
Critical Systems Group
University of Minnesota

Architecture

HiFrog:	Interpolation-based	Software	Verification	using	Theory	Refinement

Interpolation

Ø For A ∧ B is	unsatisfiable,	I is	a	
quantifier-free	formula	such	that:

Ø A ⟶ I	
Ø B ⋀ 	I	 is	unsatisfiable
Ø I is	defined	over	common	symbols	of	

A	and	B

Ø Use	of	function	summary	in	a	C	program	
with	assertions

University of Lugano (USI), Switzerland, King's College London, UK, University of Washington, USA
Sepideh Asadi, Karine	Even	Mendoza,	Grigory	Fedyukovich,	Antti	E.J.	Hyvarinen,	Hana	Chockler,	Natasha	Sharygina

C	Benchmarks #assertion EUF LRA Bool
token.c 54 34 34 34
s3.c 131 18 21 26

mem.c 149 96 96 96
disk.c 79 6 6 23
ddv.c 152 47 47 142
café.c 115 15 20 30

tcas_asrt.c 162 16 29 29
p2p.c 244 8 20 94

floppy1.c 18 15 16 18
Percentage	of	

success 50.65% 69.2% 100%

Experiments on SMT vs. Boolean Logic

HiFrog flattening (s)

Th
eo

ry
 re

fin
em

en
t

(s
)

Th
eo

ry
 re

fin
em

en
t

(s
)

CBMC (s)

BOOL (s)

LR
A

 (s
)

EU
F

(s
)

BOOL (s)

Experiments: 1100 verification task of SV-COMP
benchmarks from which 490 were proven to
hold using QF-BOOL. Our experiments show a
large amount of properties were also proven to
be correct by employing the light-weight
theories of HiFrog (namely, 50.65% and 69.2% of
validated properties out of 490 for EUF and LRA
respectively)

Experiments on Theory Refinement

How	?

Why	?		

- SMT-based	Bounded	Model	Checker
- Controllable interpolation	system	for	SMT	(flexible	in	Size &	Strength)
- A	new	approach	called	Theory	Refinement to	have	simple	proofs	using	SMT
- Automatically	identifies	where	precision	is	needed	 and	uses	precise	theories	only	when	necessary
- Support	of	user-defined	summaries

A bounded model checker for Verification of safety property for C programs.

Uses function summaries based on Craig interpolation and supports a novel
technique for abstraction refinement.

To avoid repetition of same verification tasks while checking multiple
properties of same code and to eliminate spurious behaviors! Fe

at
ur
es
	?
	

Theory Refinement Algorithm

Webpage: http://verify.inf.usi.ch/hifrog

void main(){
 int y = 1;
 int x =
nondet();
 if (x > 0)
 y = f(x);
 assert (y >= 0);
 assert (y >= 1);
}

int f(int a) {
 if (a < 10)
 return a;
 return a – 10;
}

void main()
{
 int y = 1;
 int x = nondet();

 if (x > 0){
 assume(y >= 0);
 }
 assert(y >= 0);
 assert(y >= 1);
}

Example

(a	>	0)	à (f_return	>=	0)

What	?

Background

Theory Refiner

summary
refiner

symbolic
execution

SSA
slicing

SMT encoder
QF_BOOL

QF_UF

parser

C program +
assertions

initial
SAT

UNSAT

assertions
traversal

QF
BOOL

QF
LRA

QF
UF

user-defined
summaries

interpolation-
based

summaries

assertions
optimizer

& model

Interpolating SMT solver
theory solvers

itp for
QF_UF

itp for
QF_BOOL

itp for
QF_LRA

BVP

QF_LRA

Binding

B
V

P
B

in
di

ng
U

FP

term vs
CEX

SAT /
UNSAT

CEX
validator

Refiner

"U
N

S
AT

"
te

rm
(s

)

sequence
of all terms

function
summaries

storage

Safe

Unsafe
+ CEX

nothing
to refine

local refinements

initial entire

encoding

