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Preface

The International Conference on Formal Methods in Computer Aided Design (FMCAD), held at Austin, Texas, from October
30-November 2 in 2018, is the eightteenth in a series of meetings on the theory and applications of rigorous formal techniques
for the automated design of systems. The FMCAD conference covers formal aspects of specification, verification, synthesis,
testing, and security, and is a leading forum for researchers and practitioners in academia and industry alike.

The program of FMCAD 2018 comprises a tutorial day with three tutorials on deep neural networks, certified SAT solving
and distributed protocol verification; two keynotes on formal methods applied to block chains and financial algorithms, a forum
for doctoral students. Finally, the main program contains the presentations of the accepted papers.

The tutorial day features three presentations
• “Formal Verification of Deep Neural Networks”, by Nina Narodytska, VMWare Research.
• “Formal Verification of Unsatisfiability Results”, by Marijn Heule, UT Austin.
• “Deductive Verification of Distributed Protocols in First-Order Logic”, by Oded Padon, Stanford University.
The keynotes focus on the application of formal verification in industry, and on the verification of cloud computing platforms

and dependable systems in particular:
• “Formal Verification of Financial Algorithms with Imandra” by Grant Passmore, Aesthetic Integration.
• “Formal Design, Implementation and Verification of Blockchain Languages” by Grigore Rosu, University of Illinois

Urbana-Champaign.
FMCAD also hosts the sixth edition of the Student Forum, which has been held annually since 2013 and provides a platform

for graduate students at any career stage to introduce their research to the FMCAD community. The FMCAD Student Forum
2018 was organized by Dejan Jovanović and Andrew Reynolds and features posters and short presentations of fourteen accepted
contributions. A detailed description of the Student Forum, listing all accepted contributions, is provided in the conference
proceedings.

FMCAD 2018 received 73 submissions. The committee decided to accept 26 papers. Each submission received at least four
reviews. The topics of the accepted papers include hardware and software verification, SAT, SMT, and Horn clause solving,
temporal logics, concurrency, learning, synthesis, and certification.

Organizing this event would not have been possible without the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing detailed
and insightful reviews, which helped the authors to improve their submissions and guided the selection of the papers accepted
for publication. We thank each and every one of them for dedicating their time and providing their expertise. Moreover, we’d
like to give special thanks to the sub-committee which agreed to select the recipients of this year’s Best Paper Award. We
thank Jade Alglave (ARM and UCL) for agreeing to be Publication Chair, and Dejan Jovanović and Andrew Reynolds for
organizing this year’s FMCAD Student Forum. Our webmaster, Tom vaj Dijk, has our gratitude for maintaining and regularly
updating the FMCAD website. We thank all students who volunteered to help running the event. As always, the help and
expertise of the FMCAD steering committee made the organization of FMCAD much easier. We thank Armin Biere (Johannes
Kepler University in Linz, Austria), Alan Hu (University of British Columbia, Canada), and especially Warren A. Hunt,. Jr.
(University of Texas at Austin) and Vigyan Singhal (Oski Tech) and Georg Weissenbacher (TU Wien) for supporting and
encouraging us, and guiding us through the organization process.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would like to
express our gratitude to our sponsors Amazon, Centaur Technology Inc., Galois Inc., IBM, Mentor Graphics, Microsoft, and
Synopsis.

FMCAD 2018 is in-cooperation with the ACM and its Special Interest Groups on Programming Languages (SIGPLAN) and
on Software Engineering (SIGSOFT). The FMCAD conference also received technical sponsorship from the IEEE Council
on Electronic Design Automation. The conference proceedings will be available through the ACM Digital Library, the IEEE
Xplore Digital Library, and are also freely accessible on the FMCAD Website.

Last but not least, we thank all authors who submitted their papers to FMCAD 2018 (accepted or not), and whose contributions
and presentations form the core of the conference. We are grateful to everyone who presented their paper, gave a keynote
or a tutorial, devoting a significant amount of their time to the FMCAD conference. We thank all attendees of FMCAD for
supporting the conference and making FMCAD a stimulating and enjoyable event.

Nikolaj Bjørner and Arie Gurfinkel
FMCAD 2018 Program Chairs
Austin, Texas, USA, October 2018
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Dejan Jovanović SRI International
Temesghen Kahsai Groq
George Karpenkov Apple
Tim King Google
Igor Konnov INRIA Nancy (LORIA)
Ken McMillan Microsoft
Alexander Nadel Intel
Giles Reger The University of Manchester
Andrew Reynolds The University of Iowa
Leonid Ryzhyk VMware Research
Martina Seidl Johannes Kepler University Linz
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Formal Verification of Deep Neural Networks
(Invited Tutorial)

Nina Narodytska
VMware Research, Palo Alto, California
Email: nnarodytska@vmware.com

Abstract—Deep neural networks are among the most successful
artificial intelligence technologies making impact in a variety
of practical applications. However, many concerns were raised
about the ‘magical’ power of these networks. It is disturbing that
we are really lacking of understanding of the decision making
process behind this technology. Therefore, a natural question
is whether we can trust decisions that neural networks make.
One way to address this issue is to define properties that we
want a neural network to satisfy. Verifying whether a neural
network fulfills these properties sheds light on the properties
of the function that it represents. In this tutorial, we overview
several approaches to verifying neural networks properties. The
first set of methods encode neural networks into Integer Linear
Programs or Satisfiability Modulo Theory formulas. They come
up with domain-specific algorithms to solve verification problems.
The second approach is to treat the neural network as a non-
linear function and to use global optimization techniques for
verification. The third line of work uses abstract interpretation
to certify neural networks. Finally, we consider a special class
of neural networks – Binarized Neural Networks – that can be
represented and analyzed using Boolean Satisfiability. We discuss
how we can take advantage of the structure of neural networks
in the search procedure.

I. INTRODUCTION

Deep neural networks have become ubiquitous in machine
learning with applications ranging from computer vision to
speech recognition and natural language processing. Neural
networks demonstrate excellent performance on many practi-
cal problems, often beating specialized algorithms for these
problems, which led to their rapid adoption in industrial
applications. With such a wide adoption, important questions
arise regarding our understanding of the decision making
process of these neural networks: Is there a way to analyze
deep neural networks? How robust are these networks to
perturbations of inputs? Recently, a new line of research on
understanding neural networks has emerged that looks into a
wide range of such questions, from interpretability of neural
networks to verifying their properties [1], [2], [3], [4], [5], [6],
[7], [8].

One emerging technique to analyze a neural network is
based on formal verification. The idea is to encode the network
and the property we aim to verify as a formal statement, using
ILP, SMT or SAT, for example. If the encoding provides an
exact representation of the network then we can study any
property related to this network, e.g. how sensitive the network
is to perturbations of the input.

In this tutorial, we look at main trends in verification of
deep learning networks.

• We recap basic neural networks concepts and discuss a
set of interesting properties of neural network, including
properties that relate inputs and outputs of the network,
e.g. robustness and invertibility, and properties that relate
two networks, like network equivalence.

• We discuss common encodings of deep neural networks
as Boolean, SMT or ILP formulas. We will consider how
various NN properties that can be represented in these
formalisms.

• We survey the main methods developed in neural net-
works verification. We start with a group of methods that
use SMT or ILP solvers to encode verification problems.
These methods range from methods that use only one
technology to solve the problem to methods that combine
SMT and ILP techniques during the search process. Then
we will look into methods that treat neural networks as
non-linear functions and use global optimization tech-
niques to perform verification. Finally, we consider the
line of work that uses abstract interpretation to certify
neural networks.

• We consider a special class of neural networks – Bina-
rized Neural Networks. These networks have a number of
important features that are useful in resource constrained
environments, like embedded devices. We discuss how
binarized neural networks can be represented as Boolean
formulas. We show that structural properties of binarized
neural networks can be exploited to reason about this
class of networks.

REFERENCES
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Formal Verification of Unsatisfiability Results
(Invited Tutorial)

Marijn J.H. Heule
The University of Texas at Austin
marijn@cs.utexas.edu

Satisfiability (SAT) solvers are used for determining the correctness of hardware and software systems. It is therefore crucial
that these solvers justify their claims by providing proofs that can be independently verified. This holds also for various other
applications that use SAT solvers. Just recently, long-standing mathematical problems were solved using SAT, including the
Erdos Discrepancy Problem, the Pythagorean Triples Problem, and Schur Number Five. Especially in such cases, proofs are
at the center of attention, and without them, the result of a solver is almost worthless.

What the mathematical problems and the industrial applications have in common, is that proofs are often of considerable
size—in the case of the Schur Number Five about 2 petabytes in a highly compressed format. To demonstrate how to increase
trust in the correctness of multi-CPU-year computations, we validated the poof of the Schur Number Five problem. We certified
the proof using the ACL2 theorem proving system. Given the enormous size of the proof, we argue that any result produced
by SAT solvers can now be validated using highly trustworthy systems with reasonable overhead.

The tutorial also covers how to use tools that validate proofs of unsatisfiability. Apart from verifying SAT-solving results,
these tools support producing unsatisfiable cores and optimized proofs. Unsatisfiable cores can be useful in various debugging
settings, while optimized proofs allow for fast validation by a formally-verified tool and an independent party.
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Deductive Verification of Distributed Protocols in First-Order Logic
(Invited Tutorial)

Oded Padon
Stanford University, USA

Formal verification of infinite-state systems, and dis-
tributed systems in particular, is a long standing research
goal. In the deductive verification approach, the programmer
provides inductive invariants and pre/post specifications of
procedures, reducing the verification problem to checking
validity of logical verification conditions. This check is
often performed by automated theorem provers and SMT
solvers, substantially increasing productivity in the verifica-
tion of complex systems. However, the unpredictability of
automated provers presents a major hurdle to usability of
these tools. This problem is particularly acute in case of
provers that handle undecidable logics, for example, first-
order logic with quantifiers and theories such as arithmetic.
The resulting extreme sensitivity to minor changes has a
strong negative impact on the convergence of the overall
proof effort.

On the other hand, there is a long history of work on
decidable logics or fragments of logics. Generally speak-
ing, decision procedures for these logics perform more
predictably and fail more transparently than provers for
undecidable logics. In particular, in the case of a false
proof goal, they usually can provide a concrete counter-
model to help diagnose the problem. However, decidable
logics pose severe limitations on expressiveness, and it is
not immediately clear that such logics can be applied to
proving complex protocols or systems.

In this tutorial, we will explore a practical approach to
using first order-logic, and a decidable fragment thereof,
to prove complex distributed protocols and systems. The
approach, implemented in the Ivy verification tool, applies
abstraction and modular reasoning techniques to mitigate
the expressiveness limitations of decidable fragments. The
high-level strategy involves the following ideas:

• Abstracting infinite-state systems using first-order
logic.

• Carefully controlling quantifier-alternations to en-
sure decidability.

• Using modular reasoning principles to decompose a
proof into decidable lemmas.

Experience to date indicates that the approach, based on
first-order logic, is surprisingly powerful, and it is possible
to prove safety and liveness properties of complex protocols
(e.g., Paxos variants), and also to produce verified low-
level implementations, using decidable logics. Moreover, the
effort required to structure the proof in this way is more
than repaid by greater reliability of proof automation, which

significantly reduces the overall verification effort. Better
matching human reasoning capabilities to the capabilities of
automated provers results in a more stable and predictable
formal development process.

This tutorial is based on joint works [1], [2], [3], [4],
[5], [6], [7], [8] with Jochen Hoenicke, Neil Immerman,
Aleksandr Karbyshev, Giuliano Losa, Kenneth L. McMil-
lan, Aurojit Panda, Andreas Podelski, Mooly Sagiv, Sharon
Shoham, Marcelo Taube, James R. Wilcox, and Doug Woos.
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Formal Verification of Financial Algorithms with
Imandra
(Invited Keynote)

Grant Olney Passmore
Aesthetic Integration and Clare Hall, Cambridge

grant.passmore@cl.cam.ac.uk
https://www.cl.cam.ac.uk/∼gp351/

https://www.imandra.ai/

Index Terms

formal verification, financial algorithms, Imandra, dark pools, market microstructure

Many deep issues plaguing today’s financial markets are symptoms of a fundamental problem: The complexity of algorithms
underlying modern finance has significantly outpaced the power of traditional tools used to design and regulate them. At
Aesthetic Integration, we’ve pioneered the use of formal verification for analysing the safety and fairness of financial algorithms.
With a focus on financial infrastructure (e.g., the matching logics of exchanges and dark pools), we’ll describe the landscape,
and illustrate our Imandra formal verification system on a number of real-world examples. We’ll sketch many open problems
and future directions along the way.
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Formal Design, Implementation and Verification of
Blockchain Languages

(Invited Keynote)

Grigore Rosu
University of Illinois at Urbana-Champaign, USA

grosu@illinois.edu
http://fsl.cs.illinois.edu/grosu

and
Runtime Verification, Inc., USA

grigore.rosu@runtimeverification.com

Index Terms

formal verification, semantics, blockchain

Many of the recent cryptocurrency bugs and exploits are due to flaws or weaknesses of the underlying blockchain program-
ming languages or virtual machines. The usual post-mortem approach to formal language semantics and verification, where the
language is firstly implemented and used in production for many years before a need for formal semantics and verification tools
naturally arises, simply does not work anymore. New blockchain languages or virtual machines are proposed at an alarming
rate, followed by new versions of them every few weeks, together with programs (or smart contracts) in these languages that
are responsible for financial transactions of potentially significant value. Formal analysis and verification tools are therefore
needed immediately for such languages and virtual machines. We present recent academic and commercial results in developing
blockchain languages and virtual machines that come directly equipped with formal analysis and verification tools. The main
idea is to generate all these automatically, correct-by-construction from a formal specification. We demonstrate the feasibility
of the proposed approach by applying it to two blockchains, Ethereum and Cardano.

LINKS

Runtime Verification, Inc:
- http://runtimeverification.com

Smart contract verification approach and verified contracts:
- https://runtimeverification.com/smartcontract/
- https://github.com/runtimeverification/verified-smart-contracts

Formally specified, automatically generated virtual machines for the blockchain:
- EVM: https://github.com/runtimeverification/evm-semantics
- IELE: https://github.com/runtimeverification/iele-semantics

Supported in part by NSF grant CCF-1421575, NSF grant CNS-1619275, and an IOHK (http://iohk.io) gift.
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The FMCAD 2018 Graduate Student Forum
Dejan Jovanović
SRI International

Andrew Reynolds
The University of Iowa

Abstract—The FMCAD Student Forum provides a platform
for graduate students at any career stage to introduce their
research to the wider Formal Methods community, and solicit
feedback. In 2018, the event took place in Austin, Texas, as
integral part of the FMCAD conference. Fourteen students were
invited to give a short talk and present a poster illustrating
their work. The presentations covered a broad range of topics
in the field of verification, such as from SAT/SMT solving and
theorem proving, analysis and verification of hardware, software,
and cyber-physical systems.

Since 2013, the FMCAD conference features a Student
Forum, providing a platform for graduate students at any
career stage to introduce their research to the wider Formal
Methods community. The FMCAD 2018 Graduate Student
Forum follows the tradition of its predecessors, which took
place in

1) Portland, Oregon, USA in 2013 [4],
2) Lausanne, Switzerland in 2014 [3],
3) Austin, Texas, USA in 2015 [5],
4) Mountain View, CA, USA in 2016 [2], and
5) Vienna, Austria in 2017 [1].
Graduate students were invited to submit short reports

describing their ongoing research in the scope of the FMCAD
conference. Based on the reviews provided by the organizing
committee, 14 high-quality submissions were accepted and
presented at the forum. The reviews focused on the novelty
of the work, the technical maturity of the submission, and the
quality and soundness of the presentation. The presentations
covered a broad spectrum of topics relevant to the FMCAD
community, from SAT/SMT solving and theorem proving, to
analysis and verification of hardware, software, and cyber-
physical systems. The following contributions have been ac-
cepted:
• Thomas Pani, Georg Weissenbacher and Florian Zuleger.

Rely-Guarantee Reasoning for Automated Bound Analy-
sis of Concurrent, Shared-Memory Programs.

• Bjørnar Lutebergen. On Synthesis and Optimization of
Railway Signalling and Interlocking Designs.

• David Narváez. A Formally Verified Symmetry Breaking
Tool for SAT.

• Yi Chou. Run-time Assurance for Unmanned Aerial Ve-
hicles using Stochastic Modeling and Reachability Anal-
ysis.

• Souradeep Dutta. Verification of Deep Neural Networks.
• Makai Mann and Clark Barrett.Finding Critical Clauses

in SMT-based Hardware Verification
• Hari Govind Vediramana Krishnan. Prioritizing Lemmas

While Pushing.

• Li Huang and Eun-Young Kang. SMT-based Probabilistic
Analysis of Timing Constraints in Cyber-Physical Sys-
tems

• Nikita Zyuzin, Heiko Becker, Eva Darulova and Magnus
Myreen. Formalisation of Affine Arithmetic in Coq.

• Jakub Kuderski, Arie Gurfinkel and Jorge Navas. Type-
aware DSA-Style Points-To Analysis for Low Level
Code.

• Adrian Rebola Pardo. A Theory of Satisfiability-
Preserving Proofs in SAT Solving.

• Pavel Čadek. Upper and Lower Loop Bound Estimation
by Symbolic Execution and Loop Acceleration.

• Anton Xue, Ross Mawhorter, Gian Pietro Farina and
Stephen Chong. Towards the Formalization and Analysis
of R.

• Maxwell Shinn, Clarence Lehman and Ruzica Piskac.
Runtime Verification of Scientific Software.

The 2018 student forum also featured a Best Contribution
Award (based on the quality of the submission, the poster,
and the presentation), announced during the conference and
publicized on the FMCAD website.1

The Student Forum would not have been possible without
the excellent contributions of the student authors. The help
and advice of Georg Weissenbacher, who organized the earlier
FMCAD 2015 student forum was invaluable. We would also
like to express our gratitude to all the reviewers of the FMCAD
Student Forum for their work.
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CoSA: Integrated Verification for
Agile Hardware Design

Cristian Mattarei, Makai Mann, Clark Barrett, Ross G. Daly, Dillon Huff, and Pat Hanrahan
Stanford University

Stanford, California (USA)
{mattarei, makaim, clarkbarrett, ross.daly, dhuff, pmh}@stanford.edu

Abstract—Symbolic model-checking is a well-established tech-
nique used in hardware design to assess, and formally verify,
functional correctness. However, most modern model-checkers
encode the problem into propositional satisfiability (SAT) and do
not leverage any additional information beyond the input design,
which is typically provided in a hardware description language
such as Verilog.

In this paper, we present CoSA (CoreIR Symbolic Analyzer),
a model-checking tool for CoreIR designs. CoreIR is a new
intermediate representation for hardware. CoSA encodes model-
checking queries into first-order formulas that can be solved by
Satisfiability Modulo Theories (SMT) solvers. In particular, it
natively supports encodings using the theories of bitvectors and
arrays. CoSA is closely integrated with CoreIR and can thus
leverage CoreIR-generated metadata in addition to user-provided
lemmas to assist with formal verification. CoSA supports multiple
input formats and provides a broad set of analyses including
equivalence checking and safety and liveness verification. CoSA
is open-source and written in Python, making it easily extendable.

I. INTRODUCTION

Formal verification has become an important part of the de-
sign process, particularly in the hardware domain. As hardware
and software systems become increasingly complex, more time
than ever before is spent on verification to avoid costly and
potentially dangerous bugs.

For many years, hardware model-checking experts focused
on general techniques applicable to any design provided in
a standard format such as a hardware description language
(HDL) or AIGER [6], without any extra information from
the designers. While there has been impressive progress,
these techniques still often fail to scale on industrial-sized
systems. This requires verification engineers to either shrink
the parameter sizes if possible, or manually add additional
lemmas. Frequently, these additional lemmas are simple in-
variants which are known by the designer or design tool, but
are not easily inferred by the formal system.

This paper introduces the CoreIR Symbolic Analyzer
(CoSA), a model-checking tool for the hardware intermediate
representation CoreIR [11]. CoSA can leverage additional
knowledge provided by CoreIR to improve performance on
many classes of proofs.

This research was supported in part by the Defense Advanced Research
Projects Agency (contract FA8650-18-2-7854) and by gifts from Intel Corpo-
ration (through the Stanford Agile Hardware Project) and Cisco Systems.

Halide

Place and 
Route

Yosys
(Verilog) …

CoreIR

High-level Functional 
Definition

Intermediate Circuit 
Representation

Bitstream CGRA 
configuration

Fig. 1. AHA Flow

CoSA was developed as a tool for verifying correctness at
various stages of the toolflow in the Agile Hardware (AHA)
Project at Stanford University [18]. This project aims to
improve performance and design productivity by incorporat-
ing ideas from agile software development to speed up the
development cycle.

Compared to the software community, there are very few
open-source tools for hardware design and verification. As
seen in the software domain, open-source tools can help en-
courage innovation and distribute effort, the latter of which is
particularly lacking in the hardware community. Furthermore,
in the last decade, open-source SMT solvers have become
powerful tools for verification, and the community no longer
needs to rely exclusively on commercial tools. In support of
these goals, the Agile Hardware Project is developing an end-
to-end open-source toolchain.

The rest of the paper is organized as follows: Section II
provides background on CoreIR and the Agile Hardware
Project; Section III describes CoSA’s supported formal anal-
yses, architecture, and integration with design; Section IV
describes a set of applications of the tool; Section V covers
related work on hardware verification tools; and Section VI
provides concluding remarks.

II. COREIR

CoreIR is an intermediate representation and compilation
framework for digital designs [11]. It is front-end agnostic and
thus can be a compiler target for any language representing
hardware designs. Primitives in the IR have the same semantics
as the SMT theory of bitvectors [3], allowing for easy formal
verification integration. CoreIR can be transformed into cus-
tom back-ends using a flexible pass framework, and serialized
into different hardware and SMT-based formats.
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In the AHA toolflow [18], depicted in Figure 1, a user first
writes an application in a high-level language, such as the
image processing domain-specific language, Halide [19]. This
compiles to CoreIR and then goes through several optimization
passes before being mapped to a back-end. One of the main
targets of the AHA tool flow is a custom Course-Grained
Reconfigurable Array (CGRA). The CGRA is designed to have
the flexibility of an FPGA while improving performance on
certain kinds of applications (e.g. image processing) [23]. This
performance is gained by configuring at the word level and by
composing specialized heterogeneous tiles containing mem-
ories and dedicated processing elements (essentially ALUs).
A set of place and route tools produce a bitstream which
configures the CGRA to implement the application.

As shown in Figure 1, other high-level hardware description
languages can integrate with CoreIR in addition to Halide. In
fact, the CGRA is written in Verilog, which is compiled into
CoreIR using the VerilogToCoreIR [13] Yosys [25] pass. An-
other example is the hardware design language Magma [21].

The verification goals in the AHA project include assessing
functional correctness of the CGRA, as well as verifying
that the firmware produces the correct configuration for the
high-level, behavioral definition from Halide. Given these
requirements, we integrated the formal verification at the
CoreIR level, thus allowing us to support the required analyses.

III. COSA: COREIR SYMBOLIC ANALYZER

CoSA integrates with CoreIR to provide formal analyses.
In this section we explain the analyses supported by the tool
and describe its architecture.

A. Formal Analyses

CoSA reduces all analyses to symbolic model-checking
problems [10]. The underlying theoretic model is a Symbolic
Transition System (STS), as expressed in Def. 1.

Def. 1 (Symbolic Transition System). A Symbolic Transition
System is a tuple S = 〈V, I, T 〉 where V is a set of (input
VI , state VS , and output VO) variables, I(V ) is a formula
representing the initial states, and T (V, V ′) is a formula
representing the transitions. A state of S is an assignment
to the variables VS .

The core analyses of CoSA are primarily based on safety
and liveness checking. A safety property is a formula ϕ which
should hold in every state of an STS M (denoted in Linear
Temporal Logic [22] as M |= Gϕ). This is essentially invariant
verification, meaning that if the property holds then ϕ is an
invariant of the system. If the property does not hold, an
execution of the system that leads to ¬ϕ is typically provided
as a counterexample.

Alternatively, a liveness property is a formula ϕ which
should hold infinitely often in every execution of an STS M
(denoted M |= GFϕ), A practical example of this analysis is
to verify that a processor is always going to be ready to receive
a new command. In liveness verification, a counterexample is
an execution where, at some point, ϕ no longer holds along

CoSA

AnalyzersTransition 
Systems Problem Printers Encoders

PySMT PyCoreIR

CoreIRCVC4 Z3 MathSAT …

Fig. 2. CoSA Architecture

an infinite execution path. A typical representation of such a
trace is a “lasso-shaped” execution, in which the last state of
the trace is equal to one of the previous states.

When analyzing circuit designs, it is often necessary to
perform equivalence checking between two systems. The
checking is usually based on standard safety verification on
a synchronous combination of the systems under analysis, as
expressed in Definition 2.

Def. 2 (Synchronous Product of STS). Given two Symbolic
Transition Systems S1 := 〈V1, I1, T1〉 and S2 := 〈V2, I2, T2〉
where V1 ∩ V2 = ∅, the synchronous product S of S1 and S2,
namely S1×S2, is defined as S := 〈V1∪V2, I1∧I2, T1∧T2〉.

B. Verification Engines

CoSA analyzes model-checking problems with Bounded
Model-Checking (BMC) [5] techniques, and encodes them
using SMT formulas. For each analysis, CoSA provides
techniques able to prove or disprove the property. More
specifically, for the counterexample generation of safety and
liveness verifications the tool relies on BMC [5], while K-
Induction [20]/Interpolation [15] and K-Liveness [9] are used
to prove safety and liveness properties, respectively.

C. Framework

CoSA [14] is written in Python and its usage is regulated by
the modified BSD license. As represented in Figure 2, CoSA
builds on top of PySMT [12], which provides a solver-agnostic
Python library to interface with SMT solvers. The internal
architecture of CoSA is divided into the following parts:
• Transition Systems: defines the internal representation

of the model, which is based on a hierarchical set of
Transition Systems;

• Analyzers: implements the logic responsible for solving
a verification problem. This includes BMC engines and
liveness checking;

• Problems: used to define and manage the status of a
verification problem;

• Printers: provides support for trace printing (i.e., textual
or VCD format), and model translation such as the
generation of an SMV file [8];

• Encoders: responsible for encoding different model de-
scriptions into the internal representation. This includes
interpreting CoreIR models, and extracting additional
information used to optimize the verification process.
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Case Study # State Vars Total # Bits
A 44 14,771
B 110 27,307
C 1,029 (5 Arrays) 414,847

TABLE I
SIZES OF THE CASE STUDIES - REPORTED FOR COMPOSED SYSTEMS.

For added flexibility, CoSA supports multiple input formats,
all of which get translated internally into STS’s. In fact,
the model under analysis is defined using a list of files
whose STS’s are synchronously combined (see Def. 2) to
produce a single STS. The supported input formats are CoreIR,
Explicit-state Transition System (ETS), Symbolic Transition
System (STS), and BTOR2 [16]. More information on the
input formats is provided in [14]. This approach allows the
user to describe complex analyses without modifying the
original CoreIR model. For instance, the analysis of pro-
grammable hardware often requires a configuration sequence
before checking its behavior. This sequence typically includes
a reset procedure, for both pos-edge and neg-edge registers,
as well as a configuration phase which sequentially loads
a bitstream through the configuration port. CoSA facilitates
a clear separation between hardware definition, e.g., CoreIR
design, and configuration sequence, e.g., ETS. CoSA can
generate SMT-LIB files for each of the analyses. Moreover,
the ability to translate to SMV format makes it possible to
use additional model-checkers such as nuXmv [8].

IV. CASE STUDIES

Below we include several case studies illustrating the utility
of CoSA. All of these examples come from the Agile Hard-
ware Project, and cover various stages in the Agile Hard-
ware flow including hardware design, optimization passes,
and mapping image processing applications to reconfigurable
hardware. All models were translated to CoreIR from (System)
Verilog or Halide in order to be analyzed with CoSA. Table I
reports the number of variables in the models, including the
total size in Bits. All experiments were run on a 2.6GHz Intel
Core i7 with 16GB of RAM, and we compared with Yosys,
as a reference for open-source word-level model checking.

A. Hardware: Global Controller

The global controller is responsible for configuring the
CGRA, managing clock domains, and reading register values
for debugging. This module interfaces the JTAG controller,
which handles serial communications to and from the chip,
with the main CGRA fabric. In this case study, we focused on
verifying the global controller in isolation.

The global controller has a register named state which
records the current state. Certain operations might take mul-
tiple cycles to complete, so it uses a counter to keep track of
the number of cycles. At the beginning of an operation, the
counter is set to the expected delay, and the controller returns
to the ready state when the counter reaches zero.

Table II lists a selection of properties we attempted to verify
using CoSA and the result of each. For the third property,
CoSA exposed a bug in the design that could cause the global
controller to be stuck in the current state for 232 cycles. The

Property Result
Always return to ready state, assuming counter delay < 10 T
When not in ready state, the counter always decreases T
No underflow in counter F
Read signal is high implies the controller is in the read state T
Write signal is high implies the controller is in the write state F

TABLE II
PROPERTIES FOR THE GLOBAL CONTROLLER

global controller allows the user to configure the operation
delay, and because of subtle timing issues, the counter is
assigned to the user-specified delay minus one. Thus, if the
user asks for a delay of zero, the counter underflows. In this
case, the counter would count down starting at the maximum
value of a 32-bit unsigned integer and the only way to recover
would be to reset the controller. This issue was fixed by
special-casing zero-delay requests.

CoSA also found a counterexample trace in which the write
signal could be corrupted. This is accomplished by asking the
global controller to switch clock domains, then immediately
requesting a write operation. The clock domain switch disables
all other operations until the switch is completed, but there is
a delay of one clock cycle. Thus, if the write signal is enabled
within that delay, it is kept high throughout the clock domain
switch, but the controller is not in the write state. While
interesting, this could not happen in the full system, because it
always takes multiple cycles to produce each operation through
the JTAG controller.

