
Solving Linear Arithmetic with SAT-based Model
Checking

Yakir Vizel
Princeton University, USA

Alexander Nadel
Intel Development Center, Haifa, Israel

Sharad Malik
Princeton University, USA

Abstract—We present LIAMC, a novel decision procedure for
(quantifier-free) linear arithmetic over both integers modulo 2N

(LIAN) and integers (LIA).

There is no need to explain our motivation to design a new
efficient decision procedure for the widely used LIA logic. A
LIAN decision procedure can be extremely useful in the context
of software (SW) verification. SW verification usually requires
to reason about arithmetic constraints over finite integers. To
that end, modern SW verification tools commonly use fixed-width
bit-vector (BV) solvers. However, BV solvers’ efficiency drops
dramatically as the width increases. To solve the performance
problem, LIA solvers are applied, but they are imprecise as they
cannot handle integer overflow. An efficient LIAN solver would
be the ideal solution in this context.

Our decision procedure LIAMC is based on a transformation
of linear arithmetic into safety verification. We treat integers as
unbounded streams of bits over time. More precisely, for each
input integer, the least significant bit (LSB) corresponds to time
0 in the corresponding stream, and the k-th bit corresponds to
the bit received at time k. LIAMC then uses SAT-based model
checking (SATMC) to solve the resulting problem. In order to
achieve efficiency, LIAMC uses two forms of generalization. First,
if it finds a formula to be unsatisfiable for width N , it tries to
generalize this result for all the widths. Second, if LIAMC finds
a formula to be satisfiable for width N , it tries to “extend” and
thus generalize the assignment to a wider target width.

To evaluate LIAMC we used the QF LIA subset of SMT-
COMP’16, and ran two sets of experiments. First, we reinter-
preted the QF LIA over fixed-width bit-vectors of varying widths
and compared LIAMC in LIAN mode to both Boolector and Z3.
LIAMC solved the most satisfiable instances out of the three even
for the shortest width 32. Second, we compared LIAMC to CVC4
and Z3 on the original QF LIA benchmarks. LIAMC was able
to solve many instances that had not been solved by the other
solvers.

I. INTRODUCTION

Nowadays, Satisfiability Modulo Theory (SMT) [1] solvers
for the quantifier-free linear integer arithmetic (LIA) [2] logic
are widely used, and have become highly efficient. Despite
their efficiency, there is a growing demand for SMT solvers
that can efficiently solve quantifier-free linear arithmetic over
integers modulo 2N (LIAN). This paper presents a novel
decision procedure, LIAMC, suitable for solving LIAN and ar-
bitrary LIA instances. Our motivation for designing a decision
procedure for LIAN originates in software (SW) verification.

Formal verification of SW is one of the main driving forces
in SMT research. SW verification usually involves reasoning
about arithmetic constraints, and in particular, linear arithmetic
constraints over integers modulo 2N for some N ∈ N. This

is due to the fact that SW uses a finite representation for
integers. More precisely, arithmetic operations over integers
are interpreted over the ring Z/2NZ (“machine arithmetic”)
rather than over the ring Z. As a result, efficient bit-precise
reasoning is highly desired.

In order to capture the semantics of linear arithmetic over
Z/2NZ (LIAN), SMT solvers for the theory of fixed-width bit-
vectors (BV solvers) are often used, since LIAN is a proper
subset of QF BV. BV solvers, however, are not efficient when
the bit-vectors are wide. Namely, when the value of 2N is large
(e.g. N = 512), solving formulas in LIAN becomes intractable
for BV solvers. This inefficiency is mainly due to the way BV
solvers are implemented: in most cases, the formula is reduced
to a propositional formula using bit-blasting. Therefore, as
N increases, so does the complexity of the resulting SAT
formula. One way to overcome this inefficiency is by applying
a LIA solver. Unlike BV solvers, LIA solvers reason about
linear arithmetic over Z. While LIA solvers are more efficient
than that of BV solvers for this task, they are less precise.
This imprecision comes from the different semantics between
LIA and LIAN . Namely, arithmetic operations over Z cannot
result in an “overflow” (i.e. wrap-around). In the context of
SW verification, this may lead to unsound results. Hence, an
efficient LIAN solver, as presented in this paper, should be
extremely useful for SW verification.

Our novel decision procedure for LIAN and LIA, LIAMC,
is based on a reduction of the input formula to a safety
verification problem. Namely, a formula ϕ in either LIAN

or LIA is transformed to a transition system T such that
the satisfiability of ϕ corresponds to whether T is SAFE or
UNSAFE. The reduction treats integers as unbounded streams
of bits over time. More precisely, for each input integer,
the least significant bit (LSB) corresponds to time 0 in the
corresponding stream, and the k-th bit corresponds to the bit
received at time k. The structure of T captures the constraints
between the integer variables that appear in ϕ. To determine
if T is SAFE or UNSAFE, LIAMC uses SAT-based model
checking (SATMC) [3].

One possible way to reason about T is by using Bounded
Model Checking (BMC) [4], an efficient SATMC algorithm
that can show T is UNSAFE. Considering our reduction, if
BMC finds a counterexample of length N in T (T is UN-
SAFE), then ϕ is satisfiable over Z/2NZ. If no counterexample
of length N exists in T , then ϕ is unsatisfiable over Z/2NZ.
This can be used as a decision procedure for LIAN . However,
the performance of such an approach is usually not better then
that of BV solvers [5]. BMC can either find a counterexample
of length N , or prove that counterexample of length N does

not exist. In that sense, in the context of LIAMC, it can only
reason about LIAN for a given N . In fact, this approach is
somewhat “equivalent” to how modern eager BV solvers are
implemented.

