
Property Directed Reachability with
Word-Level Abstraction
Yen-Sheng Ho, Alan Mishchenko, Robert Brayton

University of California, Berkeley
{ysho, alanmi, brayton}@eecs.berkeley.edu

Abstract—SAT-based Property Directed Reachability (PDR)
has become the key algorithmic development for unbounded
model checking of gate-level sequential circuits, but it can be
inefficient when applied to word-level problems with heavy arith-
metic logic. To address this issue, word-level abstraction is often
performed by replacing a whole set of signals with unconstrained
new primary inputs. This paper introduces PDR-WLA, a word-
level abstraction-refinement algorithm integrated into a modified
PDR implementation. The algorithm uses efficient refinement and
re-uses reachability information across iterations of refinement.
PDR-WLA was implemented in ABC and evaluated on a large
set of industrial Verilog designs. Experimental results show
significant speedups on hard problems compared to the original
PDR and to a naive word-level abstraction-refinement method.

I. INTRODUCTION

Unbounded model checking (UMC) on a Register-Transfer-
Level (RTL) circuit is hard but has important applications in
the IC design industry:

1) Sequential equivalence checking (SEC). An RTL circuit
is sequentially synthesized by retiming, clock-gating,
pipelining etc., and UMC is required for proving the
correctness of the synthesis.

2) Property checking. UMC is used to prove that a circuit
always satisfies a set of given properties.

UMC is challenging at the bit level, and even more so at
the word level, where complex arithmetic operators, such as
multipliers, adders, and variable shifters, are involved.

IC3 [3] or Property Directed Reachability (PDR) [8] is
considered the best algorithm for bit-level UMC. Abstraction
has been a key development and is widely used. Different
methods of abstraction include the following. Word-level ab-
straction [12], [1], [5], [4], [14], [11] can be effective by
abstracting away heavy arithmetic logic. Localization abstrac-
tion [19] is a method where gates or signals are replaced
by new unconstrained primary inputs. Counterexample guided
abstraction and refinement (CEGAR) [7] is a framework for
iterating abstraction and refinement, where refinement is based
on the analysis of spurious counterexamples.

We propose PDR-WLA, an efficient CEGAR-based word-
level localization algorithm integrated with PDR. Given a
word-level design, PDR-WLA starts with the extreme abstrac-
tion with all hard signals (e.g., outputs of multipliers, adders,
etc.) abstracted (i.e. replaced by new primary inputs). Next, the
resulting word-level abstraction is bit-blasted and given to a
modified PDR algorithm. If a counterexample (CEX) is found,
PDR-WLA simulates it on the original design to check if it is

real. If so, PDR-WLA reports it and terminates; otherwise, the
CEX is spurious and is used to refine the current abstraction.
Then a new iteration begins with the refined abstraction.

The main contributions embodied in PDR-WLA are that it
• integrates word-level abstraction with PDR efficiently,
• uses a new refinement strategy that takes advantage of

structural and proof-based analysis of spurious coun-
terexamples, and

• re-uses reachability information (reachability clauses) de-
rived in previous iterations.

PDR-WLA is implemented and available in the public
verification tool ABC [6] (command %pdra). It was evaluated
on a set of 195 industrial Verilog RTL benchmarks. PDR-
WLA is capable of solving 18 hard problems not solved by
PDR. The results also show that 1) reusing previously derived
reachability clauses improves performance significantly and 2)
the new refinement strategy is the most effective compared to
several others proposed and tested.

This paper starts with background material in Section II.
PDR-WLA is presented in Section III. Various refinement
strategies are given in Section IV. Related work is discussed
in Section V. Experiments are presented in Section VI. Con-
clusions and future work are discussed in Section VII.

II. PRELIMINARIES

A. The UMC problem

The input is a word-level circuit given in structural Verilog
containing bit-vector (BV) signals, including primary inputs
(PIs), primary outputs (POs), flip flops (FFs), and internal
signals. Flip flops have reset values as initial states1. A design
is modeled as a finite state machine (FSM).

Definition 1. An FSM is a tuple M = (I,O, S, Init, T) where
I is the set of PIs, O is the set of POs, S is the set of FFs, Init
is the set of initial states, and T is the set of (deterministic)
transition relations where T ⊆ I × S × S. If (i, s, s′) ∈ T ,
there exists a transition from s to s′ under i.

The input word-level circuit is assumed to contain a single
FSM and a single output, out, representing a property to be
checked. If the problem is to prove equivalence between two
designs, it is assumed that a miter circuit, M , has been created
by merging all PIs and merging FFs if their correspondences
are known. The miter’s output, out, is a Boolean signal, which

1Reset values are either constants or free variables (unknown value X).

is the OR of the pairwise XORs of the corresponding outputs
of the two designs. Thus out = 1 if the two designs are
different. Similarly for property checking, out is the output
of a monitor, and out = 1 if the property fails. In terms of
linear temporal logic (LTL), the UMC problem is formulated
as M |= G¬out, i.e. out is never 1 if the property holds.

A UMC solver either reports a counterexample (CEX)
that falsifies the property or produces an inductive invariant
proving that the property holds globally.

Definition 2. A counterexample (CEX) is a sequence of PI
assignments driving the design from an initial state into a state
falsifying the property.