We also compared the performance of CoSA against the
Yosys verification engine, only considering safety properties
since Yosys does not natively support liveness checking. We
ran the SMT solver CVC4 [1] on the SMT-LIB generated by
CoSA and by Yosys (configured with Verific [24] bindings for
parsing temporal SystemVerilog Assertions). It takes 4.684s
to check all the properties generated by CoSA and 5.395s to
check the properties generated by Yosys. The runtimes are
comparable, with CoSA running slightly faster.

B. Software: Fold-Constants Pass

CoreIR has an extensible infrastructure for optimization
and analysis passes on hardware designs. In the context of
the Agile Hardware Project, the design goes through multiple
passes before being placed and routed on the fabric. To catch
bugs as close to the source as possible, it is desirable to check
that these passes produce functionally equivalent designs.

CoSA supports equivalence checking on CoreIR design files
and, when necessary, incorporates extra information provided
by the CoreIR pass to assist in the proof.

The fold-constants pass is interesting because it can change
the number of state variables in the system, which traditionally
makes equivalence checking far more difficult. The pass takes
any subgraph of the design which is always constant and
replaces it with a constant module. The replaced subgraph
could be combinational logic operating on constants, or it
could be a register which never changes value.

1) Equivalence Checking: Although this pass modifies the
design, the functional behavior of the system should not
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Fig. 3. CoSA automatic proof decomposition strategy for CoreIR passes

change. Given two STS’s S1 and S2, we need to check that
S1 × S2 |= G(VI1 = VI2) =⇒ G(VO1

= VO2
).

A pure SMT-based K-Induction technique could solve this
problem; however, it does not scale well even for moder-
ately sized systems. Alternatively, a verification expert could
manually add additional lemmas, but this is time-consuming
and procedural. Instead, our approach is to generate lemmas
from CoreIR, as depicted in Figure 3. In this specific case,
these lemmas express the part of the circuit that has been
replaced with a constant by CoreIR, and CoSA adds them
as assumptions for the equivalence proof only if they are
invariants in the model.

With this proof decomposition, CoSA can check 52 lem-
mas and prove equivalence between pre-pass and post-pass
CoreIR of a CGRA processing element tile configured to do a
multiplication in 50 seconds, whereas K-Induction without the
additional lemmas does not complete in 2 hours. To compare
with Yosys, we produced Verilog from CoreIR for the pre-
pass and post-pass designs. These were instantiated together
in a top module, similar to the synchronous product encoding
in CoSA. K-Induction in Yosys was also unable to prove
equivalence in 2 hours.

C. Firmware: Sequential Equivalence of Design and Config-
ured Hardware

We have shown above that CoSA can prove properties of
Verilog designs, as well as functional equivalence between
CoreIR designs transformed by optimization passes. It is
also useful to verify that the configured CGRA faithfully
implements the application described by a CoreIR file.

As a simple example, we generated CoreIR that implements
a 2x1 convolution, henceforth referred to as the application.
This was mapped to CGRA primitives, and then the place
and route tools were used to produce a bitstream for a 4x4
CGRA. From the bitstream, we generated an ETS, SETS ,
which toggles configuration signals and passes the bitstream
to the CGRA inputs. We simulated the CGRA synchronized
with SETS in CoSA to configure the CGRA.

For performance reasons, it helps to simulate without un-
rolling. In this case, the transition relation was only unrolled
one step. The SMT solver was called repeatedly to generate
the next step, and the initial state was reassigned each time.
A separate check can verify that the configuration phase
is deterministic and correct. For space reasons this is not
covered here. Once the CGRA was configured, the reset and

configuration signals were disabled, and the initial state was
assigned to the configured state.

A 2x1 convolution slides a 2-dimensional kernel over an
input image. In hardware, this is implemented serially using a
linebuffer to delay input pixels. In this case, it was configured
for 10x10 input images, and thus the linebuffer has depth 10.

The application implements the linebuffer using a memory
with a 5-bit address and a counter. The CGRA implements
the linebuffer with nontrivial use of two memories with 9-bit
addresses. Convolution depends on the correct linebuffer be-
havior; thus, these memories could not be soundly blackboxed
in a SAT-based model checker. CoSA encodes memories from
both the application file and the translated CGRA using the
SMT theory of arrays.

We were unable to prove full equivalence because, due
to the linebuffers, the equivalence property is not inductive.
Unfortunately, we also cannot strengthen the property with
array extensionality because of the different use and address
widths of memories in the two linebuffer implementations:
the memory abstractions are incomparable via standard array
equivalence. However, in 2 minutes CoSA was able to prove
that if reset is held low, the configuration of the CGRA
does not change. Furthermore, CoSA showed in just over 80
minutes that, under basic assumptions of correct usage, the
configured CGRA matches the behavior of the CoreIR 2x1
convolution for all executions up to 20 cycles (10 cycles of
valid pixel output). For the first ten cycles, inputs are invalid.
Thus, CoSA begins sequential equivalence checking once the
linebuffer is full and output pixels are valid. Full verification
with larger designs is the aim of ongoing work.

V. RELATED WORK

BtorMC [17] is a word-level model checker that relies on
the SMT-solver Boolector 3.0 [17] to solve (invariant) model
checking problems using bounded techniques [4]. Differently
from CoSA, BtorMC is tightly integrated with Boolector, and
it does not allow for a simple integration with different solvers.

Yosys [25] is an open source Verilog synthesis suite that
provides SMT-based invariant model checking. It interfaces
with SMT solvers via SMT-LIB [2] files. Yosys can also rely
on ABC [7] for other analyses such as liveness checking.
However, ABC engines are based on an encoding into SAT.

VI. CONCLUSION

In this paper we introduced the CoreIR Symbolic Analyzer
(CoSA), an open-source formal verification tool for CoreIR.
CoSA provides a broad set of SMT-based formal analyses in-
cluding model checking and equivalence checking. Moreover,
CoSA is able to automatically extract additional information,
such as lemmas, from CoreIR to speed up verification tasks.

A series of case studies from the Agile Hardware (AHA)
Project at Stanford University [18] were described in order
to show that CoSA is capable of handling real hardware
verification problems.

For future work, we intend to extend the functionality of
CoSA to include full support of Linear Temporal Logic (LTL)
and additional input formats such as SMV.
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ILA-MCM: Integrating Memory Consistency Models with
Instruction-Level Abstractions for Heterogeneous System-on-Chip Verification
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Abstract—Modern Systems-on-Chip (SoCs) integrate hetero-
geneous compute elements ranging from non-programmable
specialized accelerators to programmable CPUs and GPUs. To
ensure correct system behavior, SoC verification techniques
must account for inter-component interactions through shared
memory, which necessitates reasoning about memory consistency
models (MCMs) This paper presents ILA-MCM, a symbolic
reasoning framework for automated SoC verification, where
MCMs are integrated with Instruction-Level Abstractions (ILAs)
that have been recently proposed to model architecture-level
program-visible states and state updates in heterogeneous SoC
components.

ILA-MCM enables reasoning about system-wide properties
that depend on functional state updates as well as ordering
relations between them. Central to our approach is a novel facet
abstraction, where a single program-visible variable is associated
with potentially multiple facets that act as auxiliary state vari-
ables. Facets are updated by ILA “instructions,” and the required
orderings between these updates are captured by MCM axioms.
Thus, facets provide a symbolic constraint-based integration
between operational ILA models and axiomatic MCM specifica-
tions. We have implemented a prototype ILA-MCM framework
and use it to demonstrate two verification applications in this
paper: (a) finding a known bug in an accelerator-based SoC, plus
a new potential bug under a weaker MCM, and (b) checking that
a recently proposed low-level GPU hardware implementation is
correct with respect to a high-level ILA-MCM specification.

I. INTRODUCTION

Systems-on-Chip (SoCs) integrate specialized hardware to
meet the power-performance requirements posed by emerging
applications. Specialized hardware can be programmable (e.g.,
Graphics Processing Units or GPUs) or non-programmable
(e.g., an AES cryptographic accelerator). They outperform
general purpose processors in specific domains like machine
learning [1], scientific computation [2], and cryptographic op-
erations [3]. The multiple processing units in an SoC typically
run concurrently. This concurrency can be difficult to reason
about, leading to design and implementation bugs in functional
correctness as well as security. Furthermore, when SoC
components interact via shared memory or memory-mapped
input and output (MMIO), one also needs to reason about
memory consistency models (MCMs). Although programmers
generally find it easier to think about concurrent code with
sequentially consistent (SC) ordering semantics, modern
instruction set architectures (ISAs) have weaker MCMs in an
effort to achieve better performance and scalability.

This work was supported in part by the Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA.

This work was supported in part by the National Science Foundation, XPS
Program, Grant No. 1628926.

Previous MCM verification efforts have focused on
modeling and analyzing MCMs at different levels of the
software/hardware stack in parallel systems [4–11]. These
approaches typically use small parallel programs, called litmus
tests, for reasoning about the MCMs themselves. They focus
on ordering relations between simple instructions, rather
than on symbolic reasoning of complex control and data
flow in programs, which is often needed in SoC verification.
Moreover, none of these efforts consider non-programmable
hardware accelerators, which may not have an ISA.

Recently, an instruction-centric operational model for het-
erogeneous SoC components has been proposed, called an
Instruction-Level Abstraction (ILA) [12]. Analogous to a pro-
cessor ISA, an ILA models a hardware component’s program-
visible states and their updates in the form of instructions. This
provides a well-defined interface between sequential software
and the underlying hardware component. For an accelerator,
its ILA instructions correspond to commands at its interface.
ILAs have been successfully generated (using semi-automated
synthesis-based techniques) for many accelerators in prac-
tice [12–14]. In the rest of this paper, we use “instructions” to
denote ILA instructions, which correspond to instructions in
a processor ISA or to derived instructions for an accelerator.

An ILA can uniformly model rich instruction semantics
(i.e., including control and data flow) of a single processing
unit, e.g., a processor or an accelerator. Although existing
MCM specifications and verifiers are well-suited for
representing orderings between memory operations of multiple
processing units, they lack such rich instruction models. We
show that for general SoC verification, it is essential to reason
about both rich instructions in heterogeneous components and
memory orderings between them.

In this paper, we address this central challenge by proposing
a general symbolic framework called ILA-MCM, shown in
Figure 1. In this framework, each processing unit in an
SoC, such as a programmable processor or an accelerator,
is uniformly represented by an ILA. The MCM is described
using axioms, as in previous efforts [4–11], but is integrated
with the ILA operational models. This enables our ILA-
MCM framework to reason about functional state updates in
instructions as well as the effects of MCMs, thereby supporting
expressive properties involving both states and orderings for
SoC verification.

A novel feature of our ILA-MCM framework is the facet
abstraction, where a single program variable in an instruction
can be associated with multiple auxiliary state variables called
facets in the verification model. Facets are useful for modeling
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Fig. 1. The ILA-MCM Framework for heterogeneous SoC verification

memory subsystems and consistency effects, where different
observers in an SoC may see logically distinct values of the
same program-visible variable. The allowed values of facets
are constrained by the operational semantics of the instructions
as well as the memory consistency axioms. Thus, facets form
a critical link between operational ILA models and axiomatic
MCM specifications.

Another feature is that our verification procedure supports
both operational and axiomatic models in general. (For ex-
ample, our second application uses a low-level operational
model for memory consistency.) The executions of operational
models (e.g., ILAs) are based on a program sketch [15]1,
which depends on the property to be verified. This creates
symbolic trace events (events, in short). Each event is guarded
by a condition and updates the state in an ILA or a facet.
The axioms are then instantiated, which may create additional
events or impose happens-before [16] ordering relations be-
tween events. We refer to these sets of constraints as the model
constraints. Finally, we add property constraints that refer to
states and ordering requirements for verification.

We use standard theories in first order logic to capture all
constraints, including the semantics of instructions in a pro-
gram and happens-before ordering relations between events.
The formula comprising all constraints is checked by a Sat-
isfiability Modulo Theory (SMT) solver [17]. Our framework
supports diverse verification tasks formulated as SMT queries,
including finding bugs (via falsification) or proving correctness
(via verification condition generation). We have implemented
a prototype ILA-MCM framework and demonstrate its use in
two challenging SoC verification applications in this paper.

To summarize, this paper makes the following contributions:

• ILA-MCM framework: We propose a framework that
combines operational models for processing cores (in-
cluding accelerators) with axiomatic memory consistency
models to enable SMT-based reasoning of complex inter-
actions between hardware, software, and memory subsys-
tems in heterogeneous SoCs.

• Facet abstraction: We propose the facet abstraction,
where a single program-visible state variable can be

1Similar to automated program synthesis, the “holes” in our program sketch
are filled in by a solver.

associated with multiple logically-distinct variables, to
represent updates on program-visible states with memory
consistency effects. The facets provide the basis for a
constraint-based integration of ILAs with MCMs.

• Evaluation on real-world SoCs designs: First, we show
an application of the ILA-MCM framework for finding
security bugs in SoC firmware [18], where our support for
expressive properties enables finding a malicious exploit
from a program sketch. Second, we show an application
for checking correctness of a low-level GPU hardware
implementation [19] against a high-level ILA-MCM spec-
ification, where our instruction-centric approach enables
its decomposition into simpler verification tasks.

An overview of various components in the ILA-MCM
framework is shown in Figure 2, annotated by the section num-
bers that describe these components. We start by introducing
the relevant background on ILAs and MCMs.

II. BACKGROUND

A. Instruction-Level Abstraction (ILA)

An ILA is a uniform abstraction for hardware accelerators
as well as general-purpose/specialized programmable proces-
sors [12]. It is an operational model that captures updates
by hardware to program-visible states (i.e., the states that are
accessible or observable via a user-facing program instruction).
It can be viewed as a generalization of the processor ISA in the
heterogeneous context, where the instructions for accelerators
are defined as the commands on their interface that update
program-visible states. In an ILA, each instruction has a
decode condition, and the instruction executes only when this
condition is true. An ILA also supports hierarchy, where an
instruction at a high level can be represented as a sequence
of child instructions at a lower level, as shown in Figure 2
for Instr A of ILA1 (under the “ILAs” column). Thus,
the granularity of ILA instructions can vary, ranging from
processor instructions to software functions. Furthermore, an
ILA is used for modeling a sequential thread of control, while
parallelism is modeled using multiple such threads.

B. Memory Consistency Model (MCM)

An MCM provides a specification to a programmer of the
order in which memory operations appear to execute [20].
Sequential consistency (SC), defined by Lamport [21],
specifies that: (1) memory accesses preserve the order within
each thread of a program, and (2) across threads, there is an
order of accesses that every observer agrees upon. Despite the
intuition of SC, nearly all modern ISAs adopt MCMs weaker
than SC. A weak MCM allows certain memory accesses to
be reordered within a program, and supplies fences or other
synchronization mechanisms to enforce required orders when
necessary. For example, the Total Store Order (TSO) model
allows a load to be reordered with earlier stores that access a
different address to allow the store-buffer optimization [22].

Figure 3 illustrates the effects of MCMs on a small multi-
threaded program with a proposed outcome, called a litmus
test. In this litmus test, each thread executes a store (st)
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Fig. 3. A forbidden outcome in SC can become permitted under a weaker
MCM. Arrows show the ordering relations (in blue) between instructions.

and then a load (ld) instruction, where all memory locations
and registers are initially 0. Figure 3(a) assumes the SC
MCM, and thus forbids a program outcome where both load
instructions return 0. This is evident in a cycle of edges that
comprise the preserved program order between the store and
load instructions (shown as ppo edges) and the order between
the read in one thread and the write in the other (shown by
from-read (fr) edges). In contrast, under TSO (Figure 3(b)),
the ppo edges are removed (since a read can be reordered with
an earlier write), so the proposed outcome is permitted since
there is no cycle. In general, MCMs also consider the co edge
(coherence order between writes to the same address) and the
rf edge (reads-from order from a write to a load which reads
from that value).

C. Gaps in Prior Work

Despite a rich history of prior work in MCM verification,
they lack some key capabilities described below.
Symbolic Reasoning with Conditional Orderings. Our main
goal is to support general verification of SoC software and
hardware. However, most prior efforts in MCM verifica-
tion rely upon an explicit enumeration over addresses, data,
and conditional predicates that may affect orderings between
memory operations. Specifically, we consider the following
two types of conditional orderings: ¶ relations involving
predicated instructions or instructions after branches, and ·
relations involving address/data-dependent values.

For example, Figure 4(a) shows ¶, with a predicate p1 on
the last load instruction in thread T2. Note that the existence
of the load event and the related fr edge (shown as a dashed
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Later WG-read-facet 
can happen before 

the earlier one

(b)(a)

Fig. 4. Examples of conditional orderings. (a) @p1 ld executes iff p1 is
true, i.e., iff r1==0 (setting/using predicate p1 is marked in red). (b) In
TSO, store-to-load reordering is allowed if the addresses are different.

arrow) are control-dependent. If this control-dependency is
ignored, the analysis will incorrectly deduce that the graph
is cyclic, i.e., the outcome is unobservable. Figure 4(b) shows
an example for case ·, where reordering is allowed only when
the addresses in registers r2 and r3 are different.

In prior MCM efforts based on relational models, e.g.,
using Alloy [5] or Check tools [7–11], the addresses and
data are modeled by relational predicates, e.g., whether two
addresses are the same. However, such relations have to
be pre-specified and are not explored symbolically in the
solver. Similarly, Herd uses enumeration over all possible
values of relevant addresses/data. In contrast, ILA-MCM uses
symbolic reasoning to represent ordering relations dependent
on complex contro/data flow and avoids explicit enumeration.
Rich Instruction-Centric Models. Most previous efforts in
MCM verification focus on ordering relations between in-
structions, rather than on updates of program-visible states.
For example, arithmetic instructions are abstracted away in
relational models [5]. In Herd [4], the instructions are hard-
coded and do not model bit-precise hardware (e.g., there is no
register overflow behavior). Our goal is to support SoC veri-
fication by modeling rich instruction semantics for processors
as well as non-programmable accelerators, which is required
for reasoning about general (not just litmus) programs.
Expressive Properties. MCM verification has typically fo-
cused on specifying orderings and litmus tests, while pro-
gram/processor verification has focused on state-based veri-
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fication or control-oriented properties. We aim to support SoC
verification using a wide range of expressive properties that
can refer to both states and orderings.

III. ILA-MCM FRAMEWORK

We now provide details of the main components of our
ILA-MCM framework (shown in Figure 2): program sketches,
facets, axioms, and verification procedure.

A. Program Sketch

We leverage existing work on programming by
sketches [23, 24] to synthesize a program that would
exercise a bug or abstractly capture unbounded executions.
Our program sketch comprises: (1) a set of partially-specified
state updates in instructions (and any child instructions), and
(2) a partial order on them. Holes (shown as question marks
in Figure 2) are allowed in the sketch. These are filled in
by the SMT solver during verification. Examples of holes
include symbolic values (e.g., content of a memory location)
or fields in an instruction encoding (e.g., address/data field
of the store and load in Figure 2).

The program sketch, which needs to be provided by the
user, typically depends on the correctness property. Although
a program sketch has a bounded number of instructions, one
can use an outer procedure to iteratively increase the bound, to
perform a deeper search for bugs or for a proof by induction
using given invariants. In the first column in Figure 2(b), the
example considers an SoC with a processor, a device, and
a cryptographic engine (CE). Thus, there are three program
sketches (P1, P2, P3) and a SetLock instruction is illustrated
in the program sketch (P1) for the processor. The second
column (under ILA) shows the related event, which updates
the lock variable by the value of some register (left as a hole
r?) and associates a symbolic timestamp t1 with the event.

B. The Facet Abstraction

To reason about the interactions between SoC components
via shared memory, we need to establish a relation between
program variables in instructions of different ILA models via
axioms in MCMs. We model this using a novel abstraction
described below.

1) State Variables for Facets: Facets are auxiliary variables
associated with a shared program-visible state variable that can
be observed by an “agent,” which may be a thread, a physical
structure or a processing core/accelerator, depending on the
ILA modeling granularity. Facets reflect the fact that different
agents may observe distinct values of the same shared variable
in different orders. For example, the store-to-load reordering
in TSO can result in the load seeing the new value from the
store earlier than instructions on another thread. In general,
each agent can potentially have its own facet for a shared
variable. In our experience, this per-agent-facet is general
enough to model weak consistency behaviors. (More facets can
be added if one wishes to model memory consistency at the
microarchitecture level, e.g., with store-buffers or caches, etc.)

We use the notation variable.agent for the facet that
corresponds to a specific agent’s view of a given program
variable. For the example considered in Figure 2(b), suppose
there is an on-chip interconnect between the three components,
and that there is a register in the device denoting a lock.
The device observes its value by directly reading the register,
which is regarded as the facet of the device (denoted lock.dev).
The device provides a memory-mapped interface, where other
agents can access the lock register as if accessing a memory
location. We model the lock register seen by the other agents
as facets, denoted lock.proc and lock.CE, respectively.

2) State Updates for Facets: Continuing with our example,
the ILA instruction SetLock on the processor can update the
lock by writing to the memory-mapped address of the lock
register in the device. The new value may first appear in the
processor’s local buffer, then go into a cache, and through the
interconnect, propagate to the device and finally update the
device’s register. This could result in different agents seeing
different values in different orders. We model this by creating
new events: write-facet events to update facets, and read-facet
events to read facets.

For example, TSO can be modeled such that each agent
has a facet for a shared program variable. A store instruction
creates two write-facet events, one to its own facet (local
write-facet event) and the other to all other facets (global
write-facet event). A load instruction corresponds to one read-
facet event, since it only needs to read from its own facet.
In general, any instructions or child-instructions accessing
shared variables can have associated facet events. The values
that facet read/write events use for updates are derived from
the ILA instruction semantics, while the orderings of facet
read/write events are specified by the facet-axioms in the
MCM. We use the notation instr.wfe/rfe.<attr> to refer to
the write-facet events (wfe) or read-facet events (rfe), related
to a given instruction (instr), with a given attribute <attr>. In
the TSO model, <attr> can be local or global. The example
in Figure 2(b) shows two write-facet events (under Facets)
related to the SetLock instruction under the TSO model.

C. Facet-Axioms for Integrating ILAs and MCMs

So far, we have described facets as state variables, and new
facet events associated with ILA instructions that update or
read them. The orderings between these events are specified
by MCM axioms. For SC and TSO, the complete set of facet-
axioms can be found in the Appendix. We highlight some
fragments of these in Figure 5. Note that we uniformly use
happens-before relations (denoted as HB) to specify order-
ings between events. In the SC model (top part), all facet
read/write events are synchronous (i.e., these events occur
at the same time) with the instructions (lines 1-2). In the
TSO model (lower part), the two write-facet events (local
or global) of a store instruction happen after the instruction
and follow the program order (lines 3-9). These axioms are
similar to those used in prior work, e.g., in the µspec TSO
model [7], except that facet-axioms relate instructions with
facet read/write events, while µspec axioms relate instructions
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 1: Axiom SC_WriteFacetOrder 
 2: forall w:WRITE | Sync[ w , w.wfe.global ] 
    … 
 
 3: Axiom TSO_WriteFacetOrder 
 4: forall w:WRITE | HB[ w , w.wfe.local ]  /\  
 5:   HB[ w.wfe.local , w.wfe.global ] 
 6: Axiom TSO_Store 
 7: forall w1:WRITE | forall w2: WRITE (not w1) |  
 8:   PO[ w1, w2 ] => HB[ w1.wfe.local, w2.wfe.local] 
 9:      /\ HB[ w1.wfe.global, w2.wfe.global] 
    … 
10: Axiom RF_CO_FR 
11: forall r:READ | exists w:WRITE |  
12:   SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\RF[w,r]/\( 
13:      forall w2:WRITE (not w) | ( SameAddress[w,w2] /\  
14:         w2.decode )=> CO[w2,w] \/ FR[r,w2] ) 
15: Define RF[ w, r] := … 
16: Define CO[w1,w2] := … 
17: Define FR[ r, w] := … 
 
 Fig. 5. SC and TSO axioms (fragments)

with microarchitectural structures like pipeline stages and
caches. Further, axioms for other MCMs can be similarly
defined. We have designed these axioms by hand (similar to
prior MCM work); addressing their correctness is beyond the
scope of this work.

The main highlight of the facet-axioms is that the relations
over facet events in the MCM are linked with control/data
flow in the ILA instructions via predicates interpreted over
ILA state variables and facets. Consider the RF CO FR axiom
(lines 10-14), which states that: (a) all read events should
read from some executed write event with the same address,
and the data values of read and write should match, (b) if
a read r reads from a write w, any other executed write w2

should not interfere. Here, the predicates SameAddress and
SameData are interpreted over ILA state variables and facets.
Similarly, the symbolic decode condition of an instruction
(denoted instruction.decode) is a predicate over ILA state
variables. Note also that the definitions of rf, fr, and co edges
are based on the happens-before relation over facet-events.

D. ILA-MCM Verification Procedure
Our verification procedure is shown in Algorithm 1. Among

its inputs, the first is a program sketch P (T,R), where T is
a set of instances2 of partially-specified (child-) instructions,
and R is a partial order. Other inputs are a set of ILAs I ,
the axioms A, and a property φ. For each possible instruction
instance, the algorithm creates a trace step (simply called step)
using the instruction semantics3 (line 5). We also associate
a symbolic timestamp with the step, encoded as an integer
(ta for step a). Values of timestamps only reflect relative
orderings. Recall that the instructions/child-instructions may
lead to facet read/write events, and steps are also created for
these events (lines 6-8). Next, any happens-before orderings
in the program sketch are interpreted as a less-than relation
on the associated timestamps (line 10). Then, we instantiate
the quantifiers and interpret the predicates in the axioms over

2Multiple occurrences of the same (child-) instruction are regarded as
separate instances in a trace.

3Although not shown here, we use a concurrent static single assignment
(CSSA) encoding [25, 26], where uses of shared state variables are encoded
as π-variables and updates to them are encoded as new definitions.

Algorithm 1 ILA-MCM Verification Procedure
1: procedure VERIFY(P (T,R), I, A, φ)
2: . P (T,R): program sketch P , where T is a set of instances

of (child-) instructions and R is a partial order, I: set of
ILAs, A: axioms, φ: property

3: C ← > . C is set of constraints
4: for each ts ∈ T do
5: C ← C ∧ CreateStep(ts, I)
6: T ′ ← AssocFacetEvent(ts, A) . Get facet-events
7: for each ts′ ∈ T ′ do
8: C ← C ∧ CreateStep(ts′, I)
9: for each a→ b ∈ R do

10: C ← C ∧ ta < tb . Orders are on timestamps
11: C ← C ∧ InstantiateAxioms(A)
12: C ← C ∧ ¬φ
13: if SMTCheck(C) = SAT then
14: return INVALID, GetModel(C)
15: else return VALID

the set of steps (line 11), and add the negation of the property
(line 12). Finally, the set of constraints is checked by an SMT
solver. (Our prototype uses Z3 [27].) If the constraints are
satisfiable, we get a counterexample in the form of an event
trace; otherwise, the property is valid within the space allowed
by the program sketch. To verify unbounded correctness,
we can check whether given invariants are inductive and
use abstractions to model nondeterministic environments, as
discussed later in Section IV-B.

IV. VERIFICATION APPLICATIONS

A. Security Bug in a Firmware Load Protocol

1) System Overview: The SoC [18] used in this application
consists of a processor, a device, and a cryptographic
accelerator engine (CE). The processor runs a driver that
loads a firmware image onto the device. The CE is responsible
for authenticating the image before it can be used by the
device. The SoC has a system memory (SM) that all three
agents can access, and an isolated memory (IM) that can only
be written by the device but is readable by both the device
and the CE. The threat model assumes that the driver on the
processor can be compromised. The attacker’s goal is to fool
the device into running a malicious firmware image that does
not carry a correct signature.

2) ILAs and Instructions: The first step is to construct an
ILA for each of the agents: the processor, the device, and
the CE. The set of instructions and child instructions are
shown in Figure 6(a) (along with a legend). The processor
uses store operations to send commands to the memory-
mapped device or the accelerator interface, and can query the
status via reading through this interface. The ILA instructions
in the processor (device driver) are Send Command Reset,
Store Firmware, or Send Command Load. The processor
also has a Receive Report instruction that, when trig-
gered by an interrupt, reads from the device’s status reg-
ister to learn the result of firmware image authentication.
The device ILA has three instructions: Reset, Load and
Handle CE Response. The CE ILA has only one instruction
(Authentication), which handles the authentication request.
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No. (Child-) instructions in three ILAs
1. Send Command: Reset
2. Reset
3. Store Firmware to SM
4. Send Command: Load Firmware
5. Load Firmware (child: 5a, 5b)
5a. Copy Firmware from SM to IM
5b. Send Authentication Request
6. Authentication (child: 6a, 6b)
6a. Verify Signature
6b. Send Response
7. Handle Response (child: 7a-7c)
7a. Read Status Bit
7b. Send Interrupt to Processor
7c. If ( status == PASS ) 

PC := IMAGE_ADDR
8. Receive Report
Lock Write Lock := “LOCK”

(a) (b) (c) (d)

Design A and Design B
have the same execution 
flow, except that Design B
has a child instruction 
Lock in Step 6.

1. @1

Device CE

2. @2
3. @3

4. @4

5a. @6

5b. @7

6a. @9

6b. @13

7a. @17

7b. @18

7c. @19

5. @5

6. @8

7. @16

3. @7

4. @8

5a. @10

5b. @11

5. @9

Processor

1. @1→2

Device CE

2. @3

1. @11→12

3. @7→8

5a. @15→16

5b. @16→17

5. @10

4. @8→9

3. @12→16

4. @16→17

2. @17

5. @18

5a. @23→26

5b. @33→35

Lock. @22→24

6b. @34→36

6. @21

6a. @25

7a. @38

7b. @39

7c. @40

7. @37

Processor

1.