Unlike BMC, modern SATMC algorithms [6]–[8] use
generalization in order to show that no counterexample, of
any length, exists, and by that they can prove a transition
system is SAFE. LIAMC takes advantage of this generalization
mechanism. In case LIAMC finds ϕ to be unsatisfiable over
Z/2kZ, SATMC’s generalization mechanism is applied to
show ϕ is unsatisfiable over Z/2NZ for every N > k
and moreover, unsatisfiable over the integers. For the case a
counterexample of length k is found, we have implemented
an efficient procedure in LIAMC that tries to extend the
counterexample to some target N (where N > k) and by that
show ϕ is satisfiable over Z/2NZ. In addition, LIAMC can also
extend a counterexample over Z/2NZ to a counterexample
over Z.

We evaluated our approach on QF LIA subset of the SMT-
COMP’16 benchmark. Since LIAMC can be used for both LIA
and LIAN , we used two sets of experiments. For our first set
of experiments we translated QF LIA benchmarks to QF BV
using fixed-width bit-vectors of sizes 32, 64, and 128. We
then compared LIAMC to Boolector [9], and Z3 [10]. LIAMC
solved the most satisfiable instances out of the three, even for
a width as low as 32. For our second set of experiments we
used the LIA solvers in CVC4 [11] and Z3, and compared
LIAMC against them on QF LIA. Here too, LIAMC was able
to solve instances that were not solved by the other solvers.

II. PRELIMINARIES

In this section, we present notations and background that
is required for the description of LIAMC.

A. Linear Integer Arithmetic

We consider First Order Logic modulo the theory of
quantifier free Linear Arithmetic either over Integers (QF LIA)
or over Integers modulo a constant 2N (QF LIAN). In what
follows we denote QF LIA and QF LIAN as LIA and LIAN ,
respectively. The following grammar is used to define this
theory:

ϕ ::=true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | term ./ term

term ::=c | x | term+ term | term− term | c× term |
ite(ϕ, term, term)

where ./∈ {=, <,≤, >,≥}, c and x are a constant symbol
and a variable either over Z/2NZ or Z, respectively.

Let ϕ be a formula in LIAN (or LIA) over a set of variables
V . V := VI ∪VB where VI and VB are the sets of Integer and
Boolean variables, respectively. Abusing notation, we write c ∈
ϕ for a constant integer c appearing in ϕ. Let N ∈ N be a
natural number such that N ≥ 2. We refer to the interpretation
of ϕ over the ring Z/2NZ as ϕ|N . For consistency, we use
either ϕ or ϕ|∞ as the interpretation of ϕ over Z.

Note that the semantics of linear arithmetic over Z and
over Z/2NZ is different. This is mainly due to “overflow”. As
an example, consider the following formula:

ϕ := (z = x+ y) ∧ (x > 0) ∧ (y > 0) ∧ (z < 0)

While this formula is unsatisfiable over the ring Z, it is satis-
fiable over Z/2NZ. For example, for Z/4Z = {−2,−1, 0, 1}
x = 1, y = 1 and z = −2 is a satisfying assignment.

B. Integers as Bit-Vectors

Integers can be represented using bit-vectors. In this work,
we use the 2’s complement representation. Given an integer
c ∈ Z, there exists N > 0 s.t. for every k ≥ N , there exists
a bit-vector b = 〈bk−1, . . . , b0〉 of size k, and the following
holds:

c = −bk−1 · 2k−1 +

k−2∑
i=0

bi · 2i

Note that a constant c ∈ Z/2NZ for some N ≥ 2 can be
represented by a bit-vector of size N . With abuse of notation,
we define the function ω : Z→ N such that:

ω(c) :=

{
2 if c ∈ Z/4Z
N if c ∈ Z/2NZ ∧ c 6∈ Z/2N−1Z

(1)

Note that ω(c) ≥ 2 for all c ∈ Z.

C. Safety Verification

A transition system T is a tuple (U , Init ,Tr ,Bad), where
U is a set of Boolean variables, Init and Bad are formulas over
U denoting the set of initial states and bad states, respectively,
and Tr is a formula over U∪U ′ denoting the transition relation.
A state s ∈ 2U is said to be reachable in T if and only if there
exists k ≥ 0 and s0, s1, . . . , sk s.t. s0 ∈ Init , and (si, si+1) ∈
Tr for 0 ≤ i < k, and s = sk.

A transition system T is UNSAFE iff there exists a state
s ∈ Bad s.t. s is reachable. The path from s0 ∈ Init to
s ∈ Bad is called a counterexample (CEX).

A transition system T is SAFE iff all reachable states in T
do not satisfy Bad . Equivalently, there exists a formula Inv ,
called a safe inductive invariant, that satisfies:

Init(U)⇒ Inv(U) (2)
Inv(U) ∧ Tr(U ,U ′)⇒ Inv(U ′) (3)

Inv(U)⇒ ¬Bad(U) (4)

A safety verification problem is to decide whether a transition
system T is SAFE or UNSAFE.

