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Abstract—Many critical systems are based on the combination
of components from different physical domains (e.g. mechani-
cal, electrical, hydraulic), and are mathematically modeled as
Switched Multi-Domain Linear Kirchhoff Networks (SMDLKN).
In this paper, we tackle a major obstacle to formal verification of
SMDLKN, namely devising a global model amenable to verification
in the form of a Hybrid Automaton. This requires the combination
of the local dynamics of the components, expressed as Differential
Algebraic Equations, according to Kirchhoff’s laws, depending on
the (exponentially many) operation modes of the network.

We propose an automated SMT-based method to analyze
networks from multiple physical domains, detecting which modes
induce invalid (i.e. inconsistent) constraints, and to produce a
Hybrid Automaton model that accurately describes, in terms of
Ordinary Differential Equations, the system evolution in the valid
modes, catching also the possible non-deterministic behaviors. The
experimental evaluation demonstrates that the proposed approach
allows several complex multi-domain systems to be formally
analyzed and model checked against various system requirements.

I. INTRODUCTION

Complex critical systems are often formed by the interaction
of components from multiple physical domains (e.g. electrical,
hydraulic, and mechanical). An example from aerospace is a
landing gear system [1], depicted in Fig. 1, where the pressure
applied by a hydraulic circuit (including valves and pumps) op-
erates moving components from the hydro-mechanical domain
(e.g. a cylinder). Basic components (e.g. valves, accumulators,
and tanks) have multiple operation modes and exhibit hybrid
dynamics. These dynamics include continuous behaviors, typi-
cally described by Differential-Algebraic Equations (DAE) as-
sociated to the modes, and instantaneous changes (or switches)
among modes. The connection of basic components into com-
posite systems is often modeled as Switched Multi-Domain
Linear Kirchhoff Networks (SMDLKN) [2]. Each combination
of the components modes determines a (global) mode of the
network. For each global mode, the continuous dynamics is
represented by the system of DAE obtained by joining the
equations that characterize each component in the respective
mode with the equations that correspond to the Kirchhoff’s
connection laws.

In this paper, we investigate methods for the formal analysis
of SMDLKN, tackling two key challenges. The first challenge
is to convert a DAE-based network description into a for-
malism based on Ordinary Differential Equations (ODE) and

Fig. 1. Landing Gear System with N = 2 hydraulic cylinder lines (LGS[N ]).

that is amenable to formal verification. The existing formal
verification tools for hybrid systems [3], [4], [5] take as input
hybrid automata and, in most cases, require a description of the
continuous dynamics in the form of ODE. Obtaining an ODE
from a DAE is possible with a process called reformulation [6].
One could thus conceive an approach that iterates over the net-
work modes, reformulates for each of them the corresponding
DAE into an ODE, and recombines the resulting ODE into an
automaton. Unfortunately, this iterative approach is unfeasible
in practice: the number of modes of a switched network is
exponential in the number of components.

The second challenge stems from the fact that the reformula-
tion cannot always map a DAE onto an ODE. In fact, a DAE is a
relational characterization deriving from a constraint-based de-
scription, while an ODE is in essence a functional description.
Thus, under certain conditions, a DAE may be inconsistent (i.e.
infeasible from the physical standpoint) or under-constrained
(i.e. some physical quantities are undetermined). Unfortunately,
inconsistencies and under-specifications may be hidden in the
(exponentially many) modes of the network, and may be hard
to spot.

In this paper, we propose a general method to reformulate
SMDLKN into hybrid automata with ODE dynamics. In order
to deal with multi-domain networks, we propose a purely
algebraic, general argument, which guarantees the existence
of the reformulation, generalizing the Implicit Function The-
orem [7] for linear systems. The method is able to synthesize
the modes free from inconsistencies and under-specifications,
and to present them in the form of diagnostic information.

We adopt an approach based on Satisfiability Modulo The-
ories (SMT) [8] to reason about the algebraic representation
of DAE-based networks. We build on the ability of modern
SMT solvers to carry out quantifier elimination and to deal with
huge sets of assignments to discrete variables. We exploit the
algebraic nature of the problem, in particular the linearity prin-
ciple holding for the DAE associated to each network modes,



to aggressively simplify the expensive quantifier elimination
steps.

We perform an experimental evaluation on several multi-
domain scalable real-world benchmark applications. The pro-
posed optimizations substantially increase the scalability of the
procedures, allowing us to validate and reformulate SMDLKN
featuring millions of modes. We verify the hybrid automata
resulting from our procedures by means of some existing SMT-
based verification tools (e.g. HYCOMP [5]).

The rest of the paper is organized as follows. Section II
provides the necessary background notions. Section III defines
the validation and reformulation problems for SMDLKN, Sec-
tion IV presents the proposed symbolic algorithms. Section V
discusses the related work. Section VI presents the experimen-
tal evaluation. We conclude in Section VII.

II. BACKGROUND

A. Notation

|X| denotes the cardinality of the set X . Given a set of real
variables X , the notation ~X refers to the vector that contains
all the variables in X ordered lexicographically. R, R≥0, B
denote the set of Real numbers, non-negative Real numbers,
and Boolean. If X is a set of variables, then X ′ and Ẋ are the
sets obtained by replacing each element with its primed and
dotted version, resp.

