Soundness of the
Quasi-Synchronous Abstraction

Guillaume Baudart Timothy Bourke Marc Pouzet

Ecole normale supérieure, INRIA Paris, UPMC

FMCAD’16 Mountain View, 06-10-2016

Distributed Embedded Systems

Distributed controllers for critical embedded systems

FGS

cmd1

Transfer Switch

sensor]
Sensors >

sensor?
Sensors >

switch

cmd?2

cmd

Example: Flight Control System

Generate pitch and roll guidance commands

2

> Actuators

Example from [Miller et al. 2015]

Distributed Embedded Systems

Distributed controllers for critical embedded systems

Two redundant Flight Guidance Systemg

Only one active gide (pilot gide)

>

FGS

cmd1

Transfer Switch

sensor]
Sensors

sensor?
Sensors

switch

>

cmd?2

cmd

Example: Flight Control System

Generate pitch and roll guidance commands

2

> Actuators

Example from [Miller et al. 2015]

Distributed Embedded Systems

Distributed controllers for critical embedded systems

Two redundant Flight Guidance Systemg

Only one active gide (pilot gide)

>

FGS

cmd1

Transfer Switch

sensor]
Sensors

sensor?
Sensors

switch

>

cmd?2

cmd

Crew can qwiteh from one to the other

Example: Flight Control System

Generate pitch and roll guidance commands

2

> Actuators

Example from [Miller et al. 2015]

Distributed Embedded Systems

Distributed controllers for critical embedded systems

Two redundant Flight Guidance Systemg

Only one active gide (pilot gide)

>

Transfer Switch

sensor]
Sensors

sensor?
Sensors

switch

>

FGS

cmd1

cmd?2

cmd

Crew can qwiteh from one to the other

Example: Flight Control System

Generate pitch and roll guidance commands

2

> Actuators

Example from [Miller et al. 2015]

Distributed Embedded Systems

Distributed controllers for critical embedded systems

Two redundant Flight Guidance Systemg

Only one active gide (pilot gide)

]

Transfer Switch

FGS

cmd1

cmd
o > Actuators

cmd?2

sensor]
Sensors >

sensor?
Sensors >

switch

Crew can qwiteh from one to the other

Example: Flight Control System

Generate pitch and roll guidance commands

2

The two modules mugt ghare
their etate to avoid control gliteh

Example from [Miller et al. 2015]

Distributed Embedded Systems

Distributed controllers for critical embedded systems

Two redundant Flight Guidance Systemg

Only one active gide (pilot gide)

]

Transfer Switch

FGS

Run embedded application...

cmd1

cmd
o > Actuators

cmd?2

sensor]
Sensors >

sensor?
Sensors >

switch

Crew can qwiteh from one to the other

Example: Flight Control System

Generate pitch and roll guidance commands

2

The two modules mugt ghare
their etate to avoid control gliteh

Example from [Miller et al. 2015]

Distributed Embedded Systems

Distributed controllers for critical embedded systems

Two redundant Flight Guidance Systemg
Only one active gide (pilot gide)

Run embedded application...
...on distributed architectures
cmd
cmd
o > Actuators
A
cmd?2

sensor

Sensors >
sensor?

Sensors > FGS
switch

Transfer Switch

Crew can qwiteh from one to the other

Example: Flight Control System
Generate pitch and roll guidance commands

2

The two modules mugt ghare
their etate to avoid control gliteh

Example from [Miller et al. 2015]

Synchronous Real-Time Model

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

For each process: known bounds for '
the time between two activations. 0

0 < Thin <k; —Ki—1 < Thax [}:

(k;)ien Clock activations

Buffered communication without

message inversion or loss [:

Bounded communication delay

0 S Tmin S T S Tmax

Synchronous Real-Time Model

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

For each process: known bounds for
the time between two activations.

0 S Tmin S Ri — Ri—1 S Tmax

(k;)ien Clock activations

Buffered communication without

message inversion or loss [:

Bounded communication delay

0 S Tmin S T S Tmax

Synchronous Real-Time Model

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

For each process: known bounds for
the time between two activations.