Note that a transition system can be modeled by a se-
quential circuit with a single output. In this case, the Boolean
variables U represent registers and primary inputs, Init defines
the initial values for the registers, and Bad defines the logic
driving the output.

cin

s

cout

ba

cin

s

cout

ba

cin

s

cout

ba

a0 b0 a1 b1 a2 b2

0

s0 s1 s2

Fig. 1: 3-bit Adder

cin

s

cout

ba

din

clk

dout

a b

s

Fig. 2: Sequential Adder

III. REDUCING LIA TO SAFETY VERIFICATION

In this section we describe the transformation from con-
straints in LIA and LIAN to a safety verification problem.

First, we start with an intuitive example. Recall that linear
arithmetic includes addition, subtraction and multiplication
by a constant. Many arithmetic operations, and the above
in particular, can be represented by either a combinational
circuit or a sequential circuit. As an example, consider the
case of an adder. A N -bit adder can be implemented by
a combinational circuit by attaching N copies of a full-
adder (Figure 1). Alternatively, it can be implemented by a
sequential circuit (Figure 2) such that N bit addition takes
N cycles. In the case of the combinational circuit, all bits of
the operands must be available simultaneously. As a result, a
combinational implementation requires a fixed-width bit-vector
representation. In contrast, for the sequential adder, the bits
”flow” in, one by one, where at the k-th cycle, only the k-th
bit of a given operand is available. As a result the computation
takes several cycles. Moreover, there is no restriction on the
number of bits it can handle (wider bit-vectors mean more
cycles are required to complete the computation). While the
combinational implementation is considered more efficient, it
may not be the best representation for formal reasoning.

A. LIA to Transition System

From this point on, unless stated otherwise, ϕ is a formula
in either LIAN or LIA.

Given a formula ϕ, LIAMC reduces ϕ to a transition system
T . The reduction is based on the representation of integers as
bit-vectors. While an integer c ∈ Z/2NZ, for some N ≥ 2,
can be represented by a bit-vector of size k for k ≥ N , this is
not the case when considering an arbitrary integer v over Z. As
a result, a formula in LIA cannot be represented using fixed-
width bit-vectors. To overcome this issue, and considering our

intuitive example, we represent input variables in ϕ (either
fixed-width bit-vectors or integers) as inputs to a sequential
circuit, and thus, as unbounded bit-vectors. Intuitively, an
unbounded bit-vector b is modeled by an unbounded stream
of bits, starting from the LSB. More precisely, the bits of b
are read over time, such that the k-th bit bk is available at the
k-th time cycle. Representing a constant integer c ∈ Z/2NZ
by a bit-vector of size k, where k > N , can be achieved by
means of sign extension. Namely, by duplicating the N -th bit
for every k > N .

Arithmetic constraints and relations in ϕ are modeled with
sequential logic, and logical operators are treated using the
corresponding logical gates.

The top level LIATOMC procedure appears in Algorithm 1.
LIATOMC transforms a formula ϕ over variables V , to a
transition system T . T is represented by a sequential circuit
C. We discuss three different parts of LIATOMC: initialization
(lines 1-3), translation of constraints (lines 4-6), and the
modeling of the property, i.e. Bad (line 9).

1) Initialization: The main part of initialization is to find
the minimal width required to represent constants that appear
in ϕ. Recall that in this work, we use the 2’s complement
representation. For example, if −3 (101 in binary) and 12
(01100 in binary) appear in ϕ, then the minimal width is 5.
More formally, kmin = max

c∈ϕ
{ω(c)} (see Equation 1). Now,

assume that for a constant c ∈ ϕ, there exists a wire wc ∈ C
representing it. The value of wc at a given cycle is determined
by the 2’s complement representation of c. For example, for
−3, wc = 1 at cycle 0 and at cycle 2, and wc = 0 at cycle
1. To achieve this, we create a counter in C (line 3), which
counts cycles up to kmin. We denote by wmin the wire in C
that becomes > once the counter reaches kmin − 1 and is ⊥
otherwise (i.e. from 0 to kmin−1). For the example above, the
counter counts from 0 to 4. Using this counter we can set wc

to the right value at the right cycle. After hitting the maximum
value of the counter, wc is sign-extended. Going back to our
example, for every cycle k > 4, the value of wc equals the
value it was assigned to at the 4-th cycle.

2) Translating Linear Arithmetic Constraints: The function
TRANSLATE operates on a Directed Acyclic Graph (DAG)
mirroring the structure of ϕ. Leaf nodes in G represent
either a variable (in V) or a constant in ϕ, while internal
nodes represent the different operators. Starting from the root,
TRANSLATE recursively traverses G, and for each node in
G, the proper logic is added to C. TRANSLATE appears in
Algorithm 2.

Before describing the transformation in more detail, we
highlight the handling of the sign bit. The input variables of
ϕ are represented as streams of bits over time, namely, at
each cycle, a new bit is added. As a result, at every cycle,
the most recent bit is treated as the sign bit. Consequently, as
the computation progresses, the sign bit is updated.

We now describe the transformation in more detail. W.l.o.g.
every node g ∈ G has at most two operands, a and b.
In addition, for simplicity, we assume that g := ite(c, a, b)
is modeled by adding a new variable u s.t. g := u and
(c ⇒ u = a) ∨ (¬c ⇒ u = b) is added as a conjunct

Algorithm 1: LIATOMC(ϕ)

Input: A LIA formula ϕ over variables V
Output: A safety verification problem (Init ,Tr ,Bad)

1 C ← InitCircuit()
2 kmin ← FindMinWidth(ϕ)
3 C.CreateCounter(kmin)
4 G← DAG(ϕ)
5 groot ← G.Root()
6 TRANSLATE(C,G, groot)
7 Init ← C.Init()
8 Tr ← C.Tr()
9 Bad ← wmin ∧ C.Output()

10 T = (Init ,Tr ,Bad)
11 return T

Algorithm 2: TRANSLATE(C,G, g)

Input: A circuit C, DAG G and a node g

1 for h ∈ g.Operands() do
2 if h is undefined in C then
3 TRANSLATE(C,G, h)

4 C.CreateLogic(g)

to the formula ϕ1. Once a node is translated, there exists a
wire wg in C that represents it. The logic of a full-adder is
represented by f(a, b, s, cin, cout), where a and b are the input
operands, s is the sum, cin and cout are the carry-in and carry-
out, respectively.