We use the standard notions of theory, satisfiability, validity,
and logical consequence. We restrict to formulas interpreted
with the Theory of Linear Real Arithmetic (LRA) [8]. Given
a first-order logic formula ψ and a set of variables X , ψ(X)
denotes that X is the set of free variables in ψ. ϕ |=T ψ
denotes that the formula ψ is a logical consequence of ϕ in
the theory T ; when clear from context, we omit T and simply
write ϕ |= ψ. An assignment µ for a set of variables X is the
set {x 7→ c | x ∈ X and c is a constant}, µ|X is the projection
of all the assignments in µ only onto the variables contained
in X , and µ(x) is the value assigned to x in µ. Abusing
the notation, we interchange the linear system notation (e.g.
~X = ~B~Y , where | ~X| = n × 1, | ~B| = n × m, |~Y | = m × 1)
with the conjunction of predicates in LRA corresponding to the
matrix product (e.g.

∧n
i=1

~X[i] =
∑m
j=1( ~B[i][j]~Y [j])). Given

two vectors (resp. matrices) A and B, A · B denotes their
vertical (resp. horizontal) concatenation.

B. Linear Systems

The linear system ~A ~W = ~b is homogeneous if ~b = ~0, and,
in that case, it admits at least the solution ~̄W = ~0.

Given a solvable linear system ~A ~W = ~b, its general solution
is ~̄W = ~̄Wp + ~̄Wh, where ~̄Wp is a particular solution of the
inhomogeneous system ~A ~W = ~b and ~̄Wh is the homogeneous
solution of the homogeneous system ~A ~W = ~0. The existence
of the particular solution ~̄Wp guarantees the existence of at
least one solution ~̄W .

Lemma 1 (Linearity [9]): Let ~A ~W = ~b1, ..., ~A ~W = ~bn be
n distinct linear systems and z1, ..., zn ∈ R n real variables.
The systems ~A ~W = ~b1, ..., ~A ~W = ~bn are all solvable iff the

system ~A ~W = ~b1 z1 + ... +~bn zn is solvable for all values of
the variables z1, ..., zn.

C. Hybrid Automata

Hybrid automata (HA) [10] represent a system with contin-
uous and discrete dynamics. We use a symbolic representation
of hybrid automata, where the discrete locations and transitions
are represented by means of SMT formulae [11].

A HA is a tuple H = 〈V,X, Init, Invar, Trans, F low〉
where 1) V is the set of discrete variables; 2) X is the set
of continuous variables; 3) Init(V,X) represents the set of
initial states; 4) Invar(V,X) represents the set of invariant
states; 5) Trans(V,X, V ′, X ′) represents the set of discrete
transitions; 6) Flow(V, Ẋ,X) is the flow condition. We assume
that all the formulas Init, Invar, Trans and Flow are
quantifier-free and linear.

In the above definition, Flow may either define a system of
Differential-Algebraic Equations (DAEs) or Ordinary Differen-
tial Equations (ODEs). We say that the automaton has an ODE
dynamics if, for each assignment µ to V , Flow is equivalent to
a system of ODEs (i.e. ~̇X = ~A ~X). Otherwise, the automaton
has a DAE dynamics.

A state of a hybrid automaton is an assignment to the
variables V ∪ X , and a run is a sequence of states such that
the first state is in the initial states, every state belongs to the
invariant, and each pair of consecutive states either satisfies
Trans or the solution to the differential equations described
in the Flow condition. The semantics of the HA is defined by
the runs that it accepts. Two hybrid automata H1 and H2 are
equivalent if they accept the same runs.

D. Switching Multi-Domain Linear Kirchhoff Networks

Definition 1 (Network component): A component ci is a tuple
〈Bi, Ri, Ti, invari, f lowi, inputi, transi〉 where:
• Bi : set of discrete variables representing the modes.
• Ri : set of continuous variables representing the physical

quantities of the component. We partition the set of
continuous variables in three disjoint sets of state (Xi),
input (Ui) and output (Yi) variables.

• invari : 2Bi → 2Pred : invariant conditions, where Pred
is a set of predicates over the variables Ri.

• inputi : 2Ui → 2Fi : input binding assigning a continuous
function of time (Fi = {f(t)|f is continuous}) to each
input variable in Ui.

• flowi : 2Bi → 2Peq : flow condition, where Peq is a
set of homogeneous linear equalities with variables from
Xi, Ui, Yi, Ẋi.

• transi(Bi, Ri, B
′
i) : mode transition condition that repre-

sents the mode transitions (with guards) that can happen
in the component.

Definition 2: A Switched Multi-Domain Linear Kirchhoff
Network (SMDLKN) N is a tuple 〈C,K〉, where C is a set of
components and K is a set of equalities among continuous
variables of the components, that represents the Kirchhoff
conservation rules (i.e. the set of connection constraints).



We extend the notation used to specify the set of com-
ponent variables to a network N , defining the sets B :=⋃
ci∈C Bi, R :=

⋃
ci∈C Ri, . . . . Let V = B ∪ R be the set

of all the variables of a network. A state of the network is
given by an assignment µ to all the variables V . We refer to
each possible (complete) assignment µb ∈ 2B to all the discrete
variables B as a mode of the network. Every different network
mode induces a continuous dynamics described by a DAE.

