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Why discretize?

Verification in a simpler discrete-time model
Use discrete-time model checking tools (Lesar-Verimag, Kind2-Ulowa)

[Halbwachs et al 1992]
S [Hagen, Tinelli 2008]
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Focus on 'almost’ synchronous architectures with fast transmissions

[s this abstraction sound?

v—
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Unitary Discretization

Definition: A trace is unitary discretizable if there exist a
discretization where transmission can be modeled as unit-delays

Theorem: A real-time model with more than two processes is, in
general, not unitary discretizable.
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Forbidden topologies in the static communication graph

A > B (A : B) A : B
D C . C D ¢ C
cyele u-cycle balanced u-cycle

can be allowed at the cost of additional timing congtraints

Theorem: A quasi-periodic architecture is unitary discretizable if and only if,
In the communication graph

1. All u-cycles are cycles of balanced u-cycle, or Tmax = 0, and
2. There is no balanced u-cycle, or Tmin = Tmax, and
3. There is no cycle in the communication graph, or Tiwin = LeTmax

L.: size of the longest elementary cycle

11
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‘[t i not the cage that a component process
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For any node:
1. no more than 2 activations between 2 message receptions
2. Nno more than 2 message receptions between two activations

AR A Al

Condition |. Condition 2.
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Conclusion

The quasi-synchronous abstraction:
1. Model transmission as unit delays
2. Constrain node activations interleavings

Contributions:

e Condition 1 is not sound in general

e Notion of unitary discretization

e Necessary and sufficient conditions to recover soundness
e Characterization of quasi-synchronous systems

Congtrain both the communication graph and the real-time
characterigtice of the architecture to recover goundnesg of the
quasi-eynchronoug abgtraction.
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