Let us assume that for unary and binary operators the
operands are a or a and b, respectively, where a and b can
be of sort Integer, bit-vectors, or Boolean. The rules below
describe the transformation.

• g is a leaf of sort integer/bit-vector: create an input
terminal vg in C. wg := vg .

• g is a leaf of a constant type (i.e. c ∈ Z): use the counter
to add logic that defines the right values for wg over time.

• g is a leaf of sort Boolean: create an uninitialized latch
vg such that v′g := vg and wg := vg .

• Boolean operations are implemented using their equiva-
lent logical gates.

• g := a+ b: add a sequential adder (see Figure 2). A latch
v+ and a full-adder f(va, vb, s, v+, cout) are added. v+
is defined as follows: init(v+) := ⊥ and v′+ := f.cout.
wg := f.s (note that f.cin := v+).

• g := a−b: subtraction uses the identity: x−y ≡ x+ȳ+1.
• g := c · a: multiplication by constant uses the “Shift and

Add” identity. Namely, c · a ≡
k∑

i=0

ci · 2i · a.

• The root node of G represents the output of the circuit
C.

We describe equality and inequality in more detail.

a) Equality g := a = b: The equality operator amounts
to bitwise comparison, namely, ai = bi for every i ≥ 0. The
sequential implementation of it uses a latch v= s.t. wg :=
v= ∧ (va = vb), init(v=) := > and v′= := wg . The latch
“remembers” the comparison of earlier bits. Note that if at

1Our implementation handles the ite operator directly.

any point in time, the bits are unequal, the value of v= can
never be > from that point on.

b) Inequality g := a < b: This case is more complex
since the sign bit changes at each cycle. Therefore, the se-
quential circuit representing it is built of two parts. The first
implements an unsigned comparison, and the second takes care
of the sign bit. For the unsigned comparison a latch v< is added
s.t. init(v<) := ⊥ and v′< := (¬va∧vb)∨ (¬(va∧¬vb)∧v<).
The sign is handled by wg := MUX(v<, va ∨ ¬vb, va ∧ ¬vb)

The other comparison operators ≤, > and ≥ can naturally
be adjusted based on the above reasoning. We therefore refrain
from describing them in detail.

Related transformations can be found in [5], [12].

3) Modeling the Property (Bad): Recall that when model-
ing a transition system with a sequential circuit, the output
represents Bad . The above reduction creates a sequential
circuit C with an output o. A k-cycle execution of C represents
the interpretation of ϕ over Z/2kZ. Therefore, if o is evaluated
to > in k cycles, then ϕ is satisfiable over Z/2kZ.

Note that a k-cycle computation of the circuit is not
necessarily well defined for all k > 1. The reason for this
is the fact that ϕ includes constant values. Recall that kmin

represents the minimum bit-vector width required to represent
the constants in ϕ, and that wmin indicates when kmin cycles
of C has been completed. We can therefore use wmin as a
“guard” when defining Bad . The “guard” disables the output
until kmin-th cycle.

To complete the reduction from LIA to a transition system,
we create a safety verification problem T = (Init ,Tr ,Bad)
where Init = C.Init(), Tr = C.Tr() and Bad := wmin ∧
C.Output().

B. Naı̈ve Decision Procedure

Before describing LIAMC, let us first provide an intuition.
A well known SAT-based verification technique is Bounded
Model Checking (BMC) [4]. Given a transition system T ,
BMC searches for an execution that starts from the initial states
(i.e. Init) and reaches the bad states (i.e. Bad) s.t. it satisfies
the transition relation. This path is called a counterexample.
To find such a counterexample of length N , BMC generates
the following N -unrolling formula:

µ(T,N) := Init(U0) ∧

(
N−1∧
i=0

Tr(U i, U i+1)

)
∧ Bad(UN)

(5)
This formula is then passed to a SAT solver. If it is satisfiable,
a counterexample of length N exists. When clear from the
context, we omit T and write µ(N).

Consider again our example in Figure 2. The combinational
adder that appears in Figure 1 is a result of unrolling the
sequential circuit 3 times.

Recall that the reduction of LIA to a transition system treats
integers as streams of bits. Let ϕ be a LIA formula and let
T = (Init ,Tr ,Bad) be the corresponding transition system.

Proposition 1 For N ≥ kmin, ϕ|N and µ(T,N) are equa-
satisfiable.

