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Abstract—Binary decision diagrams are fundamental data
structures in discrete mathematics, electrical engineering and
computer science. Many different variations of binary decision
diagrams exist, in particular variations that employ different
reduction rules. For some applications, such as on-the-fly state
space exploration, multiple reduction rules are beneficial to
minimize the size of the involved graphs. We propose tagged
binary decision diagrams, an edge-based approach that allows to
use two reduction rules simultaneously. Experimental evaluations
demonstrate that on-the-fly state space exploration is an order
of magnitude faster using tagged binary decision diagrams
compared to traditional binary decision diagrams.

I. INTRODUCTION

Binary decision diagrams are fundamental data structures
which emerged in the ’80s as a means to efficiently represent
Boolean functions. They now find applications in many
areas including logic synthesis, model checking, verification,
automated reasoning, reachability analysis, and combinatorics.
Section 7.1.4 in Knuth’s encyclopedia [17] and a recent survey
paper by Minato [24] provide an accessible history of the
research activities into binary decision diagrams.

Many variations of binary decision diagrams have been
proposed. They differ, e.g., in the type of leaves, decomposition
rules, and reduction rules. The existence of these variants
motivates dedicated application areas. Original binary decision
diagrams (BDDs) are, e.g., applied in model checking and
logic synthesis [9], [8], [21], multi-terminal binary decision
diagrams (MTBDDs) are, e.g., used to compute properties
of probabilistic models [2], [14], [3] and zero-suppressed
binary decision diagrams (ZBDDs) are exploited to compactly
represent subsets and sparse matrices [23].

For some applications, it could be beneficial to combine
characteristics of different binary decision diagram types. In
this paper, we consider on-the-fly state space exploration such
as conducted in [5], [16]. The efficiency of on-the-fly state
space exploration relies on a compact representation of the
involved Boolean functions, which initially include a large
number of Boolean variables set to 0 (suitably represented by
ZBDDs) but, over time, are extended by partial assignments
to variables which become redundant (suitably represented by
BDDs). Thus far, no solution combines the reduction rules from
both BDDs and ZBDDs at the same time. Existing methods
use either original BDDs or ZBDDs only and thus do not
exploit the full potential of these reduction rules.

In the literature, different decomposition rules have been
combined using a node-based approach, where nodes store
the information about the applied decomposition rule [13].
However, combining BDDs and ZBDDs using this method
would not be efficient, as it limits node sharing. Hence,
we propose tagged binary decision diagrams (TBDDs), an
edge-based approach that allows the simultaneous use of two
reduction rules. To distinguish which rule is used to remove
nodes, we introduce tags on every edge in the graph. We adapt
several algorithms to handle both reduction rules and this leads
to a more compact representation. We evaluate the proposed
TBDDs for on-the-fly state space exploration and observe that
they improve upon BDDs by an order of magnitude.

The rest of this paper is structured as follows. We cover
the preliminaries in Section II. Section III motivates the new
binary decision diagram type by reviewing on-the-fly symbolic
state space exploration – an application where reduction rules
from both BDDs and ZBDDs are beneficial. We describe the
concepts of TBDDs in Section IV. In Section V, we present
several algorithms that construct and manipulate TBDDs and
discuss how they are used in the considered application. The
benefits of TBDDs are illustrated and evaluated in Section VI.
Finally, we reflect upon the obtained results in Section VII.

II. PRELIMINARIES

This paper proposes a type of binary decision diagrams
that exploits characteristics of both traditional binary decision
diagrams and zero-suppressed binary decision diagrams. We
briefly review both types in the following.

A. Binary Decision Diagrams

A binary decision diagram [7] is a rooted directed acyclic
graph. There are only two distinct leaves labeled with 0 and 1.
Each internal node v is labeled with var(v) and has two
outgoing edges to successors denoted by low(v) (the low
successor) and high(v) (the high successor). The edge leading
to the root is called a top edge. A binary decision diagram is
called ordered if each variable is encountered at most once
on each path from the root to a leaf and the variables are
encountered in the same order on all such paths. The size of a
binary decision diagram is defined by the number of its nodes.

