
Safety Verification of Phaser Programs
Zeinab Ganjei, Ahmed Rezine, Petru Eles, Zebo Peng

dept. of computer and information science
Linköping University, Sweden

firstname.surname@liu.se

Abstract—We address the problem of statically checking con-
trol state reachability (as in possibility of assertion violations,
race conditions or runtime errors) and plain reachability (as
in deadlock-freedom) of phaser programs. Phasers are a modern
non-trivial synchronization construct that supports dynamic par-
allelism with runtime registration and deregistration of spawned
tasks. They allow for collective and point-to-point synchroniza-
tions. For instance, phasers can enforce barriers or producer-
consumer synchronization schemes among all or subsets of the
running tasks. Implementations are found in modern languages
such as Habanero Java. Phasers essentially associate phases to
individual tasks and use their runtime values to restrict possible
concurrent executions. Unbounded phases may result in infinite
transition systems even in the case of programs only creating
finite numbers of tasks and phasers. We introduce an exact gap-
order based procedure that always terminates when checking
control reachability for programs generating bounded numbers
of coexisting tasks and phasers. We also show verifying plain
reachability is undecidable even for programs generating few
tasks and phasers. We then explain how to turn our procedure
into a sound analysis for checking plain reachability (including
deadlock freedom). We report on preliminary experiments with
our open source tool.

Index Terms—phasers, safety verification, dynamic synchro-
nization, collective synchronization, Point-to-point synchroniza-
tion, model checking

I. INTRODUCTION

We focus on safety verification of programs using phasers
for task synchronization [1]–[3]. This sophisticated construct
dynamically unifies collective and point-to-point synchroniza-
tions. For instance, it allows for dynamic registration and
deregistration of tasks allowing for a more balanced usage
of the computing resources when compared to static producer-
consumer or barrier constructs [4]. The construct can be added
to any parallel programming language with a shared address
space. For instance, it can be found in Habanero Java [3], an
extension of the Java programming language. Phasers build on
the clock construct from the X10 programming language [1].
They can be created dynamically and spawned tasks may get
registered or deregistred at runtime.

Intuitively, each phaser associates two phases (hereafter
wait and signal phases) to each registered task. Apart from
creating phasers and registering each other to them, tasks can
individually issue wait and signal commands to a phaser
they are registered to. Intuitively, signal commands are used
to inform other registered tasks the issuing task is done with
its signal phase. The command is non-blocking. It increments

This work is partially supported by the CENIIT research organization.

the signal phase associated to the issuing task on the given
phaser. The wait command is instead used to check whether
all registered tasks are done with (i.e., have a signal phase
that is strictly larger than) the issuing task’s wait phase. This
command may get blocked by a task that did not yet finish the
corresponding phase. Unlike classical barriers, phasers need
not force registered tasks to wait for each other at each single
phase. Instead they allow them to proceed with the following
phases (by issuing signal commands), or even to exit the
construct by deregistering from the phaser. Such dynamic
behavior allows for better load balancing and performance, but
comes at the price of making it easy to introduce programming
mistakes such as assertion violations, race conditions, runtime
errors and, in the important situation where wait and signal
commands are decoupled for maximum flexibility, deadlocks.
We summarize our contributions in this work:

• We propose an operational model based on [2], [3], [5].
• We show undecidability of checking deadlock-freedom

for programs with fixed numbers of tasks and phasers.
• We describe an exact gap-order based symbolic verifica-

tion procedure for checking control state reachability (as
in assertion violations, race conditions or runtime errors)
and plain reachability (as in checking deadlock freedom).

• We show termination of the procedure for control state
reachability when numbers of tasks and phasers are fixed.

• We describe how to turn the procedure into a sound over-
approximation for plain reachability.

• We report on our preliminary experiments with our open
source tool.

Related work. We are not aware of automatic formal ver-
ification works that focus on constructs allowing for such
a degree of dynamic parallelism. Unlike [6], we focus on
fully automatic verification and consider the richer and more
challenging phaser construct. The work of [5] considers the
dynamic verification of phaser programs and can therefore
only reason about particular program inputs and runs. The
work in [7] uses Java Path Finder [8] to explore several runs,
but still for one concrete input at a time. The works in [9],
[10] target gap-order systems. Although phaser programs share
some of their properties (larger gaps can do more), the results
in [9], [10] do not apply since gap-order systems crucially
forbid exact increments.

Outline. We describe a phaser program and recall some
preliminaries in Sections II and III. This is followed in
Section IV by a formal description of phaser programs and

of the properties we want to check. We also establish the
undecidability of checking deadlock freedom. We introduce
a gap-order based symbolic representation in Section V and
describe in Section VI a simple verification procedure. We
then show decidability of checking control state reachability
and introduce a relaxation procedure for checking plain reach-
ability. Finally, we report on our experiments and conclude the
work. Descriptions of the proofs can be found in [11].

II. MOTIVATING EXAMPLE

The program listed in Fig. (1) uses Boolean shared variables
B = {a, b, done}. A main task creates two phasers (lines 5
and 6). When creating a phaser, the task gets automatically
registered to it. The main task also creates three other task
instances (lines 9, 10 and 11). Several tasks can be registered
to several phasers. When a task t is registered to a phaser p, a
pair of numbers (waittp, sig

t
p), each in N∪{+∞}, is associated

to the couple (t, p). The pair represents the individual wait and
signal phases of task t on phaser p.

Registration of a task to a phaser can occur in one of three
modes: SIG WAIT, WAIT and SIG. In SIG WAIT mode, a task
may issue both signal and wait commands. In WAIT mode,
a task may only issue wait commands on the phaser. Finally,
when registered in SIG mode, a task may only issue signal

commands. Issuing a signal command by a task on a phaser
results in the task incrementing its signal phase associated to
the phaser. This command is non-blocking. On the other-hand,
issuing a wait command by a task on a phaser p will block
until all tasks registered on p exhibit signal values on p that
are strictly larger than the wait value of the issuing task on
phaser p. In this case, the wait phase of the issuing task is
incremented. Intuitively, a signal command allows the issuing
task to state other tasks need not wait for it to complete its
signal phase. In retrospect, a wait command allows a task to
make sure all registered tasks have moved past its wait phase.