Definition 3 (Differential-Algebraic Equation of a mode):
The DAE DAE(µb) of a mode µb is defined as the set of
constraints:

DAE(µb) :=
⋃
ci∈C flowi(µb|Bi

) ∪K (1)

DAE(µb) can be equivalently represented as a linear system:

~M ~̇X + ~N ~X + ~O~Y + ~P ~U = ~0 (2)

for some coefficient matrices ~M ∈ Rl×|X|, ~N ∈ Rl×|X|,
~O ∈ Rl×|Y |, ~P ∈ Rl×|U |, and a positive integer l equal to
the number of system constraints.

Definition 4 (Network semantics): The semantics
of the network N is the hybrid automaton
HN = 〈VH , XH , Init, Invar, Trans, F low〉 where

VH := B XH := X ∪ U ∪ Y Init(VH , XH) := True

Invar(VH , XH) :=
∧

µb∈2B

(µb →
∧
ci∈C

invari(µb|Bi
))

Trans(VH , XH , V
′
H , X

′
H) :=

∧
ci∈C

transi ∧
∧
x∈X

(x′ = x)

Flow(VH , ẊH , XH) :=
∧

µb∈2B

(µb → DAE(µb)) ∧
∧
ci∈C

inputi(Ui)

III. VALIDATION AND REFORMULATION PROBLEMS

Given a network N = 〈C,K〉, our first goal is to automat-
ically check if it contains inconsistencies, which represent an
unwanted condition in the real system modeled by the network.

Definition 5: A mode µb of a network N is consistent if,
for every possible assignment to the state (X) and input (U )
variables, the linear system DAE(µb) has at least a solution.
An inconsistent mode in the network represents an undesired
condition in the physical system that must be avoided. Consider
the electrical circuit of Fig. 2, where the voltages VC1

and VC2

across the capacitors C1 and C2 are state variables, and the
current IB imposed by the current generator B is the input
variable (we use I and V to refer to currents and voltages,
and we use the component’s name as subscript to identify
the current or voltage of that component). For the sake of
brevity, all the electrical parameters take value one and have
been omitted from the following formulas. The DAE associated
to the discrete mode where both the switches S1 and S2 are
open is IB = IR, IR = IS1 + IS2 , IS1 = 0, IS2 = 0, IC1 =
V̇C1

, IC2
= V̇C2

. The mode is not consistent when IB 6= 0.
Clearly, inconsistent modes in the design are undesirable, since
the behavior of the real system would violate some physical
laws. Thus, checking if a mode is consistent is a fundamental
step in the validation of N .

Our second goal is to verify safety properties on N . As
explained in the introduction, a requirement imposed by the

Fig. 2. Schematic of a simple electrical circuit.

symbolic verification tools for hybrid systems (e.g. HYCOMP
[5]) is to express the continuous dynamics of N as ODEs.
This means, for every discrete mode of the network, being
able to rewrite the DAE DAE(µb) as a system of Ordinary
Differential Equations: ~̇X = ~A ~X + ~B~U , where ~A ∈ R|X|×|X|,
and ~B ∈ R|X|×|U |. This amounts to find a function that, for
every possible values of the state and input variables, returns
one and unique value for the first derivative variables Ẋ .
Consistency is a necessary condition to ensure the existence
of the ODE function, while the other necessary condition is
the determinicity of the values assigned to Ẋ .

Definition 6: A mode µb of a network N is deterministic if,
for every possible value of the state X and input variables U ,
the linear system DAE(µb) admits at most one solution of the
first derivative Ẋ .

In the example of Fig. 2, the DAE of the discrete mode where
both the switches S1 and S2 are closed is IB = IR, IR =
IS1

+ IS2
, IC1

= IS1
, IC2

= IS2
, IC1

+ IC2
= IB , IC1

=
V̇C1

, IC2
= V̇C2

. In this DAE, the values of the currents IC1

and IC2
are not uniquely identified when fixing a value of the

input IB (e.g. if IB = 3 then the only constraints for IC1 and
IC2 is that IC1 + IC2 = 3), and hence also the values of V̇C1

and V̇C2
is not. Due to this non-determinism, the above DAE

cannot be rewritten as an ODE.
Definition 7: A mode µb of a network N is valid if it is both

consistent and deterministic. The network N is valid if all the
modes µb ∈ 2B are valid.

Definition 8 (Validation problem): Given a network N , the
validation problem consists of deciding if N is valid.

Remark 1: We note that a mode is valid if it is associated to
a index-1 DAE, while it is invalid for higher-index DAEs.

Definition 9 (Reformulation problem): Given a valid network
N , the reformulation problem consists of obtaining a hybrid
automaton H with ODE dynamics that is equivalent to HN .
The reformulated automaton represents the same discrete
modes as the network N , but its continuous dynamics is
expressed as a system of ODEs. Such representation exists
since the network is valid.

In the electrical circuit in Fig. 2, the mode where the switch
S1 is closed and S2 is open has the DAE IB = IR, IR =
IS1 , IS1 = IC1 , IC1 = V̇C1 , 0 = IS1 , IS2 = IC2 , IC2 = V̇C2 .
The mode is valid, and the ODE representation of the DAE is
V̇C1

= 0VC1
+ 0VC2

+ 1IB , V̇C2
= 0VC1

+ 0VC2
+ 0IB .

IV. SYMBOLIC VALIDATION AND REFORMULATION

A. Basic Validation and Reformulation

Our technique performs the following steps to produce a
symbolic hybrid automaton HN amenable to verification from
the network N = 〈C,K〉:

1) Check if all the modes of N are consistent. If it is the
case, we proceed to the next step.



2) Check if all the modes of N are deterministic. If it is the
case, N is valid and we proceed to the reformulation.