If binary decision diagrams are used to represent Boolean
functions, then labels in nodes are Boolean variables and the



leaves 0 and 1 represent the Boolean constants. The Boolean
function represented by the graph with root v is recursively
determined using the decomposition rule which is based on
Shannon’s expansion theorem [27], i.e.,

f(v) = var(v) · f(low(v)) + var(v) · f(high(v)).

Consequently, Boolean functions f(low(v)) and f(high(v))
coincide with f(v)|var(v)=0 and f(v)|var(v)=1, respectively.

The efficiency of binary decision diagrams is achieved
by minimizing the structure. This is done by employing
several reduction rules. The primary rule is that a binary
decision diagram may not contain isomorphic subgraphs, i.e.,
equivalent nodes with the same var(v), low(v) and high(v).
Traditional BDDs obey an additional rule, which removes so-
called redundant nodes, i.e., nodes where low(v) = high(v) [7].
With ZBDDs, this rule is substituted by one where a node
v is called redundant iff high(v) = 0. In both approaches, a
decision diagram is reduced if it contains neither equivalent
nodes nor redundant nodes. Both reduced BDDs and reduced
ZBDDs are a canonical representation of Boolean functions
and combinatorial sets.

Example 1. Fig. 1 shows three binary decision diagrams
representing the Boolean function f(x1, x2, x3) = x1x2. We
use dashed lines for low edges and solid lines for high edges.
TBDDs are proposed in Section IV.
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(b) ZBDD
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(c) TBDD

Fig. 1: Different binary decision diagrams representing the
same Boolean function.

B. Complemented Edges

Modern binary decision diagram packages often use com-
plemented edges [6], [25] as an additional mechanism to
minimize the graph size. A complemented edge modifies the
interpretation of the subgraph to which it points. In this section,
we write ¬v to denote that edge pointing to v is complemented,
i.e., marked with a complement bit.

Complemented edges on BDDs are interpreted as follows.
A complemented edge to 0 is interpreted as 1 (or vice-versa),
and a complemented edge to an internal node is interpreted by
toggling the complement bit on both successors, i.e.,

f(¬v) := var(v) · f(¬ low(v)) + var(v) · f(¬high(v)).

It follows that f(¬v) (complemented edge) is equal to f(v)
(negation) for BDDs and therefore that computing the negation
of a formula is free with BDDs.

With ZBDDs, complemented edges cannot be used such
that they coincide with negation. Nevertheless, complemented
edges can be used to increase node sharing. Since forwarding
the complement bit to the high successor counteracts the
“zero-suppressing” property of ZBDDs, the complement bit
is only forwarded to the low successor:

f(¬v) := var(v) · f(¬ low(v)) + var(v) · f(high(v))

Complemented edges allow multiple representations of the
same function by toggling the complement bit on the incoming
edge and both successors (for BDDs), or on the incoming edge
and the low successor (for ZBDDs). A well-known method to
ensure a canonical representation is to forbid the complement
bit on the low successor, which works well for both BDDs
and ZBDDs [6], [23].

C. Generalizing Reduction Rules

The reduction rules of BDDs and ZBDDs target two patterns
of nodes that are removed. For BDDs these are nodes with
equivalent successors, whereas for ZBDDs these are nodes
whose high successors are 0. In general, given a graph in
which no variable is skipped, the reduction rule removes all
nodes that match a given pattern. Given the successors of a node
v as a pair (low(v),high(v)), we can identify the following
simple reduction patterns involving only one node:

(1) (2) (3) (4) (5)
(k, k)⇒k (k, 0)⇒k (k, 1)⇒k (0, k)⇒k (1, k)⇒k

Pattern 1 is the rule for BDDs, while pattern 2 is the rule for
ZBDDs. If we also allow patterns involving negation, we get
12 patterns [22]. This can be generalized further for patterns
that involve multiple nodes, such as representations of x = x′.
However, this is beyond the scope of this paper.

III. MOTIVATION

BDDs and ZBDDs offer compact representations for Boolean
functions. As they use different reduction rules, their size
significantly depends on the kind of Boolean functions they
represent. BDDs are particularly suited for functions where
adjacent input assignments have the same outcome, whereas
ZBDDs are more compact for functions that often evaluate to 1
when many variables are set to 0. This motivates dedicated
application areas for either type. BDDs are heavily applied,
e.g., in symbolic model checking, while ZBDDs find particular
application, e.g., to represent sparse matrices and subsets.