Processor Device CE

2.
3.

4.

5a.

5b.

6a.

6b.

7a.

7b.

7c.

5.

6.

7.

8.

(Lock)

E. @T E represents an event, T is the 
timestamp

E. E represents an event

Gray boxes participate in writing 
the malicious image

E. @T1→T2 T1 is the time of local facet update, 
T2 is the time of global facet update

The lock operation added in Design B 

Fig. 6. (a) Instructions/child-instructions in the ILAs, plus legend. (b) Intended execution flow for Designs A and B, where a dashed arrow indicates an
agent triggering an instruction in another agent via instruction-decode conditions. (c) Malicious exploit for Design A under SC, with event timestamps (@T)
generated by the SMT solver. (d) Malicious exploit for Design B under TSO, with timestamps for local/global facet updates also generated by the SMT solver.

The intended execution flow of these instructions is shown
in Figure 6(b). First, the driver sends a Reset command to the
device by writing into the command register and the device
performs reset (Step 1 and 2). The driver stores the firmware
image in a dedicated region in SM (3) and invokes the device
(4). Upon receiving the Load Firmware command (5), the
device copies the firmware image into its IM (child-instruction
5a) and sends an authentication request to the CE (5b). The
CE checks the signature of the image in IM (6a), stores the
result into its register and signals the device of its completion
(6b). The device will read the verification result from the CE’s
address space (7a) and report the result to the driver (7b). If
the result indicates that the image is authenticated, the device
sets its own program counter to point to the firmware location
in IM and starts its execution from there (7c). Finally, the
processor handles the interrupt and knows that the firmware
image has been loaded (8).

We refer to the above implementation as Design A, which
is known to have a time-of-check to time-of-use (TOCTOU)
vulnerability. Prior work originally identified and presented a
solution to this vulnerability, namely Design B [18], where the
device protects IM contents with a lock that is accessible only
by the device and the CE. Once locked, the image stored in
IM cannot be changed. Our ILA model for Design B is similar
to Design A, except that the CE has an extra child-instruction
Lock in ILA instruction 6 which enables the lock.

3) Program Sketch: We created a program sketch based
on the instructions shown in Figure 6(a), where the solver
explores which instructions to include in the malicious exploit
by creating a hole for the decode condition of each instruction.
Further, the values and addresses of the stores by the driver

are left as holes in the program sketch.
4) Facets and Axioms: In this application, we consider two

possible MCMs: SC and TSO. We use facets and axioms
(shown in the Appendix) to model the MCMs.

5) The Property: The SoC should ensure the fol-
lowing safety property φ: (DevPC = FwAddr) →
Check(IM [FwAddr]) 6= FAIL. It says that when the device’s
program counter points to the region holding the firmware
image, the image should not be malicious. Our verification
procedure aims to synthesize an exploit that violates this
property.

6) Results: Under the SC model, our verification procedure
successfully reproduced the known malicious exploit [18] for
Design A in 3.5 seconds, with a bound of 30 ILA instructions.
The malicious exploit is shown in Figure 6(c), where the
timestamps (@T) found by the SMT solver are shown for each
event. Note that the correct image is authenticated, but the
firmware overwrites it with a malicious image, which is then
executed. This is a TOCTOU vulnerability.

Design B is intended to fix the above issue and works
correctly under the SC model. However, under the TSO
model, our verification procedure found a malicious exploit
in 6.5 seconds, with a 32-instruction bound. To the best of
our knowledge, this TSO-based vulnerability was not known
before. The resulting trace is shown in Figure 6(d), where the
essential problem is around timestamp 22 to 24. Although the
CE updates the device’s lock register at time 22, the device
does not see this update until later. As shown, at time 23, the
device overwrites the firmware with a malicious image. This
bug can be fixed by adding a fence on the CE to ensure that the
device sees the lock before the CE proceeds to authenticate.
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B. Verifying Correctness of a GPU Implementation
Graphics Processing Units (GPUs) often use very weak

consistency models that allow for a large amount of buffering
and reordering of memory requests, to provide mitigation
of high memory latency. An operational model of a GPU
implementation is discussed by Wickerson et al. [19]. The im-
plementation is intended to be compliant with OpenCL [28] (a
variant of the heterogeneous-race-free (HRF) MCM [29]), with
an extension called remote scope promotion (RSP) proposed
by AMD. Under OpenCL, all programs must be free of data
races (i.e., two unsynchronized accesses to the same address
with at least one write); the behavior is undefined otherwise.
Synchronization can be achieved by an acquire-load reading
from a release-store with or promoted to a matched scope.

We aim to verify that the given hardware implementation
is correct with respect to a high-level specification model
that we build in ILA-MCM. We should mention that our
specification is actually more conservative than the language-
level OpenCL+RSP model described by Wickerson et al. –
developing an equivalent ILA-MCM model for the latter is
left to future work.

1) ILA-MCM Specification Model: This model comprises
the functions of store, load, and atomic increment operations,
plus the ordering relations they enforce. Each operation may
have additional attributes that affect the ordering relations: (a)
whether it is a release (for a store), an acquire (for a load),
neither, or both, (b) the scope of the synchronization, and (c)
whether it promotes the scope of a remote synchronization. We
model these operations using ILA instructions, where different
attributes lead to different instructions, e.g., store-relaxed and
store-release are modeled as two distinct instructions. They
have the same state updates, but the difference in their order-
ings is captured by the associated MCM axioms.

The system has a hierarchical structure comprising M
devices, each device with N workgroups, with a workgroup
having L threads. For a shared program variable, each thread
possesses a facet, and additionally each workgroup (and each
device) also has a facet. A store instruction will first update the
facet of its own thread (TH-facet update), then the facet of its
workgroup (WG-facet update) and the device facet (DV-facet
update). A load instruction will have a TH-facet-read event
(and potentially WG-facet-read and DV-facet-read events).

For each instruction, we use facet-axioms to model the
enforced ordering requirements. For example, for the store-
release (device scope, no remote promotion) instruction
storeDV,N , one of its axioms is shown in Figure 7(a). It
says that for a storeDV,N instruction s1, for all the other
store instructions s2 different from s1, if they are on the same
workgroup and there is a happens-before relation on their WG-
facet updates, then their DV-facet update events also follow
a happens-before relation. For each instruction, there can be
multiple axioms specifying its ordering relations with different
types of instructions under different conditions.

2) SoC Implementation: The implementation model, from
Wickerson et al. [19], is fully operational (does not require
facets or axioms). It contains a number of GPUs, where each

(a)

st [r2], 1

ld r1, [r3]

r1 == 1 /\ r2 == 0 
 Observable under TSO

(b)

r2==r3 : forbidden
r2!=r3 : permitted

Reorderst [x], 1

st [y], 1

ld  r1, [y]

setp.eq  p1, r1, 0

@p1  ld r2, [x]

ppo data

rf
fr

ctrl

ppo

T2:T1:

In TSO, this reordering is 
allowed if r2!=r3

Instruction Toggle: lock ≔ ¬ 𝑙𝑜𝑐𝑘

lock. proc ≔ ¬ 𝑙𝑜𝑐𝑘. 𝑝𝑟𝑜𝑐

lock. dev ≔  𝑙𝑜𝑐𝑘. 𝑝𝑟𝑜𝑐
lock. CE ≔  𝑙𝑜𝑐𝑘. 𝑝𝑟𝑜𝑐

Write-facet-
events
(wfevt)

(b) Instruction and facet-events

Toggle.wfe.local

Toggle.wfe.global

Processor

Device

lock

CE

lock.dev

lock.CE

lock.proc

(a) Agents and facets of lock

Axiom store_DV_N_WG_REL
forall s1:store_DV_N | 
forall s2:STORE (not s1) |
( HB[s2.rfe.WG, s1.rfe.WG] 

/\ SameWg[s1,s2] ) 
=> HB[s2.rfe.DV, s1.rfe.DV] 

STORE

storeDV,N

Sets of possible 
environmental 

transitions

(a) (b)

Abstract 
Transition

Abstract 
Transition

Fig. 7. (a) An axiom for instruction storeDV,N (b) related program sketch

GPU performs a series of operations to achieve the effect of an
instruction in the high-level specification. These operations are
modeled as child instructions, which make use of the physical
locks, FIFOs, and caches to guarantee correct data transfers
and orderings.

We model 13 child instructions. Some examples are LD

(load from L1 cache to register), ST (store from register to
L1 cache), FLUL1WG (flush the L1 cache in its workgroup),
INVL1WG (invalidate L1 cache of its workgroup). Inside a
GPU, there are also other environmental transitions, e.g., a
store may later trigger a cacheline flush. We model these
state changes by child instructions as well.

3) Verification: We verify correctness of the implementa-
tion by checking that: (1) the program variables are updated to
the same values as in the specification, and (2) the ordering of
the updates is correct. The first check corresponds to functional
equivalence checking between child-instructions on the GPU
and the instructions in an ILA-MCM model, which can be
handled using prior techniques [12]. Therefore, we focus here
on the second check, where we use our facet-axioms as
properties, and check if it is possible to synthesize a sequence
of child instructions whose execution can violate the property.
To ensure correctness using bounded traces, we need to further
use invariants and abstractions.

We perform verification as follows. First we choose an
instruction from the ILA-MCM specification model, collect
axioms that refer to this instruction, and verify these axioms
one by one. Since our facets and axioms are all instruction-
centric, this instruction-based decomposition of the overall
verification problem is directly enabled by our ILA-MCM
framework, thereby providing a potential scalability benefit
in comparison to handling all axioms monolithically.

An axiom may refer to other related instructions. For
example, in the axiom in Figure 7(a) for the storeDV,N

instruction, there is a reference to another store instruction
(of any type). We build a program sketch accordingly, as
shown in Figure 7(b) for this example. Here, each of the two
white boxes (storeDV,N and STORE) denotes the sequence of
child instructions that implement the high-level specification
instruction, respectively. Since GPU operations may trigger
environment transitions, we also add them in our program
sketch. Finally, we add abstract transitions before and between
the two sequences of child instructions. An abstract transition
is allowed to update the state to any value (i.e., it is a
havoc operation), which is constrained subsequently by given
invariants. The given invariants are checked separately on all
child instructions (some require checking on all pairs). An
example invariant is that the tail of a FIFO never passes the
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st [x], 1

st [y], 1

ld  r1, [y]

setp.eq  p1, r1, 0

@p1  ld r2, [x]

ppo data

rf
fr

ctrl

ppo

T2:T1:

st [y], 1

ld r2, [x]

st [x], 1

ld r1, [y]
ppo ppo

fr fr

T2:T1:

st [r2], 1

ld r1, [r3]

(b)

r2==r3 : forbidden
r2!=r3 : permitted

Reorder

Instruction Toggle: lock ≔ ¬ 𝑙𝑜𝑐𝑘

lock. proc ≔ ¬ 𝑙𝑜𝑐𝑘. 𝑝𝑟𝑜𝑐

lock. dev ≔  𝑙𝑜𝑐𝑘. 𝑝𝑟𝑜𝑐
lock. CE ≔  𝑙𝑜𝑐𝑘. 𝑝𝑟𝑜𝑐

Write-facet-
events
(wfevt)

(b) Instruction and facet-events

Toggle.wfe.local

Toggle.wfe.global
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Device

lock

CE

lock.dev

lock.CE

lock.proc

(a) Agents and facets of lock

Axiom store_DV_N_WG_REL
forall s1:store_DV_N | 
forall s2:STORE (not s1) |
( HB[s2.rfe.WG, s1.rfe.WG] 

/\ SameWg[s1,s2] ) 
=> HB[s2.rfe.DV, s1.rfe.DV] 

STORE

storeDV,N

Sets of possible 
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Problem:
Later WG-read-facet 
can happen before 
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Fig. 8. The counterexample found for loadDV,N , where the addresses,
timestamps and specific environmental transitions are generated by the solver

head, i.e., the FIFO does not underflow. In the future, we aim
to maintain a library of invariants and abstract transitions for
reuse. Further, the ILA-MCM verification procedure could be
integrated with a general-purpose theorem prover to formally
ensure their soundness and aid bookkeeping.

Although our ILA-MCM specifications are parametric, we
do not perform parametric verification here, since the GPU
implementation is fixed by a concrete system configuration
(M,N,L). We currently performed verification for M,N,L =
2 and M,N,L = 3.

4) Results: For the original GPU implementation verified
by Wickerson et al. [19], our verification failed with counterex-
amples for the following 5 instructions: loadDV,N , loadDV,R,
storeDV,R, fetch incDV,N , and fetch incDV,R. Among
them, loadDV,N , fetch incDV,N , storeDV,R match with
the buggy scenarios discussed in the previous work [19].
Specifically, Figure 8 shows a buggy trace that we found for
instruction loadDV,N , where the facet-read event of the later
non-atomic load instruction comes earlier than the facet-read
event of the load-acquire instruction. This violates the load-
acquire semantics. On the other hand, the counterexamples
for fetch incDV,R and loadDV,R are false positives, since
these traces cannot be extended to litmus tests with a property
violation without having data races (prohibited by OpenCL).
Interestingly, the proposed changes by Wickerson et al. to the
compiler mappings of OpenCL+RSP operations strengthened
the ordering guarantees of the hardware operations to match
our ILA-MCM model. Under their new compiler mappings,
we successfully validated that the hardware implementation
is compliant with our ILA-MCM model. This validation was
completed in 14 minutes 9 seconds (for M,N,L = 3) on a
laptop with a 2.8GHz Core-i5 processor and 16GB memory.

V. RELATED WORK

A. Hardware Specification and Verification
A number of formal hardware abstractions have been de-

veloped that enable verification. Kami [30, 31] is a Coq-based
framework that supports hardware design and verification in
Bluespec. In comparison to Kami, ILA-MCM is an ISA-level
abstraction that provides the interface between hardware and
software. In addition to verifying hardware, it can also be used
for verifying correctness/security of software interacting with
accelerators, as demonstrated in our paper. Furthermore, it can
reason about a wide range of memory consistency behaviors,
including SC, TSO, and HRF. In contrast, currently Kami has

only been applied for SC. Finally, the ILA-MCM framework
targets automated reasoning using SMT solvers, in contrast to
interactive theorem-proving in Kami.

ISA-Formal [32, 33] has been developed to formally
model and verify ARM processors. As its name suggests, it
is an ISA-level model. However, it has not been applied to
accelerators or other heterogeneous SoC components. Further,
as far as we know, it has not been integrated with MCMs to
reason about multicore memory consistency.

B. MCM and Program Verification
We have already discussed prior MCM verification tools and

techniques. For reasoning about general concurrent programs,
there are many related efforts in weak consistency models [34–
36], logics [37, 38], and verification tools [39–41]. Here we
discuss details of specific related ideas.

1) Facets vs. ViCLs: In the Check tools [7–11], the Value
in Cache Lifetime (ViCL) abstraction has been proposed to
capture cache occupancy. Although both facets and ViCLs can
model multiple “live” data for the same memory location, they
are inherently different. First, facets are state variables that are
updated according to instructions in ILAs and MCM axioms;
they are not created or destroyed. In contrast, ViCLs have cre-
ation and expiration events in happens-before graphs. Second,
facets are more general than ViCLs and are not necessarily
tied to caches or other microarchitectural structures. Third,
facets enable integration of axiomatic MCMs with operational
instruction semantics, while the latter are ignored by ViCLs.

2) Facets vs. Views: In recent work [34, 40], a view
abstraction was proposed to model the C11 MCM. Our facets
are different from views as follows: (i) a view is a map
from locations to timestamps, whereas facets are auxiliary
state variables, (ii) the views assign explicit timestamps to
events, whereas facet-axioms associate events with symbolic
timestamps, whose values are not fixed but explored implicitly
during verification, (iii) unlike views, facets have been applied
in automated SMT-based reasoning.

VI. CONCLUSIONS

In this paper, we have presented the ILA-MCM framework,
which combines the benefits of operational ILA models with
axiomatic MCMs for reasoning about concurrent interactions
between heterogeneous components in an SoC. We have
introduced a novel facet abstraction that models consistency
effects on program-visible states, and use facet-axioms to
specify consistency ordering requirements. This provides a
constraint-based integration between operational ILA models
and axiomatic MCM specifications. Our SMT-based verifi-
cation procedure supports symbolic reasoning for expressive
properties involving both rich instruction semantics and or-
derings. We have demonstrated two verification applications
of our prototype ILA-MCM framework, where we reasoned
about an SoC firmware program and a GPU hardware imple-
mentation, respectively. Our support for expressive properties
allowed synthesizing a malicious exploit in the first case,
and our instruction-centric approach enabled compositional
verification in the second.
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APPENDIX
FACET-AXIOMS FOR SC AND TSO

The facet-axioms for SC and TSO are shown in Figure 9 and
Figure 10, respectively. In the SC model, all facet read/write
events are synchronous with the instructions (lines 7-10 in
Figure 9), while in TSO model, the two write-facet events of a
store instruction follow the program order of the stores (lines
7-13 in Figure 10). Read-facet events are still synchronous
(lines 14-15). Fences ensure that previous writes are globally
visible at that point, and read-modify-write (RMW) is atomic
in the sense that its read and write facets are not breakable

(lines 17-21). We define additional functions to specify the
corresponding read-from, from-read, and coherence-order rela-
tions based on happens-before (HB) relations over facet events,
e.g., lines 13-15 in Figure 9 and lines 23-31 in Figure 10.
These functions are defined for use in the first axiom in both
models.

 
 
 
Axiom RF_CO_FR 1 
forall r:READ | exists w:WRITE |  2 
   SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\  3 
      RF[w,r] /\( forall w2:WRITE (not w) |  4 
         ( SameAddress[w,w2] /\ w2.decode )=>  5 
            CO[w2,w] \/ FR[r,w2] ) 6 
Axiom SC_WriteFacetOrder 7 
forall w:WRITE | Sync[ w , w.wfe.global ] 8 
Axiom SC_ReadFacetOrder 9 
forall r: READ | Sync[ r , r.rfe.global ] 10 
 11 
Define RF[w,r] := HB[ w.wfe.global , r.rfe.global ]  12 
Define FR[r,w] := HB[ r.rfe.global , w.wfe.global ] 13 
Define CO[w1,w2] := HB[ w1.wfe.global , w2.wfe.global ]  14 

Fig. 9. Facet-Axioms for SC 
 
 
Axiom RF_CO_FR 1 
forall r:READ | exists w:WRITE |  2 
   SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\  3 
      RF[w,r] /\( forall w2:WRITE (not w) |  4 
         ( SameAddress[w,w2] /\ w2.decode )=>  5 
            CO[w2,w] \/ FR[r,w2] ) 6 
Axiom TSO_WriteFacetOrder 7 
forall w:WRITE | HB[ w , w.wfe.local ]  /\  8 
   HB[ w.wfe.local , w.wfe.global ] 9 
Axiom TSO_Store 10 
forall w1:WRITE | forall w2: WRITE (not w1) |  11 
   PO[ w1, w2 ] => HB[ w1.wfe.local, w2.wfe.local] 12 
      /\ HB[ w1.wfe.global, w2.wfe.global] 13 
Axiom TSO_ReadFacetOrder 14 
forall r:READ | Sync[ r , r.rfe.local ] 15 
 16 
Axiom TSO_Fence 17 
forall f:FENCE | forall w: WRITE | PO[w,f] =>  18 
   HB[ w.wfe.global, f ] 19 
Axiom TSO_RMW 20 
forall i:RMW |  21 
   Sync[i.rfe.local, i.wfe.local, i.wfe.global] 22 
Define RF[w,r] :=  23 
   SameCore[w,r] => HB[w.wfe.local , r.rfe.local ] /\      24 
  ~SameCore[w,r] => HB[w.wfe.global, r.rfe.local ] 25 
Define FR[r,w] :=  26 
   SameCore[w,r] => HB[r.rfe.local , w.wfe.local ] /\  27 
  ~SameCore[w,r] => HB[r.rfe.local, w.wfe.global ]  28 
Define CO[w1,w2] :=  29 
   SameCore[w1,w2] => HB[w1.wfe.local, w2.wfe.local] /\  30 
  ~SameCore[w1,w2] => HB[w1.wfe.global, w2.wfe.global]  31 

Fig. 10. Facet-Axioms for TSO
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Abstract—This paper reports progress in verification tool engi-
neering for weak memory models. We present two bounded model
checking tools for concurrent programs. Their distinguishing
feature is modularity: Besides a program, they expect as input a
module describing the hardware architecture for which the pro-
gram should be verified. DARTAGNAN verifies state reachability
under the given memory model using a novel SMT encoding.
PORTHOS checks state equivalence under two given memory
models using a guided search strategy. We have performed
experiments to compare our tools against other memory model-
aware verifiers and find them very competitive, despite the
modularity offered by our approach.

Keywords: Memory models, CAT, concurrent programs,
bounded model checking, SMT encodings.

I. INTRODUCTION

The semantics of concurrent programs depends on the
memory model of the underlying hardware architecture. This
has recently seen considerable interest [2], [6], [11], [15],
[16], [21], [23], [27], [28], [46], [48]. A key insight is that,
for verification purposes, the semantics is best formulated in
an axiomatic style. The memory model is given in terms
of assertions that constrain a set of candidate executions.
A considerable achievement in this line of research is a
specification language, CAT [7], [9], [15], in which basically
all memory models of interest can be expressed. CAT is made
for rapid prototyping. New models are easy to write so that the
developer is able to quickly, yet precisely, assess the behavior
of the program of interest on the corresponding hardware.

While CAT is successful as a modeling language, the tool
support is lagging behind. Memory model-aware verification
tools are still being developed for specific memory models.
NIDHUGG [2], [6] implements stateless model checking for
TSO, POWER, and a version of ARM. CBMC [11] is a
bounded model checker for TSO. The RCMC tool [32] targets
the C11 programming language. Other verification problems
(e.g. fence insertion to restore sequential consistency) are tack-
led by MEMORAX [3], [4], [5], OFFENCE [13], FENDER [33],
and DFENCE [35]. These tools support TSO and similar
models, such as PSO or RMO, but cannot handle POWER
or ARM.

What is missing are verification tools that are modular in
the following sense: Besides the program, they should take
a memory model as an input and then perform the analysis
relative to that model. The HERD tool [15] accompanying
CAT satisfies this requirement. Unfortunately, it is designed
for litmus tests and limited to small programs.

thread t0 thread t1
x.store(rx, 1) y.store(rx, 1)

thread t2 thread t3
r1 = x.load(rx); r3 = y.load(rx);
r2 = y.load(rx) r4 = x.load(rx)

Fig. 1: Program IRIW.

We set out to address the need for modular verification
and developed two tools. DARTAGNAN is a safety verification
engine that checks reachability of a (bad) state. It is modular
and can handle memory models written in the core subset of
the CAT language (see Fig. 4). PORTHOS employs this engine
as a back-end and checks equivalence of the reachable states
under two given memory models.

The following example illustrates how the hardware archi-
tecture influences the semantics of a concurrent program in
subtle ways and motivates the verification problems. Consider
the program IRIW given in Fig. 1 which is written in C11.
Variables are initially set to 0. The memory order tag rx
(for relaxed) indicates that an operation provides minimal
guarantees w.r.t. the ordering of memory accesses. On X86-
TSO [42], each thread has a store buffer of pending stores.
When a store is propagated from a buffer to the memory, it
becomes visible to all threads simultaneously. POWER, on the
other hand, does not guarantee that stores become visible to
all threads at the same point in time. With these architectures
in mind, consider the following execution: Thread t2 reads
x = 1, y = 0 and t3 reads x = 0, y = 1. Since under
TSO every execution has a unique global view of all store
operations, this execution is impossible and a state with
r1 = 1, r2 = 0 and r3 = 1, r4 = 0 is not reachable. Under
POWER, this is possible. The program thus behaves differently
under the two memory models.

DARTAGNAN helps programmers find bugs due to unexpected
executions. It checks whether a specified (undesirable) state
can be reached in the program — relative to a given mem-
ory model. Reachability is analyzed with an efficient SMT-
based bounded model checking algorithm [17], [24]. The tool
computes an acyclic unwinding of the program and translates
it, together with the module of the memory model and the
specification of the state, into an SMT query. If the query is
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satisfiable, the state is reachable. Otherwise it is not.
The challenge is to deal with modularity. It requires us to

give an efficient encoding of all operations defined by CAT.
Notably, we have to compute — in SMT — least fixpoints.
They are used in prominent memory models like POWER and
ARM [15]. A naive approach would implement the Kleene
iteration in SAT by introducing copies of the variables for
each iteration step. In [40], we showed that such an explicit
iteration can be avoided by moving to an encoding based on
SAT + integer difference logic.

In this paper, we present another improvement to the
fixpoint encoding. For reachability, we show it is sound to
encode any fixpoint, not necessarily the least one. This is the
first technical contribution and implies the encoding from [40]
can be simplified. DARTAGNAN implements the idea.

PORTHOS supports programmers in porting code from one
architecture (for which it has been thoroughly validated) to
another. The portability problem asks whether no new (poten-
tially unsafe) states are introduced and whether all reachable
states can still be reached (no functionality has been lost).
PORTHOS checks this equivalence for two memory models
that are given as modules. If equivalence does not hold, it
reports a counterexample execution leading to a reachable state
allowed by only one architecture. Equivalence checking is use-
ful when programming performance-critical code for different
architectures. Operating System kernel developers and library
designers can use equivalence checks to understand whether
a programming idiom, an algorithm, or a data structure that
is known to work under one memory model can also be used
under another.

Note that the assembly versions of the program will be
different for the two architectures of interest. We address this
by incorporating compiler mappings into our analysis. We
return to this when we have our assembly language at hand.

State equivalence is checked in the form of inclusions in
both directions. Due to the alternation of quantifiers, inclusion
is notoriously difficult to check [49]: For every state reachable
in one architecture we have to find an execution in the
other that leads to the same state. In [40], we solved the
trace inclusion problem and showed that it is easier to solve
(in terms of complexity) than state inclusion. Despite that
theoretical result, this paper shows that state inclusion can be
solved practically using a guided search strategy.

The idea is to be pessimistic and try to disprove the
inclusion. The analysis looks for a state that is reachable in
one but not in the other model (like the one in the IRIW
example above). To find states that may disprove the inclusion,
PORTHOS invokes an oracle function. This oracle proposes
a series of candidate states for which it gives the following
guarantees.

(Progress) The series does not contain the same state twice.
(Soundness) If the oracle has no more states to propose,

then the inclusion indeed holds.
Progress is certainly desirable and soundness is indispensable
for verification. The interesting thing to note is that soundness

leaves it to the oracle to terminate early if it finds out, by
whatever reasoning, that the inclusion holds.

Our second technical contribution is the implementation
of an oracle in SMT which makes progress, is sound, and
may terminate early. The idea is to look for so-called delta
executions: Executions that are inconsistent with one memory
model but consistent with the other. Finding a delta execution
corresponds to solving the trace inclusion problem. As we
showed in [40], this does not require a quantifier alternation
and can be done by suitably extending the reachability proce-
dure of DARTAGNAN. A state resulting from a delta execution
is clearly a candidate to violate the inclusion. Moreover, if
there are no more states resulting from delta executions, the
oracle can conclude that the inclusion holds — even if not all
reachable states have been considered.

We evaluated the performance of both DARTAGNAN and
PORTHOS on a benchmark suite of mutual exclusion algo-
rithms and compared it against several other memory model-
aware verification tools. Experiments show that our tools scale
significantly better for larger programs.

Contributions: We report progress in memory modular ver-
ification in the form of new encoding techniques and oracle
heuristics with SMT queries. In particular:
• We present two bounded model checkers for concurrent

programs. Both tools are modular: They expect memory
models as inputs rather than implementing the analysis
for a fixed memory model.

• DARTAGNAN is a reachability checker. It simplifies our
previous encoding by admitting arbitrary fixpoints. Its
current implementation is an order of magnitude faster
than the earlier prototype from [40]. It can be used as a
back-end engine for other memory model-aware tools.

• PORTHOS is a portability checker. It implements a new
method for checking state inclusion. The algorithm is
an oracle-guided search that employs DARTAGNAN as a
back-end. The oracle is driven by delta executions. In our
experiments it requires only few iterations.

• We perform an exhaustive evaluation of DARTAGNAN and
PORTHOS w.r.t. other memory model-aware tools, often
observing significant speed ups. This shows the benefits
of an SMT-based approach.

Outline: The remainder of the paper is structured as follows.
In Section II we describe the user interface of the tools.
Section III discusses the BMC for reachability. The guided
search for inclusion is described in Section IV. Section V
gives the experimental results. The related work is discussed
in Section VI.

II. USER INTERFACE

We present our tools from a user’s perspective. We examine
the verification problems they solve together with the required
inputs and their formats. Two verification tasks are supported:
Reachability and state equivalence. The solid lines in Fig. 2
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USER

thread t0 thread t1
y.store(rx, 1) x.store(rx, 1)
a = x.load(rx); b = y.load(rx);

exists a = 0 ∧ b = 0

P

S

T0 T1
MOV [y], $1 MOV [x], $1
MOV EAX, [x] MOV EBX, [y]

exists EAX = 0 ∧ EBX = 0

T0 T1
li r0, 1 li r0, 1
stw r0, y stw r0, x
lwz r1, x lwz r1, y

exists 0:r1 = 0 ∧ 1:r1 = 0

P kTSO

let com = (rf | fr | co)
acyclic (poloc | com)
let com-tso = (rfe | co | fr)
let po-tso = ((po \ W*M) | mfence)
let ghb-tso = (po-tso | com-tso)
acyclic ghb-tso

MTSO

P kPOWER

let com = rf | fr | co
acyclic (poloc | com)
let dp = addr | data
let rdw = poloc & (fre;rfe)
let detour = poloc & (coe;rfe)
let ii0 = dp | rfi | rdw
let ic0 = 0
let ci0 = ctrlisync | detour
let cc0 = dp | poloc | ctrl | (addr;po)
let rec ii = ii0 | ci | (ic;ci) | (ii;ii)
and ic = ic0 | ii | cc | (ic;cc) | (ii;ic)
and ci = ci0 | (ci;ii) | (cc;ci)
and cc = cc0 | ci | (ci;ic) | (cc;cc)

let ppo = (R*W & ic) | (R*R & ii)
let fence = (R*M & lwsync) | (W*W & lwsync) | sync
let hb = ppo | fence | rfe
acyclic hb
let propbase = (fence | (rfe;fence));hb*
let prop = (W*W & propbase)| (com*;propbase*;sync;hb*)
acyclic co | prop
irreflexive fre;prop;hb*

MPOWER

Unroll

COMPILER MAPPING

bound k

VERIFIER

4 8

Fig. 2: DARTAGNAN (full arrows) and PORTHOS (full and dotted arrows) from the user’s perspective.

illustrate the artifacts that are required for or produced by
DARTAGNAN for checking reachability. The complete figure
refers to testing for state equivalence with PORTHOS.