0 S Tmin S Ri — Ri—1 S Tmax

(k;)ien Clock activations

Buffered communication without

message inversion or loss [:

Bounded communication delay

0 S Tmin S T S Tmax

Synchronous Real-Time Model

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

For each process: known bounds for
the time between two activations.

0 S Tmin S Ri — Ri—1 S Tmax

(k;)ien Clock activations

Buffered communication without

message inversion or loss [:

Bounded communication delay

0 S Tmin S T S Tmax

Synchronous Real-Time Model

For each process, activations are triggered by a local clock
Execution: infinite sequence of activations

For each process: known bounds for
the time between two activations.

0 S Tmin S Ri — Ri—1 S Tmax

(k;)ien Clock activations

Buffered communication without

message inversion or loss [:

Bounded communication delay

0 S Tmin S T S Tmax

Overview

{ | VERIMAG

EEEEEEEEEEEEEEEEE

Centre Equation
2avenue de Vignate
38610 GIERES

Tel. +33 476 63 48 48
Fax +33 4 76 63 48 50

The Quasi-Synchronous Approach to
Distribhuted Control Systems

Crisys draft

October 2000

Centre National de la Recherche Scientifique Universite Joseph Fourier Institut National Polytechnique de Grenoble

Industrial practices observed at Airbus

4 [Caspi 2000]

Overview

{ VERIMAG

EEEEEEEEEEEEEEEEE

Verification

Veritying safety critical applications
running on quasi-periodic architectures

mequss Quasi-Synchronous Abstraction

Distribu

Crisys draft

October 2000

Centre National de la Recherche Scientifique Universite Joseph Fourier Institut National Polytechnique de Grenoble

Industrial practices observed at Airbus

4 [Caspi 2000]

Overview

CSD'O com - " -
: \/e?ing'OS e Verification
AQC o " .
DAE‘A 4 m Veritying safety critical applications
emocoae
Verocodel5 running on quasi-periodic architectures
Air Foreel5 ' .
c meowis Quasi-Synchronous Abstraction

FORMAL VERFICATION OFf CUAR STROSRONOUS ST TEMS

Crisys draft

October 2000

NFORMATION SRECTORAYE

Centre National de la Recherche Scientifique Universite Joseph Fourier Institut National Polytechnique de Grenoble

Industrial practices observed at Airbus

4 [Caspi 2000]

Overview

0 e ..
Ac\iamg'og Verification
DAEAM . Verifying safety critical applications
emocodae . . : . .
Merocodels running on quasi-periodic architectures
Air Force'!5 ' |
s meawss - Quasi-Synchronous Abstraction

FORMAL VERFICATION OF QUAS STRCRONOUS STETEMS

ROCHATLL COLLNS Crisys draft

o Contributions
— Abgtraction ie not gound in general
oS S ~__ (ive exact conditiong of application

Industrial practices observed at Airbus

4 [Caspi 2000]

The Big Picture

0 < Tnlin S TA7TB S Tmax
0 < Tmin S TA,TB < Tmax

T A TB

>

A B

¢

, XN/

Real-time Model (RT)

The Big Picture

0 < Tmin § TA7TB S Tmax

0< Tonin < T4. 78 < Toax Scheduler

T T'p \

A -] B A]
A | | A e e o
5 y \ / / B-1—e o o

Real-time Model (RT) Diccrete-time Model (OT)

The Big Picture

0< Tmin S TA7TB S Tmax

CB

0< Toin < TA.TB < Tonax Scheduler
Ta Tp “1
A) B A
B . . . B ° o o
Real-time Model (RT) Digcrete-time Model (OT)
RT = ¢ < DT = ¢
Soundnegg

The Big Picture

0 < Thin < T4, 1B < Thax
0< Toin < TA.TB < Tonax Scheduler
1'a 15 B \ A -
A B A B
A —1 | | A ° ® -
B y \ / / B ° o o
Real-time Model (RT) Digcrete-time Model (OT)
RT = ¢ ¢ DT = ¢
Soundnegs
Why discretize?