However, applications exist where characteristics from BDDs
and ZBDDs could both be beneficial. This section reviews
such an application. Afterwards, we illustrate how using char-
acteristics from both types could advance the state-of-the-art.
This provides the main motivation for the novel binary decision
diagram type proposed in Section IV which combines reduction
rules of BDDs and ZBDDs.



A. On-the-fly State Space Exploration

Binary decision diagrams are an important data structure in
symbolic model checking, which creates models of complex
systems to verify that they function according to certain
properties or a given specification. Systems are modeled as a
set of states S and a transition relation T ⊆ S×S. We encode
these sets using their characteristic functions S and T (such
that S = { s | S(s) } and T = { (s, s′) | T(s, s′) }), which
we represent by binary decision diagrams. Since algorithms
on binary decision diagrams effectively operate on sets of
states rather than individual states, they have successfully been
applied to verify systems with a large number of states [9],
[8], [28] (infeasible for explicit-state model checking).

A central role in model checking algorithms, such as
verifying properties expressed in the modal µ-calculus [18],
[4], LTL [10] or CTL [8], [19] is state space exploration. Here,
all reachable states in (a part of) the state space are determined
starting from a given set of initial states. This is typically
conducted by computing the successor states according to the
transition relation until a fixed point has been reached.

The model checking toolset LTSMIN [5], [16], [20] offers
a framework where transition relations are updated on-the-fly
as the model is explored. Initially, LTSMIN does not have
knowledge of the transitions in the system. The transition
system is explored by learning new transitions via a language-
independent interface called PINS,which connects various input
languages to model checking algorithms [16]. In PINS, the
states of a system are represented by vectors of integers.

B. Utilizing Characteristics from BDDs and ZBDDs

One of the challenges in on-the-fly state space exploration is
that the number of bits required to encode the state space is not
known in advance. As LTSMIN uses integers as the fundamental
data type, these integers are encoded with, e.g., 16 or 32 bits
per integer. However, state variables often hold only few values
in the reachable state space, so most bits are always set to 0.
Hence, ZBDDs can more effectively represent the state space,
as nodes for variables set to 0 are then eliminated [15]. On the
other hand, the set of reachable states often includes adjacent
states, where some variable x can be either True or False. Such
sets are effectively represented with traditional BDDs. Hence,
both the reduction rules of ZBDDs and traditional BDDs would
significantly reduce the size of the binary decision diagrams.

Example 2. In Fig. 2 we consider one integer variable of a
possibly much larger system, encoded using 8 bits. In this
example, we have discovered that the variable may hold
values {0, 2, 4, 6}. Using ZBDDs would allow for a compact
representation for variables x0, x1, x2, x3, x4, x7 (since these
variables would have their high edge to 0). In contrast, using
BDDs would allow for a compact representation for variables
x5, x6 (since these variables would have identical successors).
Hence, both the reduction rules of ZBDDs and ordinary BDDs
would significantly reduce the size of the representation.
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Fig. 2: The BDD representing the four states would have nodes
with the high edge to 0 for the variables in regions “A” and
“C” and with identical successors in region “B”.

IV. TAGGED BINARY DECISION DIAGRAMS

This section introduces a novel binary decision diagram
type which addresses the drawback discussed in the previous
section. The general idea is that nodes are removed according
to two different reduction rules. To distinguish which rule
has been applied between two adjacent nodes in the graph, a
variable label is used as a tag on every edge (note that edge
tags have also been used for other purposes, e.g., in [25]).
Missing variables before the tag are removed according to the
first rule, while variables missing starting from the tag are
removed according to the second rule. Both reduction rules are
maximally applied. Overall, this combines the benefits from
both decision diagram types and thus leads to a more compact
representation. In the following, the concepts are described
first. Afterwards, the prototype implementation is described in
Section V, while their efficiency is experimentally evaluated
in Section VI.