Upon creation of a phaser, wait and signal phases are
initialized to 0 (except in WAIT mode where the signal phase is
instead initialized to +∞ in order to not block other waiters).
The only other way a task may get registered to a phaser
is if an already registred task does register it in the same
mode (or in WAIT or SIG if the registrar is registered in
SIG WAIT). In this case, wait and signal phases of the newly
registered task are initialized to those of the registrar. Tasks
are therefore dynamically registered (e.g., lines 9-11). They
can also dynamically deregister themselves (e.g., lines 25-26);

In this example, two producers and one consumer are
synchronized using two phasers. The consumer requires the
two producers to be ahead of it (wrt. the phaser main pointed
to with prod) in order for it to consume their respective
products. At the same time, the consumer needs to be ahead
of both producers (wrt. the phaser main pointed to with cons)
in order for these to produce their pair of products. It should
be clear that phasers can be used as barriers for synchronizing
dynamic subsets of concurrent tasks. Observe producers need
not, in general, proceed in a lock step fashion. Producers may
produce many items before consumers “catch up”.

We are interested in checking: (a) control state reachability
as in assertions (e.g., line 44), race conditions (e.g., mutual
exclusion of lines 20 and 49) or runtime errors (e.g., signaling
a dropped phaser), and (b) plain reachability as in deadlocks
(e.g., a producer at line 23 and a consumer at line 50 with equal
phases). Intuitively, both problems concern themselves with
the reachability of target sets of program configurations. The
difference is that control state reachability defines the targets
with the states of the tasks (their control locations and whether
they are registered to some phasers). Plain reachability can, in
addition, use values or relations between values of involved
phases. Observe that control state reachability depends on the
values of the actual phases, but these values are not used to
define the target sets. For example, assertions are expressed as
predicates over Boolean variables (e.g., line 44). Establishing
such an assertion requires capturing the constraints imposed
by the phasers on the program behaviors.

Our work proposes a sound and complete algorithm for
checking control state reachability in case a bounded number
of tasks and phasers are generated. The algorithm can handle
arbitrarily large phases, e.g., generated using nested signaling
loops. The algorithm starts from a symbolic representation
of all bad configurations and successively computes sets of
predecessor configurations. We show termination based on
a well-quasi-ordering argument that imposes restrictions on
what can be expressed with our symbolic representation. For
instance putting upper bounds on differences between phases
is forbidden. Deadlock configurations cannot be faithfully
captured with such restricted representations. Intuitively, a
deadlocked configuration will have a cycle where each in-
volved task is waiting for the task to its right but where the
wait phase of each task equals the signal phase of the task
it is waiting for. We show the problem of checking deadlock
freedom to be undecidable even for programs only generating
a bounded number of tasks and phasers. We explain how to
turn our verification algorithm into a sound but incomplete
procedure for checking deadlock-freedom. Precision can then
be augmented on demand to eliminate false positives.

III. PRELIMINARIES

We use N and Z for natural and integer numbers respec-
tively. We write A] B to mean the union of disjoint sets A
and B. We let Pfn (A,B) be the set of partial functions from
A to B and use ∅A for the empty function over A, i.e., ∅A(a)
is undefined (written ∅A(a) ↑) for all a ∈ A. Given function
g ∈ Pfn (A,B) we write g(a) ↓ to mean that g(a) is defined
and write g \ {a} to mean the restriction of g to the domain
A\{a}. We write g[a← b] for the function that coincides with
g on A except for a that is sent to b. We abuse notation and let,
for pairwise different {ai | i ∈ I}, g[{ai ← bi | i ∈ I}] mean
the function that coincides with g on A except for each ai that
is sent to the corresponding bi. We sometimes write a function
g as a set {a 7→ g(a) | a ∈ A}. It is then implicitly undefined
outside of A.

1 bool a, b, done;
2 main()
3 {
4 done = false;
5 prod = newPhaser(SIG_WAIT);
6 cons = newPhaser(SIG_WAIT);
7 cons.signal();
8
9 asynch(aProducer, prod(SIG), cons(WAIT));

10 asynch(bProducer, prod(SIG), cons(WAIT));
11 asynch(abConsumer, prod(WAIT), cons(SIG));
12
13 prod.drop();
14 cons.drop();
15 }
16
17 aProducer(p(SIG), c(WAIT))
18 {
19 c.wait();
20 while(¬done){
21 a = true;
22 p.signal();
23 c.wait();
24 };
25 p.drop();
26 c.drop();
27 }

28 bProducer(p(SIG), c(WAIT))
29 {
30 c.wait();
31 while(¬done){
32 b = true;
33 p.signal();
34 c.wait();
35 };
36 p.drop();
37 c.drop();
38 }
39
40 abConsumer(p(WAIT), c(SIG))
41 {
42 while(¬done){
43 p.wait();
44 assert(a ∧ b);
45 a = false;
46 b = false;
47
48 if(ndet())
49 done = true;
50 c.signal();
51 };
52 c.drop();
53 p.drop();
54 }

Fig. 1. Two producers and one consumer are synchronized using two phasers. In this construction, the consumer requires both producers to be ahead of it
(wrt. the prod phaser) in order for it to consume their respective products. At the same time, the consumer needs to be ahead of both producers (wrt. the
cons phaser) in order for these to be able to produce their pair of products.

aProducer : @23

bProducer : @34

main : @15

abConsumer : @42(phaser) (phaser)

prod cons

p

(sig = 90)

p

(sig = 91)

p

(wait = 90)

c

(wait = 90)

c

(wait = 91)

c

(sig = 91)

Fig. 2. Possible wait and signal phase values for Fig. (1). Observe that there
is no a priori bound on the values of the different wait and signal phases. In
this example, the difference between signal and wait phases is bounded. This
is not always the case in general.