Verification in a simpler discrete-time model
Use discrete-time model checking tools (Lesar-Verimag, Kind2-Ulowa)

[Halbwachs et al 1992]
S [Hagen, Tinelli 2008]

Abstracting Real Time

RN

|

Abstracting Real Time

Abgtracting execution time

RN

|

Abstracting Real Time

Abgtracting execution time

Abstracting Real Time

Abgtracting execution time

Abstracting Real Time

Abgtracting execution time

RN

|

Abstracting Real Time

Abgtracting execution time

\ /

N

Abstracting Real Time

Abgtracting execution time
Abgtracting communication

Abstracting Real Time

Abgtracting execution time
Abgtracting communication

Abstracting Real Time

Abgtracting execution time
Abgtracting communication

Abstracting Real Time

Abgtracting execution time
Abgtracting communication

Problems:
+ Lotg of posgible interleavings
+ Too general

Abstracting Real Time

Abstracting execution time Problems:
Abgtracting communication - Lote of poggible interleavinge
+ Too general
@ O >
@ O O -
® @ >

Can we do better uging real-time ageumptiong?

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

Reduce the state-space in two ways:

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@ o >

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

Reduce the state-space in two ways:
1. Transmissions as unit delays

(one step of the logical clock)

@< @ >

\

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@< @- >

MREN)

O - >

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays
(one step of the logical clock)

@< @- >

MREN)

O - >

Replace trangmiggion with precedence

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

‘[t i not the cage that a component process
executes more than twice between two succegsive
executiong of another process.”

Reduce the state-space in two ways:

1. Transmissions as unit delays 2. Limit activations interleavings
(one step of the logical clock) A process ie at mogt twice ag fagt ag another
‘\\ ‘\X > OO o0 >
@ . > O @ o|—

Replace trangmiggion with precedence

The Quasi-Synchronous Abstraction

Focus on 'almost’ synchronous architectures with fast transmissions

[s this abstraction sound?

v—

Reduce the state-space in two ways:

1. Transmissions as unit delays 2. Limit activations interleavings
(one step of the logical clock) A process ig at most twice ag fagt ag another
‘\\/ ’\X > o0 o0 >
@ - > O @ o——

Replace trangmiggion with precedence

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

a)
Qo >
®
O >

_),

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

a)
O P
’ -
T

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

a)
O P
?'X
RS,

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

~ ~ ~ ~
@ > Qo >
?'x i i¢

> >
T > _ D

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

s) s)

&
X

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

s) s)

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, In

general, not unitary discretizable.
>
o . HPlwaysposable if trangmisgiong

Tmax are not Ingtantaneoug
Tmax
>

a) a)
ure
>><

\ _/ \ _/

Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.

>
Tmax
Some traceg are not captured o . Awaysposaibleif trangmisgions

by the digcrete abstraction Tma)>/ are not inetantaneous
Tmax
>

- N - ~
@ > ‘ >

i R

& Y _ >

Trace Graph

Gather all contraints on the unitary discretization f in a weighted graph

After reception Before reception
By = f(z) < fly) z 5y = f(z) < fly)
L X

N, —

Y Y

10

Trace Graph

Gather all contraints on the unitary discretization f in a weighted graph

After reception

z By = f(z) < f(y)

X

~N .

>
Y

Lemma: A trace is unitary discretizable
if and only if there is no cycle of positive
weight in the associated trace graph.

Definition: A real-time model is unitary
discretizable it all possible traces are
unitary discretizable.

10

Before reception

z Sy = f(z) < fy)

i
o >
./ >

Trace Graph

Gather all contraints on the unitary discretization f in a weighted graph

After reception

z By = f(z) < f(y)

X

~N .

>
Y

Lemma: A trace is unitary discretizable
if and only if there is no cycle of positive
weight in the associated trace graph.