A. Definition

A tagged binary decision diagram (TBDD) is a rooted
directed acyclic graph. There are two leaves that are labeled
with 0 and 1. Each internal node v is labeled with var(v)
and has two outgoing edges to successors denoted by low(v)
(the low successor) and high(v) (the high successor). Like
ordinary binary decision diagrams, variables are encountered
along each directed path according to a fixed variable ordering
and equivalent nodes are forbidden. In addition, edges are
labeled with a tag, which can be a variable label or ⊥. Edges
to internal nodes are always labeled with a variable label, while
edges to leaves may also be labeled with ⊥. The variable used
as a variable label must always be after the variable of the
source node and before or equal to the variable of the target
node, if the target node is not a leaf.

TBDDs admit two reduction rules that forbid certain nodes.
Examples of these rules are given in Section II-C. In the
remainder of this paper, we use the reduction rule of BDDs as
the first rule and the reduction rule of ZBDDs as the second
rule. Both rules are maximally applied. The tag determines
how missing nodes are treated. Informally, the tag xtag means
that all skipped variables before xtag were removed due to the
first rule and that all skipped variables starting from xtag were
removed due to the second rule. The tag ⊥ on an edge to a
leaf means that all remaining variables were removed due to
the first reduction rule.



Example 3. Fig. 3a shows a fragment of a TBDD with
the variable ordering xi < xj ≤ xk. Nodes with variable
xm such that xi < xm < xj were removed by the first
reduction rule, while nodes with variable xn such that
xj ≤ xn < xk were removed by the second reduction rule.
Fig. 3b shows a concrete TBDD where the first reduction
rule is those of BDDs and the second reduction rule is
those of ZBDDs. For the variables {x0, . . . , x8}, this TBDD
represents x1x2x3x4x6x7x8 ∨ x1x2x3x5x6 ∨ x1x2x3x5x6x8.
This expression is obtained by looking at each path from the
root to leaf 1 and assigning False to all variables that are
skipped and equal to or greater than the tag.

xi

xk

...

... xj

... ...

(a)

x3

x4 x6

0 1

x1

x4 x5

x6⊥ x8
⊥

(b)

Fig. 3: Examples of tagged binary decision diagrams.

To interpret a BDD as a Boolean function, the variable
domain is not explicitly needed, while for ZBDDs and for
TBDDs the represented Boolean function depends on the
variable domain. In the following, for a given edge and variable
domain Dom the notations Dom1 and Dom2 are used, where
Dom1 denotes the variables in Dom before the tag and Dom2

denotes the variables in Dom starting from the tag and before
the variable of the target node if it is not a leaf. If the tag is ⊥,
then Dom1 = Dom and Dom2 = ∅. For the two reduction rules,
we can deduce interpretation functions Interp1 and Interp2.
These functions map a set of variables and a Boolean formula
to the Boolean formula of the interpretation. An edge to a node
or leaf v is interpreted as Interp1(Dom1, Interp2(Dom2, f(v))).

The interpretation function of the reduction rule of BDDs
is simply Interp(Dom, f) := f , while the interpretation
function of the reduction rule of ZBDDs is Interp(Dom, f) :=∧

x∈Dom x ∧ f . An edge to a node or leaf v in a TBDD using
these two rules is interpreted as

∧
x∈Dom2

x∧f(v). Furthermore,
edges to the leaf 0 can only have tag ⊥. Finally, we introduce
complemented edges similarly as for ZBDDs. This means that
we cannot use complemented edges to compute negation, but
at least we can sometimes reuse nodes.

B. Reduction Rules During Construction

The two reduction rules are maximally applied. However, a
special case occurs when nodes that are eliminated by the two
rules alternate. In this case, either every last node matching
the second rule or every first node matching the first rule must
be kept. In the following, we maximally apply the second rule

(rule of ZBDDs) and thus some nodes of the first rule (rule of
BDDs) are kept to denote these alternating sequences.

Example 4. The binary decision diagram in Fig. 4 has two
nodes that have the high edge to 0 and a node with identical
successors. Applying the reduction rules removes all nodes with
the high edge to 0. The remaining node cannot be eliminated,
because it would no longer be possible to distinguish which
rule was used to eliminate which node.

x1

x2

x3

01

⇒
x2

1

x1

x3x3

Fig. 4: A TBDD where not all nodes can be eliminated.