Verification Tasks: DARTAGNAN expects a program P
annotated with a reachability condition S, a memory model
M of the target architecture, and an unrolling bound k for
the bounded model checking. It recursively unwinds all loops
in P up to the bound k. The unwound program and the
reachability condition are then mapped to the assembly dialect
of the target architecture (we elaborate on compiler mappings
below). The resulting acyclic and annotated assembly program
is handed over to the analysis. In Fig. 2, program P is a
simplified mutex algorithm which is mapped to X86 (P kTSO)
using the compiler mapping in Table I. DARTAGNAN then
verifies whether EAX = 0 ∧ EBX = 0 is reachable when
running P kTSO under TSO. The definition of reachability will
be given when we define memory models. In Fig. 2, we verify
the mutex algorithm by checking whether both threads can
read value 0 and thus enter their critical sections. Under TSO,
this is possible.

For checking equivalence, PORTHOS expects as input the
program P , two memory models MS and MT , and an
unrolling bound k. The tool checks whether the reachable
states under MT are the same as under MS . This analysis is
performed on the unrolled and mapped programs. In Fig. 2,
we check if the states reachable by P kPOWER under POWER are
the same as the ones reachable by P kTSO under TSO (which
is the case). We process state equivalence queries with two
inclusion checks. These queries compare the reachable states
of two assembly versions of the same program running under
different memory models.

Programs: Both DARTAGNAN and PORTHOS take as input
programs written in a C11-like language with support for
C11-atomics. Its grammar is given in Fig. 3. Programs consist
of a finite number of threads. Each thread contains a sequence
of operations such as while and if statements, computations
on local variables, and accesses to the shared memory. We
currently support Boolean and integer variables in the guards
and expressions.

〈prog〉 ::= program 〈thrd〉∗
〈thrd〉 ::= thread 〈tid〉 〈inst〉+
〈inst〉 ::= 〈var〉 ← 〈exp〉 | 〈inst〉; 〈inst〉

| 〈var〉 = load(〈mem〉, 〈atom〉)
| 〈mem〉 = store(〈var〉, 〈atom〉)
| while 〈pred〉 〈inst〉
| if 〈pred〉 then 〈inst〉 else 〈inst〉

〈atom〉 ::= sc | rel | acq | con | rx

Fig. 3: Programming language.

Load and store operations are annotated by memory or-
der tags that define their ordering guarantees. The sc tag
guarantees a sequentially consistent semantics for the access;
rel/acq and rel/con implement the message-passing id-
iom; the rx (relaxed) tag maps directly to hardware accesses
giving minimal guarantees on how those accesses are per-
formed. Weaker guarantees yield higher performance but they
usually allow additional program behavior that is hard to
predict.

Although the input program is written in a C11-like lan-
guage, the analysis is performed at the assembly level. The
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C11 X86 POWER ARMv7

Load rx MOV lwz ldr
Load con MOV lwz; lwsync ldr; dmb ish
Load acq MOV lwz; lwsync ldr; dmb ish
Load sc MOV sync; lwz; lwsync ldr; dmb ish
Store rx MOV stw str
Store rel MOV lwsync; stw dmb ish; str
Store sc MOV; mfence sync; stw dmb ish; str; dmb ish

TABLE I. Compiler mappings for X86, POWER and ARMv7.

program is converted to hardware specific assembly code
according to a given compiler mapping. The compiler mapping
replaces load and store operations with their corresponding
assembly memory accesses and adds fences to enforce the
ordering guarantees provided by the memory model tag. Each
compiler uses its own mapping. Our tools currently implement
the mappings given in Table I, which are the ones used by
the LLVM 4.0 compiler [38]. Other mappings, like the one
from [1], can be easily added. For the method presented in
Section IV to work, the only requirement is that the mapping
of each atomic operation contains a single memory access.

It is worth noting that we assume the compiler does not
perform any optimization; the program to be verified has
already been optimized. Compiler optimizations under weak
memory models are an active topic of research [34], [37], [47],
[49], but they are out of the scope of this paper.

Memory Models: Informally, a memory model defines when
store operations executed by one thread become visible to
other threads. This means a memory model determines the
semantics of a program on a hardware architecture. The se-
mantics is defined in terms of so-called executions. It contains
those executions that are (in a precise sense) consistent with
the memory model [7], [36]. We elaborate on the notion of
executions and how they define reachability. Afterwards we
introduce memory models and consistency.

An execution (X, rf , co) consists of memory events exe-
cuted by the program of interest and relations between these
events [7], [49]. Set X states which events have been executed
in each thread. This forms the control flow of the program.
The reads-from relation rf specifies from which store each
load gets its value. The coherence order co is the order in
which stores to a variable take effect.

A state consists of the values of local and global variables.
A state reached by a given execution is defined as follows. The
value of a global variable is given by the last store operation
according to the co relation. The value of a local variable
depends on the last executed event (according to the control
flow) loading to the local variable.

Memory models define a consistency predicate on execu-
tions. The semantics of a program on that memory model is
then given by the executions of the program that satisfy the
predicate [7], [11], [36]. We use the language CAT [9] to
define memory models, the core of which is shown in Fig. 4.
There are functional programming features in CAT that we do
not support since they are not needed to define the hardware

〈MCM 〉 ::= 〈assert〉 | 〈rel〉 | 〈MCM 〉 ∧ 〈MCM 〉
〈assert〉 ::= acyclic(〈r〉) | irreflexive(〈r〉) | empty(〈r〉)

〈r〉 ::= 〈b〉 | 〈r〉 ∪ 〈r〉 | 〈r〉 ∩ 〈r〉 | 〈r〉 \ 〈r〉
| 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉; 〈r〉

〈b〉 ::= po | rf | co | ad | dd | cd | sthd | sloc

| mfence | sync | lwsync | isync | isb | ish

| id(〈set〉) | 〈set〉 × 〈set〉 | 〈name〉
〈set〉 ::= E |W | R
〈rel〉 ::= 〈name〉 := 〈r〉

Fig. 4: The CAT language [9].

architectures of interest. In CAT, memory models define
relations over the events in executions. The program order
po and relations rf and co from above are common to all
memory models, and typically referred to as base relations.
Base relations also include, e.g., address, data and control
dependences. Further so-called derived relations are defined
using operations on relations such as transitive closure, union,
intersection, and composition.

Importantly, CAT allows to define derived relations as
least solutions to a system of equations. The semantics of
such recursive definitions is well defined only if they behave
monotonously [9]. Almost all of CAT is already monotonous,
the only non-monotonous construct is the right hand side of the
“\”-operator. We disallow recursive definitions in the right side
of it to ensure well defined semantics in a syntactic manner.

To define the notion of consistency for executions, a mem-
ory model requires a number of assertions to hold over
its relations. These assertions are acyclicity, irreflexivity and
emptiness guarantees. An execution is defined to be consistent
with the memory model if it satisfies all assertions.

III. CHECKING REACHABILITY

DARTAGNAN encodes the reachability problem into an SMT
formula which is constructed as follows. Formulas φCF and
φDF encode the control flow and data flow of the program.
The memory model dependent condition φM ensures that the
executions are consistent with the given model. Finally, φS is
satisfied only if the final state reached by the program satisfies
the predicate S. The overall BMC encoding is:

φCF ∧ φDF ∧ φM ∧ φS .

Each loop in the program is unrolled up to a user defined
depth k. The program is compiled using a given mapping and
then converted into its single static assignment (SSA) form.
This results in a directed acyclic graph presenting all possible
control flows of the program up to the unrolling depth. As the
program is now acyclic and in the SSA form, each statement
and variable assignment can be executed at most once.

The main idea of the BMC encoding is to guess an
execution, which consists of executed events and the rf and
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co relations. Guessing the executed events fully specifies the
control flow of the candidate execution, while guessing rf
and co specifies the data-flow of the candidate execution. It is
easy to see that this is basically the encoding of the weakest
possible memory model expressible in CAT. All widely used
models are additional restrictions of this.

The part of the encoding that is not dependent on the
memory model is very similar to established BMC encodings
of concurrent programs [25]. We recently introduced in [40]
the encodings for the memory model specific parts, especially
the ones for recursively defined relations with least fixpoint
semantics (needed for POWER and ARM).

Encoding Control and Data Flow: Recall that the basic idea
for the control flow is to guess the set of executed events. We
encode this with a Boolean variable for each event, which is
satisfied if the event is executed. We ensure that every load
gets its value from one store on the same variable and that
the stores to a variable form a total order in co. Relations
are encoded as follows. For any pair of events e1, e2 ∈ E
and relation r ⊆ E × E we use a Boolean variable r(e1, e2)
representing the fact that e1

r→ e2 holds.
The rest of the encoding ensures that the guessed executed

events are a valid control flow path through each one of
the threads, and that data-flow follows the reads-from and
coherence order relations in the shared variables. The encoding
also checks that all executed guards are satisfied, and that all
executed data manipulation statements are correctly evaluated.
The data flow encoding additionally relates the final state
of the unrolled compiled program to the original program,
allowing the state predicate formula φS to be expressed in
terms of the variables of the original unrolled program before
the SSA conversion. Thus, we ensure candidate executions that
obey both the control flow and the data flow of the programs.
The details of the encodings can be found in [39].

Encoding Memory Models: A memory model defined in
the CAT language (see Fig. 4) is a constraint system over
so-called derived relations together with some assertions. The
language defines a number of base relations. Their encodings
can be obtained directly from the source code of the program
(e.g., the program order po), from statements corresponding to
the synchronization primitives of the used architecture (e.g.,
memory fences mfence on TSO) or they are part of the
execution (the rf and co relations). Derived relations are built
from relations using operators such as union, intersection,
difference, composition, transitive closure, etc. We similarly
use new Boolean variables to represent the derived relations.
Most of the operators can be encoded in SMT in a fairly
straightforward manner.

An execution is consistent with a memory model if all its
assertions are satisfied. We encode acyclicity of a relation in
a compact way using IDL by ensuring that a relation implies
a partial ordering. We assign each event a numerical variable
and require that if an event e is related to e′ then the numerical
value assigned to e is less than the value assigned to e′.

Encoding Recursive Relations: CAT additionally supports
recursive definitions. The semantics of such recursively de-
fined relations are the least fixpoint solution to this system of
monotone equations on relations. We argue that for reachabil-
ity, it is sufficient to encode any fixpoint, not necessarily the
least one. The assertions of the memory model (acyclicity,
irreflexivity and emptiness) are monotone in the following
sense: If a relation fulfills an assertion, all of its subsets will
also fulfill the assertion. The CAT operators on relations are
also monotone (except set difference which is not applied
to recursive relations): Consider r := (r; r) ∪ r0, where the
operator ";" represents relation composition. If relation r0 is
enlarged or reduced, then so is r.

These observations allow us to apply the Knaster-Tarski
Theorem [44]. This is a key contribution of the paper; we
use it to simplify the SMT encoding of CAT models. We can
freely pick any fixpoint that satisfies all the assertions, as it
always contains the least fixpoint, which also satisfies all the
assertions. It removes the need to encode the least fixpoints of
the CAT language exactly. We call this the relaxed encoding.
The encoding of r is simply:

r(e1, e2)⇔ r;r(e1, e2) ∨ r0(e1, e2).

We argue that for reachability queries, this encoding is still
correct. Assume a least fixpoint encoding of a reachability
query has a satisfying assignment. Naturally, the least fixpoint
also satisfies the relaxed encoding as it is a fixpoint. If the least
fixpoint encoding is unsatisfiable, every execution violates
some assertion. Any violated acyclicity assertion implies a
cycle. Since larger fixpoints only add dependencies to rela-
tions, the cycle remains for all larger fixpoints. The assertion
remains violated with the relaxed encoding. Hence, the relaxed
encoding is also unsatisfiable. Similar reasoning also holds for
irreflexivity and emptiness violations.

IV. CHECKING INCLUSION

We show how to efficiently check state inclusion. The
inclusion requires that for all states reachable in the target
memory modelMT there has to be an execution in the source
memory model MS reaching the same state. Such a ∀∃-
alternation of quantifiers is notoriously difficult to handle for
verification tools [49]. A naive approach would iterate over
all reachable states. We propose to use an oracle guiding the
search by providing relevant candidate states. We present an
implementation of the oracle that iterates over far fewer states
but preserves completeness. The key observation is that new
states always correspond to new executions. Therefore we only
need to consider states coming from executions consistent with
the target but inconsistent with the source memory model.

The main procedure is described by Algorithm 1. It takes
as input a program, two memory models MS ,MT

1, and a
bound k. The program is first unrolled up to the bound k and
converted to to the acyclic assembly programs P kS and P kT

1The latter is needed to implement a concrete oracle. However in Algo-
rithm 1 we consider the oracle a black box object.
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Algorithm 1 Incremental SMT Solving for State Inclusion

1: procedure PORTHOS(Program P , MCMMS ,MT , Int k)
2: φRCH ← φCF (P kS ) ∧ φDF (P kS ) ∧ φMS

(P kS )
3: while ORACLE().hasState() do
4: s← ORACLE().getState()
5: if φRCH ∧ φs is UNSAT then
6: return false
7: return true

using the mappings from Table I. The procedure might perform
several reachability queries for MS . Therefore, we construct
a formula defining its consistent executions in Line 2. The
formulas φCF , φDF and φMS

are the ones from Section III.
The algorithm then enters a loop iterating over a sequence

of states which can be thought of as candidates for violating
inclusion. These candidate states are provided by an oracle, a
black box providing two functions. Function hasState() returns
a Boolean judging whether there is still a candidate state to
consider. If so, function getState() provides the candidate. The
oracle has to meet the following specification.

(O1) If hasState() returns false, then state inclusion holds.
(O2) If hasState() returns true, an invocation of getState()

returns a state.
(O3) Function getState() never returns the same state twice.
(O4) Every state returned by getState() is reachable in MT .
When the oracle provides a new candidate, the algorithm
checks whether it is reachable in MS . If the state is not
reachable, state inclusion does not hold and the procedure
returns false at Line 6. If it is reachable, the check is repeated
with a different state. If every state provided by the oracle is
reachable under MS , state inclusion holds by (O1) and the
procedure returns true at Line 7.

A correct but naive implementation of an oracle would list
all states reachable under MT . A more efficient exploration
is guaranteed by the following idea.

An Oracle for Efficient Exploration: We present an oracle
that lists good candidates likely to violate state inclusion.
Moreover, the oracle may be able to guarantee state inclusion
early. Finally, the computation of candidate states itself is
based on SMT-solving and quite efficient. The idea is to find
all executions consistent with MT but not MS , and extract
their reachable states. This guarantees (O1) and (O4): When
hasState() returns false, all states that may violate inclusion
have been considered and thus state inclusion holds. Our
implementation encodes the oracle as follows:

φORA = φEQ(P kS , P
k
T ) ∧ φCF (P kT ) ∧ φDF (P kT ) ∧ φMT

(P kT )

∧ φCF (P kS ) ∧ φDF (P kS ) ∧ φ¬MS
(P kS ).

Function hasState() denotes whether the formula φORA is
satisfiable. In this case, getState() extracts a state s from a
satisfying assignment and returns it. This guarantees (O2). To
ensure (O3), the same state is not returned twice, the formula
is iteratively updated to φORA := φORA ∧ ¬φs.

The formula φEQ relates the executions of both assembly
programs by ensuring that they represent the same execution
of P k. This formula will be explained below. The next three
formulas encode consistent executions in MT as defined
in Section III. The remaining formulas encode executions
inconsistent with MS .

We encode acyclicity violations by guessing a cycle. For
every event e, a Boolean variable Cr(e) represents its presence
in the cycle. We ensure that every event in the cycle has an
incoming and an outgoing edge in the cycle. A more detailed
description of the cycle encoding is given in [40].

Encoding Least Fixpoints: When using the relaxed encod-
ing in the oracle, a larger fixpoint could be chosen with more
dependencies between events and thus new cycles could be
created. This implies that the oracle could propose additional
candidate states and more iterations might be required. For
this reason, we encode exact least fixpoints for PORTHOS.

Least fixpoints of recursively defined relations can be com-
puted with the standard Kleene iteration [43], which starts
from the empty relation and iterates until the least fixpoint
is reached. A naive encoding approach would implement the
Kleene iteration in SAT by introducing a Boolean variable
for each pair of events and each iteration step. This naive
encoding is too inefficient, as the number of iterations needed
is basically the joint size of the involved relations.

We recently proposed in [40] a much more efficient SMT-
encoding that uses Integer Difference Logic [26]. Instead of
having a Boolean variable for each iteration step, it only uses
one Boolean variable r(e1, e2) (representing if the relation
holds) and one numerical variable Φr

e1,e2 representing the
iteration in which the pair was added to the relation. Given
a relation r := (r; r) ∪ r0, for events e1, e2 we construct the
formula:

r(e1, e2) ⇔ (r;r(e1, e2) ∧ (Φr
e1,e2 > Φr;r

e1,e2))
∨ (r0(e1, e2) ∧ (Φr

e1,e2 > Φr0
e1,e2)).

The first part of the disjunction specifies that (e1, e2) can be
added to r if the pair belongs to r; r (i.e. variable r;r(e1, e2)
is true) and it was added to r; r at some previous iteration step
(i.e. Φr

e1,e2 > Φr;r
e1,e2 ). The second part is analogous.

Note that this only encodes at most the least fixpoint: A
satisfying assignment could also set a value for Φr

e1,e2 that
is too small and thus not add the pair. We combine the
formula above with the relaxed encoding to get exactly the
least fixpoint.

Encoding Common Executions: We look for an execution
consistent with MT and inconsistent with MS . However,
we execute two different assembly programs P kS and P kT .
This means we need a way to compare their executions.
Intuitively, two executions are equivalent if they represent the
same execution of the program P k. Since the compilation
scheme of Table I implements each atomic memory operation
using a single low-level memory access, a one-to-one mapping
π : ET → ES between the events of P kS and P kT can be
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Benchmark #Executions TSO C11 #Executions POWER ARM
TSO/C11 HERD NIDHUGG CBMC DARTAGNAN RCMC POWER/ARM HERD NIDHUGG DARTAGNAN HERD NIDHUGG DARTAGNAN

PARKER 11 0.08 0.01 0.29 0.76 0.08 14 0.07 0.01 1.32 0.08 0.02 1.29
DEKKER 24 T/O 0.02 0.48 4.29 0.05 24 T/O 0.05 34.86 T/O 0.04 36.88
PETERSON 24 4.98 0.03 0.32 0.94 0.07 24 4.89 0.04 4.29 4.85 0.03 4.13
BURNS 47 284.90 0.02 0.29 1.10 0.04 47 316.33 0.03 4.10 289.66 0.04 4.05
BAKERY 12492 T/O 2.60 0.41 4.64 0.07 84760 T/O 141.56 40.06 T/O 140.25 41.83
LAMPORT - T/O T/O 0.38 4.56 T/O - T/O T/O 72.03 T/O T/O 70.64
SZYMANSKI 4227148 T/O 966.71 0.84 18.98 409.79 - T/O T/O 259.56 T/O T/O 241.34

TABLE II. Reachability of mutual exclusion algorithm under TSO, C11, POWER, and ARM.

defined. Given two events eS and eT representing instructions
accessing memory in the assembly programs, π(eT ) = eS
holds if they both represent the same high-level instruction.
Note that such a mapping π can always be defined as long
as the compiler implements atomic memory operations with
a single memory access. The following encoding relates the
executions of both assembly programs:

φEQ =
∧

e∈ET

e ∈ XT ⇔ π(e) ∈ XS

∧ ∧
e1,e2∈ET

rf(e1, e2)⇔ rf(π(e1), π(e2))

∧ ∧
e1,e2∈ET

co(e1, e2)⇔ co(π(e1), π(e2)).

V. EXPERIMENTAL EVALUATION

We implemented the algorithms from Sections III and IV
in the DARTAGNAN and PORTHOS tools which use Z3 [29]
as the backend SMT solver. Both tools are available from:

https://github.com/hernanponcedeleon/Dat3M.

The tools include the following memory models: SC, TSO,
PSO, RMO, ALPHA, POWER, and ARM (v7). Others can be
defined in the CAT language.

We compare their performance against several memory
model-aware tools. HERD [12] is a tool designed for litmus
tests (small programs). It takes CAT files as an input (and
thus supports all memory models used in this section). It
enumerates all candidate executions and then filters those
accepted by the memory model. NIDHUGG [2], [6] performs
stateless model checking. It supports TSO, POWER and a
simplified version of ARM. CBMC [11] is a Bounded Model
Checker with an encoding similar to ours, but it cannot handle
recursive definitions efficiently and only supports TSO. For
the sake of completeness, we also report results on reachability
for C11 using the RCMC tool [32]. This is the memory model
of a programming language instead of a hardware architecture
and introduces new types of events. Therefore we cannot
directly apply our approach to C11. However, the number of
executions on C11 coincides with TSO for all programs and
we expect our encoding to perform similar to the TSO case.

The tools listed above are designed to test reachability.
They allow to reason about one memory model at a time
and therefore cannot directly be used to test state inclusion.
However, HERD returns information about all final states. We
check state inclusion with HERD by computing the reachable

states separately for both models (i.e. we run the tool twice)
and comparing them afterwards.

Our benchmark suite consists of mutual exclusion algo-
rithms. We unrolled loops twice (k = 2) which is sufficient
to show that our approach scales better than the other tools
for programs with several executions. Programs contains either
two or three threads. However their size is reported in terms
of the number of consistent executions since the performance
of the tools strongly depends on this. The execution times are
given in seconds. We set a timeout of 1800 secs for each call
to the tools (3600 secs for HERD in the case of inclusion since
the tool is run twice). For entries marked as T/O, the timeout
was reached.

We performed two sets of experiments: (i) Reachability
under TSO, C11, POWER and ARM; and (ii) the inclusions
TSO ⊆ SC, POWER ⊆ TSO, and ARM ⊆ TSO. Inclusion
in the other direction (necessary for equivalence) holds by the
definition of the memory models. E.g., every state reachable
under TSO is also reachable under the weaker models POWER
and ARM.

The results on reachability are given in Table II. We present
the analysis for unreachable states since it forces all tools
to perform a complete exploration and provides the worst
case scenario. For TSO, the best results are obtained by
NIDHUGG in benchmarks with small number of executions and
by CBMC as soon as this number grows. Even though CBMC
outperforms DARTAGNAN for TSO, our tool can be at least
two orders of magnitude faster than stateless model checking
techniques when the number of executions is in the order of
millions. See, e.g., LAMPORT which DARTAGNAN solves in
less than 5 secs while NIDHUGG and RCMC timeout. For
both POWER and ARM, NIDHUGG again outperforms all
tools when the number of executions is small. However for
benchmarks with a big number of executions (above 80K),
DARTAGNAN performs better. For the LAMPORT and SZY-
MANSKI benchmarks, our tool outperforms NIDHUGG by at
least one order of magnitude. Table II suggests that approaches
based on SAT/SMT encodings have a lot of potential for large
programs. DARTAGNAN can currently handle four million
executions in less than 20 secs while NIDHUGG and RCMC
need 15 and 6 minutes respectively.

The results on state inclusion are given in Table III. The
SAT column reports whether a counterexample to inclusion
was found (4) or not (8). When HERD returns a result, we
report on the number of delta executions (∆). This corresponds
to an upper bound on the maximal number of iterations
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Benchmark TSO ⊆ SC
SAT HERD PORTHOS ∆ IT S.U.

PARKER 4 0.15 0.70 3 1 0.21
DEKKER 4 T/O 12.31 - 1 >292.44
PETERSON 4 9.96 1.31 12 1 7.60
BURNS 4 610.65 2.00 53 1 305.32
BAKERY 4 T/O 10.78 - 2 >333.95
LAMPORT 4 T/O 10.64 - 3 >338.34
SZYMANSKI 4 T/O 101.32 - 1 >35.53

Benchmark POWER ⊆ TSO
SAT HERD PORTHOS ∆ IT S.U.

PARKER 4 0.15 2.46 3 2 0.06
DEKKER 8 T/O 108.89 - 0 >33.06
PETERSON 8 9.94 6.33 0 0 1.57
BURNS 8 578.55 6.12 18 1 94.53
BAKERY 8 T/O 836.44 - 43 >4.30
LAMPORT - T/O T/O - - -
SZYMANSKI 8 T/O 940.75 - 0 >3.82

Benchmark ARM ⊆ TSO
SAT HERD PORTHOS ∆ IT S.U.

PARKER 4 0.15 1.90 3 1 0.07
DEKKER 8 T/O 134.43 - 0 >26.77
PETERSON 8 10.28 6.51 0 0 1.57
BURNS 8 546.90 7.89 18 1 69.31
BAKERY - T/O T/O - - -
LAMPORT - T/O T/O - - -
SZYMANSKI 8 T/O 850.44 - 0 >4.23

TABLE III. State inclusion of mutual exclusion algorithms.

PORTHOS might perform. As it can be seen from Table II,
in general this number is several orders of magnitude smaller
than the total number of executions. The cases reporting zero
iterations correspond to the set of executions coinciding for
both memory models. For most of the cases, PORTHOS is at
least one order of magnitude faster than HERD. For TSO, the
speed-up (S.U. column) can be up-to two orders of magnitude.

VI. RELATED WORK

The influence of memory models on the semantics of con-
current programs has been studied at least since 2007. Initially,
hardware architectures have been addressed [7], [15], [22],
[31], [36], [41], [42], followed by programming languages,
in particular C11 and C++11 [18], [19], [34]. Recently,
an axiomatic memory model for the Linux kernel has been
introduced [14]. These semantic studies form the basis for the
development of verification tools.

As of today, none of the following tools (except HERD) con-
sider the description of the memory model as an input. They
all implement (at best few) concrete models. NITPICK [20],
SATCHECK [30], NEMOSFINDER [50], and MEMSAT [45]
use SMT solvers. CBMC had been extended to support TSO
and POWER [11] but POWER is no longer supported. CPP-
MEM [19] and HERD enumerate all executions, making them
less scalable. More efficient but technically involved and hard
to generalize are Stateless Model Checkers, available for TSO,
PSO, POWER, ARM [2], [6] and C11 [32]. TRENCHER [21]
looks for trace inclusion bugs between SC and TSO; it under-
approximates state inclusion. It can also synthesize fences to
enforce SC behaviors. MEMORAX shares this functionality
and is complete for reachability under TSO [3], [4], [5]. Trace

inclusion can be enforced not only for TSO but also for weaker
memory models. The OFFENCE tool [13] does this, although
it is limited to restoring SC behaviors of litmus tests. Another
fence insertion tool is MUSKETEER [10]. It scales to large
programs, but is also restricted to ensuring SC. The FENDER
and DFENCE tools [33], [35] use fence insertion to guarantee
safety properties. They support TSO, PSO, and RMO.

A modular proof technique has been introduced recently [8].
It uses invariants to verify programs under a model given
in CAT. Another tool based on CAT synthesizes programs
differentiating two memory models [49]. However, this tool
is of interest to memory model designers and not made for
verification.

PORTHOS was originally designed to check trace inclusion.
In [40], we showed that state inclusion has a higher complexity
than trace inclusion. As a consequence, there is no polynomial
encoding that reduces inclusion to a single SAT query. How-
ever, the experiments in Section V show that our oracle-based
heuristic still performs well in programs where an exhaustive
state exploration does not scale.

VII. CONCLUSION AND OUTLOOK

We have presented DARTAGNAN and PORTHOS, two mod-
ular Bounded Model Checkers for concurrent programs. The
tools can check reachability and state equivalence under any
(pair of) memory model(s) defined in the CAT language. Our
method reduces reachability to satisfiability of a SMT formula
using novel encoding techniques. Equivalence is tested using
a guided search. We propose to use an oracle to find relevant
candidate states, and show how to implement an efficient
oracle based on SMT queries. We have performed experiments
to compare our tools to several memory model-aware tools,
and find them at least one order of magnitude faster for large
programs.

We are currently developing methods to synthesize memory
models from reachability results using our encoding tech-
niques. The techniques include compact representations of
relations by predicates as well as approximations of operations
that are not precise but still sound.

Other verification tasks, such as synthesizing programs to
compare memory models, could in principle also be solved by
reducing them to SMT queries. We would like to explore this
in the future.

Modern compilers perform various optimizations when
mapping high-level code to assembly instructions. We plan to
investigate whether such compiler mappings can be extracted
from the compilation process, at least approximately.