3) Reformulate all the modes of N and define HN .
In the case N is not consistent, our approach finds all

the non-consistent modes, that can be used by the designer
to fix the network. While we restrict the presentation to the
case where N is consistent, our approach also performs a
partial reformulation, that reformulates the DAEs only for
the consistent modes. The partial network is necessary in the
common scenario where a discrete controller is composed with
the network with the goal of keeping the network outside the
non-consistent states. In this scenario, our approach allows us
to verify if such controller is correct.

Validation and reformulation steps can be done for each
mode µb ∈ 2B of N . However, this is not feasible since the
number of modes is exponential in the number of the discrete
variables of N . To scale and analyze real networks, we use
a symbolic approach. In this section, we present a symbolic
validation and reformulation for multi-domain networks. The
idea is to express the validation and reformulation problems as
a first-order logic formula.

a) SMT encodings of the network DAEs: We represent all
the DAEs of the network N as the quantifier-free formula:

ψDAE := (
∧
ci∈C

∧
µb∈2Bi

(µb → flowi(µb))) ∧
∧
k∈K

k (3)

ψDAE predicates over the same variables of the network, so
we reuse the same notation introduced in Sec. II-D for the
network variables, and contains the Boolean variables B, and
the Real variables X,U, Y, Ẋ . The validation and reformulation
problems only consider the algebraic relationships among the
variables defined by the DAE, while they disregard their
dependence on time. Thus, the derivative variables in Ẋ are
treated as Real, and not Continuous, variables. Note that the
provided encoding enumerates the components local modes in
place of the network global modes, thus preventing the blow-up
of the formula ψDAE.

Lemma 2: µ is a satisfying assignment of ψDAE iff µ|R is a
solution of DAE(µ|B)
We provide the proofs of the lemmas and theorems in an
extended version of the paper available at http://es.fbk.eu/
people/sessa/paper/fmcad17/main.pdf

b) Checking the network for consistency: All the modes
of N are consistent iff the following formula is valid:

ψcon(B) :=∀X,U.∃Y, Ẋ.ψDAE(B,X,U, Y, Ẋ)

ψcon represents the set of all the consistent modes.
c) Checking the network for determinicity: All the modes

of N are deterministic iff the following formula is valid:

ψdet(B) := ∀X,U, Ẋ1, Ẋ2.

((∃Y.ψDAE(B,X,U, Y, Ẋ1)∧
∃Y.ψDAE(B,X,U, Y, Ẋ2))→ Ẋ1 = Ẋ2)

ψdet represents the set of all the deterministic modes.

d) Reformulating the network: We reformulate a valid
network N into the hybrid automaton Hr

N = 〈V r,
Xr, Initr, Invarr, T ransr, F lowr〉. Hr

N is defined as the
hybrid automaton HN in the Definition 4, except for Invarr

and Flowr. The invariant condition is given by Invarr :=
ψY ∧

∧
ci∈C

∧
µb∈2Bi (µb → invari(µb)), while Flowr :=

ψẊ ∧
∧
ci∈C inputi(Ui). The formula ψẊ is the reformulation

of the variables Ẋ , while ψY is a relation that represents the
values of the output variables Y w.r.t. the state X and input
U variables. While we can compute the relation for ψY as
∃Ẋ.ψDAE(B,X,U, Y, Ẋ), finding the ψẊ is a more difficult
task that requires to solve a quantified formula expressed with
non-linear arithmetic terms (that synthesize the coefficients
of the ODE). We know that such formula cannot be solved
efficiently. We do not try to compute it and in our experiments
we try to compute ∃Ẋ.ψDAE(B,X,U, Y, Ẋ). This formula
does not reformulate the system into an ODE, but the time
necessary to solve it provides a lower bound for a more
complex formula (i.e. with more quantifiers and over non-linear
arithmetic predicates).

B. Optimized Validation and Reformulation

We improve the basic validation and reformulation pro-
cedures by applying an extension of the implicit function
theorem [9]. Given a system of linear equalities, the theorem
gives the necessary and sufficient conditions that allow us to
express the values of a subset of the system variables (the
dependent variables) as a function of the remaining variables
(the independent variables). For our application, the linear
system is the DAE of a mode, the dependent variables are the
derivatives Ẋ , and the independent variables are the state X and
input U . Our problem is slightly more complex, since the DAE
also contains the output variables Y . One option is to consider
them as dependent variables, requiring to find a function that
expresses the value of all the variables in Y . However, this
limits the applicability of our approach: while we have to
express Ẋ as a system of ODEs, the underlying verification
tool does not impose any restriction on the output variables Y
that, for example, can assume a value non-deterministically. For
this reason we extend the implicit function theorem as follows.

a) Implicit Function Theorem:
Theorem 1 (Implicit Function Theorem): Let m, n, l be

positive integers. Let F : Rm+n → Rl be a homogeneous
implicit linear function F ( ~W, ~Z) := ~A ~W + ~B ~Z = ~0, where
~W ∈ Rm×1, ~Z ∈ Rn×1, ~A ∈ Rl×m, and ~B ∈ Rl×n. Let ~bi be
the i-th column vector of the matrix ~B, where i ∈ {1, ..., n}.
Let wj be the j-th variable of ~W, where j ∈ {1, ...,m}. The
following two conditions hold:

1) consistency condition: for all 1 ≤ i ≤ n, the linear system
~A ~W = ~bi is solvable, and

2) determinicity condition: the linear system ~A ~W = ~0 does
not admit any homogeneous solution ~̄Wh such that its j-th
component wj is different from zero

iff there exists a unique linear function fj : Rn → R1 such
that wj = fj(~Z) and F (w1, ..., fj(~Z), ..., wm, ~Z) = ~0.