Algorithm 3: LIAMC (ϕ,N)

Input: A LIA formula ϕ over variables V , a constant
N ∈ N ∪ {∞}

Output: sat, unsat or unknown.
1 T ← LIATOMC(ϕ)
2 MC← InitMC(T,N)
3 repeat
4 (result, k)← MC.Solve()
5 if result = SAFE then
6 return unsat
7 else if result = UNSAFE then
8 if k = N then
9 return sat

10 π ← MC.GetCex()
11 if Extendable(ϕ, π,N) then
12 return sat
13 else
14 MC.BlockCex(π)
15 until ∞
16 return unknown

Given Proposition 1, BMC can be used to reason about lin-
ear arithmetic constraints over fixed-width bit-vectors, namely,
over Z/2NZ for some N . It is important to note, in fact, that
µ(N) is similar to a bit-blasted ϕ|N [5]. Consequently, this
approach is, in general, not superior to solving the bit-blasted
ϕ|N with a BV solver [5], since it requires a N -cycles long
computation of the sequential circuit.

IV. DECISION PROCEDURE FOR LIAN AND LIA

In this section we describe LIAMC, a decision procedure
for LIAN and LIA. In the previous section we show how a
formula ϕ can be reduced to a transition system, and how
BMC can be used as a decision procedure. Yet, such a decision
procedure is not more efficient than using BV solvers.

In order to achieve efficiency, LIAMC relies on the ability
of state-of-the-art SATMC algorithms to generalize a bounded
proof of correctness into a safe inductive invariant. This
generalization proves the absence of a counterexample for any
N . Note that this gives another intuitive justification for why
the reduction from LIAN and LIA treats both integers and
fixed-width bit-vectors as unbounded streams of bits. In case
the SATMC algorithm finds an inductive invariant, there exists
k such that ϕ|N is unsatisfiable for every N ≥ k.

For the case a counterexample of length k exists in T , we
have implemented a procedure that uses the “structure” for
T such that it can, iteratively, and incrementally extend the
counterexample to a target length N (for LIAN) or extend the
counterexample for the integers. The key insight here is to treat
a counterexample of length k as a partial assignment.

LIAMC appears in Algorithm 3. It can operate in two
modes, which are determined by the value of N . If N = ∞,
then ϕ is interpreted over Z (LIA mode), otherwise it is inter-
preted over Z/2NZ (LIAN mode). The initialization (lines 1-
2) of LIAMC starts by transforming ϕ to a transition system
T = (Init ,Tr ,Bad) and setting up an instance of a model
checker MC. Note that MC receives N , the maximum time
frame it needs to consider. The main loop (lines 3-15) uses a
model checker to prove either T is SAFE or UNSAFE.

We assume that MC.Solve() (line 4) returns a pair
(result, k), where result is either SAFE or UNSAFE. In case
result = UNSAFE then k is the length of the counterexample.
Otherwise, if result = SAFE k is the depth at which an
inductive invariant is found, or if no invariant is found k = N
(indicating no counterexample up to N).

We now describe LIAMC in more detail. We start by
describing the case ϕ|N is satisfiable, and then the case it
is unsatisfiable.

A. Satisfiability: T is UNSAFE (line 7)

Let us assume a counterexample of length k exists. In this
case, ϕ|k is satisfiable. Since the satisfiability of ϕ|k does not
entail the satisfiability of ϕ|N , LIAMC checks if the returned
counterexample can be “extended” into a counterexample of
ϕ|N . In what follows we detail this procedure for both LIAN

and LIA.

1) Extending a Counterexample: As noted above, a coun-
terexample of length k implies that ϕ|k is satisfiable. Due to the
different semantics of LIAN and LIAk (N > k), the satisfying
assignment for ϕ|k is not necessarily a satisfying assignment
for ϕ|N . The naive solution to the above problem, is to check
whether the given assignment is also an assignment for ϕ|N
(either when N =∞ or N <∞). This solution amounts to a
sign-extension of the satisfying assignment. While it is simple,
in most cases it does not work. As an example, consider again
the following formula:

ϕ := (z = x+ y) ∧ (x > 0) ∧ (y > 0) ∧ (z < 0)

As noted before, x = 1, y = 1 and z = −2 is a satisfying
assignment for ϕ|2, but it is not a satisfying assignment for
ϕ|N for all N > 2.

Given a counterexample π of length k, let us assume we
would like to extend it for ϕ|k+1. Intuitively, π assigns values
for k bits out of k + 1. Therefore, if there exists a satisfying
assignment π∗ to π ∧ µ(k + 1) then π∗ is an extension of π
for ϕ|k+1, since it satisfies µ(k + 1).

Using the above intuition, we can iteratively, and incremen-
tally, extend a counterexample up to a desired depth N such
that N > k. This gives us an efficient procedure to determine
satisfiability for LIAN (N <∞).

We now need to handle the case of LIA (N =∞). For LIA,
we use the same intuition as above. Namely, a counterexample
π of length k gives a valuation to the lower k bits. However,
we need to adjust this intuition for integers in Z. Let us assume
an integer v ∈ Int(ϕ) is evaluated to cv ∈ Z/2kZ in π. In
order to extend it, we can add the following constraint: (v =
v∗ · 2k + |cv|) ∨ (v = −(v∗ · 2k + |cv|)) where v∗ is a fresh
integer variable.

Given a counterexample π of length k, let us define:

∆(π) :=
∧

v∈VI

(
(v = v∗ · 2k + |cv|) ∨ (v = −(v∗ · 2k + |cv|))

)
The function ∆(π) captures the value π assigns to the lower

k bits of an integer in ϕ.

Lemma 1 If ϕ ∧∆(π) is satisfiable, then ϕ is satisfiable.