Definition 3. An inductive invariant (Inv) proving a property
P (s) is a predicate function satisfying the properties below.

1) Init(s) =⇒ Inv(s)
2) Inv(s) ∧ T (i, s, s′) =⇒ Inv(s′)
3) Inv(s) =⇒ P (s)

B. Property Directed Reachability

It is assumed that the reader is familiar with the basic ideas
underlying the PDR [8]. Algorithm 1 outlines a high-level view
of PDR. It maintains a list of sets of clauses, called the PDR
trace: Ω = (R0, R1, . . . , RN). Every Rj is a set of clauses that
over-approximates the set of states reachable from the initial
states within j steps. These clauses in a PDR trace are called
reachability clauses.

Definition 4. Given an FSM, M = (I,O, S, Init, T), and a
property P , a PDR trace is a sequence of predicate functions,
Ω = (R0, R1, . . . , RN), such that

1) R0(s) = Init(s)
2) Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N .
3) Rj(s) ∧ T (i, s, s′) =⇒ Rj+1(s′) for 0 ≤ j < N .
4) Rj(s) =⇒ P (s) for 0 ≤ j < N . 2

Algorithm 1 PDR

Input: GM . GM : the bit-level input circuit
Output: status ∈ { SAT, UNSAT }

1: Ω ← {Init} . Ω: the PDR trace
2: k ← 0 . k: the PDR depth
3: while true do
4: Ω, cex ← RECBLOCKCUBE(GM , Ω, k)
5: if cex 6= ∅ then
6: return SAT . Found a real CEX
7: k ← k + 1
8: Ω ← Ω ∪ {>} . Open a new frame
9: Ω ← PROPAGATEBLOCKEDCUBES(GM , Ω)

10: if Ω contains a fixed point then
11: return UNSAT

PDR starts with the trace Ω with only one element R0 =
Init. It then tries to strengthen the trace by recursively

2RN (s) does not necessarily imply P (s), i.e. RN (s) can contain bad
states. Recursive blocking (line 4) tries to remove bad states from RN (s).

*+

x

* +

y

!= !=

&

out

2

(a) The original circuit with four
arithmetic operators, where x
and y are primary inputs, 2 is a
constant, ! = is the complement
of a comparator, & is a bit-wise
AND, and out is the negation of
the property.

x y

!= !=

&

out

a b c d

(b) An abstraction derived from
the original by replacing the 4
arithmetic operators with 4 new
primary inputs, a, b, c, and d.

Fig. 1: A combinational circuit illustrating word-level abstrac-
tion. out ≡ 0, UNSAT, since 2×x ≡ x+x, which forces out
to be constant 0.

blocking bad cubes3 (line 4). If a bad cube intersects with
the initial states, then a CEX is returned. Otherwise, the last
element Rk of the trace now satisfies the property P . PDR
then adds a new element > (empty set of clauses) to Ω, and
tries to propagate clauses (using induction) from R1 to Rk

(line 9). If a fixed point (Rj = Rj+1) is found, the problem is
declared UNSAT and the inductive invariant (Rj) is returned.

The details of procedures RECBLOCKCUBE and PROPA-
GATEBLOCKEDCUBES can be found in [8].

C. Word-level abstraction

In this paper, localization abstraction [19] is used. Given
a word-level circuit and a set of target signals (e.g., outputs
of arithmetic operators), an abstraction is created by replacing
the target signals with free variables called pseudo PIs (PPIs).
Localization is not necessarily restricted to flip flops; any
signal can be abstracted, similar to GLA [16].

Example 1. Consider the circuits in Figure 1. The PO, out,
in Figure 1a is constant-0, since both 2 × x ≡ x + x
and 2 × y ≡ y + y are true. Figure 1b is the result of
abstracting all 4 arithmetic operators by replacing their outputs
with PPIs. Note that while the example is combinational for
illustration purposes, the abstraction scheme applies generally
to sequential circuits and UMC problems.

Definition 5. Given an original circuit M and an abstraction
A of M , a CEX of A is real if it can falsify the property on
M (make out = 1). Otherwise, it is spurious.

3A cube of states containing one where the property fails (a bad state).

D. Simple CEGAR (S-CEGAR)

Algorithm 2 (S-CEGAR) is an example of a simple inte-
gration of CEGAR and PDR at the word level. The algorithm
starts by abstracting all signals in the set S (e.g., outputs of all
specified arithmetic operators). Next, an abstraction-refinement
loop is entered where each iteration begins by creating a word-
level abstraction based on the current set B, the set of signals
to be abstracted away. The abstraction is then bit-blasted and
solved by a bit-level PDR. If the solver returns UNSAT, the
property is proved. Otherwise a CEX to the abstraction, cex,
exists and is then simulated on the original circuit (WM) to
check if it is real. If yes, the property is falsified and cex is
returned; otherwise cex is analyzed to derive a set of signals
(∆B) that, if un-abstracted, can block cex. A new abstraction,
with ∆B un-abstracted, is then created and a new iteration
begins.