Acknowledgements: We thank Natalia Gavrilenko for con-
structive feedback on the manuscript and the tool implemen-
tation.
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Abstract—We use testing to check if a combinational circuit
N always evaluates to 0 (written as N ≡ 0). We call a set of
tests proving N ≡ 0 a complete test set (CTS). The conventional
point of view is that to prove N ≡ 0 one has to generate a trivial
CTS. It consists of all 2|X| input assignments where X is the
set of input variables of N . We use the notion of a Stable Set
of Assignments (SSA) to show that one can build a non-trivial
CTS consisting of less than 2|X| tests. Given an unsatisfiable
CNF formula H(W ), an SSA of H is a set of assignments to W
that proves unsatisfiability of H . A trivial SSA is the set of all
2|W | assignments to W . Importantly, real-life formulas can have
non-trivial SSAs that are much smaller than 2|W |. In general,
construction of even non-trivial CTSs is inefficient. We describe
a much more efficient approach where tests are extracted from
an SSA built for a projection of N on a subset of its variables.
These tests can be viewed as an approximation of a CTS for
N . We describe potential applications of our approach. We show
experimentally that it can be used to facilitate hitting corner
cases and expose bugs in sequential circuits overlooked due to
checking “misdefined” properties.

I. INTRODUCTION

Testing is an important part of verification flows. For that
reason, any progress in understanding testing and improving
its quality is of great importance. In this paper, we consider
the following problem. Given a single-output combinational
circuit N , find a set of input assignments (tests) proving that
N evaluates to 0 for every test (written as N ≡ 0) or find
a counterexample. We will call a set of input assignments
proving N ≡ 0 a complete test set (CTS)1. We will call the
set of all possible tests a trivial CTS. Typically, one assumes
that proving N ≡ 0 involves derivation of the trivial CTS,
which is infeasible in practice. Thus, testing is used only for
finding an input assignment refuting N ≡ 0. We present an
approach for building a non-trivial CTS consisting only of a
subset of all possible tests2. In general, finding even a non-
trivial CTS for a large circuit is impractical. We describe a
much more efficient approach where an approximation of a
CTS is generated.

The circuit N above usually describes a property ξ of a
multi-output combinational circuit M , the latter being the real
object of testing. For instance, ξ may state that M never
produces some output assignments. To differentiate CTSs and
their approximations from conventional test sets verifying M
“as a whole”, we will refer to the former as property-checking
test sets. Let Ξ := {ξ1, . . . , ξk} be the set of properties of M

1Term CTS is sometimes used to say that a test set invokes every event
specified by a coverage metric. Our application of this term is quite different.

2In the case of black-box testing, i.e. when only the number of input
variables of N is known, to prove N ≡ 0 one indeed has to enumerate
all possible input assignments. In this paper, we consider white-box testing.

formulated by a designer. Assume that every property of Ξ
holds and Ti is a test set generated to check property ξi ∈ Ξ.
There are at least two reasons why applying Ti to M makes
sense. First, if Ξ is incomplete3, a test of Ti can expose a
bug breaking a property of M that is not in Ξ. Second, if
property ξi is defined incorrectly, a test of Ti may expose a
bug breaking the correct version of ξi. On the other hand, if M
produces proper output assignments for all tests of T1∪· · ·∪Tk,
one gets extra guarantee that M is correct. In Section VI, we
list some other applications of property-checking test sets such
as increasing the probability of hitting corner cases and testing
properties of sequential circuits.

Let N(X,Y, z) be a single-output combinational circuit
where X and Y specify the sets of input and internal variables
of N respectively and z specifies the output variable of N . Let
FN (X,Y, z) be a formula defining the functionality of N (see
Section III). We will denote the set of variables of circuit N
(respectively formula H) as Vars(N) (respectively Vars(H)).
Every assignment4 to Vars(FN ) satisfying FN corresponds to
a consistent assignment5 to Vars(N) and vice versa. Then the
problem of proving N ≡ 0 reduces to showing that formula
FN ∧ z is unsatisfiable. From now on, we assume that all
formulas mentioned in this paper are propositional. Besides,
we will assume that every formula is represented in CNF i.e.
as a conjunction of disjunctions of literals.

Our approach is based on the notion of a Stable Set of
Assignments (SSA) introduced in [9]. Given formula H(W ),
an SSA of H is a set P of assignments to variables of W
that have two properties. First, every assignment of P falsifies
H . Second, P is a transitive closure of some neighborhood
relation between assignments (see Section II). The fact that H
has an SSA means that the former is unsatisfiable. Otherwise,
an assignment satisfying H is generated when building its
SSA. If H is unsatisfiable, the set of all 2|W | assignments is
always an SSA of H . We will refer to it as trivial. Importantly,
a real-life formula H can have a lot of SSAs whose size is
much less than 2|W |. We will refer to them as non-trivial. As
we show in Section II, the fact that P is an SSA of H is a
structural property of the latter. That is this property cannot
be expressed in terms of the truth table of H (as opposed to
a semantic property of H). For that reason, if P is an SSA

3That is M can be incorrect even if all properties of Ξ hold.
4By an assignment to a set of variables V , we mean a full assignment

where every variable of V is assigned a value.
5An assignment to a gate G of N is called consistent if the value assigned to

the output variable of G is implied by values assigned to its input variables.
An assignment to variables of N is called consistent if it is consistent for
every gate of N .
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for H , it may not be an SSA for another formula H ′ logically
equivalent to H . So, a structural property is formula-specific.

We show that a CTS for N can be easily extracted from
an SSA of formula FN ∧ z. This makes a non-trivial CTS
a structural property of circuit N that cannot be expressed in
terms of its truth table. Building an SSA for a large formula is
inefficient. So, we present a procedure constructing a simpler
formula H(V ) implied by FN∧z (where V ⊂ Vars(FN ∧ z))
and building an SSA of H . The existence of such an SSA
means that H (and hence FN ∧ z) is unsatisfiable. So, N ≡ 0
holds. Formula H is obtained from FN ∧ z by a resolution-
based procedure where no resolutions on variables of V are
allowed. So H preserves some structure of FN ∧ z. A test set
extracted from an SSA of H can be viewed as a way to verify
a “projection” of N on variables of V . On the other hand, one
can consider this set as an approximation of a CTS for N . We
will refer to the procedure above as SeSt (“Se-mantics and St-
ructure”). SeSt combines semantic and structural derivations,
hence the name. The semantic part of SeSt is6 to derive H .
Its structural part consists of constructing an SSA of H thus
proving H unsatisfiable.

The contribution of this paper is as follows. First, we
introduce the notion of non-trivial CTSs (Section III). Second,
we present a method for efficient construction of property-
checking tests that are approximations of CTSs (Sections IV
and V). Third, we describe applications of such tests (Sec-
tion VI). Fourth, we experimentally show the efficiency and
effectiveness of property-checking tests (Section VII).

II. STABLE SET OF ASSIGNMENTS

A. Definitions

We will refer to a disjunction of literals as a clause. Let
~p be an assignment to a set of variables V . Let ~p falsify
a clause C. Denote by Nbhd(~p, C) the set of assignments
to V satisfying C that are at Hamming distance 1 from ~p.
(Here Nbhd stands for “Neighborhood”). Thus, the number of
assignments in Nbhd(~p, C) is equal to that of literals in C. Let
~q be another assignment to V (that may be equal to ~p). Denote
by Nbhd(~q, ~p, C) the subset of Nbhd(~p, C) consisting only
of assignments that are farther from ~q than ~p is (in terms of
the Hamming distance).

Example 1: Let V = {v1, v2, v3, v4} and ~p=0110. We
assume that the values are listed in ~p in the order the cor-
responding variables are numbered i.e. v1 = 0, v2 = 1, v3 =
1, v4 = 0. Let C = v1 ∨ v3. (Note that ~p falsifies C.)
Then Nbhd(~p, C)={~p1, ~p2} where ~p1 = 1110 and ~p2=0100.
Let ~q = 0000. Note that ~p2 is closer to ~q than ~p is. So
Nbhd(~q, ~p, C)={~p1}.

Definition 1: Let H be a formula7 specified by a set of
clauses {C1, . . . , Ck}. Let P = {~p1, . . . , ~pm} be a set of
assignments to Vars(H) such that every ~pi ∈ P falsifies H .

6Implication FN ∧ z → H is a semantic property of FN ∧ z. To verify
this property it suffices to know the truth table of FN ∧ z.

7We use the set of clauses {C1, . . . , Ck} as an alternative representation
of a CNF formula C1 ∧ · · · ∧ Ck .

Let Φ denote a mapping P → H where Φ(~pi) is a clause C
of H falsified by ~pi. We will call Φ an AC-mapping where
“AC” stands for “Assignment-to-Clause”.

Definition 2: Let H be a formula specified by a set of
clauses {C1, . . . , Ck}. Let P = {~p1, . . . , ~pm} be a set of
assignments to Vars(H). P is called a Stable Set of Assign-
ments8 (SSA) of H with center ~pinit ∈ P if there is an AC-
mapping Φ such that for every ~pi ∈ P , Nbhd(~pinit , ~pi, C) ⊆
P holds where C = Φ(~pi).

Example 2: Let H consist of four clauses: C1 = v1∨v2∨v3,
C2 = v1, C3 = v2, C4 = v3. Let P = {~p1, ~p2, ~p3, ~p4} where
~p1 = 000, ~p2 = 100, ~p3 = 010, ~p4 = 001. Let Φ be an
AC-mapping specified as Φ(~pi) = Ci, i = 1, . . . , 4. Since
~pi falsifies Ci, i = 1, . . . , 4, Φ is a correct AC-mapping.
P is an SSA of H with respect to Φ and center ~pinit=~p1.
Indeed, Nbhd(~pinit , ~p1, C1)={~p2, ~p3, ~p4} where C1 = Φ(~p1)
and Nbhd(~pinit , ~pi, Ci) = ∅, where Ci = Φ(~pi), i = 2, 3, 4.
Thus, Nbhd(~pinit , ~pi,Φ(~pi)) ⊆ P , i = 1, . . . , 4.

B. SSAs and satisfiability of a formula

Proposition 1: Formula H is unsatisfiable iff it has an SSA.
The proof is given in [11]. A similar proposition is proved

in [9] for “uncentered” SSAs (see Footnote 8).

BuildPath(H,Φ, ~pinit , ~s){
1 Path := nil
2 ~p1 := ~pinit
3 i := 1
4 while (~pi 6= ~s) {
5 Path := Extend(Path, ~pi)
6 C := Φ(~pi)
7 v := FindVar(C, ~pi, ~s)
8 ~pi+1 := FlipVar(~pi, v)
9 i := i+ 1 }
10 return(Path) }
Fig. 1. BuildPath procedure

The set of all assignments
to Vars(H) forms the trivial
uncentered SSA of H . Ex-
ample 2 shows a non-trivial
SSA. The fact that formula H
has a non-trivial SSA P is
its structural property. That is
one cannot check whether P
is an SSA of H if only the
truth table of H is known. In
particular, P may not be an
SSA of a formula H ′ logically

equivalent to H .
The relation between SSAs and satisfiability can be ex-

plained as follows. Suppose that formula H is satisfiable.
Let ~pinit be an arbitrary assignment to Vars(H) and ~s be
a satisfying assignment that is the closest to ~pinit in terms of
the Hamming distance. Let P be the set of all assignments to
Vars(H) that falsify H and Φ be an AC-mapping from P to
H . Then ~s can be reached from ~pinit by procedure BuildPath
shown in Figure 1. It generates a sequence of assignments
~p1, . . . , ~pi where ~p1 = ~pinit and ~pi=~s. First, BuildPath checks
if current assignment ~pi equals ~s. If so, then ~s has been
reached. Otherwise, BuildPath uses clause C = Φ(~pi) to
generate next assignment. Since ~s satisfies C, there is a
variable v ∈ Vars(C) that is assigned differently in ~pi and
~s. BuildPath generates a new assignment ~pi+1 obtained from
~pi by flipping the value of v.

8In [9], the notion of “uncentered” SSAs was introduced. The definition
of an uncentered SSA is similar to Definition 2. The only difference is that
one requires that for every pi ∈ P , Nbhd(~pi, C) ⊆ P holds instead of
Nbhd(~pinit , ~pi, C) ⊆ P . The advantage of centered SSAs is that they are
usually much smaller than uncentered SSAs.
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BuildSSA(H){
1 E = ∅; Φ := ∅
2 ~pinit := PickInitAssgn(H)
3 Q := {~pinit}
4 while (Q 6= ∅) {
5 ~p := PickAssgn(Q)
6 Q := Q \ {~p}
7 if (SatAssgn(~p,H))
8 return(~p,nil ,nil ,nil )
9 C := PickFlsCls(H, ~p)
10 R := Nbhd(~pinit , ~p, C) \ E
11 Q := Q ∪R
12 E := E ∪ {~p}
13 Φ := Φ ∪ {(~p, C)}}
14 return(nil , E, ~pinit ,Φ) }

Fig. 2. BuildSSA procedure

BuildPath reaches ~s in k
steps where k is the Ham-
ming distance between ~pinit
and ~s. Importantly, Build-
Path reaches ~s for any AC-
mapping. Let P be an SSA
of H with respect to cen-
ter ~pinit and AC-mapping Φ.
Then if BuildPath starts with
~pinit and uses Φ as an AC-
mapping, it can reach only
assignments of P . Since ev-
ery assignment of P falsifies
H , no satisfying assignment
can be reached.

A procedure for generation of SSAs called BuildSSA is
shown in Figure 2. It accepts formula H and outputs either
a satisfying assignment or an SSA of H , center ~pinit and
AC-mapping Φ. BuildSSA maintains two sets of assignments
denoted as E and Q. Set E contains the examined assignments
i.e. those whose neighborhood is already explored. Set Q
specifies assignments that are queued to be examined. Q is
initialized with an assignment ~pinit and E is originally empty.
BuildSSA updates E and Q in a while loop. First, BuildSSA
picks an assignment ~p of Q and checks if it satisfies H . If so,
~p is returned as a satisfying assignment. Otherwise, BuildSSA
removes ~p from Q and picks a clause C of H falsified by
~p. The assignments of Nbhd(~pinit , ~p, C) that are not in E
are added to Q. After that, ~p is added to E as an examined
assignment, pair (~p, C) is added to Φ and a new iteration
begins. If Q is empty, E is an SSA with center ~pinit and
AC-mapping Φ.

III. COMPLETE TEST SETS

Fig. 3. Example of circuit
N(X,Y, z)

Let N(X,Y, z) be a
single-output combinational
circuit where X and Y
specify the input and internal
variables of N respectively
and z specifies the output
variable of N . Let N consist
of gates G1, . . . , Gk. Then
N can be represented as
FN = FG1 ∧ · · · ∧ FGk

where FGi
, i = 1, . . . , k is a

CNF formula specifying the
consistent assignments
of gate Gi. Proving
N ≡ 0 reduces to showing
that formula FN ∧ z is
unsatisfiable.

Example 3: Circuit N shown in Figure 3 represents equiv-
alence checking of expressions (x1 ∨ x2) ∧ x3 and (x1 ∧
x3) ∨ (x2 ∧ x3) specified by gates G1, G2 and G3, G4, G5

respectively. Formula FN is equal to FG1 ∧ · · · ∧ FG6 where,
for instance, FG1 = C1 ∧ C2 ∧ C3, C1 = x1 ∨ x2 ∨ y1,

C2 = x1 ∨ y1, C3 = x2 ∨ y1. Every assignment satisfying
FG1 corresponds to a consistent assignment to gate G1 and
vice versa. For instance, (x1 = 0, x2 = 0, y1 = 0) sat-
isfies FG1

and is a consistent assignment to G1 since the
latter is an OR gate. Formula FN ∧ z is unsatisfiable since
(x1 ∨ x2) ∧ x3 ≡ (x1 ∧ x3) ∨ (x2 ∧ x3). Thus, N ≡ 0.

Let ~x be a test i.e. an assignment to X . The set of
assignments to Vars(N) sharing the same assignment ~x to X
forms a cube of 2|Y |+1 assignments. (Recall that Vars(N) =
X∪Y ∪{z}). Denote this set as Cube(~x). Only one assignment
of Cube(~x) specifies the correct execution trace produced
by N under ~x. All other assignments can be viewed as
“erroneous” traces under test ~x.

Definition 3: Let T be a set of tests {~x1, . . . , ~xk} where
k ≤ 2|X|. We will say that T is a Complete Test Set (CTS)
for N if Cube(~x1) ∪ · · · ∪ Cube(~xk) contains an SSA for
formula FN ∧ z.

SeSt(G,V ){
1 H := ∅
2 foreach (C ∈ G)
3 if (Vars(C) ⊆ V )
4 H := H ∪ {C}
5 while (true) {
6 (~v,P ) :=BuildSSA(H)
7 if (P 6= nil )
8 return(nil , H, P )
9 (C,~s) := GenCls(G,V,~v)
10 if (~s 6= nil )
11 return(~s,nil ,nil )
12 H := H ∪ {C} }

Fig. 4. SeSt procedure

If T satisfies Definition 3,
set Cube(~x1)∪· · ·∪Cube(~xk)
“contains” a proof that N ≡ 0
and so T can be viewed as
complete. If k = 2|X|, T is
the trivial CTS. In this case,
Cube(~x1) ∪ · · · ∪ Cube(~xk)
contains the trivial SSA con-
sisting of all assignments to
Vars(FN ∧ z). Given an SSA
P of FN ∧ z, one can easily
generate a CTS by extracting
all different assignments to X

that are present in the assignments of P .
Example 4: Formula FN∧z of Example 3 has an SSA of 21

assignments to Vars(FN∧z). They have only 5 different as-
signments to X={x1,x2,x3}. The set {101,100,011,010,000}
of those assignments is a CTS for N .

Definition 3 is meant for circuits that are not “too redun-
dant”. Highly-redundant circuits are discussed in [12], [11].

IV. SeSt PROCEDURE

A. Motivation

Building an SSA for a large formula is inefficient. So,
constructing a CTS of N from an SSA of FN∧z is impractical.
To address this problem, we introduce a procedure called SeSt
(a short for “Semantics and Structure”). Given formula FN ∧z
and a set of variables V ⊆ Vars(FN ∧ z), SeSt generates a
simpler formula H(V ) implied by FN ∧ z at the same time
trying to build an SSA for H . If SeSt succeeds in constructing
such an SSA, formula H is unsatisfiable and so is FN∧z. Then
a set of tests T is extracted from this SSA. As we show in
Subsection V-A, one can view T as an approximation of a CTS
for N (if X ⊆ V ) or an “approximation of approximation” of
a CTS (if X 6⊆ V ).

Example 5: Consider the circuit N of Figure 3 where X =
{x1, x2, x3}. Assume that V = X . Application of SeSt to
FN∧z produces H(X) = (x1∨x3)∧(x2∨x3)∧(x1∨x2)∧x3.
SeSt also generates an SSA of H of four assignments to X:
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{000, 001, 011, 101} with center ~pinit=000. (We omit the AC-
mapping here.) These assignments form an approximation of
a CTS for N .

B. Description of SeSt

GenCls(G,V,~v){
1 G~v := GenForm(F,~v)
2 (~s,R) := ChkSat(G~v)
3 if (~s 6= nil )
4 return(nil , ~s ∪ ~v)
5 V ′ := Analyze(R,G~v, G)
6 C := FormCls(V ′, ~v)
7 return(C,nil )

Fig. 5. GenCls procedure

The pseudocode of SeSt is
shown in Figure 4. SeSt accepts
formula G (in our case, G :=
FN ∧ z) and a set of variables
V ⊆ Vars(G). SeSt outputs an
assignment satisfying G or for-
mula H(V ) implied by G and an
SSA of H . Initially, H consists
of the clauses of G depending
only on variables of V (if any).

Then a while loop is performed. First, SeSt tries to build an
SSA for the current formula H by calling BuildSSA (line 6). If
H is unsatisfiable, BuildSSA computes an SSA P returned by
SeSt along with H (line 8). Otherwise, BuildSSA returns an
assignment ~v satisfying H . In this case, SeSt calls procedure
GenCls to build a clause C falsified by ~v. Clause C is obtained
by resolving clauses of G on variables of Vars(G)\V . (Hence
C is implied by G.) If ~v can be extended to an assignment ~s
satisfying G, SeSt terminates (lines 10-11). Otherwise, C is
added to H and a new iteration begins.

Procedure GenCls is shown in Figure 5. First, GenCls
generates formula G~v obtained from G by discarding clauses
satisfied by ~v and removing literals falsified by ~v. Then GenCls
checks if there is an assignment ~s satisfying G~v . If so, ~s ∪ ~v
is returned as an assignment satisfying G. Otherwise, a proof
R of unsatisfiability of G~v is produced. Then GenCls forms a
set V ′ ⊆ V . A variable w is in V ′ iff a clause of G~v is used
in proof R and its parent clause from G has a literal of w
falsified by ~v. Finally, clause C is generated as a disjunction
of literals of V ′ falsified by ~v. By construction, clause C is
implied by G and falsified by ~v.

V. BUILDING APPROXIMATIONS OF CTS

A. Two kinds of approximations of CTSs

As before, let H(V ) denote a formula implied by FN∧z that
is generated by SeSt and P denote an SSA for H . Projections
of N can be of two kinds depending on whether X ⊆ V
holds. Let X ⊆ V be true and T be the test set consisting of
all different assignments to X present in the assignments of
P . Using the reasoning of Section III one can show that T is
a CTS for projection of N on V . Since H(V ) is essentially
an abstraction of FN ∧z, one can view T an approximation of
a CTS for N . For that reason, we will refer to T as a CTSa

of N where superscript “a” stands for “approximation”.
Now assume X ⊆ V is not true. Generation of a test

set T from P for this case is described in the next section.
Let us relate this case to that of X ⊆ V . Assume for
the sake of simplicity that V ∩ X = ∅. Let us consider
computing a test set T ′ for a projection of N on set V ′ where
V ′ = X∪V . Let P ′ be an SSA for formula H ′(V ′) generated
by SeSt . Every assignment of P ′ can be represented as (~x,~v)

where ~x and ~v are assignments to X and V respectively.
The assignments (~x1, ~v), (~x2, ~v), . . . of P ′ sharing the same
~v specify all tests of T ′ corresponding to ~v. On the other
hand, since V ∩ X = ∅, to generate T one has to a) use
some heuristic for generating a test corresponding to ~v and b)
guess how many tests corresponding to ~v one should generate.
Thus, T is an approximation of T ′ that is itself a CTSa i.e. an
approximation of a CTS. So, we will refer to T as CTSaa.

B. Construction of CTSaa

GenTests(FN ,X,P,tr1,tr2){
1 T := ∅
2 for each ~v ∈ P {
3 ~s := SatAssgn(FN , ~v)
4 if (~s 6= nil ) {
5 AddTest(T,~s,X)
6 for (i = 1;i < tr1;i++){
7 ~s :=SatAssgn(FN , ~v)
8 AddTest(T,~s,X)}
9 else
10 for (i = 0;i < tr2;i++){
11 F ∗N := Relax (FN )
12 ~s := SatAssgn(F ∗N , ~v)
13 if (~s = nil ) continue
14 AddTest(T,~s,X)}}
15 return(T )}

Fig. 6. GenTests procedure

Consider extraction of a
test set T from SSA P of
formula H(V ) when X 6⊆
V . Since V , in general, con-
tains internal variables9 of N ,
translation of P to a test set
T needs a special procedure
GenTests shown in Figure 6.
As we mentioned in Subsec-
tion V-A, building a test ~x
corresponding to an assign-
ment ~v of P requires some
heuristic. In GenTests, we use
the following idea. One can
view building an SSA (see
Fig. 2) as a try to reach a

satisfying assignment, if any. So, intuitively, every assignment
of a good SSA falsifies a very small number of clauses of G.
For that reason, when building a test ~x corresponding to ~v, we
look for an assignment to Vars(FN ∧ z) that contains ~x and
~v and falsifies as few clauses of FN ∧ z as possible.

Parameters tr1 and tr2 control the number of tests generated
for one assignment of P (tr here stands for “tries”). For every
~v ∈ P , GenTests checks if formula FN is satisfiable under
assignment ~v i.e. if there exists a test under which N assigns
~v to V . If so, GenTests calls procedure AddTest that forms a
new test by extracting the values assigned to X in ~s and adds
it to T . (Note that the only clause of FN ∧ z falsified by ~s is
the unit clause z.) Then GenTests runs a for loop (lines 6-8)
to generate tr1−1 more tests producing the same assignment
~v. We assume that the SAT-solver invoked in line 7 generates
different satisfying assignments in different calls.

If FN is unsatisfiable under ~v, GenTests runs another for
loop of tr2 iterations (lines 10-14). In every iteration, GenTests
relaxes FN by removing the clauses specifying a small random
subset of gates. If the relaxed version of FN has a satisfying
assignment ~s (line 12), a test is extracted from ~s and added
to T . Note that ~s falsifies only a small number of clauses of
FN ∧ z, namely, a subset of clauses removed to relax FN and
possibly the unit clause z.

C. Finding a set of variables to project on

9If the special case V ⊂ X holds, every assignment of P can be easily
turned into a test by assigning values to variables of X \ V (e.g. randomly).
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GenCut(N,Size){
1 Gout := OutGate(N)
2 Gts := {Gout}
3 Dpth(Gout) := 0
4 Inps := ∅
5 while (|Gts∪Inps|<Size) {
6 G :=MinDepth(Gts,Dpth)
7 Gts := Gts \ {G}
8 Seen(G) := true
9 foreach G′ ∈ FanIn(G){
10 if (Seen(G′)) continue
11 if (G′ ∈ Inputs(N)) {
12 Inps = Inps ∪ {G′}
13 continue }
14 Dpth(G′) :=Dpth(G)+1
15 Gts := Gts ∪ {G′}}}
16 return(Gts ∪ Inps)}

Fig. 7. GenCut procedure

Intuitively, a good choice
of the set V to project N on
is a (small) coherent subset
of variables of N reflecting
its structure and/or seman-
tics. One obvious choice of
V is the set X of input vari-
ables of N . In this section,
we describe generation of a
set V whose variables form
an internal cut of N denoted
as Cut. Procedure GenCut for
generation of set Cut consist-
ing of Size gates is shown
in Figure 7. Set V is formed
from output variables of the
cut gates.

The current cut is specified by Gts ∪ Inps . Set Gts is
initialized with the output gate Gout of circuit N and Inps
is originally empty. GenCut computes the depth of every gate
of Gts. The depth of Gout is set to 0. Set Gts is processed
in a while loop (lines 5-15). In every iteration, a gate of the
smallest depth is picked from Gts. Then GenCut removes gate
G from Gts and examines the fan-in gates of G (lines 9-15).
Let G′ be a fan-in gate of G that has not been seen yet and is
not a primary input of N . Then the depth of G′ is set to that
of G plus 1 and G′ is added to Gts. If G′ is a primary input
of N it is added to Inps.

VI. APPLICATIONS OF PROPERTY-CHECKING TESTS

Given a multi-output circuit M , traditional testing is used to
verify M “as a whole”. In this paper, we describe generation
of a test set meant for checking a particular property of M
specified by a single-output circuit N . In this section, we
present some applications of property-checking test sets.

A. Verification of corner cases

Fig. 8. Subcircuit K of
circuit M

Let K be a single-output subcircuit
of circuit M as shown in Figure 8.
For the sake of simplicity, here, we
consider the case where the set XK

of input variables of K is a subset
of the set X of input variables of
M . (The technique below can also be
applied when input variables of K are
internal variables of M .) Suppose K
evaluates, say, to value 0 much more
frequently then to 1. Then one can
view an input assignment of M for

which K evaluates to 1 as specifying a “corner case” i.e. a
rare event. Hitting such a corner case by a random test can be
very hard. This issue can be addressed by using a coverage
metric that requires setting the value of K to both 0 and 1.
(The task of finding a test for which K evaluates to 1 can be
solved, for instance, by a SAT-solver.) The problem however
is that hitting a corner case only once may be insufficient.

One can increase the frequency of hitting the corner case
above as follows. Let N be a miter of circuits K ′ and K ′′

(see Figure 9) i.e. a circuit that evaluates to 1 iff K ′ and K ′′

are functionally inequivalent. Let K ′ and K ′′ be two copies of
circuit K. So N ≡ 0 holds. Let test set TK be extracted from
an SSA built for a projection of N on a set V ⊂ Vars(N). Set
TK can be viewed as a result of “squeezing” the truth table of
K. Since this truth table is dominated by input assignments
for which K evaluates to 0, this part of the truth table is
reduced the most. So, one can expect that the ratio of tests
of TK for which K evaluates to 1 is higher than in the truth
table of K. In Subsection VII-B, we substantiate this intuition
experimentally. One can easily extend an assignment ~xK of
TK to an assignment ~x to X e.g. by randomly assigning values
to the variables of X \XK .

B. Testing sequential circuits

There are a few ways to apply property-checking tests meant
for combinational circuits to verification of sequential circuits.
Here is one of them based on bounded model checking [2].
Let M be a sequential circuit and ξ be a property of M . Let
Nk(X,Y, z) be a circuit such that Nk ≡ 0 holds iff ξ is true
for k time frames. Circuit Nk is obtained by unrolling M k
times and adding logic specifying property ξ. Set X consists
of the subset X ′ specifying the state variables of M in the
first time frame and subset X ′′ specifying the combinational
input variables of M in k time frames.

Fig. 9. The miter of circuits K′
and K′′

Having constructed Nk, one
can build CTSs, CTSas and
CTSaas for testing property ξ of
M . The only difference here from
the problem we have considered
so far is as follows. Circuit M
starts in a state satisfying some
formula I(X ′) that specifies the
initial states. So, one needs to
check if Nk ≡ 0 holds only for
the assignments to X satisfying
I(X ′). A test here is an assign-
ment (~x′1, ~x′′1, . . . , ~x′′k) where

~x′1 is an initial state and ~x′′i, 1 ≤ i ≤ k is an assignment
to the combinational input variables of i-th time frame. Given
a test, one can easily compute the corresponding sequence
of states (~x′1, . . . , ~x′k) of M . In Subsection VII-C, we give
examples of building CTSaas for testing sequential circuits.