IV. LANGUAGE

A program may use a set B of shared Boolean variables and
a set V of local phaser variables:

prg ::= bool b1, . . . , b|B|;
task1(v11 , . . . , vk1) {stmt1}
. . .
taskn(v1n , . . . , vkn) {stmtn}

stmt ::= v = newPhaser() || asynch(task, v1, . . . , vk)

|| v.drop() || v.signal() || v.wait() || exit

|| stmt; stmt || b = cond || assert(cond)

|| while(cond) {stmt} || if(cond) {stmt}
cond ::= ndet() || true || false || b || cond ∨ cond

|| cond ∧ cond || ¬cond

A program consists in a set of tasks T. A task is declared with
task(v1, . . . , vk) {stmt} where v1, . . . vk are phaser variables

that are local to the declared task. A task can also create a
new phaser with v = newPhaser() and store the identifier
of the phaser in a local variable v. We let V be the union of
all local phaser variables. When creating a phaser, a task gets
registered to it. To simplify our description, we will assume
all registrations to be in SIG WAIT mode. Including the other
modes is a matter of changing the initial phase values at
registration and of statically ensuring the issued commands
respect the registration mode. A task can deregister itself from
a phaser referenced by a variable v with v.drop(). It can
also issue signal or wait commands on a phaser on which
it is registered and that is referenced by v. A task can spawn
another task with asynch(task, v1, . . . , vn). The issuing task
registers the spawned task to the phasers it points to with
v1, . . . , vn. The issuing task need not wait for the spawned
task and may directly continue its execution.

Assume a phaser program prg = (B, V, T). We inductively
define the finite set S of control sequences as follows. S

is the smallest set containing: (i) suffixes of each “stmti”
appearing in some “taski(v1i , . . . , vki) {stmti}”; and
(ii) suffixes of “stmti; while(cond) {stmti}; stmtj”
(respectively “stmti; while(cond) {stmti}”) for
each “while(cond) {stmti}; stmti” (respectively
“while(cond) {stmti}”) in S; and (iii) suffixes
of “stmti; stmtj” (respectively “stmti”) for
each “if(cond) {stmti}; stmtj” (respectively
“if(cond) {stmti}”) appearing in S. We write s to
mean some control sequence in S, and hd(s) and tl(s) to
respectively mean the head and the tail of the sequence s.

A. Semantics.

A configuration c of prg = (B, V, T) is a tuple
(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) where:
• T is the current finite set of task identifiers. We let t, u

range over the values in T .
• P is the current finite set of phaser identifiers. We let p, q

range over the values in P .
• bvbvbv : B → {true, false} is a total mapping that

associates a value to each b ∈ B.
• pcpcpc : T → S is a total mapping that associates tasks to

their remaining sequences (i.e., control location).
• pvpvpv : T → Pfn (V, P) is a total mapping that associates, to

each task identifier in T , a partial mapping from the local
phaser variables V to phaser identifiers P . It captures the
values of the phaser variables V of each task.

• ϕϕϕ : P → Pfn
(

T ,N2
)

is a total mapping that associates
to each phaser p ∈ P a partial mapping ϕϕϕ(p) that is
defined exactly on the identifiers of the tasks registered
to p. For such a task t, ϕϕϕ(p)(t) is the pair (waittp, sig

t
p)

representing wait and signal values of t on p.
The set of tasks T is altered by asynch(task, v1, . . . , vn)

and exit statements (rules (asynch) and (exit) in Fig.(3)).
The set of phasers P is updated upon creation of new phasers
(rule (newPhaser) in Fig.(3)). The mapping pvpvpv associates
values to program phaser variables. Accessing variables with
undefined values, or phasers to which the task is not currently
registered, leads to runtime errors (rule (runtime error)).
The total mapping ϕϕϕ captures states of phasers. It associates
to each phaser identifier p in P a partial mapping ϕϕϕ(p).
This partial mapping is defined for a task identifier t ∈ T
(i.e., ϕϕϕ(p)(t) ↓) iff the task t is registered to the phaser
p. In this case, ϕϕϕ(p) gives the waiting phase waittp and
the signaling phase sigtp of the task t on the phaser p.
Initially, a unique “main” task t0 starts executing its stmtmain
with no phasers. ϕϕϕ is the empty function with an empty
domain ∅∅. After a task t executes a v := newPhaser()
statement (rule (newPhaser) in Fig.(3)), a new phaser p
is associated to the variable v using pvpvpv and ϕϕϕ(p) becomes
the partial function {t 7→ (0, 0)}. The initial configuration
is cinit = ({t0} , {} , bvbvbvfalse, {t0 7→ stmt} ,∅,∅), where a
“main” task with identifier t0 and code stmt is the unique
initial task. No phasers are present in the initial configuration,
and all Boolean variables are mapped to false.

Given two configurations c and c′ with c =

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ), we write c
t−→ c′ if there is a task

t ∈ T such that one of the rules in Fig.(3) holds. We use ∗−→
for the reflexive transitive closure of −→ and write c

∗−→ c′

to mean that c′ is reachable from c. A configuration is said
reachable if it is reachable from the initial configuration cinit.

1) Control-state reachability: Checking the possibility of
assertion violations, of runtime errors and of race con-
ditions amounts to checking reachability of configurations
respectively in badConfs

(n,p)
assert, badConfs

(n,p)
runtime and in

badConfs
(n,p)
race for some number of tasks n and number of

phasers p. We introduce in Section V a complete procedure

for checking reachability of such sets of configurations and
show it to be sound for programs with fixed upper bounds on
numbers of generated phasers and tasks.

2) Deadlocks as in plain reachability: We are also inter-
ested in checking the possibility of deadlocks. For this we
need to define the notion of a blocked task. Assume in the
following a configuration c = (T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ).

Definition 1 (Blocked). A task t ∈ T is blocked at phaser
p ∈ P by task u ∈ T if hd(pcpcpc(t)) = v.wait() with pvpvpv(t)(v) =
p and ϕϕϕ(p)(t) = (waittp,) when ϕϕϕ(p)(u) = (, sigup) and
sigup ≤ waittp.

Intuitively, a task t is blocked by a task u if it cannot finish
its wait command on some phaser because it is waiting for
task u that did not issue enough signal commands on the
same phaser.

Definition 2 (Deadlock). (T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) is a deadlock
configuration if each task of a non empty subset U ⊆ T is
blocked by some task in U.

Theorem 1 (Deadlock-Freedom). It is undecidable in general,
even for programs with only three phasers and four tasks, to
check for deadlock-freedom.