Algorithm 2 Simple CEGAR (S-CEGAR)

Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }

1: Iterations ← 1
2: B ← S . B: the set of abstracted signals
3: while true do
4: WA ← CREATEABSTRACTION(WM , B)
5: GA ← BITBLAST(WA)
6: cex ← PDR(GA)
7: if cex 6= ∅ then
8: if ISREALCEX(WM , cex) then
9: return SAT

10: else
11: ∆B ← REFINE(WM , GA, B, cex)
12: B ← B\∆B
13: Iterations ← Iterations+ 1

14: else
15: return UNSAT

In each iteration of S-CEGAR, a new PDR solver is used
and reachability clauses are recomputed from scratch. This is
inefficient when the algorithm needs many iterations to find a
final abstraction, i.e. one that proves the property.

III. PDR WITH WORD-LEVEL ABSTRACTION

A. The algorithm

PDR-WLA uses an important insight; PDR traces can be
re-used between iterations if abstractions are monotone. The
idea is similar to previous work of PDR with abstraction [18],
[10], extending it to the word level.

Similar to PDR, PDR-WLA starts with the trace Ω con-
taining only R0 = Init. One difference is that PDR-WLA
works on an abstraction instead of the original circuit. Similar
to S-CEGAR, it begins by abstracting all targeted signals S,
resulting in a word-level abstraction (WA), which is then bit-
blasted into a circuit (GA). As with PDR, PDR-WLA tries
to recursively block bad cubes at depth k with the abstract

model GA and the trace Ω. If a bad cube intersects with the
initial states, then a CEX, cex, is returned and checked on
the original circuit (WM). If cex is also a CEX on WM , the
property is falsified; otherwise cex is used to compute a subset
(∆B) of B to refine the current abstraction (∆B will be un-
abstracted). Note that a nonempty ∆B exists because cex can
always be blocked by un-abstracting some signals. Set B is
updated by removing ∆B. A new abstraction is derived for the
next iteration of recursive blocking. If PDR-WLA successfully
blocks bad cubes at the current depth k, then it increments the
depth by one and adds a new element (>) to Ω. It then tries to
propagate the clauses in Ω using induction. If a fixed point is
found, then the property holds; otherwise, blocking bad cubes
at the new depth will be tried (line 10).

Note that PDR-WLA can be viewed as a PDR algorithm
with on-the-fly word-level abstraction. The same trace Ω is re-
used throughout the computation, even though the current ab-
straction is continuously refined. Thus, important reachability
information derived in previous iterations is re-used, resulting
in a significant speedup over S-CEGAR.

Algorithm 3 PDR with Word-Level Abstraction (PDR-WLA)

Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }

1: Iterations ← 1
2: Ω ← {Init} . Ω: the PDR trace
3: k ← 0 . k: the PDR depth
4: B ← S . B: the set of abstracted signals
5: WA ← CREATEABSTRACTION(WM , B)
6: . WA: the word-level abstraction
7: GA ← BITBLAST(WA)
8: while true do
9: while true do

10: Ω, cex ← RECBLOCKCUBE(GA, Ω, k)
11: if cex 6= ∅ then
12: if ISREALCEX(WM , cex) then
13: return SAT
14: else
15: ∆B ← REFINE(GA, B, cex)
16: B ← B\∆B . Un-abstract some signals
17: WA ← CREATEABSTRACTION(WM , B)
18: GA ← BITBLAST(WA)
19: Iterations ← Iterations+ 1

20: else
21: break
22: k ← k + 1
23: Ω ← Ω ∪ {>} . Open a new frame
24: Ω ← PROPAGATEBLOCKEDCUBES(GA, Ω)
25: if Ω contains a fixed point then
26: return UNSAT

B. Analysis of PDR-WLA

PDR-WLA represents a general framework for word-level
abstraction. It is complementary to other abstraction tech-

niques. The only requirement for soundness is that the derived
sequence of abstractions (line 17) is monotone:

Definition 6. Let {Aj} be a sequence of abstractions, let {Tj}
be their transition relations, and let {Initj} be their initial
states. {Aj} is monotone if Tj+1(i, s, s′) =⇒ Tj(i, s, s

′)
and Initj+1(s) =⇒ Initj(s).

Theorem 1. Let M and A be FSMs where TM =⇒ TA
and InitM =⇒ InitA. Given a property P , if Ω =
(R0, R1, . . . , RN) is a PDR trace of A with P , then Ω′ =
(InitM , R1, . . . , RN) is a PDR trace of M with P .

Proof. Since Ω is a PDR trace of A with P , we have

Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N

Rj(s) ∧ TA(i, s, s′) =⇒ Rj+1(s′) for 0 ≤ j < N

Rj(s) =⇒ P (s) for 0 ≤ j < N

Note that Ω′ is the same as Ω, except that R0 is replaced by
InitM . Since InitM =⇒ R0 and TM =⇒ TA, we have

InitM (s) =⇒ R1(s)

InitM (s) ∧ TM (i, s, s′) =⇒ R1(s′)

Rj(s) ∧ TM (i, s, s′) =⇒ Rj+1(s′) for 1 ≤ j < N

InitM (s) =⇒ P (s)

Therefore by Definition 4, Ω′ is a PDR trace of M with P .

Theorem 2. Algorithm 3 is sound and complete.

Proof. Soundness. It is sound to start a new iteration with
the previous trace (line 10) because each iteration makes the
current abstraction tighter by removing signals from B. Note
that R0 is the initial states of the original circuit (WM) and
is shared by all abstractions. Similarly any state variable in
clauses from a previous abstraction must remain in the next
abstraction because abstractions are monotone. Thus, a trace
can be safely copied over to the next abstraction (Theorem 1).
Finally, Algorithm 3 is sound because it returns UNSAT only
if it finds an inductive invariant proving the property.