C. Exposing bugs overlooked due to misdefining properties

One can use property-checking tests to mitigate the problem
of incomplete specifications. By running tests generated for
an incomplete set of properties of M , one can expose bugs
overlooked due to missing some properties. An important
special case of this problem is as follows. Let ξ be a property
of M that holds. Assume that the correctness of M requires
proving a slightly different property ξ′ that does not hold. By
running a test set T built for property ξ, one may expose a bug
overlooked in formal verification due to proving ξ instead of
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ξ′. In Subsection VII-C, we illustrate this idea experimentally.
Note that the problem above has nothing to do with the
complexity of proving ξ′ false. The designer simply does not
know that there is a problem and so can overlook a bug even
if proving ξ′ false is very easy.

VII. EXPERIMENTS

In this section, we describe experiments with property-
checking tests (PCT) generated by procedure GenPCT shown
in Figure 10. GenPCT accepts a single-output circuit N
and outputs a set of tests T . (For the sake of simplicity,
we assume here that N ≡ 0 holds.) GenPCT starts with
generating formula FN ∧ z. Then it builds a set of variables
V ⊆ Vars(FN ∧ z). Parameter type specifies whether Gen-
PCT is supposed to generate a CTS, CTSa or CTSaa. After
that, GenPCT calls SeSt (see Fig. 4) to compute a formula
H(V ) implied by FN ∧ z and its SSA.

GenPCT (N,X, type, tr1, tr2){
1 FN ∧ z := GenForm(N)
2 V := GenVars(FN ∧ z, type)
3 (H,P ) :=SeSt(FN ∧ z, V )
4 if (X ⊆ V )
5 T := ExtrTests(X,P )
6 else {
7 RedVars := V \Vars(H)
8 P := Drop(P,RedV ars)
9 T :=GenTests(FN ,X,P,tr1,tr2)}
10 return(T )}
Fig. 10. GenPCT procedure

If X ⊆ V holds
(where X is the set of
input variables of N ),
GenPCT computes T as
the set of all differ-
ent assignments to X
present in assignments
of P (line 5). Otherwise,
GenPCT calls procedure
GenTests (see Fig. 6).
Every variable w ∈ V \
Vars(H) is redundant in

the sense that its value is the same in all assignments of P . So
the values assigned to V \Vars(H) are dropped by GenTests
(lines 7-8). If V = Vars(FN ∧ z), then H(V ) is FN ∧z itself
and GenPCT produces a CTS of N . Otherwise, according to
definitions of Subsection V-A, GenPCT generates a CTSa (if
X ⊆ V ) or CTSaa (if X 6⊆ V ).

In the following subsections, we describe results of three
experiments. In the first two experiments we used circuits
specifying next state functions of latches of HWMCC-10
benchmarks. (The motivation was to employ realistic circuits.)
In the third experiment, we used combinational circuits ob-
tained by unfolding HWMCC-10 benchmarks. In our imple-
mentation of SeSt , as a SAT-solver, we used Minisat 2.0 [6],
[17]. We also employed Minisat to run simulation. To compute
the output value of N under test ~x, we added unit clauses
specifying ~x to formula FN ∧ z and checked its satisfiability.

A. Comparing CTSs, CTSas and CTSaas

The objective of the first experiment was to give examples
of circuits with non-trivial CTSs and compare the efficiency
of computing CTSs, CTSas and CTSaas. In this experiment,
N was a miter specifying equivalence checking of circuits
M ′ and M ′′ (see Figure 9). M ′′ was obtained from M ′ by
optimizing the latter with ABC [15].

The results of the first experiment are shown in Table I. The
first two columns specify an HWMCC-10 benchmark and its
latch whose next state function was used as M ′. The next

TABLE I
Computing CTSs, CTSas and CTSaas

name la- #inp #ga- CTS CTSa or CTSaa

tch vars tes |SSA| time test |SSA| time
(#tests) (s.) set |V | (#tests) (s.)
×103 type ×103

bob3 L26 14 41 46 (2.0) 0.1 CTSa 14 0.6 (0.6) 0.01
eijks258 L10 16 45 259 (8.2) 0.5 CTSa 16 0.1 (0.1) 0.02
cmudme1 L230 19 50 2,184 (63) 5.4 CTSa 19 13 (13) 0.1
mutexp0 L60 29 199 memout ∗ CTSa 29 659 (659) 26
pdtpmsmiim L118 31 136 memout ∗ CTSa 31 936 (936) 4.2
abp4pold L270 129 1,178 memout ∗ CTSaa 22 0.9 (0.5) 0.6
pj2009 L1318 366 25,160 memout ∗ CTSaa 22 0.6 (0.3) 51
mentorb..00 L8670 626 3,156 memout ∗ CTSaa 22 1.2 (0.6) 11
139454p0 L1676 791 19,843 memout ∗ CTSaa 22 0.1 (0.1) 99

two columns give the number of input variables and that of
gates in the miter N . The following pair of columns describe
computing a CTS for N . The first column of this pair gives
the size of the SSA P found by GenPCT in thousands. The
number of tests in the set T extracted from P is shown in
the parentheses in thousands. The second column of this pair
gives the run time of GenPCT in seconds.

The last four columns of Table I describe results of com-
puting test sets for a projection of N on a set of variables V .
The first column of this group shows if CTSa or CTSaa was
computed whereas the next column gives the size of V . The
third column of this group provides the size of SSA P and
the test set T extracted from P (in parentheses). Both sizes
are given in thousands. The last column shows the run time
of GenPCT. For the first five examples, we used a projection
of N on X , thus constructing a CTSa of N . For the last four
examples we computed a projection of N on an internal cut
(see Subsection V-C) thus generating a CTSaa of N . GenPCT
was called with tr1 = 1, tr2 = 5 (see Fig. 6 and 10).

For the first three examples, GenPCT managed to build non-
trivial CTSs that are smaller than 2|X|. For instance, the trivial
CTS for example bob3 consists of 214=16,384 tests, whereas
GenPCT found a CTS of 2,004 tests. (So, to prove M ′ and
M ′′ equivalent it suffices to run 2,004 out of 16,384 tests.) For
the other examples, GenPCT failed to build a non-trivial CTS
due to exceeding the memory limit (1.5 Gbytes). On the other
hand, GenPCT built a CTSa or CTSaa for all nine examples
of Table I. Note, however, that CTSas give only a moderate
improvement over CTSs. For the last four examples GenPCT
failed to compute a CTSa of N due to memory overflow
whereas it had no problem computing an CTSaa of N . So
CTSaas can be computed efficiently even for large circuits.
Further, we show that CTSaas are also very effective.

B. Testing corner cases

In the second experiment, we generated CTSas and CTSaas
to test corner cases (see Subsection VI-A). First, we formed a
circuit K that evaluates to 0 for almost all input assignments.
So, the assignments for which K evaluates to 1 are corner
cases10. We compared the frequency of hitting corner cases
by random tests and by tests of a set T built by GenPCT as

10We assume here that K is a subcircuit of some circuit M . The input
assignments for which K evaluates to 1 are corner cases for M .
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follows. Let N be a miter of copies K ′ and K ′′ (see Figure 9).
The set T was generated using a projection of N either on the
set X of input variables or an internal cut of N .

TABLE II
Testing corner cases

name la- #inp #and #ga- random testing by
tch vars vars tes testing CTSa and CTSaa

#te- #hits test #te- #hits time
sts % set |V | sts % (s.)

pd..gigamax5 L46 43 10 512 105 0.02 CTSa 43 547 7.1 0.2

pd..gigamax5 L46 63 30 512 108 0 CTSa 63 1,243 3.0 0.2

pdtvisbpb1 L48 46 10 108 105 0.04 CTSa 46 398 9.0 0.01

pdtvisbpb1 L48 66 30 108 108 0 CTSa 66 736 3.1 0.03

abp4pold L270 139 10 637 105 0.02 CTSaa 35 2,047 8.5 0.9

abp4pold L270 159 30 637 108 0 CTSaa 55 5,256 3.3 2.1

mentorbm1p00 L8670 636 10 1,630 105 0.1 CTSaa 35 594 11 3.7

mentorbm1p00 L8670 656 30 1,630 108 0 CTSaa 55 2,009 4.7 8.7

To build circuit K, we extracted the circuit R specifying the
next state function of a latch of a HWMCC-10 benchmark and
composed it with an n-input AND gate as shown in Figure 11.
The circuit K outputs 1 only if R evaluates to 1 and the first
n−1 inputs variables of the AND gate are set to 1 too. So
the input assignments for which K evaluates to 1 are “corner
cases”.

Fig. 11. Circuit K
whose output value is
biased to 0

The results of the experiment are given
in Table II. The first two columns name
the benchmark and latch whose next state
function was used as circuit R. The next
three columns give the total number of
input variables of K, the value of n in
the n-input AND gate fed by R and
the number of gates in circuit K. The
following pair of columns describes the
performance of random testing. The first
column of this pair gives the total num-
ber of tests. The next column shows the
percentage of times circuit K evaluated

to 1 (and so a corner case was hit). The last five columns of
Table II describe the results of GenPCT . The first column of
the five indicates whether a CTSa or CTSaa was generated. The
second column gives the size of set V on which a projection
of N was computed. CTSas were generated with V = X .
When computing CTSaas, the set V formed an internal cut of
N and parameters tr1 and tr2 were both set to 1. The next
column shows the size of the test set. The fourth column gives
the percentage of times a corner case was hit. The last column
shows the total run time.

The examples of Table II were generated in pairs that shared
the same circuit R and were different only in the size of the
AND gate fed by R. For instance, in the first and second entry
of Table II, circuit K was obtained by composing the same
circuit R extracted from benchmark pdtvisgigamax5 with 10-
input and 30-input AND gates respectively. Table II shows
that for circuits with a 10-input AND gate, random testing
hit corner cases but the percentage of those events was much
lower than for CTSas and CTSaas. On the other hand, even

100 millions of random tests failed to hit a single corner case
for examples with a 30-input AND gate in sharp contrast to
CTSas and CTSaas.

C. Testing properties defined incorrectly

TABLE III
Testing “misdefined” properties. CTSaas were computed for |V | = 20. Test

sets with a counterexample are shown in bold.

name #ti- #inp #ga- cov. met. random testing by
me vars tes tests tests CTSaa

fra- ×103 #tests time #tests time #iter #tests time
mes (s.) (s.) (s.)

bobcount 19 38 1.6 740 0.4 1.0∗107 294 1 3,339 1.1

boblivea 5 65 8.0 3,778 7.2 9.7∗103 2.1 100˙ 9,982 74

p..gigamax0 4 88 4.3 2,150 6.3 1.4∗106 158 20 923 3.7

kenflashp01 2 108 2.5 1,076 0.8 108 1,625 48 6,027 1.7

pdtpmsudc8 10 110 3.7 2,066 2.5 6.8∗107 5,000 100 51,123 283

eijks526 39 117 18 8,976 70 4.5∗106 5,000 1 183 31

kenopp1 3 129 1.7 1,202 0.5 108 695 13 1,344 0.4

vis..cellp01 5 135 14 4,581 16 8∗107 5,000 13 1,354 4.4

cmugigamax 5 159 3.1 1,826 2.3 108 2,671 100 8,985 13

eijks5378 6 209 17 8,318 56 3.4∗104 58 1 387 3.6

eijks208o 25 250 4.0 1,506 3.6 1.9∗107 2,207 3 1,811 4.9

eijks420 18 324 6.6 1,115 3.7 4.1∗106 1,140 86 26,199 82

n..guidancep1 6 504 10 7,922 27 2.1∗107 5,000 6 378 2.3

pdt..feistel 12 816 115 68,006 4,066 3.9∗106 5,000 5 804 49

nusmvtcasp2 7 1,029 19 11,510 82 4.5∗107 5,000 38 3,549 53

cmuperiodic 34 1,220 51 30,999 760 9.5∗106 5,000 85 5,611 240

pj2002 4 4,054 137 61,113 3.868 0.6∗106 5,000 2 161 7.9

The objective of the third experiment was to expose bugs
overlooked due to incorrect definition of properties (see Sub-
section VI-C). In contrast to the previous two experiments,
here we employed “complete” HWMCC-10 benchmarks, each
benchmark specifying a safety property ξ of a sequential
circuit M . In our experiment, we used benchmarks with
true properties. We assumed that ξ was defined incorrectly
and formed a new property ξ′ of M that failed. Property
ξ′ served as the “real” property to check. It was obtained
by changing the functionality of a gate of M involved in
specifying property ξ. The fact that ξ′ indeed failed was
established by running IC3 [3]. Let k denote the length of the
counterexample found by IC3 for ξ′. We unrolled the transition
relation of M k times to generate single-output circuits Nk
and N ′k. These circuits evaluated to 1 iff no counterexample
of length k existed for ξ and ξ′ respectively. By construction,
Nk ≡ 0 held whereas N ′k ≡ 0 did not.

In our experiment, we compared three different methods
of breaking property ξ′. In the first method, we used testing
driven by a coverage metric. Namely, we generated a test set
T aimed at setting the output11 of every gate G of Nk both to
0 and 1. Then we applied T to N ′k to disprove N ′k ≡ 0. Note
that a single test sets the output of every gate of Nk to 0 or
1. To make T stronger, when processing a gate G of Nk we
tried to find a new test setting the output of G to b ∈ {0, 1},
even if this goal was “inadvertently” achieved earlier. In the

11In [11], we give results for the coverage metric based on stuck-at faults.
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second method, we simply applied random tests12 to N ′k until
a counterexample was generated or a resource was exceeded.
In the third method, we applied GenPCT to circuit Nk to
generate a CTSaa T . Then we used T to break N ′k ≡ 0.

A sample of 17 benchmarks is shown in Table III. When
compiling this sample we dropped the easy examples solved
by all three methods. The first column of Table III lists names
of benchmarks. The second column specifies the value of k
in Nk and N ′k. The third column gives the number of input
variables in Nk (and N ′k) minus13 the number of latches in
M . The fourth column of Table III shows the number of gates
in Nk and N ′k (in thousands). The following pair of columns
describes the performance of testing driven by the coverage
metric above (the number of tests and the run time required
to generate and run them). The next two columns provide the
results of random testing limited to 100 million tests and the
runtime of 5,000 secs.

The final three columns describe the results of CTSaas. The
first column of the three gives the number of iterations we
tried when building a CTSaa. Each iteration was a separate
run of GenPCT generating a different set of tests due to
randomization of internal procedures14. CTSaas were built for
a projection of Nk on a set of variables V forming an internal
cut of Nk. GenPCT was run with tr1 =20 and tr2 =5. Iterating
GenPCT went on until N ′k ≡ 0 was broken or the number of
iterations reached 100. The final two columns describe the
total number of tests and run time (over all iterations).

The results of Table III show the high efficiency and effec-
tiveness of CTSaas on the examples we tried. In particular, for
four examples (kenflashp01, kenopp1, nusmvguidancep1 and
nusmvtcasp2) a CTSaa was the only test set to break N ′k ≡ 0.
Our experiment suggests that one can run the procedure below
to check if a bug is overlooked due to misdefining a true
property ξ of circuit M . (This procedure does not require
knowledge of the “right” property ξ′.) 1) Pick a number k
(by an educated guess) to form circuit Nk. 2) Pick a number
p of tests to build when proving Nk ≡ 0. Run GenPCT in a
loop until a set T of p tests is generated. 3) Make sure that M
correctly behaves on tests of T “as a whole” e.g. by checking
that the properties of M related to ξ hold for T .

VIII. BACKGROUND

As we mentioned earlier, traditional testing checks if a
circuit M is correct as a whole. This notion of correctness
means satisfying a conjunction of many properties of M . For
this reason, one tries to spray tests uniformly in the space of
all input assignments. To improve the effectiveness of testing,
one can try to run many tests at once as it is done in symbolic

12Even in a random test, the values assigned to the input variables of
Nk and N ′k corresponding to state variables of circuit M had to satisfy the
predicate specifying the initial states of M (see Subsection VI-B).

13The HWMCC-10 benchmarks have only one initial state. So in every test
generated in our experiment, the input variables of Nk and N ′k corresponding
to the state variables of M were simply set to a constant value.

14In particular, a different center was used for the SSA of formula H
implied by FNk

∧ z. Formula H was also different in every run of GenPCT
due to randomization of SAT-calls invoked in GenCls (line 2 of Fig. 5).

simulation [4]. To avoid generation of tests that for some
reason should be or can be excluded, a set of constraints can be
used [13]. Another method of making testing more reliable is
to generate tests exciting a particular set of events specified by
a coverage metric [16]. Our approach is different from those
above in that it is aimed at testing a particular property of M .

The method of testing introduced in [10] is based on the
idea that tests should be treated as a “proof encoding” rather
than a sample of the search space. (The relation between tests
and proofs have been also studied in software verification, e.g.
in [7], [8], [1]). In this paper, we take a different point of view
where testing becomes a part of a formal proof namely the
part that performs structural derivations.

Reasoning about SAT in terms of random walks was pio-
neered in [14]. The centered SSAs we introduce in this paper
bear some similarity to sets of assignments generated in de-
randomization of Schöning’s algorithm [5].

The first version of SeSt procedure is presented in re-
port [12]. It has a much tighter integration between the struc-
tural part (computation of SSAs) and semantic part (derivation
of formula H implied by the original formula). The advantage
of the new version of SeSt described in this paper is twofold.
First, it is much simpler than SeSt of [12]. In particular, any
resolution based SAT-solver that generates proofs can be used
to implement the new SeSt . Second, the simplicity of the new
version makes it much easier to achieve the level of scalability
where SeSt becomes practical.

IX. CONCLUSION

We consider the problem of finding a Complete Test Set
(CTS) for a combinational circuit N that is a test set proving
N ≡ 0. We use the machinery of stable sets of assignments
to derive non-trivial CTSs i.e. those that do not include all
possible input assignments. Computing a CTS for a large
circuit N is inefficient. So, we present a procedure that
generates a test set for a “projection” of N on a subset V of
variables of N . Depending on the choice of V, this procedure
generates a test set CTSa that is an approximation of an CTS
or a test set CTSaa that is an approximation of CTSa. We give
experimental results showing that CTSaas can be efficiently
computed even for large circuits and are effective in solving
verification problems.
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Abstract—In recent years, expansion-based techniques have
been shown to be very powerful in theory and practice for solving
quantified Boolean formulas (QBF), the extension of propositional
formulas with existential and universal quantifiers over Boolean
variables. Such approaches partially expand one type of variable
(either existential or universal) and pass the obtained formula to
a SAT solver for deciding the QBF. State-of-the-art expansion-
based solvers process the given formula quantifier-block wise and
recursively apply expansion until a solution is found.

In this paper, we present a novel algorithm for expansion-
based QBF solving that deals with the whole quantifier prefix
at once. Hence recursive applications of the expansion principle
are avoided. Experiments indicate that the performance of our
simple approach is comparable with the state of the art of QBF
solving, especially in combination with other solving techniques.

I. INTRODUCTION

Efficient tools for deciding the satisfiability of Boolean
formulas (SAT solvers) are the core technology in many ver-
ification and synthesis approaches [45]. However, verification
and synthesis problems are often beyond the complexity class
NP as captured by SAT, requiring more powerful formalisms
like quantified Boolean formulas (QBFs). QBFs extend propo-
sitional formulas by universal and existential quantifiers over
Boolean variables [32] resulting in a decision problem that is
PSPACE-complete. Applications from verification and synthe-
sis [8], [13], [14], [18], [20], [24], realizability checking [19],
bounded model checking [16], [48], and planning [17], [41]
motivate the quest for efficient QBF solvers.

Unlike for SAT, where conflict-driven clause learning
(CDCL) is the single dominant solving approach for practical
problems, two dominant approaches exist for QBF solving. On
one hand, CDCL has been successfully extended to QCDCL
that enables clause and cube learning [21], [35], [47]. On
the other hand, variable expansion has become very popular.
In short, expansion-based solvers eliminate one kind of vari-
ables by assigning them truth values and solve the resulting
propositional formula with a SAT solver. For QBFs with one
quantifier alternation (2QBF), a natural approach is to use two
SAT solvers: one that deals with the existentially quantified
variables and another one that deals with the universally
quantified variables. For generalising this SAT-based approach
to QBFs with an arbitrary number of quantifier alternations,
expansion is recursively applied per quantifier block, requiring
multiple SAT solvers. As noted by Rabe and Tentrup [39],
these CEGAR-based approaches show poor performance for
formulas with many quantifier alternations in general.

In this paper, we present a novel solving algorithm based
on non-recursive expansion for QBFs with arbitrary quanti-

fier prefixes using only two SAT solvers. Our approach of
non-recursive expansion is theoretically (i.e., from a proof
complexity perspective) equivalent to approaches that apply
recursive expansion since both non-recursive and recursive
expansion rely on the ∀Exp+Res proof system [5]. However,
the non-recursive expansion has practical implications such as
a modified search strategy. That is, the use of recursive or non-
recursive expansion results in different search strategies for the
proof. With respect to proof search, there is an analogy to, e.g.,
implementations of resolution-based CDCL SAT solvers that
employ different search heuristics.

In addition, we implemented a hybrid approach that com-
bines clause learning with non-recursive expansion-based solv-
ing for exploiting the power of QCDCL. Our experiments in-
dicate that this hybrid approach performs very well, especially
on formulas with multiple quantifier alternations.

This paper is structured as follows. After a review of
related work in the next section, we introduce the necessary
preliminaries in Section III. After a short recapitulation of
expansion in Section IV, our novel non-recursive expansion-
based algorithm is presented in Section V. Implementation
details are discussed in Section VI together with a short
discussion of the hybrid approach. In Section VII we compare
our approach to state-of-the-art solvers.

II. RELATED WORK

Already the early QBF solvers Qubos [2] and Quantor [2]
incorporate selective quantifier expansion for eliminating one
kind of quantification to reduce the given QBF to a propo-
sitional formula. The resulting propositional formula is then
solved by calling a SAT solver once. Qubos and Quantor
impressively demonstrated the power of expanding universal
variables but also showed its enormous memory consumption.
As a pragmatic compromise, bounded universal expansion was
introduced for efficient preprocessing [11], [22], [23], [46].

The first approach which uses two alternate SAT solvers A
and B for solving 2QBF, i.e., QBFs of the form ∀U∃E.φ, was
presented in [40]. Solver A is initialised with φ, B with the
empty formula. Both propositional formulas are incrementally
refined with satisfying assignments found by the other solver.
If A finds its formula unsatisfiable, then the QBF is false.
Otherwise, the negation of the universal part of the satisfying
assignment is passed to solver B. If solver B finds its formula
unsatisfiable, then the QBF is true. Otherwise, the existential
part of the satisfying assignment is passed to solver A. Janota
and Marques-Silva generalised the idea of alternating SAT
solvers [31] such that one solver deals with the existentially

40

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



quantified variables and one solver deals with the universally
quantified variables exclusively. Solver A gets instantiations
of φ in which the universal variables are assigned, and solver
B gets instantiations of ¬φ in which the existential variables
are assigned. The satisfying assignment found by one solver
is used to obtain a new instantiation for the other. This loop is
repeated until one solver returns unsatisfiable. This approach
realises a natural application of the counter-example guided
abstraction refinement (CEGAR) paradigm [15]. A detailed
survey on 2QBF solving is given in [3].

A significant advancement of expansion-based solving for
QBF with an arbitrary number of quantifier alternations was
made with the solver RAReQS [26], [27], which recursively
applies the previously discussed 2QBF approach [31] for
each quantifier alternation. The approach turned out to be
highly competitive.1 For formalising this solving approach the
calculus ∀Exp+Res was introduced [5], and proof-theoretical
investigations revealed the orthogonal strength of ∀Exp+Res
and Q-resolution [33], the QBF variant of the resolution cal-
culus that forms the basis for QCDCL-based solvers. Research
on the proof complexity of QBF has identified an exponential
separation between Q-resolution and the ∀Exp+Res system.
There are families of QBFs for which any Q-resolution proof
has exponential size, in contrast to ∀Exp+Res proofs of
polynomial size, and vice versa. Hence these two systems have
orthogonal strength.

Recent work successfully combines machine learning with
this CEGAR approach [25]. Motivated by the success of
expansion-based QBF solving, several other approaches [10],
[30], [39], [42]–[44] have been presented that are based on
levelised SAT solving, i.e., one SAT solver is responsible for
the variables of one quantifier block. In this paper, we also
introduce a solving approach that is based upon propositional
abstraction but considers the whole quantifier prefix at once.

III. PRELIMINARIES

The QBFs considered in this paper are in prenex normal
form Π.φ where Π is a quantifier prefix Q1x1Q2x2 . . . Qnxn
over the set of variables X = {x1, . . . , xn} with Qi ∈ {∀,∃}
and xi 6= xj for i 6= j. The propositional formula φ contains
only variables from X . Unless stated otherwise, we do not
make any assumptions on the structure of φ. Sometimes Π.φ
is in prenex conjunctive normal form (PCNF), i.e., Π is a
prefix as introduced before and φ is a conjunction of clauses.
A clause is a disjunction of literals, and a literal is a variable
or the negation of a variable. The prefix imposes the order <Π

on the elements of X such that xi <Π xj if i < j. By UΠ

(EΠ) we denote the set of universally (existentially) quantified
variables of the prefix Π. If clear from the context we omit
the subscript Π. We assume the standard semantics of QBF.
A QBF consisting of only the syntactic truth constant ⊥ (>)
is false (true). A QBF ∀xΠ.φ is true if Π.φ[x ← >] and
Π.φ[x← ⊥] are both true, where φ[x← t] is the substitution

1http://www.qbflib.org

of x by t in φ. A QBF ∃xΠ.φ is true if Π.φ[x ← >] or
Π.φ[x← ⊥] is true.

Given a set of variables X , we call a function σ : X →
{>,⊥, ε} an assignment for X . If there is an x ∈ X with
σ(x) = ε then σ is a partial assignment, otherwise σ is a full
assignment of X . Informally, σ(x) = ε means that σ does not
assign a truth value to variable x. A restriction σ|Y : Y →
{>,⊥, ε} of assignment σ : X → {>,⊥, ε} to Y ⊆ X is
defined by σ|Y (x) = σ(x) if x ∈ Y , otherwise σ|Y (x) = ε. By
ΣX we denote the set of all full assignments σ : X → {>,⊥}.
Let φ be a propositional formula over X . By σ(φ) we denote
the application of assignment σ : X → {>,⊥, ε} on φ, i.e.,
σ(φ) is the formula obtained by replacing variables x ∈ X by
σ(x) if σ(x) ∈ {>,⊥} and performing standard propositional
simplifications. Let φ, ψ be propositional formulas over the set
of variables X . If for every full assignment σ ∈ ΣX , σ(φ) =
σ(ψ) then φ and ψ are equivalent. Let τ : X → {>,⊥, ε}
and σ : Y → {>,⊥, ε} be assignments such that for every
x ∈ X ∩ Y , τ(x) = σ(x) if τ(x) 6= ε and σ(x) 6= ε. Then
the composite assignment of σ and τ is denoted by στ : X ∪
Y → {>,⊥, ε} and for every propositional formula φ over
X ∪ Y , it holds that στ(φ) = τσ(φ) = σ(τ(φ)) = τ(σ(φ)).
Furthermore, σσ = σ for any assignment σ.

Example 1. Let σ : X → {>,⊥, ε} be an assignment over
variables {a, b, x, y} defined by σ(a) = >, σ(b) = ε, σ(x) =
>, and σ(y) = ε. The restriction τ = σ|Y of σ to Y = {x, y}
is given by τ(a) = ε, τ(b) = ε, τ(x) = >, τ(y) = ε. For the
propositional formula φ = (x∨a∨y)∧(¬x∨¬a∨y)∧(¬y∨b),
the application of σ and τ on φ gives us σ(φ) = y ∧ (¬y ∨ b)
and τ(φ) = (¬a ∨ y) ∧ (¬y ∨ b).

IV. EXPANSION

In the following, we introduce the notation and terminology
used for describing expansion-based QBF solving in general,
and the algorithm introduced in the next section in particular.
We first define the notion of instantiation that is inspired by
the axiom rule of the calculus ∀Exp+Res [29].

Definition 1. Let Π.φ be a QBF with prefix Π =
Q1x1 . . . Qnxn over the set of variables X = {x1, . . . , xn}
and σ : Y → {>,⊥, ε} with Y ⊆ X an assignment. If Y ⊂ X ,
we extend the domain of σ to X by setting σ(x) = ε if x 6∈ Y .
The instantiation of φ by σ, denoted by φσ , is obtained from
φ as follows:

1) all variables x ∈ X with σ(x) 6= ε are set to σ(x);
2) all variables x ∈ X with σ(x) = ε are replaced by xω

where annotation ω is uniquely defined by the sequence
σ(xk1)σ(xk2) . . . σ(xkm) such that the set formed from
the variables xki contains all variables of X with
xki <Π x. Furthermore, xki <Π xkj if ki < kj .

If we instantiate a QBF Π.φ with the full assignment
σ : UΠ → {>,⊥} of the universal variables, we obtain a
propositional formula that contains only (possibly annotated)
variables from EΠ. The dual holds for the instantiation by a
full assignment σ : EΠ → {>,⊥}.
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Example 2. Given the QBF ∀a∃x∀b∃y.φ with φ = ((x ∨
a ∨ y) ∧ (¬x ∨ ¬a ∨ y) ∧ (¬y ∨ b)). Then U = {a, b} and
E = {x, y}. Let σ : U → {>,⊥, ε} be defined by σ(a) = >
and σ(b) = ⊥. Then φσ = (¬x> ∨ y>⊥) ∧ ¬y>⊥. Further,
let τ : E → {>,⊥, ε} with τ(x) = ⊥ and τ(y) = ⊥. Then
φτ = a. Note that a is not annotated because it occurs in the
first quantifier block.

Sometimes we want to remove the annotations again from
an assignment or an instantiated formula. Therefore, we in-
troduce the following notation. Let φσ be an instantiation by
assignment σ : X → {>,⊥, ε} and Xσ the set of annotated
variables. If we have an assignment τ : Xσ → {>,⊥, ε},
then we define τ−σ : X → {>,⊥} by τ−σ(x) = τ(xσ) for
xσ ∈ Xσ . If we have an instantiated formula φσ , the (φσ)−σ

is the formula obtained by replacing every annotated variable
xσ ∈ Xσ by x. In general, (φσ)−σ 6= φ.