Definition: A real-time model is unitary
discretizable it all possible traces are
unitary discretizable.

10

Before reception

z Sy = f(z) < fy)

Trace Graph

Gather all contraints on the unitary discretization f in a weighted graph

After reception

z By = f(z) < f(y)

X

~N .

>
Y

Lemma: A trace is unitary discretizable
if and only if there is no cycle of positive
weight in the associated trace graph.

Definition: A real-time model is unitary
discretizable it all possible traces are
unitary discretizable.

10

Before reception

z Sy = f(z) < fy)

Trace Graph

Gather all contraints on the unitary discretization f in a weighted graph

After reception

z By = f(z) < f(y)

X

~N .

>
Y

Lemma: A trace is unitary discretizable
if and only if there is no cycle of positive
weight in the associated trace graph.

Definition: A real-time model is unitary
discretizable it all possible traces are
unitary discretizable.

10

Before reception

z Sy = f(z) < fy)

Trace Graph

Gather all contraints on the unitary discretization f in a weighted graph

After reception

z By = f(z) < f(y)

X

~N .

>
Y

Lemma: A trace is unitary discretizable
if and only if there is no cycle of positive
weight in the associated trace graph.

Definition: A real-time model is unitary
discretizable it all possible traces are
unitary discretizable.

10

Before reception

z Sy = f(z) < fy)

Recovering Soundness

Forbidden topologies in the static communication graph

¢ B A ¢ B A ¢ B
C C D 3 C

cyele u-cycle balanced u-cycle

11

Recovering Soundness

Forbidden topologies in the static communication graph

> B (A : B) A ¢ B

| 1N/ L]

C . C D ¢ C

cyele u-cycle balanced u-cycle

11

Recovering Soundness

Forbidden topologies in the static communication graph

> B (A : B) A ¢ B
C K\ C /) D C
cyele u-cycle balanced u-cycle

can be allowed at the cost of additional timing congtraints

11

Recovering Soundness

Forbidden topologies in the static communication graph

A > B (A : B) A : B
D C . C D ¢ C
cyele u-cycle balanced u-cycle

can be allowed at the cost of additional timing congtraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if,
In the communication graph

1. All u-cycles are cycles of balanced u-cycle, or Tmax = 0, and
2. There is no balanced u-cycle, or Tmin = Tmax, and
3. There is no cycle in the communication graph, or Tiwin = LeTmax

L.: size of the longest elementary cycle

11

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

Za

N\

E—D

m O O T >

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg

Za

N\

E—D

m O O T >

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

Za

N\

E—D

m O O T >

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

Za

N\

E—D

m O O T >

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ > p = ¢ = (qTmax — PTmin)/q > 0
AN TN
A / \C B ®
N/
E—/D D
E

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ > p = €= (qTmax — PTmin)/q > 0
B 1
2 N

N\

E—D

m O O T >

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ > p = €= (qTmax — PTmin)/q > 0
B A :
V2N N0y
N A \\
\\ / / C o
E—/=D D
E

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p =€ = (¢Tmax — PTmin)/q >0
B A :
2N, TN
N e
E—=D D
E

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg ¢ >p=>¢€ = (¢Tmax — PTmin)/q > 0
B A ‘
P
(Y A —
E—=D D 0/ i
E

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

N\

E—D

m o O W >
X—
:

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

N\

E—=D

m O O @©@ >
x—ﬂ
\]
=
?

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

N\

E—=D

m O O T >

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

N\

E—=D

m O O T >

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

A AN

E—=D

_J Ly

q=3# —

p=2:% =

12

Recovering Soundness

Proof: If there is a u-cycle, construction of a counter-example

Communicationg q>p=— ¢ = (qTmax — PTmin)/q > 0

7N\

C

N\

E—=D

m O O T >

q=3# —

. A
p=0: —2 We built a cycle of positive weight!