Completeness. The algorithm returns SAT only if a CEX is
real. Convergence follows because, in each iteration, the size
of B decreases by at least one (otherwise the CEX must be
real). The number of iterations is bounded by |S|.

IV. REFINEMENTS

Given a spurious CEX, cex, the goal of refinement is to
identify a subset of signals ∆B in B, such that if ∆B is
removed from B, then cex is blocked in the next iteration.
We say that ∆B is un-abstracted.

A. Simulation-based refinement (SBR)

A simple refinement strategy is to simulate cex on the
original circuit (WM) and compare the PPI values (in cex)
with their counterparts in WM . If the values of a signal s do
not match, then s is a refinement candidate, i.e. a candidate
for un-abstraction. If all such candidates are un-abstracted,
the property must hold; thus cex is blocked. However, this

approach often results in too many candidates being un-
abstracted, and thus is not a good strategy.

A more advanced way is to use a minimized CEX [15],
in which some inputs are assigned to X (don’t care) while
the minimized CEX still falsifies the property using ternary
simulation. Those remaining concrete assignments are called
care-set signals, meaning that, if any assignment in the set is
changed, the output would be changed also. This provides a
set of good candidates for refinement. If all signals in the care
set are un-abstracted, then cex is very likely to be blocked4.

B. Limitations of simulation-based refinement

While simulation-based methods are often good enough in
many applications [16], [10], frequently they do not find a
minimal set to un-abstract.

Example 2. Consider the original circuit and its abstraction in
Figure 1. Suppose a CEX to the abstraction is found (Fig. 1b),
where the assignments of PIs and PPIs are

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

For this example, the care set C returned by counterexample
minimization would be all PPIs, C = {a, b, c, d}. If any PPI
is assigned an X , the PO would become X as well; thus all
PPIs are in the care set. However, it is clear that the set is
not minimum because only {a, b} or {c, d} needs to be un-
abstracted to get a final abstraction that results in UNSAT.

Therefore, a more effective proof-based strategy for refine-
ment is proposed.

C. Proof-based refinement (PBR)

The proposed refinement is an enhanced version of the one
used in UFAR [11]. The procedure is presented, followed by
an analysis and comparison with other proof-based methods
in the next subsection.

The main idea is that if cex is spurious, then if the original
circuit (M) is simulated with cex, the property holds in all
time frames. This implies that the BMC Formula (1) below is
UNSAT, where it is the input i at time t, st is the state variable
at time t, k is the depth of cex, β(·) denotes the assignment
function of cex, and out is the output signal which, in general,
can depend on the input i and the current state.

InitM (s) ∧
k−1∧
t=0

TM (it, st, st+1) ∧
k∨

t=0

out(it, st)

∧
k∧

t=0

(it = β(it))

(1)

Next, multiplexers are introduced to select between the con-
crete version and the abstracted version of a signal. If assump-
tions are made such that all the concrete versions are selected
initially, then the resulting BMC formula is still UNSAT and

4It is possible that each care-set signal is fed by a tree, without overlaps
with the trees of other care-set signals. Even if all the care-set signals are
un-abstracted, this will not provide enough constraints, and therefore cex is
not blocked.

a modern SAT solver, such as MiniSat [9], returns the final
conflict clause. This contains a subset of the assumptions
sufficient for UNSAT. This is an efficient variation of finding
an unsat core, and the subset returned is a candidate for ∆B.

The procedure operates in four steps:
1) Starting with the original circuit (WM), for each signal s

in B, introduce two new PIs, sel and ppi, where sel is a
Boolean signal and ppi is a bit-vector signal consistent5

with the signal s. Replace s with s′ = ITE(sel, s, ppi)
where ITE is the if-then-else operator. Depending on
the value of sel, either the concrete signal (s) or the
abstracted one (ppi) becomes the new signal s′.

2) Denote the circuit created in Step 1 as N and unroll it
with the values of cex plugged in, and keep sel and ppi
as the remaining PIs. The cex values plugged in are initial
states and PIs at each time frame.

3) Solve the BMC query (2) below, which is guaranteed to
be UNSAT. Note that β(·) is the assignment function of
cex, pit is the original PIs at time t, Xt is the set of
sel inputs at time t, and xtn is the sel input for the n-th
replaced signal at time t. By propagating xtn = 1 for
all t and n, Query (2) is reduced to (1) by construction
(sel = 1 means that the concrete version is chosen).

InitN (s) ∧
k−1∧
t=0

TN (it, st, st+1) ∧
k∨

t=0

out(it, st)

∧
k∧

t=0

(pit = β(pit)) ∧
k∧

t=0

|Xt|∧
n=1

xtn

(2)

4) Derive a subset ∆X of X using the assumption interface
of a modern SAT solver, and determine ∆B from ∆X6.

This procedure is different from conventional proof-based
methods. Details will be discussed in Section IV-D.