The idea of the proof is to encode the reachability problem
of any given 3-counters reset-VAS (vector addition system
with reset arcs) as the reachability problem of a configuration
with a cycle involving three phasers and three tasks (in
addition to the main task). Indeed, reachability of configuration
(sF , 0, 0, 0) (three counters with zero values at some control
location sF) is undecidable for reset-VASs. The idea then is
to spawn three tasks and as many phasers. The value of each
counter is captured with the difference between the signal and
the wait of a pair of tasks on one phaser. Resets are encoded
by asking a task to drop a phaser and exit and spawning a
new task. The encoding ensures that a deadlock is reached
exactly when the vector addition system reaches configuration
(sF , 0, 0, 0). (See [11] for more details.)

V. SYMBOLIC VERIFICATION OF PHASER PROGRAMS

We briefly introduce gap-order constraints and use them to
define a symbolic representation (hereafter constraints) that we
use in Section VI for checking reachability.

A. Gap-order constraints and graphs [9], [10], [12], [13].

Gap-order constraints can be regarded as a particular case of
the octagons or the unit two variables per inequality (utvpi)
constraints. Assume in this section that x and y are integer
variables and that k is an integer constant. We use X and Y
to mean finite sets of integer variables. A valuation val is a
total function X → Z. Valuations are implicitly extended to
preserve constants (i.e. val(k) = k for any k ∈ Z). A gap-
order clause δ over X is an inequality of the form a− b ≥ k
where a, b ∈ X ∪ {0}. A gap-order constraint ∆ over X is
a finite conjunction of gap-order clauses over the same set
X . Observe that (x = y + 2 ∧ y ≤ 5) is essentially a gap-
order constraint because it can be equivalently rewritten as

hd(pcpcpc(t)) = v := newPhaser() ∧ p 6∈ P ∧
P ′ = P ∪ {p} ∧ pvpvpv′ = pvpvpv[t← pvpvpv(t)[v← p]]

∧ ϕϕϕ′ = ϕϕϕ[p← {t 7→ (0, 0)}]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P ′, bvbvbv,pcpcpc[t← tl(pcpcpc(t))], pvpvpv′,ϕϕϕ′
) (newPhaser)

hd(pcpcpc(t)) = v.signal() ∧
pvpvpv(t)(v) = p ∧ ϕϕϕ(p)(t) = (waittp, sig

t
p) ∧

ϕϕϕ′ = ϕϕϕ
[
p← ϕϕϕ(p)

[
t← (waittp, 1 + sigtp)

]]
(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)

t−→
(

T , P , bvbvbv,pcpcpc[t← tl(pcpcpc(t))],ϕϕϕ′
) (signal)

hd(pcpcpc(t)) = assert(cond) ∧
bvbvbv(cond) = true

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→ (T , P , bvbvbv,pcpcpc[t← tl(pcpcpc(t))], pvpvpv,ϕϕϕ)

(
assert.

ok

) hd(pcpcpc(t)) = v.drop() ∧ pvpvpv(t)(v) = p ∧
ϕϕϕ(p)(t) ↓ ∧ ϕϕϕ′ = ϕϕϕ[p← ϕϕϕ(p)[t← ↑]]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , bvbvbv,pcpcpc[t← tl(pcpcpc(t))], pvpvpv,ϕϕϕ′
) (drop)

hd(pcpcpc(t)) = asynch(task, v1, . . . vk){s1} ∧ paramOf(task) = (w1, . . . wk) ∧
for each i : 1 ≤ i ≤ k. pvpvpv(t)(vi) = pi ∧ ϕϕϕ(pi) ↓ ∧

u 6∈ T ∧ pvpvpv′ = pvpvpv[u← {wi 7→ pvpvpv(t)(vi) | 1 ≤ i ≤ k}] ∧ pcpcpc′ = pcpcpc[u← s1] ∧
ϕϕϕ′ = ϕϕϕ[{pi ← ϕϕϕ(pi)[u← ϕϕϕ(pi)(t)] | pvpvpv(t)(vi) = pi for pi ∈ P and 1 ≤ i ≤ k}]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , bvbvbv,pcpcpc′[t← tl(pcpcpc(t))], pvpvpv,ϕϕϕ′
) (asynch)

hd(pcpcpc(t)) = v.wait() ∧ pvpvpv(t)(v) = p ∧ ϕϕϕ(p)(t) = (waittp, sig
t
p) ∧

∀u ∈ T .
(
ϕϕϕ(p)(u) = (waitup , sig

u
p)⇒ waittp < sigup

)
∧

ϕϕϕ′ = ϕϕϕ
[
p← ϕϕϕ(p)

[
t← (1 + waittp, sig

t
p)
]]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T , P , pvpvpv,pcpcpc[t← tl(pcpcpc(t))],ϕϕϕ′
) (wait)

hd(pcpcpc(t)) = exit ∧ pvpvpv′ = pvpvpv \ {t} ∧ pcpcpc′ = pcpcpc \ {t} ∧
ϕϕϕ′ = ϕϕϕ[{p← (ϕϕϕ(p) \ {t}) | p ∈ P}]

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ)
t−→
(

T \ {t} , P , bvbvbv,pcpcpc′, pvpvpv′,ϕϕϕ′
) (exit)

hd(pcpcpc(t)) = assert(cond) ∧
bvbvbv(cond) = false

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs
(|T |,|P|)
assert

(
assert.
fault

) hd(pcpcpc(t)) = s ∧ (s = v.drop() ∨ s = v.signal()
∨ s = v.wait() ∨ s = asynch(task, . . . , v, . . .))

∧ (pvpvpv(t)(v) ↑ ∨ ϕϕϕ(pvpvpv(t)(v))(t) ↑)

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs
(|T |,|P|)
runtime

(
runtime
error

)

{t0, . . . tn} ⊆ T ∧ {p0, . . . pn} ⊆ P ∧
∀ i : 0 ≤ i ≤ n. hd(pcpcpc(ti)) = vi.wait() ∧
pvpvpv(ti)(wi) = p(i+1)%n ∧ pvpvpv(ti)(vi) = pi ∧

wait
ti
p(i+1)%n

≥ sig
t(i+1)%n
p(i+1)%n

(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs
(|T |,|P|)
deadlock

(deadlock)

hd(pcpcpc(t)) = b := cond ∧ hd(pcpcpc(u)) = s′ ∧ t 6= u ∧
s′ = b := cond′ ∨ b appears in cond′ and (s′ = if(cond′) {stmt}∨

s′ = while(cond′)
{
stmt′

}
∨

s′ = assert(cond′) ∨ s′ = b′ = cond′)




(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) ∈ badConfs(|T |,|P|)race

(race)

Fig. 3. Operational semantics of phaser statements.

the conjunction (x− y ≥ 2 ∧ y − x ≥ −2 ∧ 0− y ≥ −5).
Given a gap-order constraint ∆ over X and a valuation val :
X → Z, we write val |= ∆ to mean that val(a)− val(b) ≥ k
holds for each gap-order clause δ : a− b ≥ k appearing in ∆.
We let Sat(∆) be the set {val : X → Z | val |= ∆}.

