1. Each net is spanned by a tree, 
called the net routing

2. Net routings can’t intersect
3. Optimization: minimize the total

routing length
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Routing: Output

6

Input Output

1. Each net is spanned by a tree, 
called the net routing

2. Net routings can’t intersect
3. Optimization: minimize the total

routing length

It is NP-hard to find:

1. Shortest solution for one multi-terminal net (Steiner tree problem)

2. Any solution for many multi-terminal nets
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Design Rules

• Routing is to satisfy design rules 

– Originating in the manufacturing requirement 
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• Example “short” rule:

– The 2 vertices of any edge can’t belong to two distinct 
net routings

7

Short rule is violated for these edges
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Design Rules

• Routing is to satisfy design rules 

– Originating in the manufacturing requirement 

• Example “short” rule:

– The 2 vertices of any edge can’t belong to two distinct 
net routings

7

Short rule is violated for these edges

When the short rule is on, this example is UNSAT
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Industrial Approach:
Rip-Up and Reroute

• Nets are routed one-by-one

– Using A*

– s-t shortest-path given costs’ under-approximation

– A*Dijkstra if no costs’ under-approximation is provided

– Trying to heuristically obey design rules

• Violations are allowed, hence the initial solution 
might be problematic

– Net routings might intersect

– Design rules might be violated

• Clean-up is applied 

– Rip-up: problematic net routings are removed

– Reroute: un-routed nets are attempted again

18
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The Problem with the Current 
Solution

• Design rule violations persist

– Manual clean-up is carried out

9

Some violations still persist Time-to-market is impacted
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Potential Solution

10

Constraint Solving
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Potential Solution

10

Constraint Solving

Next: formalizing Routing under Constraints
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Routing Induces Assignment

11

Edge variables

Bool e: edge activity
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Routing Induces Assignment

14

Bool v: activity status
Bit-vector n: net id

( for inactive vertices)

Vertex variables
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Modeling Routing under 
Constraints

• Design rules can be easily expressed in BV logic

– Variables: 

– Edge & vertex activities

– Vertex nids

– Any auxiliary variables

• “Short” rule example

– For every edge e=(v,u): v  u  nid(v)=nid(u)

Short rule is violated for these edges
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Routing under Constraints 
(RUC): Problem Formulation
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(RUC): Problem Formulation

18

1. Graph G(V,E)

2. Disjoint Nets Ni  V

Input
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Routing under Constraints 
(RUC): Problem Formulation

18

1. Graph G(V,E)

2. Disjoint Nets Ni  V

Input

A quantifier-free 
bit-vector formula F(V  E  N  A)

- V : vertex activity 
- E : edge activity
- N : vertex net id
- A : any auxiliary variables

(represents the design rules)
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Routing under Constraints 
(RUC): Problem Formulation

18

1. Graph G(V,E)

2. Disjoint Nets Ni  V

Input

A quantifier-free 
bit-vector formula F(V  E  N  A)

- V : vertex activity 
- E : edge activity
- N : vertex net id
- A : any auxiliary variables

(represents the design rules)

Output: a model to F, which induces a routing:

- e=(v,u) is active 

- v and u are active, and 

- nid(v) = nid(u)

- For each net i: active vertices with nid i and 

active edges span the net’s terminals

- Optional optimization requirement: the overall 

weight of active edges is as small as possible
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Solving Attempt: Encoding into 
Bitvector Logic / SAT

19
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20

SAT Solver’s Internals
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SAT Solver’s Internals
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Decision Strategy
(Conflict-driven)

Boolean Constraint 
Propagation

SAT Solver’s Internals

Conflict Analysis & 
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict
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SAT  DRouter through 

Surgery

21
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(Conflict-driven)

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict

SAT  DRouter
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22

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict

SAT  DRouter
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22

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict
A*-based Router

SAT  DRouter
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22

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

Restarts

Time-to-

restart?