Example 3. Consider the circuits in Figure 1. Suppose a CEX
to the abstraction (Fig. 1b) is obtained, where the assignments
of PIs and PPIs are

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

Circuit (N), derived by introducing ITEs for each PPI, is
shown in Figure 2. If all sel PIs {s1, s2, s3, s4} are 1, then the
circuit is reduced to the original. Next, PI values (x = 0, y =
0) are plugged in, and PPIs {a, b, c, d} are left unconstrained.
The SAT solver is called to determine if out can be 1. The
result must be UNSAT with the assumptions of the sel PIs
being all 1. In this case, the subset returned would be either
{s1, s2} or {s3, s4}, which is the minimum set needed. This
example demonstrates that PBR can pinpoint a precise set for
refinement while a simulation-based approach only gives a
rough approximation.

5Signals are consistent if they have the same widths and signedness.
6In our implementation, there is only one free variable xn associated with

the replaced signal, i.e. xn ≡ x0n ≡ x1n ≡ . . . ≡ xkn for 1 ≤ n ≤ |B|.
This way, we have |B| assumptions (instead of (k + 1)|B|) and the returned
∆X is exactly our candidate for ∆B.

*+

x

+

y

!= !=

&

out

2

*

1 0

a b c d

s1

1 0 1 0 1 0

s2 s3 s4

Fig. 2: Example for proof-based refinement, where x and y
are original PIs, a-d are pseudo PIs, s1-s4 are sel PIs. If the
assignments of x and y in cex are plugged in, and assumptions
are made that s1-s4 are all 1, then out is constant-0 (UNSAT).

D. Comparison of refinement strategies

Two additional proof-based refinement strategies, PBR-A
and PBR-B, are presented compared with SBR (Sec. IV-A)
and PBR (Sec. IV-C).

Given a spurious CEX, cex, there are at least two more ways
to formulate an UNSAT query that can be used for proof-based
refinements. β(·) is the assignment function of cex.

PBR-A. This considers Formula (3) below. The idea is that
if the values in cex are plugged into the abstraction TA, then
out must be 1 at some time frame t. Therefore, the formula
asserting that out is 0 for all time frames, with cex plugged
in, must be UNSAT. One can then compute the subset of PPIs
sufficient for UNSAT, deriving a refinement. Note that PBR-A
does not use the information of the original circuit and can be
considered as a proof-based version of SBR.

InitA(s) ∧
k−1∧
t=0

TA(it, st, st+1) ∧
k∧

t=0

¬out(it, st)

∧
k∧

t=0

(it = β(it))

(3)

PBR-B. This uses Formula (4) below. Let pit and ppit be
the original PIs and the PPIs at time t, respectively. Similar to
PBR (Formula 2), it takes the original circuit into account by
introducing MUXes selecting between PPIs and the original
signals, creating a circuit N . The only difference with PBR is
that PBR-B also plugs in the assignments of the PPIs in cex
into the formula.

InitN (s) ∧
k−1∧
t=0

TN (it, st, st+1) ∧
k∨

t=0

out(it, st)

∧
k∧

t=0

(pit = β(pit) ∧ ppit = β(ppit)) ∧
k∧

t=0

|Xt|∧
n=1

xtn

(4)

The four refinement strategies are compared using the two
examples below.

Example 4. Consider the circuits in Figure 1. Suppose a CEX
is obtained with the assignments of PIs and PPIs

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

SBR and PBR-A would refine all PPIs {a, b, c, d}. PBR-B
and PBR would refine only either {a, b} or {c, d} to obtain a
final abstraction. This shows that PBR can get a smaller final
abstraction by refining fewer PPIs compared to using SBR and
PBR-A.

Example 5. Consider slightly different circuits from those in
Figure 1: the AND gates (&) are now replaced by OR gates
(|) in both the original circuit and its abstraction. Suppose a
CEX is obtained with the assignments of PIs and PPIs

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 0).

SBR, PBR-A, and PBR-B all would refine {a, b}, which is
not a final abstraction, requiring another iteration. PBR would
refine all PPIs {a, b, c, d}, which is a final abstraction. This
shows that PBR is able to converge with less iterations than
the other three. The insight is that PBR refutes all spurious
CEXes under the same assignments of original PIs in cex,
while the others only refute CEXes with the same values of
both PIs and PPIs.

E. Proposed refinement (PBR and MFFC)

From previous analysis, PBR provides a good set of can-
didate signals that, if un-abstracted, would block CEXes.
However, we observed that in many cases, the signals in the
fanin cones of those candidate signals would appear in the next
iteration of refinement, implying that an additional structural
analysis can further improve the speed of convergence.

The main idea is to use the maximum fanout free cones
(MFFC) of those candidate signals. The MFFC of a signal s
is a subset of its fanin cone, where each path from a signal in
the MFFC to the POs passes through s, i.e. the MFFC of a
signal contains all the logic used exclusively by the signal. If
a signal is abstracted, its MFFC would be abstracted. On the
other hand, if a signal is un-abstracted, its MFFC is better un-
abstracted also; otherwise, additional iterations may be needed.

In our experience, un-abstracting all candidate signals as
well as those in their MFFCs often converges faster, i.e.
reaching a final abstracion after fewer iterations. Thus, the
proposed refinement operates in three steps:

1) Compute ∆BPBR, a set of candidate signals, using PBR.
2) Compute ∆BMFFC , the set of signals in the intersections

of the MFFCs of ∆BPBR and B.
3) Derive set ∆B: ∆B = ∆BPBR ∪∆BMFFC .

