
THETA: a Framework for
Abstraction Refinement-Based Model Checking

Tamás Tóth†∗, Ákos Hajdu†‡, András Vörös†‡, Zoltán Micskei† and István Majzik†
†Budapest University of Technology and Economics,

Department of Measurement and Information Systems
‡MTA-BME Lendület Cyber-Physical Systems Research Group

Email: {totht, hajdua, vori, micskeiz, majzik}@mit.bme.hu

Abstract—In this paper, we present THETA, a configurable
model checking framework. The goal of the framework is to
support the design, execution and evaluation of abstraction
refinement-based reachability analysis algorithms for models
of different formalisms. It enables the definition of input for-
malisms, abstract domains, model interpreters, and strategies
for abstraction and refinement. Currently it contains front-end
support for transition systems, control flow automata and timed
automata. The built-in abstract domains include predicates,
explicit values, zones and their combinations, along with various
refinement strategies implemented for each. The configurability
of the framework allows the integration of several abstraction and
refinement methods, this way supporting the evaluation of their
advantages and shortcomings. We demonstrate the applicability
of the framework by use cases for the safety checking of PLC,
hardware, C programs and timed automata models.

I. INTRODUCTION

Nowadays there are several model checking tools imple-
menting algorithms for different formalisms. Most tools focus
on a specific algorithm and formalism to solve a particular
verification task efficiently. However, as new tasks emerge,
more generic tools are also needed since the appropriate
formalism and algorithm are usually not known initially.

THETA1 is a generic, modular and configurable model
checking framework, aiming to support the development and
evaluation of abstraction refinement-based algorithms for the
reachability analysis of different formalisms. The main distin-
guishing characteristic of THETA is its architecture that allows
the combination of various abstract domains, interpreters, and
strategies for abstraction and refinement, applied to models of
various formalisms with higher level language front-ends.

THETA primarily aims to support researchers by providing
a framework where new components and combinations can
easily be implemented, evaluated and compared. Concrete
tools were also built for the verification of transition systems,
control flow automata and timed automata, combining different
abstract domains (including predicates, explicit values and
zones) and refinement strategies (including interpolation and
unsat cores). Measurement results show strong dependency on
the models and analysis components, motivating the need for
a configurable framework. Furthermore, we also used THETA

∗This work was partially supported by Gedeon Richter’s Talentum Foun-
dation (Gyömrői út 19-21, 1103 Budapest, Hungary).

1http://theta.inf.mit.bme.hu

for education at our university, where students implemented
model checkers using components from the framework.

Related tools. Abstraction refinement is a widely used
approach for model checking software. Several tools, e.g.
SLAM [1], BLAST [2] and SATABS [3] are based on pred-
icate abstraction. Lazy abstraction tools like IMPACT [4] and
WOLVERINE [5] use Craig interpolation to compute abstrac-
tions over the predicate domain without expensive post-image
computation. Some tools apply abstraction refinement over
domains other than predicates: the tool DAGGER [6] supports
refinement for octagon and polyhedra domains, and the algo-
rithm VINTA [7] applies abstraction refinement over intervals.
Frameworks CPACHECKER [8] and UFO [9] support config-
urability by the definition of abstract domains, post operators
and refinement strategies, but only targeting software models.
The LTSMIN tool supports various formalisms through its
Partitioned Next-State Interface (PINS) [10]. However, its
main focus is on symbolic and parallel model checking algo-
rithms. Our THETA framework aims to combine the concept of
configurability with formalism independence: the core analysis
algorithms can be implemented independently of the input
formalisms, and relevant combinations of them can be selected
to verify models of several input formalisms.

In this paper we focus on the architecture of THETA
(Section II) and the use cases demonstrating the efficient use
of the tools that are derived from the framework (Section III).

II. ARCHITECTURE AND IMPLEMENTATION

Figure 1 shows the architecture of THETA. The main parts
of the framework are the formalism and language front-ends,
the analysis back-end and the SMT solver interface.

A. Formalisms and language front-ends

One goal of the THETA framework is to enable the analysis
of several formalisms. Formalisms are usually low level, math-
ematical representations based on first order logic expressions
and graph like structures. Each formalism supports higher level
languages that can be mapped to that particular formalism
by a language front-end (consisting of a specific parser and
possibly reductions for simplification of the model). Currently,
transition systems, control flow automata and timed automata
are the supported formalisms with front-ends for higher level
languages as AIGER, PLC, C programs and UPPAAL XTA

http://theta.inf.mit.bme.hu


Fig. 1. Architecture of the THETA framework.

models. Section III describes instantiations of the framework
for each of these formalisms.