The condition (1) guarantees that the system ~A ~W = − ~B ~Z
admits at least one solution ~̄W for every assignment to the vari-
ables ~Z, reducing the problem to a finite number of n checks;
the condition (2) guarantees that, for every assignment to the
variables ~Z, every solution ~̄W admits a unique assignment to
its j-th component wj .

Consider the DAE DAE(µb) of the mode µb and its matrix
representation ~M ~̇X + ~N ~X + ~O~Y + ~P ~U = ~0 (see Equation 2).
One can directly apply Theorem 1, just by noticing that
DAE(µb) is indeed a linear homogeneous implicit function
F ( ~W, ~Z), where ~W := ~̇X · ~Y , ~Z := ~U · ~X , ~A := ~M · ~O, and
~B := ~P · ~N . If the first condition of Theorem 1 holds for all the
columns ~bi of the concatenated coefficient matrix ~B := ~P · ~N ,
then µb is consistent, while if the second condition holds for
all ẋ ∈ Ẋ , then µb is deterministic. Then, if both conditions
hold, the mode µb is valid.

b) Validation: Our goal is to check the validity of the
network avoiding the universal quantification on the state and
input variables introduced in the formulas in Section IV-A. We
achieve this by directly checking the conditions of Theorem 1.
The consistency condition (1) of the Theorem 1 is encoded as:

ψcon(B) :=
∧
zi∈U∪X ∃Ẋ, R.

(
ψDAE

[
δ
~U · ~X
zi /~U · ~X

])
where δ

~U · ~X
zi represents the vector of size |~U · ~X|, whose

elements are identically zero except for the one corresponding
to zi. The formula ψcon (B) represents all the consistent modes.
The determinicity condition (2) is encoded in the formula:

ψdet (B) :=¬∃Ẋ, R.
(
ψDAE

[
~0/~U

] [
~0/ ~X

]
∧
(
~̇X 6= ~0

))
The formula ψdet (B) represents all the deterministic modes
of N . We notice that the effect on ψDAE of the X and U
substitutions is equivalent to symbolically “turning on and off“
a subset of the columns of the coefficient matrix ~B := ~P · ~N in
order to symbolically check the conditions of the Theorem 1.

Lemma 3: A network N is consistent iff for all µb ∈ 2B ,
µb |= ψcon(B), and is deterministic iff for all the modes µb ∈
2B , µb |= ψdet(B)

c) Reformulation: The algorithm PERVARIABLEREF
(Fig. 3) synthesizes the formulas ψẊ and ψY used in the refor-
mulated automaton Hr

N , by using Theorem 1 and Lemma 1.
In the algorithm, we use the SMT solver primitives push,

assert, isSat, pop, reset (see e.g. [12]), getModel, to get a
satisfying assignment to all the free variables of the formula,
and quantify to eliminate the quantifiers from the formula.

PERVARIABLEREF invokes the REFORM procedure (Fig. 5)
on each variable ẋ ∈ Ẋ (Line 3), computing the reformulation
Refẋ of the variable ẋ and the formula ψY,ẋ. In the algorithm,
we compute ψY by directly substituting in ψDAE the variables
Ẋ with their reformulated value. Since the reformulation of a
variable ẋ ∈ Ẋ depends on the discrete modes, we store this
value in a variable ẋs (we add a the set of variables Ẋs = {ẋs |
ẋ ∈ Ẋ}). ψY,ẋ represents the values that Ẋs takes depending
on the discrete state of the network. At Line 6, the algorithm
constructs ψY , that encodes the reformulation values for Ẋs

and the ψDAE formula where all the Ẋ variables have been
substituted with the Ẋs variables.

REFORM works under the validity assumption, that ensures
the existence of a reformulation, and uses the linearity Lemma 1
to synthesize the reformulation. According to Lemma 1, we
know that, for a mode µb ∈ 2B and a variable ẋ, the
function fẋ(~U · ~X) such that ẋ = fẋ(~U · ~X) is defined as
fẋ(~U · ~X) := ~̄W j

p1 z1 + ... + ~̄W j
pn zn, where j is the index

corresponding to the variable ẋ in the vector ~W := ~̇X · ~Y ,
~̄W j
pi is the element corresponding to ẋ in the i-th particular

solution ~̄Wpi . Thus, we can synthesize the coefficients of the
function fẋ(~U · ~X) by computing all the n particular solutions
of the system and taking their j-th element. Fig. 5 shows the
reformulation procedure for a single variable ẋ: each execution
of the loop at Line 4 finds a mode µb ∈ 2B (Line 5) for
which the ẋ reformulation is still unknown. Then (Line 6) the
algorithm computes the coefficients D of the ẋ reformulation
in µb. The procedure computes (Line 7) the cluster β of all
the modes that share the same coefficients D, and hence the
same reformulation, for ẋ. At Line 8, we prune the search space
removing β. Eq is created (Line 9) by computing the product of
the coefficients row vector D and the variables column vector
~U · ~X . At Line 10, we accumulate the reformulation (one
for each cluster) in the returned formula Refẋ. At Line 11,
we construct ψY,ẋ that constraints the values of the additional
variable ẋs. REFORM terminates when the reformulation of ẋ
is known for all the modes µb ∈ 2B .