A gap-order graph (or graph for short) ℘ over X is a graph
(V,E) with vertices V = X∪{0} where edges in E are of the
form a

k−→ b with a, b ∈ V and weight k in Z ∪ {−∞,+∞}.
We let varsOf(℘) = X . Given a gap-constraint ∆ over X ,
we can build the graph graphOf (∆) with vertices X ∪ {0}
and where E only contains a representative a k−→ b edge for
each clause a − b ≥ k appearing in ∆. A valuation val :
X → Z satisfies a graph ℘ = (V,E) (written val |= ℘) iff
val(a)−val(b) ≥ k for each a k−→ b ∈ E. We let Sat(℘) be the
set {val : X → Z | val |= ℘}. Clearly, Sat(graphOf (∆)) =
Sat(∆). The closure clo (℘) of a graph ℘ = (V,E) is the
unique complete graph with the same vertices V and where
a

k′−→ b is an edge of clo (℘) iff k′ ∈ Z ∪ {−∞,+∞} is the
least upper bound of all weight-sums for any path in ℘ from a
to b. Closure allows us to deduce (0−x ≥ −7) from (y−x ≥
−2 ∧ 0 − y ≥ −5). The result of the closure procedure is a
special graph ℘false denoting the graph without any satisfying

valuation each time a weight k=+∞ is generated. The closure
of a graph can be computed in polynomial time and we get
Sat(clo (℘)) = Sat(℘). We define the degree of a graph ℘
(written degreeOf(℘)) to be 0 if no edge in clo (℘) has a
negative weight apart from −∞. Otherwise, degreeOf(℘) is
the largest natural k ∈ N such that there is an edge in clo (℘)
with weight −k. For instance, the degree of the graph resulting
from (x− y ≥ 2∧ y− x ≥ −4) is 4. We systematically close
all manipulated graphs and write G(X) for the set of closed
graphs over X . Given a graph ℘, we write ℘[x/y] to mean
the graph obtained by replacing the vertex x by the vertex y.
We abuse notation and write ℘[{xi/yi | i ∈ I}], for pairwise
different xi elements to mean the simultaneous application
of the individual substitutions. For a set of variables Y , we
write ℘ 	 Y to mean the graph obtained by removing the
variables in Y from the vertices of ℘. Given two closed graphs
℘ and ℘′ over the same X , we write ℘ vG ℘′ to mean that
each directed edge in ℘ is labeled with a larger weight in
℘′. As a result, Sat(℘′) ⊆ Sat(℘). Finally, we write ℘ ℘′

to mean the closure of the graph obtained with merging the
two sets of vertices and edges. As a result, Sat(℘ ℘′) =
Sat(℘) ∩ Sat(℘′).

B. Constraints as a symbolic representation.

A constraint φ is a tuple (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) where
the only difference with the definition of a configuration
(T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) is the adoption of a gap-order con-
straint γγγ instead of ϕϕϕ. More specifically, γγγ : P →
∪U⊆T G(∪t∈U{ωtp, σtp}) is a total mapping that associates a
gap-order graph to each phaser p ∈ P . Intuitively, we use
variables ωtp and σtp to constrain in graph γγγ(p) possible values
of both wait (waittp) and signal (sigtp) phases of each task t
registered to phaser p. As a result, we can check if task t
is registered to phaser p according to graph ℘ = γγγ(p) by
checking if {ωtp, σtp} ⊆ varsOf(℘). We will write Reg(p, ℘)
to mean the set of tasks {t | {ωtp, σtp} ⊆ varsOf(℘)}. We also
write isReg(t, p, ℘) for the predicate t ∈ Reg(p, ℘). Observe
that the language semantics impose that, for each phaser p
and for any pair t, u of tasks in Reg(p, ℘), the predicate
0 ≤ waittp ≤ sigup is an invariant. For this reason, we always
safely strengthen, in any obtained γγγ(p) = ℘, weights k in
σtp

k−→ ωup , σtp
k−→ 0 and ωtp

k−→ 0 with max(k, 0). The
following definition helps us characterize configurations for
which our procedure terminates.

Definition 3 (degree and freeness of constraints). A constraint
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) has as degree the largest degree among
all its graphs γγγ(p) for p ∈ P if P is not empty and 0
otherwise. Furthermore, a constraint is said to be “free” if,
for any p ∈ P , the only edges in γγγ(p) with weights different

from −∞ are edges of the forms (i) σtp
k(σtp,ωup)

−−−−−→ ωup , (ii)

σtp
k(σtp)−−−→ 0, or (iii) ωtp

k(ωtp)−−−→ 0 for some t, u ∈ Reg(p,γγγ(p))
and k(σtp,ω

u
p), k(σtp), k(ωtp) ∈ N

Free constraints are only allowed to impose, for the same
phaser, non-negative lower bounds on differences between
signals and waits, between signals and 0, and between waits
and 0. Like degree-0-constraints, free constraints are not
allowed to put a positive upper bound on how much a signal
is larger than a wait. Unlike degree-0-constraints, they are
not allowed to put bounds on the differences among signal
values, or among wait values. For instance a free constraint
cannot impose σtp − σup = 0 while a degree-0-constraint can.
Intuitively, freeness does not oblige our verification procedure
to maintain exact differences when firing ”signal” or ”wait”
instructions, jeopardizing termination. This will be stated in
Section VI.