Binary decision diagrams are reduced from bottom to top
during their construction. Whenever a node is constructed that
matches one of the reduction rules, the rule is applied, in the
case of the rule of BDDs by simply returning the original
low (or high) successor, and in case of the rule of ZBDDs by
returning the low successor with an updated tag. However, if
we deduce that the low successor already has skipped variables
according to the rule of BDDs, then we keep an extra node.

Fig. 5 illustrates the respective reduction rules for TBDDs.
The bottom-up reduction is started with a graph in which no
variable is skipped. All edges are initially labeled with the
same variable as the node that they point to, or ⊥ if they point
to a leaf node. Rules 1 and 2a are applied in the most cases.
For the special case where nodes that match both reduction
rules alternate, rule 2b ensures that an extra node is created.
As we maximally apply the rule of ZBDDs, rule 2b creates a
node that matches the rule of BDDs; if we would maximally
apply the rule of BDDs, then rule 2b would be modified to
accomplish this.

C. Canonical Representation

TBDDs are, like BDDs and ZBDDs, a canonical repre-
sentation of Boolean functions, under the condition that the
reduction rules are maximally applied. In general, this removes
all nodes of the two chosen patterns, except exactly those
nodes that are required when rule applications alternate (as
discussed above). In the considered case (combining BDDs and
ZBDDs), the canonicity can be simply derived by observing
the bijection between BDDs, ZBDDs, and TBDDs, i.e., every
reduced TBDD matches with a unique reduced BDD (ZBDD)



Rule 1 Rule 2a Rule 2b

xi

F

T T
⇒

F

T xi

F
0

⊥next(xi) ⇒

F

xi xi

F
0

⊥T 6= next(xi) ⇒
next(xi)

F

T T

xi

Fig. 5: The reduction rules of a TBDD for bottom-up reduction. Here T stands for any tag and F for any reduced TBDD;
next(x) is the next variable in the variable domain, or ⊥ if x is the last variable.

with a deterministic conversion procedure, and vice versa. The
conversion procedure can be defined as a two step procedure
such that the first step is a creation of a graph in which no
variable is skipped. Therefore, since BDDs (and ZBDDs) are
a canonical representation, so are TBDDs.

V. IMPLEMENTATION

Algorithms on TBDDs are not trivial, since they have to
deal with various special cases introduced by the two reduction
rules. This section first describes the representation of nodes
and edges of TBDDs followed by the algorithm FoaNode
that constructs TBDDs for a given function by finding or
adding nodes. Afterwards, the algorithms ite and exists are
described which provide basic operations on TBDDs. Finally,
we briefly discuss a more specialized algorithm that is used
for the on-the-fly state space exploration.

A. Representation of Nodes and Edges

We implemented TBDDs in the parallel decision diagram
package Sylvan [11], [12]. As Sylvan allocates 16 bytes per
node (for performance), we design the internal structure of a
TBDD node to fit these constraints. In binary decision diagram
implementations, nodes are stored in a unique table. This
ensures that no equivalent nodes are created. We use 32 bits to
store the index of a node in the unique table. This is sufficient
to store up to 232 nodes, i.e., 96 gigabytes of nodes, excluding
overhead costs. For the variable labels and the tags on the edges,
we allocate 20 bits. This allows up to 1,048,576 variables; we
reserve the highest value to encode ⊥.

In our implementation, we use a 64-bit integer to encode a
tagged edge to a TBDD node. The lowest 32 bits represent
the location of the node in the table, and the highest bit stores
the complement bit [6]. The TBDD 0 is reserved for the leaf
0 (False), with the complemented edge to 0 for True. The 31
remaining bits provide space to store the 20-bit tag. A TBDD
node in memory stores the variable label (20 bits), the low edge
index (32 bits), the high edge index (32 bits), the low edge
tag (20 bits), the high edge tag (20 bits) and the complement
bit of the high edge (1 bit, the first bit below) as follows:

h tag high idx var l tag low idx

B. Constructing TBDD Nodes

The core function to obtain nodes is FoaNode (find or add
a node), which applies the reduction rules presented in Fig. 5
and creates a new node if necessary. This function is given the
variable xi and tagged edges L (low) and H (high), as well
as the next variable x′i (which can be ⊥) which is necessary
to apply the reduction rules of Fig. 5. The function’s result is
a tagged edge to a TBDD node. The FoaNode algorithm is
shown as Alg. 1. It first applies Rule 1 (line 2). If there is a
complement on the low edge, we apply the rule that forbids
complemented edges on the low edge (line 3). We then apply
Rules 2a and 2b (lines 4–6) by comparing the tag on the low
edge to the next domain variable. If they are the same, Rule 2a
is applied by returning an edge to the given node with the
tag according to Rule 2a (line 5). Otherwise, an extra node is
created (line 6) and returned with the appropriate tag (line 8).
If no reduction rule can be applied, a TBDD node is created
via the unique table (line 7) and returned with the appropriate
tag (line 8). Note that find-or-insert is provided by the
unique table and it does not create a new TBDD node if the
requested node already exists.

1 def FoaNode(xi, L, H , x′i):
2 if L = H : return L
3 if comp(L) : return ¬FoaNode(xi, ¬L, H , x′i)
4 if H = 0 :
5 if tag(L) = x′i : return settag(L, xi)
6 else: node ← find-or-insert({x′i, L, L})
7 else: node ← find-or-insert({xi, L,H})
8 return settag(node, xi)

Algorithm 1: The FoaNode method that constructs a TBDD
node and applies the reduction rules.

C. Basic Operations

This section describes several basic TBDD operations. All
operations use an operation cache to store subresults, like
virtually all binary decision diagram operations. We assume
that the reader is familiar with this technique and omit it here.
We also assume that the involved TBDDs are interpreted in
the same variable domain as the result. This variable domain



1 def cofactors(F , xi, x′i):
2 if F = 0 : return 0, 0
3 elif xi < tag(F ) : return F, F
4 elif F = 1 : return F, 0
5 elif xi < var(F ) :
6 F0 ← low(F )
7 if F0 /∈{0,1} ∧ var(F0)=x

′
i ∧ low(F0)=high(F0) :

8 F0 ← low(F0)
9 return F0, 0

10 else: return low(F ), high(F )

Algorithm 2: Fragment used by TBDD algorithms to compute
the cofactors F0 and F1, given a domain variable xi ≤ var(F )
and the next domain variable x′i (or ⊥ if xi is the last).

1 def ite(F , G, H):
2 if F = 1 : return G
3 if F = 0 : return H
4 if G = H : return G
5 t ← min(tag(F), tag(G), tag(H))
6 if tag(F) = tag(G) = tag(H) :
7 v ← min(var(F), var(G), var(H))
8 else: v ← t
9 F0, F1 ← cofactors (F , v, next(v))

10 G0, G1 ← cofactors (G, v, next(v))
11 H0, H1 ← cofactors (H , v, next(v))
12 r ← FoaNode(v, ite(F0, G0, H0), ite(F1, G1,

H1), next(v))
13 if t 6= v : r ← FoaNode(t, r, 0, v)
14 return r

Algorithm 3: The implementation of the algorithm ite.

is given as an additional parameter in the operations, but we
omit it here in the interest of clarity and brevity.

Many binary decision diagram operations first find a pivot
variable, typically the topmost variable of the root nodes of
the parameters, then recursively compute the subresults of the
operation on the cofactors of the parameters obtained by setting
the pivot variable to False or True, and finally compute the
result by creating a node with FoaNode.

Computing the cofactors is straightforward and summarized
in Alg. 2. Note that this is not a “generic cofactor” operation;
just a helper method for the recursion step. This method returns
F |xi=0 and F |xi=1 for a given TBDD F with top variable
xi and also compensates for the application of Rule 2b. We
use low and high to obtain the low and high successor of
F , where low also applies any complement on F to the low
edge. After checking whether F is an edge to 0 (line 2), we
check whether Rule 1 was applied (line 3). If not, we check if
Rule 2 was applied to leaf 1 (line 4). If not, then we check if
Rule 2 was applied to the node (line 5) and if so, we check if
the node is a redundant node inserted by Rule 2b (line 7) and
return the appropriate result (lines 6–9). Finally, at line 10 it
is established that no reduction rule was used and we return
the successors of the TBDD.