GETCOEFF is shown in Fig. 6. For each variable zi ∈ U∪X ,
the condition built at Line 4 reduces the term ~B(~U · ~X) of
the ψDAE formula to the column vector ~bizi = ~bi1 = ~bi that
corresponds to the i-th iteration. This formula is asserted in the
solver at Line 5. At Line 6, the algorithm finds a particular
solution µ

′
to the system ~A ~W = −~bi. Then (Line 7) we assign

the value µ
′
(ẋ) of the ẋ element of the solution µ

′
to the i-th

reformulation coefficient D[i].
The procedure GETEQMOD (Fig. 4) builds the condition

γ that is satisfiable in every µb ∈ 2B that shares the same
reformulation coefficients for ẋ. In Line 7, we symbolically
compute the set of equivalent modes β.

Theorem 2 (Correctness of the reformulation): Given a valid
network N , the hybrid automaton Hr

N is equivalent to the
hybrid automaton HN that defines the network semantics.

V. RELATED WORK

Multi-Domain Linear Kirchhoff Networks are widely used
in various engineering applications [13], [14], [15]. Different
tools support the acausal modeling phase [16], [17], also for
networks with discrete switches. The main analysis tools are
based on numerical simulation and use numerical integration.
Although simulation provides high scalability and enables the
analysis of complex dynamics [6], [18], [19], a preliminary
validation of the network modes is not provided. Therefore, a
hidden inconsistent mode can be discovered only if the user
designs a simulation trace that is able to reach it. Furthermore,
numerical simulators (e.g. [17]) restrict the use of components



PERVARIABLEREF (ψDAE, X , U ):
1. (ψẊ , ψY ) := (True, True)
2. for each ẋ ∈ Ẋ:
3. (Refẋ, ψY,ẋ) := REFORM (ψDAE, X , U , ẋ)
4. ψẊ := ψẊ ∧ Refẋ
5. ψY := ψY ∧ ψY,ẋ

6.ψY := ψY ∧ ψDAE[Ẋs/Ẋ]

7.return (ψẊ , ψY )

Fig. 3. Reformulation algorithm for N .
GETEQMOD (ψDAE, X , U , ẋ, D):
1.eqSolver.reset()
2.γ := True
3. for each zi ∈ U ∪X:
4. rhszi := zi = 1 ∧

∧
l∈(U∪X)\{zi}

l = 0

5. γzi := ẋ = D[i] ∧ rhszi
6. γ := γ ∧ ∃R, Ẋ.(ψDAE ∧ γzi )
7.β := eqSolver.quantify(γ)
8.return β

Fig. 4. Find the cluster of modes that share the
same coefficients D for ẋ.

REFORM (ψDAE, X , U , ẋ):
1.Refẋ := True

2.ψY,ẋ := True

3.solver.assert(True)
4.while solver.isSat():

# Get a fresh mode
5. µb := solver.getModel()

# Get the row vector of coeff. that
# contributes to ẋ in µb

6. D := GETCOEFF (ψDAE, X , U , ẋ, µb)
# Get the cluster of modes that share the
# same coeff.

7. β := GETEQMOD (ψDAE, X , U , ẋ, D)
# Prune the cluster of modes from the search

8. solver.assert(¬β)
# Build the reformulation equation

9. Eq := ẋ = D ( ~U · ~X)
10. Refẋ := Refẋ ∧ (β → Eq)
11. ψY,ẋ := ψY,ẋ ∧ β → ẋs = D(~U · ~X)

12.return (Refẋ, ψY,ẋ)

Fig. 5. Reformulation of a single variable ẋ.

GETCOEFF (ψDAE, X , U , ẋ, µb):
# D row vector of coeff. w.r.t. U ∪X

1.coeffSolver.assert(ψDAE ∧ µb)
2.for each zi ∈ U ∪X:
3. coeffSolver.push()

# build the rhs corresponding to zi
4. rhszi := zi = 1 ∧

∧
l∈(U∪X)\{zi}

l = 0

5. coeffSolver.assert(rhszi )
# get a system solution

6. µ′ := coeffSolver.getModel()
# µ′(ẋ) is the coeff. w.r.t. zi

7. D[i] := µ′(ẋ)

8. coeffSolver.pop()
9.return D

Fig. 6. Computes the ref. coefficients D of ẋ.

equipped with ideal behaviors, leading to the model pollution
due to parasitic effects, that are hard to quantify and deviate
the simulation results from the intended nominal behavior. In
the following, we focus on works based on formal methods.

The closest related work is [20], that presents a method
to convert Switched Electrical Linear Kirchhoff Networks
(SELKN) into hybrid automata. The work proposed here is
more general than [20] in three respects. First, we are able to
deal with multi-domain networks, enabling mechanical, electri-
cal and hydraulic domains, and their combination, whilst [20]
is restricted to electrical networks. Second, the method in [20]
is only able to produce a hybrid automaton if the electrical
network fulfills the conditions of existence and determinism
in all the modes and for all the variables, while here we
analyze SMDLKN with non-deterministic output variables as
well. Both extensions are made possible by the adoption of
a theoretical settings that is significantly more general than
the domain-specific topological approach on the network graph
used in [20]. We remark that all the experiments presented in
the next section are based on benchmarks that are out of reach
for the method in [20]. In [21], a framework for generating
hybrid automata benchmarks from a hydraulic domain is pre-
sented. This work is only seemingly related to ours. The domain
knowledge in [21] (e.g. that a pump cannot draw a constant flow
from an empty tank) appears to be hard-coded in the generation
scripts; in our case, the detection of these conditions and the
generation of the hybrid automata are direct consequence of
the algebraic approach applied to the network description. As
discussed in the experimental evaluation, our approach is able
to deal with a significantly larger class of benchmarks than
those in [21], and also to automatically identify invalid modes
in the network, reasoning on its algebraic properties.