V. RELATED WORK

A. Word-level abstraction and model checking

Most previous work is bounded in that it requires unrolling
a circuit to a certain depth k, and then they use SMT

solvers [12], [1], [5], [4], [13]. These methods rely on Bounded
Model Checking (BMC) [2] and/or k-induction [17]. This
becomes inefficient when deep unrolling is needed. In prac-
tice, BMC- and induction- based approaches are efficient in
finding CEXes, but often incapable of producing an inductive
invariant, which is required for UMC problems. PDR-WLA
addresses unbounded problems and does not require unrolling.

Welp and Kuehlmann proposed a generalization of PDR
to the theory of quantifier free formulas over bit-vectors
(QF BV) [21], [20]. Hybrid simulation and mixed types
of atomic reasoning units are used for inductive and CEX
generalization. However, they do not re-use PDR traces nor
do they perform word-level abstractions.

The closest work to PDR-WLA is AVERROES [14], a
word-level algorithm integrating CEGAR and PDR. It ab-
stracts wide data-paths into uninterpreted predicates, constants,
terms, and functions, and solves the abstraction with an SMT-
based PDR (where SMT solvers are used instead of SAT). The
main differences between PDR-WLA and AVERROES are
• PDR-WLA re-uses PDR traces derived in previous itera-

tions; AVERROES does not.
• PDR-WLA uses PBR and MFFC as the main refinement

strategy; AVERROES uses strategies similar to SBR,
PBR-A, and PBR-B.

UFAR [11] is a word-level algorithm that combines CEGAR
and bit-level model checking. It abstracts arithmetic operators
with black boxes as well as uninterpreted function constraints,
and solves the abstraction with a portfolio of tools, including
BMC and PDR. However, UFAR does not reuse PDR traces
nor does it perform MFFC refinement.

B. PDR with abstraction

Vizel et al. proposed L-IC3 [18], a bit-level IC3 with
localization abstraction, where state variables are the tar-
geted signals and different abstractions are used in different
time frames. Fan et al. showed that gate-level abstraction
(GLA) [16] can be integrated with PDR [10]. However, both
approaches consider only bit-level problems. At the word-
level, abstracting only state variables may result in aggressive
refinement where the entire logic cone of a flip flop would be
refined, limiting scalability. On the other hand, GLA cannot be
applied directly to the word level. In particular, it mainly uses
SBR without considering MFFC, which could be ineffective
as discussed in Section IV-D.

In contrast, PDR-WLA considers not only flip flops, but
any type of signals, resulting in a finer-grained abstraction and
refinement. Also, it uses specific procedures, PBR and MFFC,
to find a final abstraction faster than the bit-level GLA.

VI. EXPERIMENTAL RESULTS

Experiments were done to evaluate PDR-WLA using dif-
ferent settings. PDR-WLA is part of the public verification
tool, ABC [6] (command %pdra), which can parse word-
level Verilog and transform the resulting design into a bit-level
circuit by bit-blasting. For comparison, S-CEGAR (Sec. II-D,
Algorithm 2) was implemented in ABC (command %abs).

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000

S
-C

E
G

A
R

 (
T

im
e

 in
 s

ec
.)

PDR-WLA (Time in sec.)

(a) Running with the default set-
tings, PDR-WLA outperforms S-
CEGAR in many cases but not
all of them.

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000

S
-C

E
G

A
R

 (
T

im
e

 in
 s

ec
.)

PDR-WLA with additional SAT check
(Time in sec.)

(b) With appropriate additional
SAT checking, PDR-WLA is
able to outperform S-CEGAR in
all but one case.

Fig. 3: Comparison of PDR-WLA (%pdra) and S-CEGAR
(%abs). This shows the effectiveness of re-using PDR traces.
Note that PDR-WLA and S-CEGAR would be the same if
no PDR traces can be re-used. Therefore, only 29 cases with
non-zero re-used PDR traces are shown.

The benchmarks used for evaluating PDR-WLA were a set
of 195 industrial Verilog RTL designs. Large arithmetic oper-
ators and multiplexers were the signals targeted for possible
abstraction (set S). A workstation with Intel Xeon E5504
CPUs clocked at 2.0 GHz with 24 GB of RAM was used.
A time-out of 3600 seconds was used on all experiments.

First, we compare PDR-WLA to the original PDR [8], in
which the input Verilog circuit is immediately bit-blasted.
Given a 1-hour time-out, PDR-WLA solves 22 fewer test-
cases than PDR (89 vs. 111), but PDR-WLA manages to solve
18 hard cases not solved by PDR. It is likely that many of
the 22 cases can’t be abstracted, so trying such is a waste
of time. Together they can solve 129 out of 195 benchmarks.
Thus PDR-WLA complements PDR and would work well in
a portfolio-based word-level model checker like [11].

To demonstrate the importance of re-using PDR traces in
PDR-WLA, it was compared with S-CEGAR, which uses a
fresh PDR solver in each iteration and does not preserve the
reachability clauses across PDR runs. The results are shown
in Figure 3, where the x and y axes represent the solving
times of PDR-WLA and S-CEGAR, respectively. In Figure 3a,
PDR-WLA outperforms S-CEGAR in all but eight cases.
After investigation, it turns out that after several iterations
of refinement, an abstraction can become combinationally
UNSAT, implying that the circuit output can be proved UNSAT
with all FFs un-initialized. In those cases, PDR-WLA would
work hard to get a non-trivial inductive invariant while S-
CEGAR proves that the problem is UNSAT after just one SAT
call. To address this problem, PDR-WLA was enhanced to
always check if the problem is combinationally UNSAT when
an iteration begins. The results are shown in Figure 3b, where
PDR-WLA beats S-CEGAR in all but one case.