Lemma 1. Let Π.φ be a QBF with variables X and σ : X →
{>,⊥, ε} be a partial assignment. Then (φσ)−σ and σ(φ) are
equivalent.

Proof. By induction over the formula structure. For the base
case let φ = x with x ∈ X . If σ(x) = ε, σ(φ) = x
and φσ = x. Then (φσ)−σ = x. Otherwise, φσ = σ(x).
Obviously, σ(φ) = σ(x) = (σ(x))−σ ∈ {>,⊥}. The
induction step naturally follows from the semantics of the
logical connectives.

Example 3. Reconsider the propositional formula φ and
assignments σ, τ from above (Example 2). Then (φσ)−σ =
((¬x> ∨ y>⊥) ∧ ¬y>⊥)−σ = (¬x ∨ y) ∧ ¬y. Furthermore,
(φτ )−τ = (a)−τ = a.

Finally, we specify the semantics of a QBF in terms of
universal and existential expansion on which expansion-based
QBF solving is founded.

Lemma 2. Let Φ = Π.φ be a QBF with universal variables
U . There is a set of assignments A ⊆ ΣU with

∧
α∈A φ

α is
unsatisfiable if and only if Φ is false.

The lemma above has a dual version for true QBFs. This
duality plays a prominent role in our novel solving algorithm.

Lemma 3. Let Φ = Π.φ be a QBF with existential variables
E. There is a set of assignments S ⊆ ΣE with

∨
σ∈S φ

σ is
valid if and only if Φ is true.

V. A NON-RECURSIVE ALGORITHM FOR
EXPANSION-BASED QBF SOLVING

The pseudo-code in Figure 1 summarises the basic idea of
our novel approach for solving the QBF Π.φ with universal
variables U and existential variables E.

First, an arbitrary assignment α0 for the universal variables
is selected in Line 1. The instantiation φα0 is handed over
to a SAT solver. If φα0 is unsatisfiable, then Π.φ is false
and the algorithm returns. Otherwise, τ : Eα0 → {>,⊥} is
a satisfying assignment of φα0 . Let σ1 denote the assignment
τ−α0 . Then α0σ1 is a satisfying assignment of φ.

input : QBF Π.φ with universal variables U and
existential variables E

output: truth value of Π.φ
1 A0 := {α0}, where α0 : U → {>,⊥} is an arbitrary

assignment
2 S0 := ∅
3 i := 1

4 while true do

5 (isUnsat, τ) := SAT(
∧
α∈Ai−1

φα)

6 if isUnsat then return false;
7 Si := Si−1 ∪ {(τ |Eα)−α | α ∈ Ai−1}

8 (isUnsat, ρ) := SAT(
∧
σ∈Si ¬φσ)

9 if isUnsat then return true;
10 Ai := Ai−1 ∪ {(ρ|Uσ )−σ | σ ∈ Si}

11 i++

12 end

Figure 1: Non-Recursive Expansion-Based Algorithm

Next, the propositional formula ¬φσ1 is handed over to
a SAT solver for checking the validity of φσ1 . If ¬φσ1 is
unsatisfiable, then Π.φ is true and the algorithm returns. If
¬φσ1 is satisfiable, then ρ : Uσ1 → {>,⊥} is a satisfying
assignment of ¬φσ1 . Let α1 denote the assignment ρ−σ1 . Then
α1σ1 is a satisfying assignment for ¬φ. The following lemma
shows that α0 and α1 are different.

Lemma 4. Let Π.φ be a QBF with universal variables U and
existential variables E. Further, let α : U → {>,⊥} be an
assignment such that the instantiation φα is satisfiable and
has the satisfying assignment τ : Eα → {>,⊥}. Let σ : E →
{>,⊥} with σ = τ−α. Then α falsifies (¬φσ)−σ .

Proof. Since φα is satisfied by τ , φ is satisfied by the com-
posite assignment ατ−α = ασ, and therefore ¬φ is falsified
by ασ. Then α falsifies σ(¬φ). According to Lemma 1 σ(¬φ)
is equivalent to (¬φσ)−σ . Then α also falsifies (¬φσ)−σ .

In the next round of the algorithm, the propositional formula
φα0∧φα1 is handed over to a SAT solver. If this formula is un-
satisfiable, Π.φ is false and the algorithm returns. Otherwise, it
is satisfiable under some assignment τ : Eα0∪Eα1 → {>,⊥},
then at least one new assignment σ2 : E → {>,⊥} with
σ2 6= σ1 can be extracted from τ |Eαi with 0 ≤ i ≤ 1. This
assignment is then used for obtaining a new propositional
formula φσ1 ∨ φσ2 . To show the validity of this formula,
its negation is passed to a SAT solver. If this formula is
unsatisfiable, Π.φ is true and the algorithm returns. Otherwise,
it is satisfiable under the assignment ρ : Uσ1∪Uσ2 → {>,⊥}.
A new assignment α2 : U → {>,⊥} with α2 6= α1 6= α0 is
obtained from ρ|Aσi with 1 ≤ i ≤ 2. This assignment is then
used in the next round of the algorithm. In this way, the propo-
sitional formulas

∧
α∈ΣU

φα and
∨
σ∈ΣE

φσ are generated. If∧
α∈A φ

α is unsatisfiable for some A ⊆ ΣU , by Lemma 2
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Π.φ is false. Dually, if
∨
σ∈S φ

σ is valid for some S ⊆ ΣE ,
by Lemma 3 Π.φ is true. The algorithm iteratively extends the
sets A and S by adding parts of satisfying assignments of φ
to S and parts of falsifying assignments to A. In particular, A
is extended by assignments of the universal variables and S is
extended by assignments of the existential variables. The order
in which assignments are considered depends on the used SAT
solver.

Example 4. We show how to solve the QBF ∀a∃x∀b∃y.φ with
E = {x, y}, U = {a, b}, and φ = ((a∨x∨y)∧(¬a∨¬x∨y)∧
(b ∨ ¬y)) with the algorithm presented above. This formula
can be solved in two iterations:

Init: We start with some random assignment α0 : U →
{>,⊥}, for example with α0(a) = > and α0(b) = ⊥.

Iteration 1: The formula φα0 = (¬x> ∨ y>⊥) ∧ ¬y>⊥ is
passed to a SAT solver and found satisfiable under the assign-
ment τ : Eα0 → {>,⊥} with τ(x>) = ⊥ and τ(y>⊥) = ⊥.
By removing the variable annotations we get assignment σ1 =
(τ |Eα0 )−α0 , where σ1 : E → {>,⊥} with σ1(x) = ⊥ and
σ1(y) = ⊥. Based on this assignment we obtain φσ1 = a. The
formula ¬φσ1 is passed to a SAT solver. It is satisfiable and has
the satisfying assignment ρ : Uσ1 → {>,⊥} with ρ(a) = ⊥
and ρ(b⊥) = >, which we then reduce to α1 = (ρ|Uσ1 )−σ1

where α1 : U → {>,⊥} with α1(a) = ⊥ and α1(b) = >.
Iteration 2: The formula φα0∧φα1 = (¬x>∨y>⊥)∧¬y>⊥∧

(x⊥ ∨ y⊥>) is passed to a SAT solver in the second iteration.
It is satisfiable and one satisfying assignment is τ : Eα0 ∪
Eα1 → {>,⊥} with τ(x>) = ⊥, τ(x⊥) = >, τ(y>⊥) =
⊥, τ(y⊥>) = ⊥. From τ , we can extract the assignment σ2 =
(τ |Eα1 )−α1 where σ2 : E → {>,⊥} with σ2(x) = > and
σ2(y) = ⊥. Note that for any choice of τ , σ2 6= σ1. Next, we
construct φσ1 ∨ φσ2 = a ∨ ¬a. This formula is a tautology,
so its negation that is passed to a SAT solver is unsatisfiable,
hence Π.φ is true.

The soundness of our algorithm immediately follows from
Lemmas 2 and 3: the algorithm returns false (true) if, in
some iteration i, it finds that the current partial expansion∧
α∈Ai−1

φα (respectively
∧
σ∈Si ¬φσ) is unsatisfiable.

Theorem 1. The algorithm shown in Figure 1 is sound.

For showing that the algorithm also terminates, we argue
that sets Ai and Si increase in iteration i+ 1. To this end, we
have to relate the variables of the QBF, the annotated variables
as well as their assignments. Before we give the proof, we
first consider another example in which we illustrate how the
different assignments are related.

Example 5. We show one possible run of the algorithm
presented above for the QBF Φ := ∀a∃x∀b∃y.φ with

φ := (a ∧ b ∧ ¬x ∧ ¬y) ∨ (¬a ∧ x ∧ (b↔ y))

and how it iteratively generates the sets ΣU and ΣE . Figure 2
shows the expansion trees that are implicitly built during the
search. An expansion tree relates the variables of the partial
expansion of Φ constructed from Ai (left column) and Si (right

a

x⊥

b

y⊥⊥

α0σ1

a

x⊥

b

y⊥>

α1σ2

y⊥⊥

α0σ1

a

x
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y

α1σ1

a

x>

b

y>>

α2σ3

x⊥

b

y⊥>

α1σ2

y⊥⊥

α0σ1

a

x

b>

y

α2σ2 α2σ1

a

x>

b

y>> y>⊥

E

x⊥

b

y⊥> y⊥⊥

a

x

b>

y

α2σ2 α2σ1

b⊥

y

α3σ3

v

v

v

Counter-Models of φModels of φ

Iteration 1

Iteration 2

Iteration 3

Iteration 4

σ1(x) = >, σ1(y) = ⊥

σ2(x) = >, σ2(y) = >

σ3(x) = ⊥, σ3(y) = ⊥

α1(a) = ⊥, α1(b) = >

α2(a) = >, α2(b) = >

α3(a) = >, α3(b) = ⊥

v set to ⊥

v set to >

v unassigned

Figure 2: Expansion trees relating the assignments found
during solving the QBF ∀a∃x∀b∃y.φ in Example 5, with initial
assignment α0(a) = ⊥, α0(b) = ⊥. The assignments shown
in the leaves of the trees satisfy (left trees) or falsify (right
trees) φ.

column). Solid edges indicate that the variable on the top has
been set by an assignment from Ai or Si, and dotted edges
indicate that the variable has to be assigned a value by the SAT
solver. The order of the (annotated) variables in the expansion
tree respects the order of the (original) variables in the prefix.

Init: For the initialisation of A0, an arbitrary assignment
α0 : U → {>,⊥} is chosen. Let α0(a) = ⊥ and α0(b) = ⊥.

Iteration 1: φα0 := x⊥ ∧ ¬y⊥⊥ is satisfiable. Assignment
σ1 : E → {>,⊥}, with σ1(x) = > and σ1(y) = ⊥, is
extracted from model τ : Eα1 → {>,⊥} and added to S1.
Now φσ1 := ¬a ∧ ¬b> is checked for validity. Assignment
α1 : U → {>,⊥}, with α1(a) = ⊥ and α1(b) = >, obtained
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from counter-example ρ : Uσ1 → {>,⊥} is added to A1.
Iteration 2: Next, φα0 ∧ φα1 with φα1 := x⊥ ∧ y⊥> is

checked. From model τ : Eα0 ∪ Eα1 → {>,⊥}, again σ1

can be extracted for φα0 . For φα1 a new assignment σ2 which
is not in S1 is found and added to S2. In particular, we get
σ2 : E → {>,⊥} with σ2(x) = > and σ2(y) = >. When
the validity of φσ1 ∨ φσ2 with φσ2 := ¬a ∧ b> is checked, we
get a counter-example ρ : Uσ1 ∪ Uσ2 → {>,⊥}, from which
α2 : U → {>,⊥}, with α2(a) = > and α2(b) = >, can be
extracted. Assignment α2 is added to A2 leading to a new
path in the left expansion tree (Iteration 3 in Figure 2).

Iteration 3: Next, φα0∧φα1∧φα2 with φα2 := ¬x>∧¬y>>
is checked. From model τ : Eα0 ∪ Eα1 ∪ Eα2 → {>,⊥},
σ3 : E → {>,⊥} is extracted, satisfying φα2 . This assignment
is different from both σ1 and σ2: σ3(x) = ⊥ and σ3(y) = ⊥.
This again results in a new branch of the expansion tree (see
left expansion tree of Iteration 4 in Figure 2). The resulting
formula φσ1 ∨ φσ2 ∨ φσ3 with φσ3 := a∧ b⊥ is not valid, and
from the counter-example ρ : Uσ1 ∪Uσ2 ∪Uσ3 → {>,⊥} we
get α3 : U → {>,⊥} with α3(a) = > and α3(b) = ⊥.

Iteration 4: Finally, the full expansion φα0∧φα1∧φα2∧φα3

with φα3 := ⊥ is not satisfiable, meaning that the original
formula ∀a∃x∀b∃y.φ is false.

In the example above we saw that new assignments are
generated in each iteration because Ai and Si build models
and counter-models of φ. The following definition formalises
the relationship between Ai and Si.

Definition 2. Let Π.φ be a QBF over universally quantified
variables U and existentially quantified variables E. Further,
let A ⊆ {α | α : U 7→ {>,⊥}∆} and S ⊆ {σ | σ : E 7→
{>,⊥}∆}. If for every assignment σ ∈ S, there exists an
assignment α ∈ A such that ασ(¬φ) is true, then we say that
A completes S. If for every assignment α ∈ A, there exists an
assignment σ ∈ S such that ασ(φ) is true, then we say that
S completes A.

We now show that Si completes Ai−1 and Ai completes Si
if the algorithm does not terminate in iteration i because of
the unsatisfiability of the respective expansion.

Lemma 5. Let Π.φ be a QBF over universally quantified
variables U and existentially quantified variables E. Further,
let Ai−1 and Ai with Ai−1 ⊆ Ai be two sets of full
assignments to the universal variables and let Si be a set of full
assignments to the existential variables obtained by iteration
i during an execution of the algorithm shown in Figure 1.

(1) If
∧
α∈Ai−1

φα is satisfiable, then Si completes Ai−1,
i.e., for every µ ∈ Ai−1, there is an assignment ν ∈ Si such
that µν(φ) is true.

(2) If
∧
σ∈Si ¬φσ is satisfiable, then Ai completes Si, i.e.,

for every ν ∈ Si, there is an assignment µ ∈ Ai such that
νµ(¬φ) is true.

Proof. By contradiction. For (1), assume there is an assign-
ment µ ∈ Ai−1 such that there is no assignment ν ∈ Si
with µν(φ) is true. By assumption

∧
α∈Ai−1

φα is satisfiable,

so there is a satisfying assignment τ with τ |Eµ(φµ) is true.
Then also µ(τ |Eµ)−µ(φ) is true. But (τ |Eµ)−µ ∈ Si. For (2),
assume that there is an assignment µ ∈ Si such that there is
no ν ∈ Ai with µν(¬φ) is true. The rest of the argument is
similar as in (1).

Next, we show that the addition of new assignments A′ to
a set A of universal assignments forces a set S of existential
assignments to increase if some completion criteria hold.

Lemma 6. Let Φ = Π.φ be a QBF over universally quantified
variables U and existentially quantified variables E. Further,
let A ∪ A′ be a set of universal assignments such that A ∩
A′ = ∅ and A′ 6= ∅. Let S be a set of existential assignments
and assume that

∧
σ∈S ¬φσ has the satisfying assignment ρ,

A′ ⊆ {(ρ|Uσ )−σ | σ ∈ S}.
If S completes A, and A∪A′ completes S, and

∧
α∈A∪A′ φ

α

evaluates to true under assignment τ , then there exists an
assignment ν ∈ {(τ |Eα)−α | α ∈ A ∪A′} with ν 6∈ S.

Proof. By induction over the number of variables in Π.
Base Case. Assume that Φ has only one variable, i.e., Π =

Qx. Note that |A′| = 1 because x is outermost in the prefix
and A′ is obtained from sub-assignments of ρ. If Q = ∀,
then the elements of A are full assignments of φ, and S is
either empty, or it contains the empty assignment ω : ∅ 7→
{>,⊥}. Let A′ = {µ}. If S is empty, so is A (because S has
to complete A). If τ is a satisfying assignment of φµ, then
ν = τ = ω is the empty assignment and ν 6∈ S. Otherwise,
ω ∈ S. If there is an assignment α ∈ A, then φα ∧ φµ is a
full expansion of Φ. If this full expansion is true, then ¬φ is
unsatisfiable. Otherwise, φα∧φµ is unsatisfiable. In both cases,
the necessary preconditions for the lemma are not fulfilled. If
A = ∅, then µω(¬φ) is true. Then φµ is unsatisfiable, again
violating a precondition. If Q = ∃, then µ = ω and A = ∅.
If S = ∅ and φω = φ has the satisfying assignment τ , then
ν = τ and ν 6∈ S. Otherwise, if there is an assignment σ ∈ S,
then ωσ(¬φ) is true, because A ∪ {µ} = {ω} completes S.
Hence, if assignment τ satisfies φµ, then ν = τ , so ν 6∈ S.

Induction Step. Assume the lemma holds for QBFs with
n variables. We show that it also holds for QBFs with n+ 1
variables. Let Φ = QxΠ.φ be a QBF over existential variables
E and universal variables U with Π = Q1x1 . . . Qnxn and
A∪A′ and S be as required (S completes A, A∪A′ completes
S,

∧
α∈A∪A′ φ

α has a satisfying assignment τ , and
∧
σ∈S ¬φσ

has a satisfying assignment ρ from which A′ is obtained).
If Q = ∀, then all assignments α ∈ A′ assign the same

value t to x, i.e., α(x) = t, because these assignments
are extracted from assignment ρ and since x is the outer-
most variable of the prefix of Φ, ρ(x) = t. Further, let
At = {α ∈ A | α(x) = t}. It is easy to argue that for
Π.φ[x← t] together with the assignment sets At ∪ A′ and S
the induction hypothesis applies, i.e., there is an assignment
ν 6∈ S with ν ∈ {(τ ′|Eα)−α | α ∈ At ∪ A′} where τ ′ is
the part of τ that satisfies

∧
α∈At∪A′(φ[x← t])α. Obviously,

ν ∈ {(τ |Eα)−α | α ∈ A ∪A′}.
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If Q = ∃, assume that τ(x) = t. Let {σ ∈ S | σ(x) = t} ⊆
St ⊆ S, and let At ⊆ A such that the induction hypothesis
applies to Π.φ[x ← t], At ∪ A′, and St. Let τ t be those
sub-assignments of τ that satisfy

∧
α∈At φ

α. Then there is an
assignment ν that can be extracted from τ t with ν 6∈ St. Since
ν(x) = t, ν 6∈ S. This concludes the proof.

This property also holds in the other direction, i.e., adding a
set S′ of new assignments to S will force the set A to increase.

Lemma 7. Let Φ = Π.φ be a QBF over universally quantified
variables U and existentially quantified variables E. Further,
let S∪S′ be a set of existential assignments such that S∩S′ =
∅, S′ 6= ∅, let A be a set of universal assignments,

∧
α∈A φ

α

has the satisfying assignment τ , S′ ⊆ {(τ |Eα)−α | α ∈ A}.
If A completes S and S∪S′ completes A and

∧
σ∈S∪S′ ¬φσ

evaluates to true under assignment ρ, then there exists an
assignment ν ∈ {(ρ|Uσ )−σ | σ ∈ S ∪ S′} with ν 6∈ A.

Proof. The proof is analogous to the proof of Lemma 6.

Now that we have identified the relations between the sets
of universal and existential assignments, we use them to show
that the algorithm from Figure 1 terminates.

Theorem 2. The algorithm shown in Figure 1 terminates for
any QBF Φ = Π.φ.

Proof. By induction over the number of iterations i, we argue
that sets Ai−1 ⊂ Ai and Si−1 ⊂ Si.

Base Case. Let i = 1 and A0 = {α0}. S0 ⊂ S1, because
S0 = ∅ and σ1 ∈ S1 is a satisfying assignment of φα0 (if φα0

is unsatisfiable, the algorithm terminates). A0 ⊂ A1 directly
follows from Lemma 4.

Induction Step. For i > 1, we argue that Si ⊂ Si+1. By
induction hypothesis the theorem holds for iteration i, i.e.,
Ai = Ai−1 ∪ A′ with Ai−1 ∩ A′ = ∅ and A′ 6= ∅ and
Si = Si−1 ∪ S′ with Si−1 ∩ S′ = ∅ and S′ 6= ∅. Because
of Lemma 5, Si completes Ai−1, and Ai completes Si. Fur-
thermore, if

∧
σ∈Si ¬φσ is satisfiable under some assignment

ρ (otherwise the algorithm would terminate), by construction
A′ ⊆ {(ρ|Uσ )−σ | σ ∈ Si}. Hence, Lemma 6 applies and if∧
α∈Ai φ

α is satisfiable under some assignment τ (otherwise
the algorithm would immediately terminate), then there is an
assignment ν ∈ {(τ |Eα)−α | α ∈ Ai} with ν 6∈ Si.

The argument for Ai ⊂ Ai+1 is similar and uses the
property shown in Lemma 7.

Note that the algorithm presented above does not make any
assumptions on the formula structure, i.e., for a QBF Π.φ it
is not required that φ is in conjunctive normal form. Without
any modification, our algorithm also works on formulas in
PCNF—as SAT solvers typically process formulas in CNF
only, we focus on this representation for the rest of the paper.

We conclude this section by arguing that the ∀Exp+Res [5],
[28], [29] calculus yields the theoretical foundation of our
algorithm for refuting a formula Π.φ in PCNF with universal
variables U . The ∀Exp+Res calculus consists of two rules, the
axiom rule

Cα

where C is a clause of φ and α : U → {>,⊥} is a universal
assignment as well as the resolution rule

C1 ∨ xω C2 ∨ ¬xω
C1 ∨ C2

A derivation in ∀Exp+Res is a sequence of clauses where each
clause is either obtained by the axiom or derived from previous
clauses by the application of the resolution rule. A refutation
of a PCNF Π.φ is a derivation of the empty clause.

The application of the axiom instantiates the universal
variables of one clause of φ. If enough of these instantiations
can be found in order to derive the empty clause by the
application of the resolution rule, the QBF Π.φ is false. Our
algorithm in Figure 1 does not instantiate individual clauses,
but all clauses of φ at once with a particular assignment of
the universal variables. Hence, when the SAT solver finds
ψ∀ =

∧
α∈Ai φ

α unsatisfiable for some Ai, not necessarily
all clauses of ψ∀ are required to derive the empty clause via
resolution, but only the minimal unsatisfiable core of ψ∀, i.e.,
a subset of the clauses such that the removal of any clause
would make this formula satisfiable.

Proposition 1. Let Π.φ be a false QBF. Further, let ψ∀ =∧
α∈Ai φ

α be obtained by the application of the algorithm in
Figure 1. Further, let ψ′∀ be an unsatisfiable core of ψ∀. Then
there is a ∀Exp+Res refutation such that all clauses that are
introduced by the axiom rule occur in ψ′∀.

VI. IMPLEMENTATION

The algorithm described in Section V is realised in the
solver Ijtihad2 The most recent version of Ijtihad is available
at

https://extgit.iaik.tugraz.at/scos/ijtihad

The solver is implemented in C++ and currently processes
formulas in PCNF available in the QDIMACS format. For
accessing SAT solvers, Ijtihad uses the IPASIR interface [4],
which makes changing the SAT solver very easy. The SAT
solver used in all of our experiments is Glucose [1]. Although
the base implementation does reasonably well, we have re-
alised various optimizations to make Ijtihad even more viable
in practice. Some of them are discussed in the following.

For solving a QBF Π.φ, the basic algorithm shown in
Figure 1 adds instantiations of φ to ψ∀ =

∧
α∈Ai−1

φα and
ψ∃ =

∧
σ∈Si ¬φσ in each iteration i until the formula is

decided. The calls to the SAT solver in Line 5 and Line 8
are done incrementally, i.e., we create two instances of the
SAT solver and provide them with the clauses stemming from
new instantiations of φ at each iteration. For simplicity, we
omit indices of sets A and S and refer to an arbitrary iteration
of the execution of the algorithm in the following discussion.

Figure 5 relates set sizes of A and S as well as the
accumulated time that one SAT solver needs to solve ψ∀

2The name Ijtihad refers to the effort of solving cases in Islamic law (for
details see https://en.wikipedia.org/wiki/Ijtihad).
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Figure 3: Sizes of sets S and A
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Figure 5: Set sizes and time consumed during SAT calls for
solved instances from QBFEVAL’17 preprocessed by Bloqqer

with the time the other SAT solver needs to solve ψ∃ for the
formulas of the PCNF track of QBFEVAL’17 (preprocessed
with Bloqqer [6]). We also distinguish between true and false
formulas. In Figure 3 we see that for true formulas, set S tends
to be larger than A, while for false instances the picture is less
clear. Figure 4 shows the overall time needed for solving ψ∀
(y-axis) and ψ∃ (x-axis). In almost all cases, the solver that
handles ψ∀ needs more time than the solver that handles ψ∃.
This may be founded on the observation that many QBFs have
considerably more existential variables than universal variables
[37], hence the instantiations added to ψ∀ are much larger than
the instantiations added to ψ∃.

In Line 1 of Figure 1, the set of universal assignments A
is initialised with one arbitrary assignment α0. Obviously, the
set A may also be initialized with multiple assignments. In our
current implementation, we initialize A with the assignments
that set the variables of one universal quantifier block to ⊥
and the variables of all other universal quantifier blocks to >.
The impact of various initialization heuristics remains to be
investigated in future work.

In Line 7 and Line 10 our algorithm increases the size of
S and A in each iteration of the main loop, as argued in
Theorem 2. In the worst case, this leads to an exponential

increase in space consumption. Although we detect shared
clauses among the instantiations, that alone is not enough to
significantly reduce the space consumption. However, some
of the assignments found in an earlier iteration could become
obsolete after better assignments were found. It is therefore
beneficial to empty either S or A and then reconstruct them
from ψ∀ and ψ∃, similarly to what is done in Line 7 and
Line 10. We evaluated several heuristics for scheduling these
set resets, and we found that resetting periodically and close
to the memory limit works best. The regular resetting of one
set has a similar effect as restarts in SAT solvers, and we
observed a considerable improvement in performance, espe-
cially in terms of memory consumption. Our implementation
periodically resets the set A, since experiments indicate that
the resulting formula ψ∀ is much harder to solve than ψ∃
as seen in Figure 4. Besides the aforementioned imbalance
between universal and existential variables, it is also likely
due to the structure of ψ∃ which is a conjunction of formulas
in disjunctive normal form. Note that this reset of A does not
affect the termination argument presented in Theorem 2, since
the sets A and S still complete each other.

Finally, we extended the presented approach with orthogo-
nal reasoning techniques like QCDCL [21] for exploiting the
different strengths of ∀Exp+Res and Q-resolution, yielding a
hybrid solver that smoothly integrates both solving paradigms.
To this end, we implemented the prototypical solver called
Heretic which pursues the following idea: The main loop of
the algorithm shown in Figure 1 (Lines 4-12) is extended
in a sequential portfolio style such that a QCDCL solver
is periodically called. After each call, all clauses that were
learned through QCDCL are added to Π.Φ, making them
available in further iterations. These new clauses potentially
exclude assignments that would otherwise be possible and that
could result in more iterations of the main loop.

The solver Heretic extends Ijtihad by additional invocations
of the QCDCL solver DepQBF [36]. About every 30 seconds,
DepQBF is called and run for about 30 seconds. The learnt
clauses are obtained via the API of DepQBF. Leveraging
learned cubes is subject to future work.

VII. EVALUATION

We evaluate non-recursive expansion as implemented in our
solvers Ijtihad and its hybrid variant Heretic on the bench-
marks from the PCNF track of the QBFEVAL’17 competition.
All experiments were carried out on a cluster of Intel Xeon
CPUs (E5-2650v4, 2.20 GHz) running Ubuntu 16.04.1 with
a CPU time limit of 1800 seconds and a memory limit of 7
GB. We considered the following top-performing solvers from
QBFEVAL’17: Qute [38], Rev-Qfun [25], RAReQS [26],
CAQE [39], [43], DynQBF [12], GhostQ [26], [34], De-
pQBF [36], QESTO [30], and QSTS [9], [10]. Our experi-
ments are based on original benchmarks without preprocessing
and benchmarks preprocessed using Bloqqer [6], [23] with a
timeout of two hours.3 We included the 76 formulas already

3We refer to an online appendix [7] for additional experiments.
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Solver S ⊥ > Time
Rev-Qfun 220 145 75 572K
GhostQ 194 120 74 617K
CAQE 170 128 42 656K
RAReQS 167 133 34 660K
DepQBF 167 121 46 666K
Heretic 163 133 30 664K
QSTS 152 116 36 687K
Ijtihad 150 127 23 684K
Qute 130 91 39 720K
QESTO 109 86 23 761K
DynQBF 72 38 34 826K

TABLE I: Original instances.

Solver S ⊥ > Time
RAReQS 256 180 76 508K
CAQE 251 168 83 522K
Heretic 245 172 73 522K
Rev-Qfun 219 148 71 568K
Ijtihad 217 156 61 564K
QSTS 208 151 57 585K
QESTO 196 137 59 610K
DepQBF 183 117 66 633K
GhostQ 163 100 63 670K
Qute 154 109 45 682K
DynQBF 151 95 56 684K

TABLE II: Preprocessing by Bloqqer.