Most of the formal verification tools are unable to deal with
DAE. An exception is KEYMAERAX [22], a theorem prover for
hybrid systems represented with Differential-Algebraic Equa-
tions. In principle, the KEYMAERAX proof system can support
the proof of safety properties over SMDLKN, by means of
compositional reasoning. Key differences with our approach are

that KEYMAERAX is not fully automatic, and has no specific
methods to address the validation problem.

The existing tools for formal verification of hybrid sys-
tems [23] do not directly consider Multi-Domain Linear Kirch-
hoff Network, but work on hybrid automata [10]. Tools like
SpaceEx [3] or Flow* [24] work on an explicit representa-
tion of the system and hence they suffer from the explosion
in the number of modes of the system. Other tools [25],
[5], [26], [27] reason on the symbolic representation of the
system. HYBRIDSAL [25] and HYCOMP[5] analyze linear
hybrid systems whose continuous dynamics is specified with
a linear ODE. DREACH [26], [27] can be used to either
perform Bounded Model Checking or apply induction to verify
a system expressed with ODEs. From a DAE-based network,
our reformulation step produces this kind of formal models.

Other verification techniques focus on analog-mixed-signals
circuits [28], [29], [30], [31], [32]. They take the hybrid
automata representation of the electrical circuit, so do not face
the validation and reformulation problems. Additionally, they
do not consider multi-domain networks and perform an analysis
explicit in the modes that might exponentially blow-up.

Other approaches exist to generate a formal representation
from Simulink and other causal component-based modeling
languages [33], [34]. This causal semantics considers systems
represented as a connection of input-output functional blocks,
posing a major obstacle to the modeling of SMDLKN. Our work
differs from those approaches since we natively accept the more
suitable acausal component-based modeling, that, on the other
side, requires to tackle the reformulation problem.

VI. EXPERIMENTAL EVALUATION

Setup: We implemented the proposed approach using the
PYSMT [35] library and the MATHSAT5 [12] SMT-solver. At
the core, we use the symbolic model checker HYCOMP [5].
The resulting workflow takes as input a SMDLKN and a safety
property, and performs validation (VAL), reformulation (REF),
and verification (VER). The validation and the reformulation
come with two variants, basic (BAS) and optimized (OPT). BAS
refers to the algorithms of Section IV-A, while OPT refers to



Fig. 7. Wheel Braking System, Arch.2, with N braking lines (WBSA2[N ])

those of Section IV-B. We run the experiments on a 3.5 GHz
cpu with 16GB RAM, with time out (TO) set to 3600s for
VAL, 43200s for REF, and 18000s for VER. The tools and
the benchmarks are available at http://es.fbk.eu/people/sessa/
attachment/fmcad17/fmcad17.tar.bz2.

Benchmarks: We consider five scalable benchmarks: two
variants of the Wheel Braking System (WBS) from the SAE
standard AIR6110 [36], the Landing Gear System (LGS),
and two variants of a hydraulic tank network (WW) inspired
from [21], for a total of 29 instances. The WBS benchmarks,
WBSA2[N ] and WBSA4[N ], are parameterized w.r.t. the num-
ber N of braking lines (see Fig. 7). The benchmarks differ in
the position of the hydraulic accumulator line. Fig. 1 shows
(part of) the Landing Gear System (LGS[N ]) from [1], which
is parameterized w.r.t. the number N of cylinder lines. The
WWLIN[N ] and WWRING[N ] benchmarks represent networks
of N hydraulic tanks connected either linearly or in a ring
through channels, composed by pipes and valves. The WW
benchmarks are originally proposed in [21], with a hand-
crafted technique meant for the automatic generation of hybrid
benchmarks that abstracts away the mutual interactions among
the liquid levels stored in the tanks. On the contrary, our work
aims at faithfully representing the physics of the real system.
Our SMDLKN-based models capture the physical dynamics of
the (bidirectional) flow through the channels, and naturally rep-
resents the global interaction of the interconnected components,
retaining the compositional structure of the physical system.

The features of the benchmarks are described in the extended
version of the paper. The models contain tens of boolean
variables and hundreds of real variables, resulting in up to 2
millions of modes. None of the benchmarks considered in this
evaluation can be analyzed with the approach presented in [20].
There are several reasons for this. First, all the benchmarks
are out of the electrical domain. Even if [20] deals with some
simple hydraulic models by means of the hydraulic-electrical
analogy, the cylinder component used in the LGS does not fit
in the domain analogy. Second, [20] cannot deal with non-
deterministic output variables. Our WBS benchmarks yield
under-specified output variables that were not present in the
much simpler and less complete model used in [20]. Finally,
the WW benchmarks contain some inconsistent modes, and the
method in [20] requires consistency for all the modes.