20 out of the 195 designs were chosen in Table I to give an
idea of details such as expected ranges of iterations needed,

clauses in PDR traces re-used, and the sizes of B (signals to
be abstracted way) in the final abstractions. All are UNSAT;
each is characterized by the number of hard signals.

Definition 7. A hard signal is the output of

1) an adder, subtractor with width of at least 8, or
2) a multiplier, divider, modulus with width of at least 4, or
3) a multiplexer with width of at least 8.

The initial set of targeted signals (S) is chosen from hard
signals with an upper bound of 50 for each of the three
categories (e.g., there can be at most 50 adders in S). For each
test-case, we show the runtime of six solvers: a) one PDR,
b) one S-CEGAR (%abs), and c) four PDR-WLA versions
(%pdra) with different refinement strategies (Sec. IV).

Observations from Table I are given below.
1) PDR-WLA vs. PDR. PDR-WLA generally is more

efficient when proving hard problems for which small
abstractions can be derived. On the other hand, if a
problem cannot be abstracted well (e.g., case 20), PDR
performs better.

2) S-CEGAR vs. PDR-WLA. An important factor in the
comparison is the number of re-used clauses in all previ-
ous PDR traces. If the number is high, a high speedup in
PDR-WLA is usually observed. Case 20 is an exception
to this, where the re-use number is non-trivial but PDR-
WLA is still slower. The reason is that the design
becomes combinationally UNSAT after 3 iterations. This
problem can be fixed by additional SAT calls as shown
in Fig. 3. Note that there can be 0 re-used clauses (e.g.,
cases 16-19), since all refinements occur at k = 0 and no
bad states are blocked at k = 1. If the trace Ω contains
only R0 = Init, no clause can be re-used in the next
iteration.

3) SBR (S2) vs. PBR (S5). PBR uses more iterations and
derives smaller final abstractions (large |B|) in most cases,
implying that PBR leads to more fine-grained and focused
refinements.

4) PBR-B (S3) vs. PBR (S5). PBR uses less iterations
to find a final abstraction, while PBR-B takes more
iterations, which can be avoided by a proper analysis (see
Example 5). PBR-B can derive a small final abstraction,
but large numbers of iterations can cause poor perfor-
mance. Note: comparison with PBR-A was not done due
to its similarity to SBR.

5) Without MFFC (S4) vs. with MFFC (S5). MFFC can
be crucial in preventing unnecessary refinement iterations.
This is critical in cases 12, 13, 16, 18, and 19.

VII. CONCLUSIONS AND FUTURE WORK

PDR-WLA efficiently integrates PDR with word-level ab-
straction. It re-uses PDR traces, or reachability clauses, derived
in previous iterations of refinement. An effective refinement
strategy, PBR with MFFC, was developed which was shown
capable of deriving small final abstractions using fewer itera-
tions. PDR-WLA was implemented in the public verification

TABLE I: Detailed experimental results for 20 unsatisfiable word-level test-cases. #HardSignals is the number of hard signals
(Definition 7). |S| and |B| are sizes of the set of the initial targeted signals (S) and the set of signals to be abstracted away
for each iteration (B) in Algorithm 3. #ReusedClauses is the number of clauses in PDR traces re-used by PDR-WLA. The
number is 0 if all refinements occur at k = 0. The details of SBR, MFFC, PBR, and PBR-B can be found in Section IV.

pdr
%abs (S1)

SBR
+MFFC

%pdra (S2)
SBR

+MFFC

%pdra (S3)
PBR-B
+MFFC

%pdra (S4)
PBR

%pdra (S5)
PBR

+MFFC
S1 S2 S3 S4 S5 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 1252 100 479.32 170.50 196.46 369.95 145.23 164.67 2 2 3 4 4 11 110 181 181 88 88 98 92 92
2 1437 100 1759.97 3253.29 956.76 931.43 914.51 4 4 11 4 4 7438 8129 1493 1493 79 79 81 81 81
3 1437 100 1201.74 653.70 326.80 308.24 306.83 335.50 2 2 3 3 3 17 100 155 155 87 87 97 94 94
4 1437 100 1800.60 1529.84 1299.36 583.27 597.26 4 5 11 5 5 4981 11061 1732 1732 82 79 82 77 77
5 1437 100 931.73 753.11 401.78 272.46 169.87 170.91 2 2 3 3 3 19 84 114 114 87 87 96 90 90
6 1437 100 2531.39 2799.57 1128.25 672.48 686.62 4 4 11 6 6 3661 6804 2694 2694 78 78 81 78 78
7 1437 100 1383.61 2521.83 862.04 925.89 410.96 415.29 5 4 11 6 6 2080 7241 3317 3317 78 78 85 79 79
8 1252 100 925.41 1213.75 538.48 472.20 225.96 227.98 4 4 11 6 6 2518 10122 3889 3889 78 78 83 79 79
9 1437 100 1984.69 949.32 2573.81 387.51 366.87 4 4 8 5 5 2304 9868 2198 2198 80 79 82 77 77

