
Boolean Synthesis via Decomposition
Lucas M. Tabajara 1 Supratik Chakraborty 2

Dror Fried 1 Moshe Y. Vardi 1
1Rice University 2IIT Bombay

Boolean Synthesis

Boolean Synthesis [1]

Given: Boolean formula F (~x, ~y) representing a relation over input vari-
ables ~x = {x1, . . . , xm} and output variables ~y = {y1, . . . , yn}

Obtain: Boolean function g : {0, 1}m→ {0, 1}n such that, for all ~x,

F (~x, g(~x))⇔ ∃~y.F (~x, ~y)

• F is called the specification.
• g is called the implementation.

Example: The two’s complement of a two-bit integer x1x0 is a two-bit
integer y1y0 such that x1x0 + y1y0 = 0. We can synthesize a function that
computes the two’s complement as follows:

F (x0, x1, y0, y1) = ¬(x0 ⊕ y0) ∧ ¬(x1 ⊕ y1 ⊕ (x0 ∧ y0))

⇓

g(x0, x1) =



y0 := x0

y1 := x1 ⊕ x0

Despite extensive research on the subject, Boolean synthesis remains a chal-
lenging NP-hard problem.

A standard strategy for handling hard problems is decomposing them into
smaller problems. Our goal is to apply this concept to Boolean synthesis.

Decomposition using Factored Formulas

One way to decompose Boolean synthesis is to use factored formulas [2, 3]:

F (~x, y1, y2, y3, y4) = F1(~x, y2, y4) ∧ F2(~x, y1, y2, y3) ∧ F3(~x, y3)

Pros:

•Easy to perform decomposition.
•Specifications are often already given as a conjunction of constraints.
•Each factor uses only a subset of the variables.

Cons:

•Dependences between factors.
•Highly non-trivial to combine implementations of F1, . . . , Fk into an
implementation of F [2].

This form of decomposition has been shown to significantly improve syn-
thesis algorithms [2, 3]. However, dealing with the dependences between
factors prevents us from taking full advantage of the decomposition [3]:

F1 ∧ F2 ∧ F3

y4 y2 y1 y3

Towards Sequential Decomposition

11

10

01

00

11

10

01

00

11

10

01

00

10

01

00

10

01

00

11

10

01

00

g1~x ~z g2~z ~y

g1 g2

g

~x ~y
~z

Sequential Decomposition

Given: Boolean formula F (~x, ~y) representing a relation over input vari-
ables ~x = {x1, . . . , xm} and output variables ~y = {y1, . . . , yn}

Obtain: Formulas F1(~x, ~z) and F2(~z, ~y) for intermediate variables ~z =
{z1, . . . , zk} such that, if g1 implements F1 and g2 implements F2, then
g2 ◦ g1 implements F .

References

[1] Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi.
BDD-Based Boolean Functional Synthesis.
In Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Springer, 2016.

[2] Ajith K. John, Shetal Shah, Supratik Chakraborty, Ashutosh Trivedi, and S. Akshay.
Skolem Functions for Factored Formulas.
In Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas,
USA, September 27-30, 2015., pages 73–80, 2015.

[3] Lucas M. Tabajara and Moshe Y. Vardi.
Factored Boolean Functional Synthesis.
In Formal Methods in Computer-Aided Design, FMCAD 2017, Vienna, Austria,
October 2-6, 2017., 2017.


