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Run embedded application...
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their state to avoid control glitch
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Contributions 

Abstraction is not sound in general 

Give exact conditions of application

Industrial practices observed at Airbus

[Caspi 2000] 
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The Big Picture

Real-time Model (RT)

Soundness 
DT |= ϕ.l, RT |= ϕ

Why discretize?  
Verification in a simpler discrete-time model 
Use discrete-time model checking tools (Lesar-Verimag, Kind2-UIowa) 

[Halbwachs et al 1992] 
[Hagen, Tinelli 2008]5
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Abstracting communication
Problems:  
• Lots of possible interleavings 
• Too general

Can we do better using real-time assumptions?
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The Quasi-Synchronous Abstraction

Reduce the state-space in two ways:

“It is not the case that a component process 
executes more than twice between two successive 

executions of another process.”

Focus on 'almost' synchronous architectures with fast transmissions

1. Transmissions as unit delays  
(one step of the logical clock) A process is at most twice as fast as another

2. Limit activations interleavings

8

Replace transmission with precedence

Is this abstraction sound?
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Unitary Discretization

τmax

τmax

τmax

Theorem: A real-time model with more than two processes is, in 
general, not unitary discretizable.

Always possible if transmissions 
are not instantaneous

9

Some traces are not captured  
by the discrete abstraction

Definition: A trace is unitary discretizable if there exist a 
discretization where transmission can be modeled as unit-delays
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Forbidden topologies in the static communication graph

u-cycle balanced u-cyclecycle

can be allowed at the cost of additional timing constraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if, 
in the communication graph  

1. All u-cycles are cycles of balanced u-cycle, or               , and 
2. There is no balanced u-cycle, or                    , and 
3. There is no cycle in the communication graph, or 

Lc: size of the longest elementary cycle

τmin = τmax

Tmin ≥ Lcτmax

τmax = 0
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Communications of the application



Quasi-Synchronous Systems

15

“It is not the case that a component process 
executes more than twice between two successive 

executions of another process.”

For any node: 
1. no more than 2 activations between 2 message receptions 
2. no more than 2 message receptions between two activations

Condition 1. Condition 2.
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Conclusion

17

The quasi-synchronous abstraction:
1. Model transmission as unit delays 
2. Constrain node activations interleavings

Contributions:
• Condition 1 is not sound in general 
• Notion of unitary discretization 
• Necessary and sufficient conditions to recover soundness 
• Characterization of quasi-synchronous systems 

Constrain both the communication graph and the real-time 
characteristics of the architecture to recover soundness of the 

quasi-synchronous abstraction.