No conflict
A*-based Router

Graph-based 
Learning

SAT  DRouter
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22

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

SAT  DRouter
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22

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?

SAT  DRouter
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DRouter
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(Conflict-driven)

Boolean Constraint 
Propagation
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No conflict
A*-based Router
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DRouter
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Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
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Time-to-flip? Time-to-

restart?

Encoded constraints:
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DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

1. Edge consistency

• e=(v,u) is active 

• v and u are active

• nid(v) = nid(u)
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DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

1. Edge consistency

• e=(v,u) is active 

• v and u are active

• nid(v) = nid(u)

2. User-provided constraints modelling 

design rules
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DRouter

23

Decision Strategy
(Conflict-driven)

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?

Encoded constraints:

1. Edge consistency

• e=(v,u) is active 

• v and u are active

• nid(v) = nid(u)

2. User-provided constraints modelling 

design rules

That’s it! What about disconnected 

terminals???

Routing correctness is guaranteed by 

the decision strategy!
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1-Net Example

24

Decision Strategy
(Conflict-driven)

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?
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1-Net Example

24

Decision Strategy
(Conflict-driven)

Boolean Constraint 
Propagation

Conflict Analysis & 
Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning

Net 
Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Design rules
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

σ (sugg.)

Path Suggestion

(not an actual SAT decision)
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

σ (sugg.)

Activate edge in sugg.

SAT

Decision
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

σ-violation

Activate edge in sugg.
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

σ-violation

Activate edge in sugg.

A* search 

for new σ
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Path found

Activate edge in sugg.
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

No -violation
Path found

Target is part of path?

no

Repeat

Activate edge in sugg.
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

No -violation
Path found

Target is part of path?

no

Repeat

Activate edge in sugg.

BCP
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

No -violation
Path found

Target is part of path?

no

Repeat

Activate edge in sugg.

BCP
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Activate edge in sugg.

x

σ-violation
No -violation

Target is part of path?

no

Repeat
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Activate edge in sugg.

x

σ-violation

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Activate edge in sugg.

x

σ-violationAdd conflicting clause: vertex cut  (2,0)  (3,1)

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Activate edge in sugg.

x

σ-violationAdd conflicting clause: vertex cut  (2,0)  (3,1)
1UIP conflict clause: (2,0)  ¬(3,2)

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Activate edge in sugg.

x

σ-violationAdd conflicting clause: vertex cut  (2,0)  (3,1)
1UIP conflict clause: (2,0)  ¬(3,2)

Graph conflict (s and t can’t be connected)

No -violation

Target is part of path?

no

Repeat



Design and

Technology

Solutions
77

1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

Activate edge in sugg.

σ-violationAdd conflicting clause: vertex cut  (2,0)  (3,1)
1UIP conflict clause: (2,0)  ¬(3,2)

(2,0)  ¬(3,2)

x

Graph conflict (s and t can’t be connected)

Learn & Backtrack

No -violation

Target is part of path?

no

Repeat
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x
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Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

No σ-violation

Graph conflict

Learn & Backtrack
DONE!

Target is part of path?

(yes!)

no

Repeat

Activate edge in sugg.

x

(2,0)  ¬(3,2)
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1-Net Example

0

1

2

1 2 3

s: (0, 0)

t: (3, 0)

¬(1,0)  ¬(2,0)

¬(1,0)  ¬(1,1)

¬(3,2)  ¬(3,1)

Initial path: 

A* from s->t

Real path

x

x

σ (sugg.)

A* search 

for new σ

No σ-violation
Path found

Graph conflict

Learn & Backtrack
DONE!

Target is part of path?

(yes!)

no

Repeat

Activate edge in sugg.

x

Result: 

Path that 

follows 

constraints!