Algorithm 4: Extendable(ϕ, T, π,N)
Input: A LIA formula ϕ and its corresponding safety

verification problem T = (Init ,Tr ,Bad), a
counterexample π of length k, and a constant
N > k, s.t. N ∈ N ∪ {∞}

Output: (false,⊥) or (true, π∗).
1 if N =∞ then
2 (result, π∗)← LIA.IsSAT(ϕ ∧∆(π))
3 if result = sat then
4 return (true, π∗)
5 return (false,⊥)
6 else
7 m← k
8 i← k + 1
9 while i ≤ N do

10 (result, π∗)← IsSAT(µ(T, i) ∧ π)
11 if result = sat then
12 m← i
13 i← i+ 1

14 if m = N then return (true, π∗)
15 return (false,⊥)

In order to determine satisfiability of ϕ ∧∆(π), we use a
LIA solver. In case ϕ∧∆(π) is satisfiable, π can be extended
to a satisfying assignment for ϕ. We would like to emphasize
that using a LIA solver when N =∞ (LIA mode) is intended
to rule out counterexamples that may appear due to overflow.
Note that it may be possible to model T s.t. overflow is not
possible.

The procedure for extending counterexamples appears in
Algorithm 4. In the LIAN mode, we try and iteratively extend
a counterexample of length k to N (lines 9-13). As mentioned
above, extending a counterexample in LIA mode requires a
call to a LIA solver (line 2). In both cases, a counterexample
that cannot be extended is blocked.

Theorem 1 If LIAMC returns sat, then ϕ|N is satisfiable.

Proof Sketch: Let us assume a counterexample π of
length k < N exists. If N <∞, and π can be extended, then a
counterexample of length N exists and thus ϕ|N is satisfiable.
For N =∞, satisfiability of ϕ follows from Lemma 1.

B. Unsatisfiability: T is SAFE (line 5)

Due to the definition of Bad , the property being verified
(i.e. ¬Bad) is of the form wmin ⇒ o. Moreover, since the
reduction from ϕ to T uses unbounded bit-vectors, if a safe
inductive invariant is found by the model checker, ϕ|N is
unsatisfiable for all N ≥ k.

Lemma 2 Let ϕ be a formula in LIA. If there exists k s.t. for
all N > k ϕ|N is unsatisfiable then ϕ is unsatisfiable.

The proof for Lemma 2 relies on the following: if ϕ is
satisfiable, there exists N ∈ N s.t. ϕ|N is satisfiable.

The above lemma gives us a way to determine the unsat-
isfiability of ϕ: if T is SAFE and (N = ∞), LIAMC only

returns SAFE if an inductive invariant is found. In that case,
using Lemma 2, LIAMC concludes ϕ is unsatisfiable.

In the case N < ∞ (LIAN mode), If T is SAFE
up to bound N , LIAMC can terminate concluding ϕ|N is
unsatisfiable even when an inductive invariant is not found.
This is due to the fact that if no counterexample exists at
depth N , ϕ|N is unsatisfiable

We do like to emphasize that while there is no requirement
to find a safe inductive invariant in case N < ∞, if such
an invariant is found at bound smaller than N , it implies the
unsatisfiability of ϕ|N .

Theorem 2 If LIAMC returns unsat, then ϕ|N is unsatisfi-
able.

Proof Sketch: We consider two cases. First, if no coun-
terexample is found during the execution of LIAMC, and the
model checker returns SAFE, then for N < ∞ the proof is
immediate, and for N =∞ we use Lemma 2.

The second case occurs when LIAMC blocks a counterex-
ample π. It remains to be shown that π cannot be part of a real
counterexample. Let us assume π is of length k (and k < N).

For the case of N <∞, this is immediate - if π cannot be
extended up to N it cannot be part of a real counterexample
and therefore can safely be blocked.

For N = ∞, a similar logic applies. Let us assume that
ϕ ∧ ∆(π) is unsatisfiable. Since every positive integer can
be expressed by a sum of powers of 2, ∆(π) fixes only the
first k elements of that sum. The rest of the elements in this
summation are unrestricted, and therefore, if there exists an
assignment for this valuation, the LIA solver finds it. However,
if such an assignment does not exist, we can safely block this
valuation for the first k elements of the sum.

V. EXPERIMENTS

We implemented a prototype of LIAMC2 using a generic
SMT-LIB2 parser3 and ABC [13]. We use the SMT-LIB2
parser to transform a LIA or LIAN formula to a transition
system represented by an And-Inverter Graph (AIG) in ABC.
For the SATMC procedure we use ABC’s dprove command.

For evaluation, we use the QF LIA4 benchmarks from
SMT-COMP’165. Since LIAMC targets both LIA and LIAN ,
we used two sets of experiments. First, we reinterpreted the
LIA benchmark over Z/2NZ for N ∈ {32, 64, 128} and
evaluated LIAMC against Boolector [9] and the Bit-Vector
solver in Z3 [10]. Second, we compared the performance of
LIAMC against the LIA solver in CVC4 [11] and Z3.

We set a 900 seconds time limit for all benchmarks. All
experiments were conducted on a machine running Ubuntu

2Available at http://www.cs.technion.ac.il/∼yvizel/liamc.html
3Source code is available from https://es-static.fbk.eu/people/griggio/misc/

smtlib2parser.html
4Only nec-smt subset was excluded due to its size, as even without this

subset our benchmark includes more than 2700 test cases.
5Benchmarks are available from http://smtcomp.sourceforge.net/2016/

benchmarks.shtml

http://www.cs.technion.ac.il/~yvizel/liamc.html
https://es-static.fbk.eu/people/griggio/misc/smtlib2parser.html
https://es-static.fbk.eu/people/griggio/misc/smtlib2parser.html
http://smtcomp.sourceforge.net/2016/benchmarks.shtml
http://smtcomp.sourceforge.net/2016/benchmarks.shtml

TABLE I: Number of solved instances for LIAN . Total stands for
the total number of test cases in that benchmark. The difference is
due to the fact that not all LIA test cases can be represented in LIAN

for certain values of N .