B. Analysis back-end

The analysis back-end consists of three main parts: the
abstract domain, the interpreter and the abstraction refinement
loop for reachability analysis, with the interpreter being depen-
dent on the formalisms. The basis of the analysis is an abstract
domain with a set of abstract states, its bottom element and a
partial order over the states. The accuracy of a given analysis
is represented by an element of a set of precisions. Moreover,
the formalism for which the analysis is performed defines a set
of actions. Given a precision, an interpreter defines an abstract
operational semantics over the abstract domain and set of
actions. The abstract initial states are given by an init function.
For an action, the abstract successors of a state are computed
by a transfer function. An action function determines for an
abstract state a set of actions that are enabled from that state.

The reachability analysis is performed by the abstraction
refinement loop. As usual for lazy abstraction methods [4], its
central data structure is an abstract reachability tree (ART),
with nodes annotated with abstract states that represent over-
approximations of reachable states along a given path, and
edges annotated with actions. The ART is manipulated by
the two main components of the loop. Using an interpreter,
the abstractor constructs the ART w.r.t the current precision
and an abstraction strategy, i.e. when to expand a node or
cover it by an other node. If no target (i.e., unsafe) nodes
are encountered, the constructed ART serves as an evidence
for the safety of the input model. Otherwise, given a target

node, the refiner is invoked to analyze the abstract path for
feasibility. If the path is feasible, it is a counterexample to
safety. Otherwise, the refiner carries out its refinement strategy
to ensure that the analysis can continue without encountering
the same spurious counterexample again (refinement progress).
This can typically be achieved by pruning nodes and com-
puting a new analysis precision (overapproximation-driven
approach), or by uncovering nodes and strengthening labels
(underapproximation-driven approach), both of which includes
partial deconstruction of the ART.

Currently, built-in domains in THETA include predicates,
explicit values, zones and their combinations. There are also
interpreters provided for transition systems, control flow au-
tomata and timed automata. A default abstractor implementa-
tion is built-in that relies on the domain and the interpreter,
also parameterizable with a search strategy. Interpolation and
unsat core-based refinement strategies are provided for for-
malisms that are described with first order logic expressions.

C. SMT solver interface

The framework provides a general SMT solver interface that
supports incremental solving, unsat cores, and the generation
of binary and sequence interpolants. The solver interface can
be used by the analysis components. Typically, the partial order
over states and the transfer function are implemented in terms
of queries to an SMT solver. A refiner component may use
the interface to check feasibility of an abstract path and to
generate interpolants or unsat cores for abstraction refinement.
Currently, the interface is implemented by the SMT solver
Z3 [11], but it can easily be extended with new solvers.



D. Extending and instantiating the framework

The framework can easily be extended with new formalisms
and analyses. As an example, suppose that one wants to add
support for the reachability checking of Petri nets [12]. First,
the formalism has to be implemented, which is a collection
of simple classes representing places, transitions and arcs of
Petri nets. A possible language front-end could be the standard
PNML format for Petri nets.

In order to perform reachability checking, the analysis back-
end has to be extended as well. Petri nets can be described with
first order logic formulas, for example by representing places
(marked with tokens) with integer variables and transitions as
FOL expressions adding/subtracting from places. Therefore,
some abstract domains (such as predicates and explicit values)
along with abstraction and refinement strategies (such as inter-
polation) work out of the box if the interpreter is implemented.
An action of a Petri net can be implemented as the expression
describing a transition and the action function as the collection
of all transitions. The init and transfer functions also work out
of the box for the abstract domains mentioned before.

Instantiating an executable tool from the framework (see
examples in Section III) is also straightforward. A (command
line or GUI) application has to be written that takes the
parameters (path of the input model, domain, abstraction and
refinement strategies, etc.), parses the input model using the
language front-ends and instantiates and runs the analysis.

III. USE CASES

A. THETA for transition systems

The tool THETA-STS is an instantiation of the THETA
framework for reachability analysis of (symbolic) transition
systems, based on an earlier, preliminary version [13]. As input
language, the tool supports the AIGER format (also used in
the Hardware Model Checking Competition [14]) and an in-
termediate language for describing PLC models [15]. The tool
relies on the built-in predicate and explicit value domains and
refinement strategies based on binary interpolation, sequence
interpolation and formulas from unsat cores. Some additional
utilities are also implemented, for example inferring the initial
precision and simplifying the input system.

Figure 2 (from [16]) shows a heatmap of the execution
time of 20 analysis configurations on 12 hardware (hw)
and 6 PLC models. White squares correspond to a timeout.
Configurations are abbreviated with the first letter of the
domain (predicate, explicit), the refinement strategy (binary
interpolation, sequence interpolation, unsat cores), the initial
precision (empty, property-based) and the exploration strategy
(DFS, BFS). The heatmap shows that no single configuration
can verify all models and the execution time is very diverse,
motivating the need for a configurable framework.