C. Denotations of constraints.

Given a configuration c = (T , P , bvbvbv,pcpcpc,pvpvpv,ϕϕϕ) and a con-
straint φ = (T ′, P ′, bvbvbv′, pcpcpc′, pvpvpv′, γγγ′), we say that c satisfies φ,
and write c |= φ, if c satisfies (up to a renaming of the tasks
and the phasers) conditions imposed by φ. More concretely,
c |= φ if bvbvbv = bvbvbv′ and there are bijections τ : T → T ′

and π : P → P ′ such that: (i) pcpcpc(t) = pcpcpc′(τ(t)) for each
t ∈ T ; and (ii) π(pvpvpv(t)(v)) = pvpvpv′(τ(t))(v) for each t ∈ T
and v ∈ V; and (iii) the renaming of tasks and phasers
in ϕϕϕ wrt. τ and π satisfies γγγ, i.e., (iii.a) for each t ∈ T

and each p ∈ P , ϕϕϕ(p)(t) ↓ iff isReg(τ(t), π(p), γγγ(π(p))),
and (iii.b) for each p′ ∈ P ′, ℘(

∧
t′∈Reg(p′,γγγ(p′))((ω

t′

p′ , σ
t′

p′) =

ϕϕϕ(π−1(p′))(τ−1(t′)))) |= γγγ(p′). We let [[φ]] denote
{c | c |= φ}. Intuitively, [[(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)]] contains all
configurations c with the same number of tasks and phasers
and such that there are renamings of tasks and phasers
that preserve in c the correspondence between pcpcpc, pvpvpv and
γγγ. We write [[Φ]], for a set Φ of constraints, to mean the
union ∪φ∈Φ[[φ]]. Given a program (B, V, T), we can exactly
characterize with a finite set of constraints all configurations
involving n tasks and p phasers and satisfying the premises
of rules (runtime error), (assert. fault), (race) and
(deadlock) from Fig.(3).

Lemma 1 (Characterizing badness). Given a program (B, V, T)
and natural numbers (n, p), we can exhibit finite sets of
constraints badCstrs(n,p)

race , badCstrs(n,p)
assert, badCstrs(n,p)

runtime

and badCstrs
(n,p)
deadlock such that:

badConfs(n,p)
race = [[badCstrs(n,p)

race]]

badConfs
(n,p)
assert = [[badCstrs

(n,p)
assert]]

badConfs
(n,p)
runtime = [[badCstrs

(n,p)
runtime]]

badConfs
(n,p)
deadlock = [[badCstrs

(n,p)
deadlock]]

In addition, we can choose the constraints in
badCstrs

(n,p)
deadlock to be of degree 0 while those in

badCstrs
(n,p)
race , badCstrs

(n,p)
assert or in badCstrs

(n,p)
runtime

to be free.

D. Entailment.

We say that a constraint φ = (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) is weaker
than a constraint φ′ = (T ′, P ′, bvbvbv′, pcpcpc′, pvpvpv′, γγγ′), written φ v
φ′, to mean the following. First, the two constraints have the
same number of phasers and tasks, agree on the values of the
Boolean variables and, up to renamings, on the values of the
phaser variables and on which tasks are registered to which
phasers. Second, the constraints on the wait and signal values
are stronger in φ′ than in φ. More formally, φ v φ′ if bvbvbv = bvbvbv′

and there are bijections τ : T → T ′ and π : P → P ′ s.t. for
each t ∈ T and p ∈ P the following four conditions hold: (i)
pcpcpc(t) = pcpcpc′(τ(t)); and (ii) π(pvpvpv(t)(v)) = pvpvpv′(τ(t))(v); and
(iii) π(Reg(p,γγγ(p))) = Reg(π(p), γγγ′(π(p))); and (iv) γγγ(p) vG
γγγ′(π(p))

[{
ω
τ(t)
π(p)/ω

t
p, σ

τ(t)
π(p)/σ

t
p | t ∈ Reg(p,γγγ(p))

}]
. Clearly,

φ v φ′ implies [[φ′]] ⊆ [[φ]]. We say that v is sound.
We can show that v is a well-quasi-order1 over constraints

of bounded degrees and involving fixed numbers of tasks and
phasers since vG is itself a well-quasi-ordering over graphs
of bounded degrees over a finite set of variables ([9], [12]).

Lemma 2 (WQO). Given k, n, p ∈ N, the entailment relation
v over the set of constraints of degree k involving at most n
tasks and p phasers is a well-quasi-order.

1A reflexive and transitive binary relation � is a well-quasi-order over a
set A if there is no infinite sequence a0, a1, . . . of A elements s.t. ai 6� aj
for all i < j.

pcpcpc′ = pcpcpc[t← v := newPhaser();pcpcpc(t)] ∧
pvpvpv(t)(v) = p ∧ pvpvpv′ = pvpvpv[t← pvpvpv(t)[v← ↑]] ∧{
ωtp 7→ 0, σtp 7→ 0

}
|= γγγ(p) ∧ γγγ′ = γγγ \ {p} ∧

(isReg(u, p,γγγ(p)) =⇒ u = t)

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t

(

T , P \ {p} , bvbvbv,pcpcpc′, pvpvpv′, γγγ′
) (newPhaser I)

pcpcpc′ = pcpcpc[t← v := newPhaser();pcpcpc(t)] ∧
pvpvpv(t)(v) = p ∧ pvpvpv′ = pvpvpv[t← pvpvpv(t)[v← q]] ∧{
ωtp 7→ 0, σtp 7→ 0

}
|= γγγ(p) ∧ γγγ′ = γγγ \ {p} ∧

(isReg(u, p,γγγ(p)) =⇒ u = t)

(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)
t

(

T , P \ {p} , bvbvbv,pcpcpc′, pvpvpv′, γγγ′
) (newPhaser II)

pcpcpc′ = pcpcpc[t← v.signal();pcpcpc(t)] ∧ pvpvpv(t)(v) = p ∧ isReg(t, p,γγγ(p)) ∧ ℘ =
(
γγγ(p) graphOf

(
∧u∈Reg(p,γγγ(p))(σtp > ωup ≥ 0)

))
∧ isSat(℘) ∧ γγγ′ = γγγ

[
p←

((
℘
[
σtp/σ

]
graphOf

(
σtp = σ − 1

))
	 {σ}

)]
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)

t

(

T , P , bvbvbv,pcpcpc′, pvpvpv,γγγ′
) (signal)

pcpcpc′ = pcpcpc[t← v.wait();pcpcpc(t)] ∧ pvpvpv(t)(v) = p ∧ isReg(t, p,γγγ(p)) ∧ ℘ =
(
γγγ(p) graphOf