Benchmark Total Status LIAMC Boolector Z3 Virtual Best

LIA32 (32bit) 2647 SAT 1475 1257 1373 1539
UNSAT 784 988 881 995

LIA64 (64bit) 2784 SAT 1630 1340 1448 1781
UNSAT 680 1017 889 1023

LIA128 (128bit) 2742 SAT 1565 1233 1347 1734
UNSAT 637 1013 861 1020

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

Ru
nt
im
e	
[s
]

Boolector	32bit

Z3	32bit

LIAMC	32bit

Fig. 3: Z/232Z: Trend for satisfiable instances (32 bit).

16.04.2 LTS, with Intel Xeon E3-1240V2 running at 3.4GHz
and 32GB of RAM.

Table I shows the number of solved instances for the
different experiments of LIAN . As can be seen from the
table, LIAMC has a big advantage specifically on satisfiable
instances, for all values of N . LIAMC constructs a satisfying
assignment, incrementally, starting from the LSB. We believe
this is the main reason for the performance advantage of
LIAMC over the other methods. Figures 3-5 further emphasize
the performance advantage of LIAMC on satisfiable instances.
Moreover, we can see the performance advantage of LIAMC
grows as the width of bit-vectors grows.

It is important to note that the approaches are comple-
mentary as many test cases are solved by LIAMC and not
by Boolector, and vice-versa. Overall, LIAMC solves 205 test
cases not solved neither by Boolector nor Z3 for N = 32.
For N = 64 and for N = 128, LIAMC solves 288 and 331
test cases that are not solvable by the other solvers. When
compared to Boolector, for N = 32, LIAMC solves 370 test
cases not solved by Boolector, and Boolector solves 331 test
cases not solved by LIAMC. For N = 64 and N = 128,
LIAMC solves 427 and 496 test cases not solved by Boolector,
while Boolector solves 482 and 501 test cases not solved by
LIAMC. In the case of Z3, for N = 32, 64, 128, LIAMC solves
324, 329 and 397 cases not solved by Z3, while Z3 solves 265,
337, 349 cases not solved by LIAMC.

When considering unsatisfiable instances, LIAMC finds an
inductive invariant in 577 cases. It is important to note that
for large values of N (e.g. N ≥ 512) this fact translates to a
clear advantage of LIAMC over the other solvers.

Table II presents solved instances in LIA mode. It compares

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

Ru
nt
im
e	
[s
]

Boolector	64bit

Z3	64bit

LIAMC	64bit

Fig. 4: Z/264Z: Trend for satisfiable instances (64 bit).

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

Ru
nt
im
e	
[s
]

Boolector	128bit

Z3	128bit

LIAMC	128bit

Fig. 5: Z/2128Z: Trend for satisfiable instances (128 bit).

LIAMC to CVC4 and Z3. The table shows that both CVC4 and
Z3 perform better than LIAMC. Analyzing the results shows
that LIAMC can solve 88 instances not solved by CVC4, and
126 instances not solved by Z3.

We would like to note that the current results of LIAMC
(in both modes) can be greatly improved. While the dprove
command in ABC is capable, we are sure that LIAMC can
benefit from a portfolio-based model checker, as well as from
SATMC algorithms that target the kind of transition systems
LIAMC generates. To evaluate this idea, we have chosen a
random subset of unsolved instances and used the SATMC
algorithm AVY [8] as part of LIAMC. Many of these unsolved
instances (UNSAT) were solvable by AVY6. Moreover, an
efficient BMC engine can probably solve many of the UNSAT
cases LIAMC did not solve. This is due to the conceptual
similarity between using BMC and an eager BV solver (as
mentioned before). We intend to explore these avenues in our
future work.

6We did not add these solved instances to the results presented in this paper
since we had not run AVY on the entire benchmark set.

TABLE II: Number of solved instances for LIA.

LIAMC CVC4 Z3
SAT 1289 1657 1581

UNSAT 577 1106 1103
Uniquely Solved 18 18 0

VI. RELATED WORK

A translation from linear arithmetic to finite automata
had been proposed more that 20 years ago [14] and studied
further in a number of works [15]–[17]. Our work belongs
to that line of research as a finite automata can be thought
of as a sequential circuit. The added value of our work is
that we present an efficient decision procedure, achieved by
leveraging a symbolic representation of the automata (i.e. the
sequential circuit) and advancements from modern SATMC
research, enhanced by novel generalization techniques. Our
results challenge the pessimistic forecast in [16]: “there is little
hope that these techniques will consistently outperform more
traditional approaches when these can be applied”.

Several related methods for synthesizing unbounded bit-
vector arithmetic were proposed in [12], [18], but in these
works the context is synthesis and no efficient decision proce-
dure was detailed.