10 1437 100 850.77 391.41 302.57 766.21 242.32 225.09 2 2 5 5 5 113 625 693 693 90 90 95 94 94
11 1437 100 1151.91 2060.92 896.89 958.62 372.40 349.45 4 4 10 5 5 2456 7017 1776 1776 78 78 80 79 79
12 133 101 13.61 675.78 10.38 4 4 17 17 10 0 2486 0 0 11 11 21 27 30
13 133 101 15.00 624.42 8.99 4 4 16 19 10 0 1713 0 0 15 15 21 26 30
14 94 75 763.06 197.19 295.68 112.98 6 6 8 11 6 135 228 551 139 3 3 2 21 3
15 95 75 1685.29 745.23 259.12 816.54 7 7 8 11 6 147 115 475 151 3 3 1 21 3
16 82 82 545.37 507.48 417.23 3 3 4 12 2 0 0 0 0 12 12 0 0 33
17 72 72 353.69 124.98 128.85 132.70 77.52 113.61 9 9 14 18 9 0 0 0 0 16 16 16 14 17
18 58 58 1684.21 1343.36 1237.67 1270.25 861.53 3 3 4 9 2 0 0 0 0 13 13 13 13 13
19 2150 103 1731.26 731.82 732.24 1544.19 789.06 3 3 18 18 12 0 0 0 0 76 76 77 74 77
20 1132 100 414.30 739.13 2138.99 3045.19 2191.30 1296.62 3 3 35 40 33 481 5510 10307 4520 13 13 17 15 9

#ReusedClauses |B| in the last iteration
#Hard
Signals

ID |S|

CPU Time (seconds) Iterations

system ABC and evaluated on industrial benchmarks. PDR-
WLA solves more hard problems and offers speedups, com-
pared to PDR and S-CEGAR.

Future work.
• Integrate BMC into Algorithm 3. The idea is that BMC

can help PDR-WLA find spurious CEXes faster. Early
prototypes suggest speedups in some benchmarks.

• Develop a good way to shrink abstractions. A shrinking
procedure can be useful as shown in GLA [16]. One of
the main challenges is that PDR traces cannot be re-used
if abstractions are no longer monotone.

• Enhance the refinement strategies with constraints. For
example, uninterpreted function constraints are known
to be effective for SEC problems; partial interpretation
constraints can also be useful. The challenge is to derive
and apply constraints efficiently and automatically.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by SRC contract 2710.001
“SAT-based methods for scalable synthesis and verification”
and NSF/NSA grant “Enhanced equivalence checking in
crypto-analytic applications”.

REFERENCES

[1] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal
verification tool for verilog designs. In Proc. of LPAR ’08.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without bdds. In Proc. of TACAS’99.

[3] A. R. Bradley. Sat-based model checking without unrolling. In Proc.
of VMCAI’11.

[4] B. A. Brady, R. E. Bryant, and S. A. Seshia. Learning conditional
abstractions. In Proc. of FMCAD’11.

[5] B. A. Brady, R. E. Bryant, S. A. Seshia, and J. W. O’Leary. ATLAS:
automatic term-level abstraction of RTL designs. In Proc. of MEM-
OCODE’10.

[6] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength
verification tool. In Proc. of CAV’10.

[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc. of CAV’00.

[8] N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In Proc. of FMCAD’11.

[9] N. Eén and N. Sörensson. An extensible sat-solver. In Proc. of SAT’03.
[10] K. Fan, M.-J. Yang, and C.-Y. Huang. Automatic abstraction refinement

of TR for PDR. In Proc. of ASP-DAC’16.
[11] Y.-S. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. Brayton. Efficient

uninterpreted function abstraction and refinement for word-level model
checking. In Proc. of FMCAD’16.

[12] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. Word level predicate
abstraction and refinement for verifying rtl verilog. In Proc. of DAC’05.

[13] D. Kroening and M. Purandare. Ebmc: The enhanced bounded model
checker. www.cprover.org/ebmc.

[14] S. Lee and K. A. Sakallah. Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction. In
Proc. of CAV’14.

[15] A. Mishchenko, N. Eén, and R. Brayton. A toolbox for counter-example
analysis and optimization. In Proc. of IWLS’13.

[16] A. Mishchenko, N. Eén, R. K. Brayton, J. Baumgartner, H. Mony, and
P. K. Nalla. GLA: Gate-level abstraction revisited. In Proc. of DATE’13.

[17] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties
using induction and a sat-solver. In Proc. of FMCAD’00.

[18] Y. Vizel, O. Grumberg, and S. Shoham. Lazy abstraction and sat-based
reachability in hardware model checking. In Proc. of FMCAD’12.

[19] D. Wang, P.-H. Jiang, J. Kukula, Y. Zhu, T. Ma, and R. Damiano. Formal
property verification by abstraction refinement with formal, simulation
and hybrid engines. In Prof. of DAC’01.

[20] T. Welp and A. Kuehlmann. Property directed reachability for qf bv
with mixed type atomic reasoning units. In Proc. of ASP-DAC’14.

[21] T. Welp and A. Kuehlmann. QF BV model checking with property
directed reachability. In Proc. of DATE’13.