1 def exists(F , ~x):
2 if F = 0 ∨ (F = 1 ∧ tag(F ) = ⊥) : return F
3 if ~x = ∅ : return F
4 while var(~x) < tag(F ) :
5 ~x ← ~x \ {var(~x)}
6 if ~x = ∅ : return F
7 v ← min(var(F), var(~x))
8 F0, F1 ← cofactors (F , v, next(v))
9 ~x′ ← ~x \ {v}

10 if v < var(F ) : res ← exists(F0, ~x′)
11 elif v = var(~x) : res ← or(exists(F0, ~x′),

exists(F1, ~x′))
12 else: res ← FoaNode(v, exists(F0, ~x′),

exists(F1, ~x′), next(v))
13 if tag(F ) < v : res ← FoaNode(tag(F ), res, 0, v)
14 return res

Algorithm 4: The implementation of the algorithm exists.

See Alg. 3 for the implementation of the well-known
if-then-else operation. Given three TBDDs representing
f , g and h, this algorithm computes “if f then g else h”. We
use tag and var to obtain the tag of an edge and the variable
of the root node. The algorithm first tries to apply the trivial
cases (lines 2–4). We compute the topmost tag (line 5) and then
we determine the pivot variable v. Variables that are in Dom1

of all three parameters are in Dom1 of the result. Variables that
are in Dom2 of all three parameters are in Dom2 of the result.
We perform recursion on the first variable that is not in Dom1

of all parameters or in Dom2 of all parameters. This variable
is equal to the lowest variable if all tags are the same, or the
lowest tag if this is not the case. The cofactors are computed
at lines 9–11 and the recursion is performed at line 12, where
also the result is computed. If there are variables in Dom2 of
the result (which is true if t 6= v) then we use FoaNode in
a special way to compute the result. This ensures the correct
application of Rule 2b when the result has variables in Dom1.

We also implement existential quantification as in Alg. 4.
This operation existentially quantifies all given variables ~x
from the input TBDD F . We check for the trivial cases at
lines 2–3. We then skip all variables in ~x that are in Dom1 of F
(lines 4–6). Variables that are in Dom2 and before var(~x) will
be in Dom2 of the result. As the pivot variable we select the
first variable of F and ~x (line 7). We obtain the cofactors and
if the chosen pivot variable is in ~x we remove it in ~x′ that we
use for the recursion (lines 8–9). Now there are three cases. If
the pivot variable is in Dom2, then we just compute the result
based recursively on F0, as F1 is 0 (line 10). Otherwise, the
pivot variable is the variable of the TBDD node. Now either it
is also in ~x and we perform recursion as usual and compute
the disjunction of the two results, which is how existential
quantification is computed (line 11), or it is not in ~x and we
perform recursion as usual and compute the node of the result
(line 12). Finally, we update Dom2 of the result as discussed
above (line 13) and return the result (line 14).



As is clear from the above discussions, we must consider
for all variables whether they are in Dom1 or Dom2 of the
parameters. This makes these algorithms more complex, but
overall improves the efficiency by exploiting the reductions.

D. Computing Successors
Besides “typical” decision diagram operations, we addi-

tionally implemented an operation dedicated for the LTSMIN
application motivated in Section III, namely relnext which
applies a transition relation to a set in order to compute the
successors (combined with variable renaming). An additional
challenge is that LTSMIN partitions the transitions into different
transition groups. This has the advantage that each transition
group only affects a part of the state vector. As a consequence,
the relnext operation cannot assume that both parameters
are defined on the same variable domain; rather, it handles
various special cases introduced by the difference in the variable
domains. In the interest of space, we cannot treat relnext
here but refer the interested reader to the publicly available
source code (see next section).