A closely related line of work is [5], [19], where a reduc-
tion from a fragment of BV (restricted to bitwise operators,
addition, subtraction, shift by one, indexing and comparators)
to propositional model checking has been introduced (as a
by-product of studying the complexity of bit-vector logic).
The proposed method has been implemented and shown to
outperform traditional SMT solvers on crafted BV bench-
marks, restricted to the aforementioned BV fragment. Unlike
the transformation applied by LIAMC, the modeling suggested
in [19] encodes the width of the bit-vectors into the model
checking problem, making SATMC algorithms inefficient. As
a result, BDD-based model checking algorithms were found
to be the most efficient experimentally [19]. LIAMC shows
how SATMC can be applied efficiently even for the subset
supported by [19]7 by applying generalization techniques.
Generalization is possible for LIAMC since the width of bit-
vectors is not encoded in the transition system. In addition,
our approach also handles multiplication by a constant, which
makes it applicable to arbitrary formulas in LIAN and LIA.

LIAMC constructs a satisfying assignment incrementally
by iteratively extending a satisfying assignment from a simple
theory to a more complex one (i.e. from Z/2kZ to Z/2NZ
where N > k). A somewhat similar concept is applied by [20]
in the context of floating-point arithmetic (FPA). In [20], the
formula is solved w.r.t. a simpler “proxy” theory. In case that
a satisfying assignment is found, it is then tried to be adjusted
to FPA semantics.

VII. CONCLUSION

In this paper we introduced LIAMC, a novel decision
procedure for LIAN and LIA. LIAMC is based on a transfor-
mation of linear arithmetic constraints to a transition system.
While this approach, in general, has been suggested and
explored in the past in different contexts, to our knowledge
LIAMC is the first efficient implementation. There are three
key insights that make LIAMC efficient and different from
previous approaches: 1) We treat both integers and fixed-width
bit-vectors as unbounded streams of bits, which allows us to
apply SATMC, and 2) We use generalization to efficiently
reason about wide bit-vectors and integers.

7Note that throughout our experiments, the transition systems include more
than thousands of state elements, making BDD-based MC intractable.

Our experiments show that LIAMC can solve many in-
stances that cannot be solved by other top-tier SMT solvers, for
both LIAN and LIA. Moreover, in the case of LIAN , LIAMC
is the best performer solving the most instances. We therefore
believe that this approach has a promising future.

REFERENCES

[1] L. M. de Moura and N. Bjørner, “Satisfiability modulo theories:
introduction and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–
77, 2011.

[2] D. Jovanovic and L. M. de Moura, “Cutting to the chase - solving linear
integer arithmetic,” J. Autom. Reasoning, vol. 51, no. 1, pp. 79–108,
2013.

[3] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean satisfiability solvers
and their applications in model checking,” Proceedings of the IEEE, vol.
103, no. 11, pp. 2021–2035, 2015.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[5] G. Kovásznai, A. Fröhlich, and A. Biere, “Complexity of fixed-size
bit-vector logics,” Theory Comput. Syst., vol. 59, no. 2, pp. 323–376,
2016.

[6] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
CAV, 2003, pp. 1–13.

[7] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, 2011, pp. 70–87.

[8] Y. Vizel and A. Gurfinkel, “Interpolating property directed reachability,”
in CAV, 2014, pp. 260–276.

[9] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver
for bit-vectors and arrays,” in 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2009, pp. 174–177.

[10] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS, 2008, pp. 337–340.

[11] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided
Verification - 23rd International Conference, CAV, 2011, pp. 171–177.

[12] A. Spielmann and V. Kuncak, “Synthesis for unbounded bit-vector arith-
metic,” in Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, 2012, pp. 499–513.

[13] R. K. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in CAV, 2010, pp. 24–40.

[14] P. Wolper and B. Boigelot, “An automata-theoretic approach to pres-
burger arithmetic constraints (extended abstract),” in Static Analysis,
Second International Symposium, SAS’95, 1995, pp. 21–32.

[15] A. Boudet and H. Comon, “Diophantine equations, presburger arith-
metic and finite automata,” in Trees in Algebra and Programming -
CAAP’96, 21st International Colloquium, 1996, 1996, pp. 30–43.

[16] B. Boigelot and P. Wolper, “Representing arithmetic constraints with fi-
nite automata: An overview,” in Logic Programming, 18th International
Conference, ICLP 2002, 2002, pp. 1–19.

[17] B. Boigelot, S. Jodogne, and P. Wolper, “An effective decision procedure
for linear arithmetic over the integers and reals,” ACM Trans. Comput.
Log., vol. 6, no. 3, pp. 614–633, 2005.

[18] J. Hamza, B. Jobstmann, and V. Kuncak, “Synthesis for regular spec-
ifications over unbounded domains,” in International Conference on
Formal Methods in Computer-Aided Design (FMCAD’10), 2010, pp.
101–109.

[19] A. B. Andreas Fröhlich, Gergely Kovásznai, “Efficiently solving bit-
vector problems using model checkers,” in 11th International Workshop
on Satisfiability Modulo Theories, 2013.

[20] J. Ramachandran and T. Wahl, “Integrating proxy theories and numeric
model lifting for floating-point arithmetic,” in 2016 Formal Methods in
Computer-Aided Design, FMCAD 2016, 2016, pp. 153–160.

	Introduction
	Preliminaries
	Linear Integer Arithmetic
	Integers as Bit-Vectors
	Safety Verification

	Reducing LIA to Safety Verification
	LIA to Transition System
	Initialization
	Translating Linear Arithmetic Constraints
	Modeling the Property (Bad)

	Naïve Decision Procedure

	Decision Procedure for LIAN and LIA
	Satisfiability: T is UNSAFE (line 7)
	Extending a Counterexample

	Unsatisfiability: T is SAFE (line 5)

	Experiments
	Related Work
	Conclusion
	References