B. THETA for control flow automata

The tool THETA-CFA is an instantiation of the THETA
framework for the reachability analysis of control flow au-
tomata. As input language, the tool supports a subset of
C, enhanced by various size reduction techniques such as

EBEB
EBED
EBPB
EBPD
ESEB
ESED
ESPB
ESPD
EUEB
EUED
EUPB
EUPD
PBEB
PBED
PBPB
PBPD
PSEB
PSED
PSPB
PSPD

hw
1

hw
2

hw
3

hw
5

hw
4

hw
6

hw
7

hw
8

hw
9

hw
10

hw
11

hw
12

pl
c1

pl
c2

pl
c3

pl
c4

pl
c5

pl
c6

Model

C
on

fig
ur

at
io

n

3

4

5

T (ms, log10)

Fig. 2. Heatmap of execution time for transition systems (millisec., log. scale)

compiler optimizations and program slicing methods [17]. This
tool uses the same built-in abstract domains and refinement
strategies as the THETA-STS tool, only the interpreter differs.

Figure 3 (from [17]) presents a heatmap of the verification
time of 16 analysis configurations on 9 models from SV-
COMP [18], selected from those categories that are currently
supported by our C frontend. Configurations are abbreviated
with the first letter of the slicing method (none, backward,
value, thin), the compiler optimizations (true, false) and the
exploration strategy (DFS, BFS). Similarly to transition sys-
tems, different configurations are more suitable for different
input models.

VTD
VTB
VFD
VFB
TTD
TTB
TFD
TFB
BTD
BTB
BFD
BFB
NTD
NTB
NFD
NFB

ec
a/

1.
c

ec
a/

2.
c

ec
a/

3.
c

ec
a/

4.
c

lo
ck

s/
1.

c
lo

ck
s/

2.
c

lo
ck

s/
3.

c
ss

h/
1.

c
ss

h/
2.

c

Model

C
on

fig
ur

at
io

n

30

60

90

120
T (s)

Fig. 3. Heatmap of execution time for C programs (in seconds)

C. THETA for timed automata

The tool THETA-XTA is an instantiation of the THETA
framework for reachability checking of timed automata. As
input language, the tool supports a subset of the UPPAAL



4.x XTA format2. The tool implements two lazy abstrac-
tion algorithms based on zone abstraction: a variant of
〈a4LU , disabled〉 [19], a non-convex lazy abstraction algo-
rithm based on LU -bounds, and an algorithm based on
interpolation for zones [20] with two different refinement
strategies (BIN and SEQ). Table I (from [20]) presents some
measurement results for the tool. Column time is the total
execution time in ms, and passed is the number of expanded
nodes in the ART. Models come from the PAT benchmarks3.

TABLE I
COMPARISON OF ALGORITHMS FOR TIMED AUTOMATA IN THETA-XTA

Model a4LU BIN SEQ
time passed time passed time passed

Critical 3 1.8 4923 1.6 3213 1.6 3157
Critical 4 65.0 130779 78.2 83686 75.2 78252
CSMA 9 6.6 30476 7.3 30476 7.9 30476
CSMA 10 21.3 78605 21.0 78605 22.8 78605
CSMA 11 61.4 198670 58.9 198670 63.8 198670
CSMA 12 167.2 493583 168.7 493583 179.1 493583
FDDI 50 1.4 402 2.0 402 2.0 402
FDDI 70 2.9 562 3.5 562 3.7 562
FDDI 90 5.9 722 6.8 722 7.1 722
FDDI 120 12.9 962 15.0 962 15.4 962
Fischer 7 1.9 7737 2.8 7737 2.8 7737
Fischer 8 5.1 25080 7.7 25080 8.7 25080
Fischer 9 21.3 81035 29.0 81035 32.4 81035
Fischer 10 94.4 260998 133.2 260998 149.7 260998
Lynch 7 2.6 9977 3.6 9977 4.0 9977
Lynch 8 7.7 30200 12.2 30200 13.9 30200
Lynch 9 32.8 92555 45.2 92555 54.2 92555

As can be seen from the data, in general, the a4LU -based
algorithm performs better in terms of execution time, but the
interpolation based algorithms might construct a significantly
smaller ART, thus easy configurability of the tool pays off.

IV. CONCLUSIONS

In this paper we introduced THETA, a configurable model
checking framework for abstraction refinement-based reach-
ability analysis for different formalisms. We described the
architecture that helps to implement, evaluate and combine
various algorithms in a modular way for different formalisms.
We also demonstrated the applicability of the framework by
use cases for the verification of hardware, PLC, software
and timed automata models. Results of the evaluation with
configuring and combining different analysis modules support
the need for a generic framework, such as THETA.