Also, note that our modeling of the WBS benchmarks is
different than the model presented in [37], which is an abstract,
discretized and causal model of the system suitable to perform a
formal system safety assessment analysis. Instead, in our WBS
model we capture the real continuous physics of the system.

Validation: The results of the evaluation are summarized
in Tab. I. First, we consider the runtime of the basic (BAS)

and the optimized (OPT) encodings for validation. We see that
OPT solves all the 29 instances, while BAS times out on the
10 biggest instances. Focusing on the instances solved by both
encodings, OPT outperforms BAS by two orders of magnitude
and scales much better w.r.t the benchmark size. Noteworthy,
the OPT method validates the two millions of modes of the
WBS[5] instances within 327 and 252 seconds, respectively.
These results provide a clear evidence that the BAS encodings
is infeasible for real life systems, while OPT offers an efficient
solution to solve the problem.

All the WBS and LGS benchmarks have only consistent
modes. This does not hold for the WW benchmarks, where a
tank cannot accept incoming [respectively, provide outgoing]
liquid in mode full [resp., empty]. Notice that the full and
empty modes can be seen as hazardous configurations of the
network, when an actuator must pump in/out a fluid. Our
validation approach is able to detect and report such bad
configurations, and allows us to generate models under the
assumption that the invalid modes are not entered (e.g. by the
preventive action of a supervisory controller).

VAL REF VER
BAS OPT BAS OPT OPT

LGS[2] 1 0 187 1 1
LGS[3] 5 1 TO 5 1
LGS[4] 29 3 TO 21 1
LGS[5] 204 9 TO 90 7
LGS[6] 1567 25 TO 449 9
LGS[7] TO 73 TO 3091 14
LGS[8] TO 215 TO 30269 30
WBSA2[2] 10 0 TO 3 0
WBSA2[3] 395 5 TO 19 4
WBSA2[4] TO 37 TO 204 74
WBSA2[5] TO 327 TO 5554 2630
WBSA4[2] 9 0 TO 3 0
WBSA4[3] 360 4 TO 22 5
WBSA4[4] TO 30 TO 223 131
WBSA4[5] TO 252 TO 5892 10970
WWLIN[2] 0 0 8 0 0
WWLIN[3] 0 0 1072 1 0
WWLIN[4] 2 0 TO 3 2
WWLIN[5] 21 0 TO 8 5
WWLIN[6] 166 1 TO 19 33
WWLIN[7] 1670 3 TO 53 62
WWLIN[8] TO 5 TO 419 343
WWRING[2] 0 0 39 0 0
WWRING[3] 4 0 TO 3 1
WWRING[4] 74 1 TO 10 6
WWRING[5] 1300 3 TO 30 28
WWRING[6] TO 7 TO 89 78
WWRING[7] TO 15 TO 369 848
WWRING[8] TO 27 TO 2465 MO

TABLE I
VALIDATION, REFORMULATION AND VERIFICATION TIME [S].

Reformulation: We consider the runtime for the BAS
reformulation lower bound, and the OPT reformulation. The
BAS encodings cannot deal with the benchmarks, whereas the
OPT encodings successes in reformulating all the instances.
Again, this happens because the OPT encodings exploits the
properties of the algebraic structure of the problem to mitigate
the computational complexity of the quantifier elimination
in the computation of the derivative variables reformulation.
Additionally, the variable substitution of the first derivative



reformulation into the network DAE formula completely avoids
the need for the quantifier elimination step in the reformulation
of the output variables.

We notice that the reformulation of the WW benchmarks
is restricted to the valid modes, while considering the non-
valid modes as a macro error state of the network. The ability
of representing these non-valid modes in the reformulated
hybrid automaton is crucial when considering the functional
verification of the network composed with a controller designed
to prevent the reachability of hazardous configurations.

Verification: For both WBS benchmarks we consider
the property P1: when the selector valve is closed, a brake
command cannot actuate any brake. Consistently with the SAE
standard AIR6110 [36], that describes such design flaw, P1 is
violated for WBSA2[N ] and is verified by WBSA4[N ]. For the
LGS, we consider the (false) property L1: the first cylinder
cannot reach its end-of-stroke. For both WW benchmarks, we
consider the (false) property W1: the level of the first tank
cannot exceed a given threshold, that is violated closing all the
valves connected to the first tank.

The verification on the hybrid automata from the OPT
reformulation completes within the time out on all the bench-
marks, returning the expected results, except for WWRING[8]

that experienced a memory out (MO). Finding the violation
in WBSA2[N ] is slightly faster than proving the property in
WBSA4[N ]. Overall, these results provide empirical evidence
of the applicability of our approach in the formal verification
of real world hybrid system represented as a SMDLKN.

VII. CONCLUSION

We presented an SMT-based method for the formal anal-
ysis of Switching Multi-Domain Linear Kirchhoff Networks
(SMDLKN), that is able to automatically validate and reformu-
late a SMDLKN into a symbolic Hybrid Automaton, amenable
to be formally verified with the existing model checkers.
The approach covers networks spanning multiple physical
domains and exhibiting non-deterministic behaviors, achieving
substantial improvements over a pure SMT-based approach by
leveraging general results in linear algebra. We implemented
and evaluated the SMT-based procedures to validate and refor-
mulate the network, demonstrating the potential of complete
verification workflow on real-world systems.

We plan to extend the approach to incorporate networks with
discontinuous state variables [38], produce a network of HA
instead of a monolithic HA, and extend the analysis towards
the safety assessment for the generation of Fault Trees.
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