(2,0)  ¬(3,2)

σ-violation
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Multiple Nets Handling

30



Design and

Technology

Solutions
83

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

30



Design and

Technology

Solutions
84

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

30



Design and

Technology

Solutions
85

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

30



Design and

Technology

Solutions
86

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30



Design and

Technology

Solutions
87

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30



Design and

Technology

Solutions
88

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30



Design and

Technology

Solutions
89

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

30



Design and

Technology

Solutions
90

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

30



Design and

Technology

Solutions
91

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31



Design and

Technology

Solutions
92

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31



Design and

Technology

Solutions
93

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31



Design and

Technology

Solutions
94

Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

31

- Graph conflict
- black is blocked

- Early conflict detection
- Check for graph conflicts 

after routing each terminal
- Learn a conflict clause & 
re-route
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Multiple Nets Handling

• Route the nets one-by-one

– Order is critical!

• Example Order 1:

– Red

• Example Order 2:

– Red

• Too slow! Solution: dynamic 
net reordering!
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DRouter
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Decision Strategy
(Conflict-driven)
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Learning

Backtracking

No conflict
A*-based Router

Graph-based 
Learning
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Swapping

Net 
Restarting

Time-to-flip? Time-to-

restart?
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Net Swapping:

After N conflicts, swap the order between:

the first blocked net i

the blocking net j

{A,j,B,i,C}  {A,i,j,B,C}
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Net Swapping
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Net Swapping
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Net Restarting
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Net Restarting

• Example Order 2:

– Red

• Flip:

– Red
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Moved to 

the top

Net Restarting

Restart and move the blocked net to the top

(after M conflicts for that net)
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Net Swapping vs. Net 
Restarting

• Swapping is local

• Restarting is global

• In practice both techniques are crucial

• Strategy: 

– Swap for some time

– If it doesn’t work, restart

35
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Related Work 1: Clock Routing 
Erez & Nadel, CAV’15

• Reduction to finding bounded-path in graph

• SAT solver surgery: graph-aware decision 
strategy & graph conflict analysis

• The decision strategy:

– Emulates constraints!

– Guides the solver towards the solution

– Considers additional optimization requirements

36
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Related Work 2: Monosat Solver  
Bayless & Bayless & Hoos & Hu, AAAI’15

• Can reason about graph predicates & SAT/BV

• Graph conflict analysis

• Shortest-path decision heuristic can be 
optionally applied 

• Path-finding (routing for one 2-terminal net) is 
conceptually similar in Monosat and DRouter

– Main difference:

– Lazy A* in DRouter vs.

– Eager incremental Ramalingam-Reps in Monosat

• RUC can be easily expressed in Monosat
language

37
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Monosat vs. DRouter for 
Routing under Constraints
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Experimental Results on 
Crafted Instances

• Solvers:
– Drouter (default)
– Drouter – R: no net restarting
– Drouter – S: no net swapping
– Drouter – SR: no net swapping, no net restarting
– Monosat (default)
– Monosat + D: shortest-path decision strategy is on
– BV: reduction to BV

• Instances:
– 120 solid grid graphs of size M  20

– M  {3,5,7}

– 20 random 2-terminal nets
– Generate C * |V| random binary clauses v  u 

– v,u  V
– C  {0,0.1,0.2,0.3}
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- Full-fledged DRouter only can solves all the instances

- Both net restarting and net swapping are essential!

- Monosat and BV can’t solve a single instance
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DRouter on Industrial 
Instances

• Run DRouter on difficult clips from Intel designs

– Couldn’t be routed cleanly by 2 industrial routers

41
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Area in m2 Nets Vertices Constraints Time in sec. Memory in Gb.

24 110 42,456 484,008 25 0.7 

24 230 42,456 484,008 391 1.0 

32 352 63,740 667,764 705 2.2 

129 788 127,480 2,669,056 14,733 6.5 

129 891 127,480 2,669,056 92,950 6.5 
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Conclusion

• DRouter: design-rule-aware router

– SAT solver surgery: 

– Decision heuristic  A*-based router

– Conflict analysis enhanced with graph reasoning

– Restarts  net swapping & net restarting

• Solves instances which can’t be solved by 
existing tools

– Including clips from real Intel designs
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