Future work. At the moment the framework focuses on
flexibility rather than performance (hence it is not yet intended
to be competitive with highly optimized implementations). We
are currently extending both the supported formalisms and
the algorithms. We are working on supporting a wider set
of elements in the C programming language and on defining
hierarchical statecharts in THETA along with an interpreter. We
are also working on increasing the number of input models
in our experiments in order to reach stronger conclusions.
This would also allow us to address the problem of selecting

2See the web help on http://www.uppaal.org for a language reference
3http://www.comp.nus.edu.sg/∼pat/bddlib/timedexp.html

the most suitable configuration for a given verification task.
Moreover, we also plan to experiment with novel, state-of-the-
art algorithms, e.g., abstractions over data variables for timed
automata.

REFERENCES

[1] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in Computer Aided
Verification, ser. LNCS, vol. 2102. Springer, 2001, pp. 260–264.

[2] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker BLAST,” International Journal on Software Tools for
Technology Transfer, vol. 9, no. 5, pp. 505–525, 2007.

[3] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS: Sat-
based predicate abstraction for ansi-c,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, vol. 3440. Springer,
2005, pp. 570–574.

[4] K. L. McMillan, “Lazy abstraction with interpolants,” in Computer
Aided Verification, ser. LNCS, vol. 4144. Springer, 2006, pp. 123–
136.

[5] D. Kroening and G. Weissenbacher, “Interpolation-based software veri-
fication with WOLVERINE,” in Computer Aided Verification, ser. LNCS,
vol. 6806. Springer, 2011, pp. 573–578.

[6] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani,
“Automatically refining abstract interpretations,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. LNCS, vol. 4963.
Springer, 2008, pp. 443–458.

[7] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Craig interpretation,”
in Static Analysis, ser. LNCS, vol. 7460. Springer, 2012, pp. 300–316.

[8] D. Beyer and M. E. Keremoglu, “CPACHECKER: A tool for configurable
software verification,” in Computer Aided Verification, ser. LNCS, vol.
6806. Springer, 2011, pp. 184–190.

[9] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik, “UFO: A frame-
work for abstraction- and interpolation-based software verification,” in
Computer Aided Verification, ser. LNCS, vol. 7358. Springer, 2012,
pp. 672–678.

[10] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk,
“LTSMIN:: High-performance language-independent model checking,”
in Tools and Algorithms for the Construction and Analysis of Systems,
ser. LNCS, vol. 9035. Springer, 2015, pp. 692–707.

[11] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS,
vol. 4963. Springer, 2008, pp. 337–340.

[12] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[13] Á. Hajdu, T. Tóth, A. Vörös, and I. Majzik, “A configurable CEGAR
framework with interpolation-based refinements,” in Formal Techniques
for Distributed Objects, Components, and Systems, ser. LNCS, vol. 9688.
Springer, 2016, pp. 158–174.

[14] G. Cabodi, C. Loiacono, M. Palena, P. Pasini, D. Patti, S. Quer, D. Ven-
draminetto, A. Biere, K. Heljanko, and J. Baumgartner, “Hardware
model checking competition 2014: An analysis and comparison of
solvers and benchmarks,” Journal on Satisfiability, Boolean Modeling
and Computation, vol. 9, pp. 135–172, 2016.

[15] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J.-C. Tournier,
S. Bliudze, J. O. Blech, and V. M. González Suárez, “Applying model
checking to industrial-sized PLC programs,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 6, pp. 1400–1410, 2015.

[16] A. Hajdu and Z. Micskei, “Exploratory analysis of the performance of
a configurable CEGAR framework,” in Proceedings of the 24th PhD
Mini-Symposium. BUTE DMIS, 2017, pp. 34–37.

[17] G. Sallai, A. Hajdu, T. Tóth, and Z. Micskei, “Towards evaluating size
reduction techniques for software model checking,” in Verification and
Program Transformation, ser. EPTCS. Open Publishing Association,
2017, (Accepted).

[18] D. Beyer, “Reliable and reproducible competition results with
BenchExec and witnesses (report on SV-COMP 2016),” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS.
Springer, 2016, vol. 9636, pp. 887–904.

[19] F. Herbreteau, B. Srivathsan, and I. Walukiewicz, “Lazy abstractions for
timed automata,” in Computer Aided Verification, ser. LNCS, vol. 8044.
Springer, 2013, pp. 990–1005.

[20] T. Tóth and I. Majzik, “Lazy reachability checking for timed automata
using interpolants,” in Formal Modeling and Analysis of Timed Systems,
ser. LNCS, vol. 10419. Springer, 2017, (Accepted).

http://www.uppaal.org
http://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html

	Introduction
	Architecture and Implementation
	Formalisms and language front-ends
	Analysis back-end
	SMT solver interface
	Extending and instantiating the framework

	Use cases
	Theta for transition systems
	Theta for control flow automata
	Theta for timed automata

	Conclusions
	References