(
∧{u∈Reg(p,γγγ(p))}(σup ≥ ω

t
p > 0)

))
∧ isSat(℘) ∧ γγγ′ = γγγ

[
p←

((
℘
[
ωtp/ω

]
graphOf

(
ωtp = ω − 1

))
	 {ω}

)]
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)

t

(

T , P , bvbvbv,pcpcpc′, pvpvpv,γγγ′
) (wait)

pcpcpc′ = pcpcpc[t← v.drop();pcpcpc(t)] ∧ pvpvpv(t)(v) = p ∧ ¬isReg(t, p,γγγ(p)) ∧
γγγ′ = γγγ

[
p←

(
γγγ(p) graphOf

(
(σtp ≥ ω

t
p ≥ 0) ∧u∈Reg(p,γγγ(p)) (σup ≥ ω

t
p ≥ 0) ∧ (σtp ≥ ω

u
p ≥ 0)

))]
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)

t

(

T , P , bvbvbv,pcpcpc′, pvpvpv,γγγ′
) (drop)

pcpcpc′ = pcpcpc[t← asynch(task, v1, . . . vk){s1};pcpcpc(t)] ∧ paramOf(task) = (w1, . . . wk) ∧ u ∈ T \ {t} ∧
pvpvpv′ = pvpvpv \ {u} ∧ pcpcpc(u) = s1 ∧ ∀i : 1 ≤ i ≤ k. pvpvpv(t)(vi) = pvpvpv(u)(wi) = pi ∧ (isReg(t, pi, γγγ(pi))⇔ isReg(u, pi, γγγ(pi))) ∧

℘i =
(
γγγ(pi) graphOf

(
ωtpi

= ωupi
∧ σtpi = σupi

))
∧ isSat(℘i) ∧ γγγ0 = γγγ ∧ γγγi = γγγi−1

[
pi ←

(
℘i 	

{
ωupi

, σupi

})]
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)

t

(

T \ {u} , P , bvbvbv,pcpcpc′ \ {u} , pvpvpv′, γγγn
) (asynch)

t 6∈ T ∧ pcpcpc′ = pcpcpc[t← exit] ∧ f ∈ Pfn (V, P) ∧ pvpvpv′ = pvpvpv] {t 7→ f} ∧
Q ⊆ P ∧ γγγ′ = γγγ

[{
p← ϕϕϕ(p) graphOf

(
(σtp ≥ ω

t
p ≥ 0) ∧u∈Reg(p,γγγ(p)) (σup ≥ ω

t
p ≥ 0) ∧ (σtp ≥ ω

u
p ≥ 0)

)
| p ∈ Q

}]
(T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)

t

(

T ∪ {t} , P , bvbvbv,pcpcpc′, pvpvpv′, γγγ′
) (exit)

Fig. 4. Derivation rules for computing pre(t, φ) for phaser statements as union of all {φ′ | φ t
 φ′ with φ = (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) and t ∈ T }. Derivations

for other program statements are straightforward.

VI. VERIFICATION PROCEDURE

Input: A program prg = (B, V, T), a set Φbad of pairwise
v-incomparable constraints, maximum upper bounds t• and p•
(in N ∪ {+∞}) on coexisting tasks and phasers.

Output: A symbolic run to Φbad or the value unreachable
1 Initialize both Working and Visited to {(φ, φ) | φ ∈ Φbad};
2 while there exists (φ, τ) ∈ Working do
3 remove (φ, τ) from Working;
4 let (T , P , bvbvbv,pcpcpc,pvpvpv,γγγ) = φ;
5 if |T | > t• or |P | > p• then continue;
6 if cinit |= φ then return τ ;
7 foreach t ∈ T do
8 foreach φ′ ∈ pre(t, φ) do
9 if ψ 6v φ′ for all (ψ,) ∈ Visited then

10 Remove from Working and Visited each (ψ,)
for which φ′ v ψ;

11 Add (φ′, φ′ · t · τ) to both Working and Visited;
12 return unreachable ;

Procedure check(prg,Φbad,t•, p•), a simple working list
procedure for checking constraints reachability.

We discuss in the following the procedure check depicted
above and assume a program prg and a set Φbad of constraints
the reachability of which we want to check. Φbad can for
example be any subset of badCstrs(n,p)

deadlock (degree 0) or of
badCstrs

(n,p)
assert (free) in case we want to check the possibility

of a deadlock or of an assertion violation.
It is not difficult to show that [[pre(t, φ)]] (obtained as de-

scribed in Fig.(4)) coincides with {c′ | c′ t−→ c and c ∈ [[φ]]}.

Using the soundness of v, we can show by induction the par-
tial correctness of the procedure check(prg,Φbad,+∞,+∞).

Lemma 3 (Partial correctness). If check(prg,Φbad,+∞,+∞)
returns unreachable, then cinit 6

∗−→ [[Φbad]]. If it returns a
trace φn ·tn · · · t1 ·φ1 then there are cn, . . . c1 with cn = cinit,
c1 ∈ [[Φbad]] and ci

ti−→ ci−1 for i : 1 < i ≤ n.

Theorem 2 (Free termination). check(prg,Φbad,t•,p•) termi-
nates for t•, p• ∈ N and free Φbad.

Proof. Sketch. Freeness is preserved by the pre computation
(Fig.(4)). Suppose the procedure does not terminate. The
infinite sequence of constraints passing the test at line 9 of
the procedure violates well-quasi-orderness of v over free
constraints with fixed numbers of tasks and phasers.

In order to check reachability of arbitrary constraints, we
may need to force termination. We do this by soundly bound-
ing the degree of generated constraints using a relaxation ρk.
The relaxation ρk((T , P , bvbvbv,pcpcpc,pvpvpv,γγγ)) replaces, in each graph
γγγ(p), each weight k′′ s.t. k′′ < −k with −∞.

1 foreach φ′′ ∈ pre(t, φ) do
2 Let φ′ = ρk(φ′′);

Fig. 5. Systematic relaxation

Theorem 3 (Forced termination). Procedure
check(prg,Φbad,t•,p•) for t•, p• ∈ N, with line 8 replaced by
the lines of Fig. (5), is sound and guaranteed to terminate.