VI. EXPERIMENTAL EVALUATION

This section evaluates the ideas proposed in this paper.
The evaluation is performed based on the BEEM database
of models [26]. In Sec. VI-A, we study the impact of different
reduction rules on the size of the graphs at each iteration in state
space exploration. In Sec. VI-B, we evaluate the performance of
state space exploration using either BDDs or TBDDs. We use
LTSMIN to perform on-the-fly state space exploration, using
the FORCE algorithm for selecting a variable reordering [1]
and using the standard breadth-first-search strategy to explore
the state space. All experimental data and the scripts required to
reproduce them are available online via http://fmv.jku.at/tbdd.

A. Impact of Reduction Rules
We modify LTSMIN to write the BDDs of the explored

states and of all transition relations to disk at every iteration of
the on-the-fly state space exploration. We compute the number
of nodes required for the explored states and the number of
nodes required for all transition relations, when removing no
redundant nodes, when removing nodes according to the five
rules from Sec. II-C (without using complemented edges) and
when using the proposed TBDD type.

Since computing these sizes costs a lot of time, we only
perform this analysis on a subset of the full benchmark set. Our
hypothesis in Sec. III was that, as the state space exploration
progresses, the contribution from the (k, k) ⇒ k rule would
increase. We found that this is not the case for the models
that we checked. See the top row of Fig. 6 for a representative
model (at.1). The top lines in the graphs represent rules 3
and 5 and the case where no rule is applied. They appear to
have no significant effect. The bottom lines represent rule 2
(ZBDD, dots) and the TBDD representation (long dashes).
These rules have the most significant effect. The middle lines
represent rule 1 (BDD, dashes) and rule 4 (dots and dashes)
Rules 1 and 4 have a greater impact for the transition relation
than for the set of explored states.

B. On-the-fly State Space Exploration

We look at the performance of on-the-fly state space
exploration on the BEEM benchmark database, using either
standard BDDs (16 bits per state variable) or TBDDs. We
set the timeout for the experiments to 1200 seconds, i.e., 20
minutes. The experiments are run on a 48-core AMD Opteron
machine. We set the number of cores to either 1 or 48, so we
can also measure the effect of the parallelism of Sylvan.

For 219 models, no experiment timed out. For these models,
the results are summarized by the following table, where the
time is the sum of all models, and the number of nodes is the
size of the BDD that represents the set of visited states.

BDD TBDD

Time 1 core 24504 sec. 6453 sec.
Time 48 cores 14672 sec. 1075 sec.
#Nodes in the visited set 59,503,837 5,922,973

See further Fig. 6 for a comparison of the time and the
number of nodes for the models, using just 1 worker. We
see that TBDDs are approximately an order of magnitude
faster and smaller. Finally, the highest parallel speedup we
obtain when using TBDDs was 32.4× (with 48 cores) for the
model rushhour.3.

VII. CONCLUSIONS

BDDs and ZBDDs offer compact representations of Boolean
functions which is crucial for many applications. Due to the
different reduction rules, their effectiveness strongly depends
on the type of functions. The proposed TBDDs simultaneously
apply reduction rules of both types which in general results in
smaller graphs for a broader set of applications.

We studied the benefits of TBDDs for on-the-fly state space
exploration using the BEEM database of models. We obtained a
significant improvement compared to ordinary BDDs, although
our analysis showed that the contribution of the reduction
rule of BDDs was less than expected. Our implementation of
TBDDs also resulted in a similarly high parallel scalability as
has been obtained for BDDs in the past.

We expect that improvements and tuning of the TBDD
operations may result in a better performance, especially
considering that these operations are complex and therefore
give various opportunities to be optimized. Furthermore, we
believe that looking at other benchmark models and application
areas would be insightful. Tagged binary decision diagrams
can also be applied using other reduction rules, like those
mentioned in this paper, or rules involving multiple nodes, or
simply by exchanging the order of the rules that we applied here.
Furthermore, implementation of other operations like dynamic
variable reordering may be challenging, as the interaction
between the reduction rules of TBDDs and the popular sifting
algorithm is probably complex. These are several ideas that
may inspire future research on TBDDs.
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Fig. 6: Results of experimental evaluation. The first row shows the evolution of graph sizes of the set of explored states (left)
and the transition relations (right) per iteration (see Sec. VI-A). The second row compares BDDs with TBDDs.
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