12

Recovering Soundness

Proof: On the other hand, by contraposition,

13

Recovering Soundness

Proof: On the other hand, by contraposition,

PC/u-cycle

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle

/

13

PC/u-cycle

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced

PC/u-cycle \ balanced

cycle

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =—— Tmax =0

PC/u-cycle \ balanced

cycle

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced — Tmaxzo&\\'

/ \ .
PC/u-cycle balanced

cycle

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced — Tmaxzo&\\'

/ \ v
PC/U—CYC|€ balanced ——> Tmin < Tmax

cycle

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =—— Tmax =10 @\'
/ \ .
PC/U-CYC|9 balanced —> Tmin < Tmax &(}
Q™

cycle

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =—— Tmax =10 @\'
/ \ .
PC/U-CYC|9 balanced —> Tmin < Tmax &(}
Q™

CyC|e s Tmin > LchaX

13

Recovering Soundness

Proof: On the other hand, by contraposition,

cycle balanced =—— Tmax =10 @\'
/ \ o
PC/U-CYC|e balanced —> Tmin < Tmax &(}
Q™

fb.
CyC|e — Tmin > Lcha,X 4

NS

13

Topology Examples

daiey chain: Tmin > 2Tmax / ’ \
C

A

: N/

bidirectional ring: 7imax = 0
A\

E D

B
Q‘l'ar: Tmin 2 27—max // \\
77—\ C

A

N, N/
\\ // ully connected: Tmax =

EFE—/—D

unidirectional ring: Timin > 5Tmax

Communications of the application
14

Topology Examples

A== B r B \
dang Cham: Tmin = 2Tmax / \

A C

ﬁ _ 7/

E&=D
A pe=C

bidirectional ring: 7imax = 0
A\

E D B

gtar: Timin = 2Tmax / \\‘
1\ ¢ ()

A 2 77

N\ N2

\ . _
\\ // Ky : Timax J

EFE—/—D

unidirectional ring: Timin > 5Tmax

Require ingtantaneous communications

Communications of the application
14

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

For any node:
1. no more than 2 activations between 2 message receptions
2. Nno more than 2 message receptions between two activations

AR A Al

Condition |. Condition 2.

15

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

Theorem: A real-time model is quasi-synchronous if and only if,

1. itis unitary discretizable
2. 2Crmin + Tmin Z TmaX + Tmax

16

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

Theorem: A real-time model is quasi-synchronous if and only if,

1. itis unitary discretizable
2. 2Crmin + Tmin Z TmaX + Tmax

Woret-cage ecenario

16

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

Theorem: A real-time model is quasi-synchronous if and only if,

1. itis unitary discretizable
2. 2Crmin + Tmin Z TmaX + Tmax

Tmin /

Woret-cage ecenario

16

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

Theorem: A real-time model is quasi-synchronous if and only if,

1. itis unitary discretizable
2. 2Crmin + Tmin Z TmaX + Tmax

Tmin / P
TmaX IMmax

Woret-cage ecenario

16

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

Theorem: A real-time model is quasi-synchronous if and only if,

1. itis unitary discretizable
2. 2Crmin + Tmin Z TmaX + Tmax

Tmin / P
TmaX IMmax

Woret-cage ecenario

16

Quasi-Synchronous Systems

‘[t i not the cage that a component process
executeg more than twice between two succesgive
executiong of another process.”

Theorem: A real-time model is quasi-synchronous if and only if,
1. itis unitary discretizable

2- 2Crmin + Tmin Z TmaX + Tmax

@ ® ®

Tmin / P
TmaX IMmax

Woret-cage ecenario

16

Conclusion

The quasi-synchronous abstraction:
1. Model transmission as unit delays
2. Constrain node activations interleavings

Contributions:

e Condition 1 is not sound in general

e Notion of unitary discretization

e Necessary and sufficient conditions to recover soundness
e Characterization of quasi-synchronous systems

Congtrain both the communication graph and the real-time
characterigtice of the architecture to recover goundnesg of the
quasi-eynchronoug abgtraction.

17