Proof. Soundness is due to the validity of ρk(φ) v φ while the
termination argument relies, similarly to Theorem (2), on well-
quasi orederness of v on the set of constraints with bounded
degree and fixed numbers of tasks and phasers.

VII. EXPERIMENTAL RESULTS

We report on experiments with our open source prototype
hjVerify (https://gitlab.ida.liu.se/apv/hjVerify) for the verifi-
cation of phaser programs. We conducted experiments on
12 different programs (some of which are from [5]). We
considered both deadlock and assertion reachability problems.
For each property, we considered correct and buggy versions.
This gave 48 different instances with 2 to 3 phasers and 2 to 4
tasks (except for the parameterized case). Our tool uses global
phaser and task variables as in [5]. We have experimented with
adapting the view abstraction technique [14] to verify phaser
programs generating arbitrary many tasks, i.e., parameterized
verification where the number of phasers is fixed. (see [11]
for more details.) We report on two parameterized examples.
Experiments were conducted on a 2.9GHz processor with 8GB
of memory.

program property safe / buggy times

01.Loopless deadlock: ok / trace 1s / 1s
assertion: ok / trace 1s / 1s

02.Iterative deadlock: ok / trace 1s / 1s
averaging assertion: ok / trace 1s / 1s

03.Ordered deadlock: ok / trace 1s / 1s
phasers assertion: ok / trace 13s / 1s

04.Conditional deadlock: ok / trace 2s / 1s
assertion: ok / trace 4s / 7s

05.Loop Synch. deadlock: ok / trace 178s / 145s
assertion: ok / trace 7s / 13s

06.Nested forks deadlock: ok / trace 2s / 1s
assertion: ok / trace 1s / 1s

07.Conditional deadlock: ok / trace 1s / 1s
membership assertion: ok / trace 12s / 3s
08.Producer- deadlock: ok / trace 37s / 222s

consumer assertion: ok / trace 79s / 34s
09.Parameterized deadlock: ok / trace 20s / 1s

loopless assertion: ok / trace 67s / 1s
10.Parameterized deadlock: ok / trace 1s / 1s

iterative-averaging assertion: ok / trace 1s / 1s

11.Running-2 deadlock: ok / trace 5s / 1s
assertion: ok / trace 26s / 4s

12.Running-3 deadlock: ok / trace 4318s / 128s
assertion: ok / trace 18631s / 54s

Our implemented procedure does not eagerly concretize all
task states as described in the predecessor computation of
Section V. Instead we collect conditions on the phases of the
tasks that did not take any action yet and lazily concretize
them. Reported times for checking deadlocks are the sums of
the times required to check reachability for each cycle. The
prototype is only a proof of concept. For instance, the example
(12.Running-3) is a variant of (11-Running-2) where a task in-
stance is spawned twice leading to two symmetrical tasks (out
of four). This required up to three orders of magnitude more
time to check. We believe partial order reduction techniques
would help here. Other relevant heuristics would be to make

use of priority queues and to organize the minimal sets. All
examples are available on the tool homepage.

VIII. CONCLUSION

We have proposed a gap-order based reachability analysis
for phaser programs. We have showed our analysis to be exact
and guaranteed to terminate when checking runtime, race and
assertion errors. We have established the undecidability of
deadlock verification and explained how to turn our analysis
into a sound over-approximation. To the best of our knowl-
edge, this is beyond the capabilities of current verification
techniques which currently only target concrete inputs to
phaser programs. We are currently working on tackling the
parameterized case and have obtained preliminary encouraging
results. Apart from improving the scalability of the tool and
from using it in combination with predicate abstraction and ab-
stract interpretation in order to analyze actual source code, we
are investigating the applicability of the presented techniques
for the verification of similar synchronization constructs.

REFERENCES

[1] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” SIGPLAN Not., vol. 40,
no. 10, pp. 519–538, Oct. 2005.

[2] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers: a
unified deadlock-free construct for collective and point-to-point synchro-
nization,” in Proceedings of the 22nd annual international conference
on Supercomputing. ACM, 2008, pp. 277–288.

[3] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: the
new adventures of old x10,” in Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java. ACM,
2011, pp. 51–61.

[4] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phaser
accumulators: A new reduction construct for dynamic parallelism,” in
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE Interna-
tional Symposium on. IEEE, 2009, pp. 1–12.

[5] T. Cogumbreiro, R. Hu, F. Martins, and N. Yoshida, “Dynamic deadlock
verification for general barrier synchronisation,” in 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP 2015. New York, NY, USA: ACM, 2015, pp. 150–160.

[6] D.-K. Le, W.-N. Chin, and Y.-M. Teo, “Verification of static and dynamic
barrier synchronization using bounded permissions,” in Int. Conf. on
Formal Engineering Methods. Springer, 2013, pp. 231–248.

[7] P. Anderson, B. Chase, and E. Mercer, “Jpf verification of habanero java
programs,” SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp. 1–7, 2014.

[8] K. Havelund and T. Pressburger, “Model checking java programs using
java pathfinder,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 2, no. 4, pp. 366–381, 2000.

[9] R. Mayr and P. Totzke, “Branching-time model checking gap-order
constraint systems,” Fundamenta Informaticae, vol. 143, no. 3-4, pp.
339–353, 2016.

[10] L. Bozzelli and S. Pinchinat, “Verification of gap-order constraint
abstractions of counter systems,” Theoretical Computer Science, vol.
523, pp. 1 – 36, 2014.

[11] G. Zeinab, R. Ahmed, E. Petru, and P. Zebo, “Safety verification
of phaser programs,” CoRR, vol. abs/1708.02801, 2017. [Online].
Available: https://arxiv.org/abs/1708.02801

[12] P. Z. Revesz, “A closed-form evaluation for datalog queries with integer
(gap)-order constraints,” Theoretical Computer Science, vol. 116, no. 1,
pp. 117–149, 1993.

[13] S. Lahiri and M. Musuvathi, “An efficient decision procedure for utvpi
constraints,” in Frontiers of Combining Systems (FroCos ’05). Springer
Verlag, May 2005.

[14] P. A. Abdulla, F. Haziza, and L. Holı́k, “All for the price of few,” in
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2013, pp. 476–495.