Solver S ⊥ > Time
Heretic 92 81 11 195K
DepQBF 89 74 15 205K
CAQE 88 73 15 204K
RAReQS 82 78 4 211K
QSTS 81 69 12 216K
Ijtihad 80 73 7 212K
Rev-Qfun 78 75 3 224K
Qute 70 60 10 236K
QESTO 51 44 7 269K
GhostQ 45 39 6 279K
DynQBF 15 13 2 332K

TABLE III: 197 original instances with
four or more quantifier blocks.

solved by Bloqqer in both benchmark sets.
Tables I and II show the total numbers of solved instances

(S), solved unsatisfiable (⊥) and satisfiable ones (>), and total
CPU time including timeouts. In the following, we focus on a
comparison of our solvers Ijtihad and Heretic with RAReQS
(cf. Figure 6). Unlike our solvers, RAReQS is based on a
recursive implementation of expansion.
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Figure 6: Scatter plots of the run times of Heretic and
RAReQS on original instances (related to Table I) and on
instances preprocessed by Bloqqer (related to Table II).

In general, preprocessing has a considerable impact on the
number of solved instances. The difference in solved instances
between Ijtihad and RAReQS is 17 on original instances (Ta-
ble I), and becomes larger on preprocessed instances (Table II).

Notably Heretic, despite its simple design, significantly
outperforms Ijtihad on the two benchmark sets. Moreover,
Heretic is ranked third on preprocessed instances (Table II)
and thus is on par with state-of-the-art solvers. On the two
benchmark sets, the gap in solved instances between RAReQS
and Heretic is considerably smaller than the one between
RAReQS and Ijtihad.

We report on memory consumption of expansion-based
solvers. While RAReQS, Ijtihad, and Heretic run out of
memory on 42, 61, and 39 original instances (Table I), re-
spectively, these numbers drop to 17, 41, and 24, respectively,

with preprocessing (Table II). The average memory footprint is
1718 MB, 1836 MB, and 1842 MB for RAReQS, Ijtihad, and
Heretic, respectively, and 1056 MB, 1311 MB, and 1187 MB
on preprocessed instances. Interestingly, Ijtihad has a smaller
median memory footprint than RAReQS without (792 MB
vs. 802 MB) and with preprocessing (286 MB vs. 364 MB).

The strength of Heretic becomes obvious for formulas
that have four or more quantifier blocks (i.e., three or more
quantifier alternations), cf. [37]. As shown in Table III, Heretic
outperforms all other solvers on these instances. We made a
similar observation on preprocessed formulas.

Moreover, Heretic solves only four original instances less
than DepQBF (Table I), and outperforms DepQBF on prepro-
cessed instances (Table II). These results indicate the potential
of combining the orthogonal proof systems ∀Exp+Res as
implemented in Ijtihad and Q-resolution as implemented in
DepQBF in a hybrid solver such as Heretic.

R vs. I R vs. H I vs. H D vs. H
< = > < = > < = > < = >

N 27 140 10 26 141 22 5 145 18 65 102 61
B 56 200 17 38 218 27 7 210 35 17 166 79

TABLE IV: Pairwise comparison of RAReQS (R), Ijtihad (I),
Heretic (H), and DepQBF (D) by instances without (N) and
with preprocessing by Bloqqer (B) that were solved by only
one solver of the considered pair (<, >) or by both (=).

Although RAReQS outperforms both Ijtihad and Heretic
on the two given benchmark sets (Tables I and II), RAReQS
failed to solve certain instances that were solved by Ijtihad
and Heretic. Table IV shows related statistics. E.g., on pre-
processed instances (row “B”), 218 instances were solved
by both RAReQS and Heretic (column “R vs. H), 38 only
by RAReQS, and 27 only by Heretic. Summing up these
numbers yields a total of 283 solved instances (more than
any individual solver on preprocessed instances in Table II)
that could have been solved by a hypothetical solver com-
bining RAReQS and Heretic. This observation underlines
the strength of expansion in general and, in particular, of the
hybrid approach implemented in Heretic. Heretic solved a
significant amount of instances not solved by RAReQS, it
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clearly outperformed Ijtihad on all benchmarks (column “I
vs. H”) and DepQBF on preprocessed ones (“D vs. H”).

VIII. CONCLUSION

We presented a novel non-recursive algorithm for
expansion-based QBF solving that uses only two SAT solvers
for incrementally refining the propositional abstraction and the
negated propositional abstraction of a QBF. We gave a concise
proof of termination and soundness and demonstrated with
several experiments that our prototype compares well with
the state of the art. In addition to non-recursive expansion,
we also studied the impact of combining Q-resolution and
∀Exp+Res in a hybrid approach. To this end, we coupled a
QCDCL solver and non-recursive expansion to make clauses
derived by the QCDCL solver available to the expansion
solver. Experimental results indicated that the hybrid approach
significantly outperforms our implementation of non-recursive
expansion indicating the potential of combining expansion-
based approaches with Q-resolution which gives rise to an
exciting direction of future work. Further, our current imple-
mentation supports only formulas in conjunctive normal form
while in theory, our approach does not make any assumptions
on the structure of the propositional part of the QBF. We also
plan to investigate how this formula structure can be exploited
for efficiently processing the negation of the formula.
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Abstract—The inference of program invariants over machine
arithmetic, commonly called bit-vector arithmetic, is an impor-
tant problem in verification. Techniques that have been successful
for unbounded arithmetic, in particular Craig interpolation, have
turned out to be difficult to generalise to machine arithmetic:
existing bit-vector interpolation approaches are based either
on eager translation from bit-vectors to unbounded arithmetic,
resulting in complicated constraints that are hard to solve and
interpolate, or on bit-blasting to propositional logic, in the process
losing all arithmetic structure. We present a new approach to bit-
vector interpolation, as well as bit-vector quantifier elimination
(QE), that works by lazy translation of bit-vector constraints
to unbounded arithmetic. Laziness enables us to fully utilise
the information available during proof search (implied by de-
cisions and propagation) in the encoding, and this way produce
constraints that can be handled relatively easily by existing
interpolation and QE procedures for Presburger arithmetic. The
lazy encoding is complemented with a set of native proof rules
for bit-vector equations and non-linear (polynomial) constraints,
this way minimising the number of cases a solver has to consider.

I. INTRODUCTION

Craig interpolation is a commonly used technique to infer
invariants or contracts in verification. Over the last 15 years,
efficient interpolation techniques have been developed for a
variety of logics and theories, including propositional logic [1],
[2], uninterpreted functions [1], [3], [4], first-order logic [5],
[6], [7], algebraic data-types [8], linear real arithmetic [1],
non-linear real arithmetic [9], Presburger arithmetic [10], [4],
[11], and arrays [12], [13], [14].

A theory that has turned out notoriously difficult to handle
in Craig interpolation is bounded machine arithmetic, com-
monly called bit-vector arithmetic. Decision procedures for
bit-vectors are predominantly based on bit-blasting, in com-
bination with sophisticated preprocessing and simplification
methods, which implies that also extracted interpolants stay
on the level of propositional logic and are difficult to map
back to compact high-level bit-vector constraints. An alter-
native interpolation approach translates bit-vector constraints
to unbounded integer arithmetic formulas [15], but is limited
to linear constraints and tends to produce integer formulas
that are hard to solve and interpolate, due to the necessary
introduction of additional variables and large coefficients to
model wrap-around semantics correctly.

In this paper, we introduce a new Craig interpolation method
for bit-vector arithmetic, focusing on arithmetic bit-vector
operations including addition, multiplication, and division.
Like [15], we compute interpolants by reducing bit-vectors to

unbounded integers; unlike in earlier approaches, we define a
calculus that carries out this reduction lazily, and can therefore
dynamically choose between multiple possible encodings of
the bit-vector operations. This is done by initially representing
bit-vector operations as uninterpreted predicates, which are
expanded and replaced by Presburger arithmetic expressions
on demand. The calculus also includes native rules for non-
linear constraints and bit-vector equations, so that formulas
can often be proven without having to resort to a full encoding
as integer constraints. Our approach gives rise to both Craig
interpolation and quantifier elimination (QE) methods for bit-
vector constraints, with both procedures displaying competi-
tive performance in our experiments.

Reduction of bit-vectors to unbounded integers has the ad-
ditional advantage that integer and bit-vector formulas can be
combined efficiently, including the use of conversion functions
between both theories, which are difficult to support using
bit-blasting. This combination is of practical importance in
software verification, since programs and specifications of-
ten mix machine arithmetic with arbitrary-precision numbers;
tools might also want to switch between integer semantics
(if it is known that no overflows can happen) and bit-vector
semantics for each individual program instruction.

The contributions of the paper are: 1) a new calculus for
non-linear integer arithmetic, which can eliminate quantifiers
(in certain cases) and extract Craig interpolants (Section III);
2) a corresponding calculus for arithmetic bit-vector con-
straints (Section IV); 3) an experimental evaluation using
SMT-LIB and model checking benchmarks (Section V).

A. Related Work

Most SMT solvers handle bit-vectors using bit-blasting
and SAT solving, and usually cannot extract interpolants
for bit-vector problems. The exception is MATHSAT [16],
which uses a layered approach [15] to compute interpolants:
MATHSAT first tries to compute interpolants by keeping bit-
vector operations uninterpreted; then using a restricted form
of quantifier elimination; then by eager encoding into linear
integer arithmetic (LIA); and finally through bit-blasting. Our
approach has some similarities to the LIA encoding, but can
choose simpler encodings thanks to laziness, and also covers
non-linear arithmetic constraints.

Other related work has focused on fragments of bit-vector
logic. In [17], an algorithm is given for reconstructing bit-
vector interpolants from bit-level interpolants, however re-
stricted to the case of bit-vector equalities. An interpolation
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procedure based on a set of tailor-made (but incomplete)
rewriting rules for bit-vectors is given in [18].

II. PRELIMINARIES: THE BASE LOGIC

We formulate our approach on top of a simple logic of
Presburger arithmetic constraints combined with uninterpreted
predicates, introduced in [19] and extended in [4], [10] to
support Craig interpolation. Let x range over an infinite set X
of variables, c over an infinite set C of constants, p over a set
P of uninterpreted predicates with fixed arity, and α over the
set Z of integers. The syntax of terms and formulae is defined
by the following grammar:

φ ::= t = 0 || t ≤ 0 || p(t, . . . , t) ||φ ∧ φ ||φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ
t ::= α || c ||x ||αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. Substitution
of a term t for a variable x in φ is denoted by [x/t]φ;
we assume that variable capture is avoided by renaming
bound variables as necessary. For simplicity, we sometimes
write s = t as a shorthand of s− t = 0, inequality s ≤ t for
s− t ≤ 0, and ∀c.φ as a shorthand of ∀x.[c/x]φ if c is a
constant. The abbreviation true (false) stands for the equal-
ity 0 = 0 (1 = 0), and the formula φ→ ψ abbreviates ¬φ∨ψ.
Semantic notions such as structures, models, satisfiability, and
validity are defined as is common (e.g., [20]), but we assume
that evaluation always happens over the universe Z of integers;
bit-vectors will later be defined as a subset of the integers.

A. A Sequent Calculus for the Base Logic

For checking whether a formula in the base logic is satisfi-
able or valid, we work with the calculus presented in [19], a
part of which is shown in Fig. 1. If Γ, ∆ are sets of formulae,
then Γ ` ∆ is a sequent. A sequent is valid if the for-
mula

∧
Γ→ ∨

∆ is valid. Positions in ∆ that are underneath
an even/odd number of negations are called positive/negative;
and vice versa for Γ. Proofs are trees growing upward, in
which each node is labelled with a sequent, and each non-
leaf node is related to the node(s) directly above it through an
application of a calculus rule. A proof is closed if it is finite
and all leaves are justified by an instance of a rule without
premises. Soundness of the calculus implies that the root of a
closed proof is a valid sequent.

In addition to propositional and quantifier rules in Fig. 1,
the calculus in [19] also includes rules for equations and
inequalities in Presburger arithmetic; the details of those rules
are not relevant for this paper. The calculus is complete for
quantifier-free formulas in the base logic, i.e., for every valid
quantifier-free sequent a closed proof can be found. It is well-
known that the base logic including quantifiers does not admit
complete calculi [21], but as discussed in [19] the calculus
can be made complete (by adding slightly more sophisticated
quantifier handling) for interesting undecidable fragments, for
instance for sequents ` φ with only existential quantifiers.

For quantifier-free input formulas, proof search can be
implemented in depth-first style following the core concepts

Γ, φ ` ∆
Γ, ψ ` ∆

Γ, φ ∨ ψ ` ∆
∨-LEFT

Γ, φ ` ∆
Γ, ψ ` ∆

Γ ` φ ∧ ψ,∆ ∧-RIGHT

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧-LEFT

Γ ` φ, ψ,∆

Γ ` φ ∨ ψ,∆ ∨-RIGHT

Γ ` φ,∆

Γ,¬φ ` ∆
¬-LEFT

Γ, φ ` ∆

Γ ` ¬φ,∆ ¬-RIGHT

∗
Γ, φ ` φ,∆

CLOSE

Γ, [x/t]φ, ∀x.φ ` ∆

Γ,∀x.φ ` ∆
∀-LEFT

Γ, [x/c]φ ` ∆

Γ,∃x.φ ` ∆
∃-LEFT

Γ ` [x/t]φ, ∃x.φ,∆
Γ ` ∃x.φ,∆ ∃-RIGHT

Γ ` [x/c]φ,∆

Γ ` ∀x.φ,∆ ∀-RIGHT

Fig. 1. A selection of the basic calculus rules for propositional logic (upper
box) and quantifier rules (lower box). In the rules ∃-LEFT and ∀-RIGHT, c is
a constant that does not occur in the conclusion.

of DPLL(T) [22]: rules with multiple premises correspond to
decisions and explore the branches one by one; rules with a
single premise represent propagation or rewriting; and logging
of rule applications is used in order to implement conflict-
driven learning and proof extraction. For experiments, we use
the implementation of the calculus in PRINCESS.1

B. Quantifier Elimination in the Base Logic

The sequent calculus can eliminate quantifiers in Pres-
burger arithmetic, i.e., in the base logic without uninterpreted
predicates, since the arithmetic calculus rules are designed
to systematically eliminate constants. To illustrate this use
case, suppose φ is a formula without uninterpreted predicates
and without constants c, but possibly containing variables x.
Formula φ furthermore only contains ∀/∃ under an even/odd
number of negations, i.e., all quantifiers are effectively univer-
sal. To compute a quantifier-free formula ψ that is equivalent
to φ, we can construct a proof with root sequent ` φ, and
keep applying rules until no further applications are possible
in any of the remaining open goals {Γi ` ∆i | i = 1, . . . , n}.
In this process, rules ∃-LEFT and ∀-RIGHT can introduce fresh
constants, which are subsequently isolated and eliminated by
the arithmetic rules. To find ψ, it is essentially enough to
extract the constant-free formulas Γvi ⊆ Γi, ∆v

i ⊆ ∆i in the
open goals, and construct ψ =

∧n
i=1(

∧
Γvi →

∨
∆v
i ).

The full calculus [19] is moreover able to eliminate arbi-
trarily nested quantifiers, and can be used similarly to prove
validity of sequents with quantifiers. A recent independent
evaluation [23] showed that the resulting proof procedure is
competitive with state-of-the-art SMT solvers and theorem
provers on a wide range of quantified integer problems.
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Γ, bφcL ` ∆ I I Γ, bψcL ` ∆ I J
Γ, bφ ∨ ψcL ` ∆ I I ∨ J ∨-LEFTL

Γ, bφcR ` ∆ I I Γ, bψcR ` ∆ I J
Γ, bφ ∨ ψcR ` ∆ I I ∧ J ∨-LEFTR

Γ, bφcD, bψcD ` ∆ I I
Γ, bφ ∧ ψcD ` ∆ I I

∧-LEFTD

Γ ` bφcD,∆ I I
Γ, b¬φcD ` ∆ I I

¬-LEFTD

∗
Γ, bφcL ` bφcL,∆ I false

CLOSELL

∗
Γ, bφcL ` bφcR,∆ I φ

CLOSELR

∗
Γ, bφcR ` bφcL,∆ I ¬φ CLOSERL

Γ, b[x/t]φcL, b∀x.φcL ` ∆ I I
Γ, b∀x.φcL ` ∆ I ∀Rt I

∀-LEFTL

Γ, b[x/t]φcR, b∀x.φcR ` ∆ I I
Γ, b∀x.φcR ` ∆ I ∃Lt I

∀-LEFTR

Γ, b[x/c]φcD ` ∆ I I
Γ, b∃x.φcD ` ∆ I I ∃-LEFTD

Fig. 2. The upper box presents a selection of interpolating rules for propo-
sitional logic, while the lower box shows rules for quantifiers. Parameter D
stands for either L or R. The quantifier ∀Rt denotes universal quantification
over all constants occurring in t but not in ΓL ∪∆L; likewise, ∃Lt denotes
existential quantification over all constants occurring in t but not in ΓR∪∆R.
In ∃-LEFTD , c is a constant that does not occur in the conclusion.

C. Craig Interpolation in the Base Logic

Given formulas A and B such that A ∧ B is unsatisfiable,
Craig interpolation can determine a formula I such that the
implications A⇒ I and B ⇒ ¬I hold, and non-logical sym-
bols in I occur in both A and B [24]. An interpolating version
of our sequent calculus has been presented in [4], [10], and
is summarised in Fig. 2. To keep track of the partitions A,B,
the calculus operates on labelled formulas bφcL (with L for
“left”) to indicate that φ is derived from A, and similarly
formulas bφcR for φ derived from B. If Γ, ∆ are finite sets of
L/R-labelled formulas, and I is an unlabelled formula, then
Γ ` ∆ I I is an interpolating sequent.

Semantics of interpolating sequents is defined using projec-
tions ΓL =def {φ | bφcL ∈ Γ} and ΓR =def {φ | bφcR ∈ Γ},
which extract the L/R-parts of a set Γ of labelled formulae. A
sequent Γ ` ∆ I I is valid if 1) the sequent ΓL ` I,∆L

is valid, 2) the sequent ΓR, I ` ∆R is valid, and 3) the
constants and uninterpreted predicates/functions in I occur in
both ΓL ∪∆L and ΓR ∪∆R. As a special case, note that the
sequent bAcL, bBcR ` ∅ I I is valid iff I is an interpolant
of A ∧ B. Soundness of the calculus guarantees that the root
of a closed interpolating proof is a valid interpolating sequent.

1http://www.philipp.ruemmer.org/princess.shtml

To solve an interpolation problem A ∧B, a prover typically
first constructs a proof of A,B ` ∅ using the ordinary calcu-
lus from Section II-A. Once a closed proof has been found, it
can be lifted to an interpolating proof: this is done by replacing
the root formulas A,B with bAcL, bBcR, respectively, and
recursively assigning labels to all other formulas as defined by
the rules from Fig. 2. Then, starting from the leaves, intermedi-
ate interpolants are computed and propagated back to the root,
leading to an interpolating sequent bAcL, bBcR ` ∅ I I .

III. SOLVING NON-LINEAR CONSTRAINTS

We extend the base logic in two steps: in this section,
symbols and rules are added to solve non-linear diophantine
problems; a second extension is then done in Section IV to
handle arithmetic bit-vector constraints. Both constructions
preserve the ability of the calculus to eliminate quantifiers
(under certain assumptions) and derive Craig interpolants.

For non-linear constraints, we assume that the set P of
uninterpreted predicates contains a distinguish ternary pred-
icate ×, with the intended semantics that the third argument
represents the result of multiplying the first two arguments,
i.e., ×(s, t, r) ⇔ s · t = r. The predicate × is clearly
sufficient to express arbitrary polynomial constraints by in-
troducing a ×-literal for each product in a formula, at the
cost of introducing a linear number of additional constants
or existentially quantified variables. We make the simplifying
assumption that × only occurs in negative positions; that
means, top-level occurrences will be on the left-hand side of
sequents. Positive occurrences can be eliminated thanks to the
equivalence ¬×(s, t, r)⇔ ∃x.(×(s, t, x) ∧ x 6= r).

A. Calculus Rules for Non-Linear Constraints

We now introduce different classes of calculus rules to
reason about the ×-predicate. The rules are necessarily incom-
plete for proving that a sequent is valid, but they are complete
for finding counterexamples: if φ is a satisfiable quantifier-
free formula with × as the only uninterpreted predicate, then
it is possible to construct a proof for φ ` ∅ that has an
open and unprovable goal in pure Presburger arithmetic (by
systematically splitting variable domains, Section III-A4).

1) Deriving Implied Equalities with Gröbner Bases: The
first rule applies standard algebra methods to infer new equal-
ities from multiplication literals. To avoid the computation of
more and more complex terms in this process, we restrict
the calculus to the inference of linear equations that can be
derived through computation of a Gröbner basis.2 Given a set
{×(si, ti, ri)}ni=1 of ×-literals and a set {ej = 0}mj=1 of linear
equations, the generated ideal I = ({si ·ti−ri}ni=1∪{ej}mj=1)
over rational numbers is the smallest set of rational poly-
nomials that contains {si · ti − ri}ni=1 ∪ {ej}mj=1, is closed
under addition, and closed under multiplication with arbitrary
rational polynomials [25]. Any f ∈ I corresponds to an

2The set of all linear equations implied by a set of ×-literals over integers
is clearly not computable, by reduction of Hilbert’s 10th problem.
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equation f = 0 that logically follows from the literals, and
can therefore be added to a proof goal:

Γ, {×(si, ti, ri)}ni=1, {ej = 0}mj=1, f = 0 ` ∆

Γ, {×(si, ti, ri)}ni=1, {ej = 0}mj=1 ` ∆
×-EQ

if f is linear, has integer coefficients, and f ∈ I

To see how this rule can be applied practically, note that
the subset of linear polynomials in I forms a rational vector
space, and therefore has a finite basis. It is enough to apply
×-EQ for terms f1, . . . , fk corresponding to any such basis,
since linear arithmetic reasoning (in the base logic) will then
be able to derive all other linear polynomials in I . To compute
a basis f1, . . . , fk, we can transform {si ·ti−ri}ni=1∪{ej}mj=1

to a Gröbner basis using Buchberger’s algorithm [26], and then
apply Gaussian elimination to find linear basis polynomials (or
directly by choosing a suitable monomial order).

Example 1: Consider the square of a sum: (x + y)2 =
x2 + 2xy + y2. This can be proven in the following way.
We begin by rewriting the equation to normal form, let
Π = {×(x, x, c1),×(x, y, c2),×(y, y, c3),×(x+y, x+y, c4)}:

∗....
Π, c1 + 2c2 + c3 − c4 = 0 ` c4 = c1 + 2c2 + c3

Π ` c4 = c1 + 2c2 + c3
×-EQ

Here, the ×-EQ-step is motivated by the fact that the Gröbner
basis derived from Π contains the linear polynomial c1+2c2+
c3− c4, from which the desired equation can be derived using
linear reasoning.

2) Interval Constraint Propagation (ICP): Our main tech-
nique for inequality reasoning in the presence of ×-predicates
is interval constraint propagation (ICP) [27], which com-
putes greatest fixed-points over-approximating the ranges
of constants or free variables. Due to lack of space we
do not introduce ICP in full detail, but only assume that
Prop{φ1,...,φn} is a monotonic function describing the propa-
gation of bounds information implied by equalities, inequal-
ities, and ×-literals φ1, . . . , φn, and gfpProp{φ1,...,φn} is its
greatest fixed-point. The ICP rule adds resulting bounds for a
constant or variable c ∈ C ∪X:

Γ, φ1, . . . , φn, l ≤ c, c ≤ u ` ∆

Γ, φ1, . . . , φn ` ∆
×-ICP

if (gfpProp{φ1,...,φn})(c) = [l, u]

Example 2: From two inequalities x ≥ 5 and y ≥ 5, the
rule ×-ICP can derive (x+ y)2 ≥ 100:

×(x+ y, x+ y, c4), x ≥ 5, y ≥ 5, 100 ≤ c4 `
×(x+ y, x+ y, c4), x ≥ 5, y ≥ 5 ` ×-EQ

The slightly different problem x+ y ≥ 10→ (x+ y)2 ≥ 100
cannot be proven in the same way, since ICP will not be able
to deduce bounds for x or y from x+ y ≥ 10.

3) Cross-Multiplication of Inequalities: While ICP is
highly effective for approximating the range of constants,
and quickly detecting inconsistencies, it is less useful for
inferring relationships between multiple constants that follow
from multiplication literals. We cover such inferences using
a cross-multiplication rule that resembles procedures used in
ACL2 [28]. The rule captures the fact that if s, t are both
non-negative, then also the product s · t is non-negative.

Like in Section III-A1, we prefer to avoid the introduction
of new multiplication literals during proof search, and only
add s · t ≥ 0 if the term s · t can be expressed linearly. For
this, we again write I = ({si · ti − ri}ni=1 ∪ {ej}mj=1) for the
ideal induced by equations and ×-literals:

Γ, s ≤ 0, t ≤ 0, −f ≤ 0 ` ∆

Γ, s ≤ 0, t ≤ 0 ` ∆
×-CROSS

if f is linear, has integer coefficients, and s · t− f ∈ I

The term f can practically be found by computing a Gröbner
basis of I , and reducing the product s · t to check whether an
equivalent linear term exists.

4) Interval Splitting: If everything else fails, as last resort it
can become necessary to systematically split over the possible
values of a variable or constant c ∈ C ∪X:

Γ, c ≤ α− 1 ` ∆ Γ, c ≥ α ` ∆

Γ ` ∆
×-SPLIT

The α ∈ Z can in principle be chosen arbitrarily in the
rule, but in practice a useful strategy is to make use of the
range information derived for ×-ICP: when no ranges can be
tightened any further using ×-ICP, instead ×-SPLIT can be
applied to split one of the intervals in half.

5) ×-Elimination: Finally, occurrences of × can be elim-
inated whenever a formula is subsumed by other literals in a
goal, again writing I = ({si · ti − ri}ni=1 ∪ {ej}mj=1):

Γ ` ∆
Γ,×(s, t, r) ` ∆

×-ELIM

if s · t− r ∈ I

Note that ×-ELIM only eliminates non-linear ×-literals,
whereas ×-EQ only introduces linear equations, so that the
application of the two rules cannot induce cycles.

B. Quantifier Elimination for Non-Linear Constraints

Due to necessary incompleteness of calculi for Peano arith-
metic, quantifiers can in general not be eliminated in the
presence of the × predicate, even when considering formulas
that do not contain other uninterpreted predicates. By com-
bining the QE approach in Section II-B with the rules for ×
that we have introduced, it is nevertheless possible to reason
about quantified non-linear constraints in many practical cases,
and sometimes even get rid of quantifiers. This is possible
because the rules in Section III-A are not only sound, but even
equivalence transformations: in any application of the rules,
the conjunction of the premises is equivalent to the conclusion.
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Similarly as in [29], QE is always possible if sufficiently
many constants or variables in a formula φ range over bounded
domains: if there is a set B ⊆ C ∪ X of symbols with
bounded domain such that in each literal ×(s, t, r) either
s or t contain only symbols from B. In this case, proof
construction will terminate when applying the rule ×-SPLIT
only to variables or constants with bounded domain. This
guarantees that eventually every literal ×(s, t, r) can be turned
into a linear equation using ×-EQ, and then be eliminated
using ×-ELIM, only leaving proof goals with pure Presburger
arithmetic constraints. The boundedness condition is naturally
satisfied for bit-vector formulas.

C. Craig Interpolation for Non-Linear Constraints

To carry over the Craig interpolation approach from Sec-
tion II-C to non-linear formulas, interpolating versions of the
calculus rules for the ×-predicate are needed. For this, we
follow the approach used in [4] (which in turn resembles the
use of theory lemmas in SMT in general): when translating a
proof to an interpolating proof, we replace applications of the
×-rules with instantiation of an equivalent theory axiom QAx .
Suppose a non-interpolating proof contains a rule application

....
Γ,Γ′,Γ1 ` ∆1,∆

′,∆ · · ·

....
Γ,Γ′,Γn ` ∆n,∆

′,∆

Γ,Γ′ ` ∆′,∆
R

....

in which Γ′,∆′ are the formulas assumed by the rule ap-
plication, Γ,∆ are side formulas not required or affected by
the application, and Γ1,∆1, . . . , Γn,∆n are newly introduced
formulas in the individual branches.

The (unquantified) theory axiom Ax corresponding to
the rule application expresses that the conjunction of the
premises has to imply the conclusion; the quantified theory
axiom QAx =def ∀S.Ax in addition contains universal quan-
tifiers for all constants S ⊆ C occurring in Ax .

Ax =def

n∧

i=1

(∧
Γi →

∨
∆i

)
→

(∧
Γ′ →

∨
∆′
)

Ax and QAx are specific to the application of R: the
axioms for two distinct applications of R will in general
be different formulas. QAx is defined in such a way that
the effect of R can be simulated by introducing QAx in
the antecedent, instantiating it with the right constants, and
applying propositional rules:

∗....
Γ,Γ′,

∧
Γ′ → ∨

∆′ ` ∆′,∆

Γ,Γ′,Γ1 ` ∆1,∆
′,∆ · · ·

...
Γ,Γ′,Ax ` ∆′,∆

Γ,Γ′,∀S .Ax ` ∆′,∆
∀-LEFT∗

This construction leads to a proof using only the standard
rules from Section II-A, which can be interpolated as discussed
earlier. Since QAx is a valid formula not containing any

constants, it can be introduced in a proof at any point, and
labelled bQAxcL or bQAxcR on demand.

The obvious downside of this approach is the possibility of
quantifiers occurring in interpolants. The interpolating rules
∀-LEFTL/R (Fig. 2) have to introduce quantifiers ∀Rt /∃Lt for
local symbols occurring in the substituted term t; whether such
quantifiers actually occur in the final interpolant depends on
the applied ×-rules, and on the order of rule application. For
instance, with ×-SPLIT it is always possible to choose the
label of QAx so that no quantifiers are needed, whereas ×-EQ
might mix symbols from left and right partitions in such a way
that quantifiers become unavoidable. In our implementation
we approach this issue pragmatically. We leave proof search
unrestricted, and might thus sometimes get proofs that do not
give rise to quantifier-free interpolants; when that happens, we
afterwards apply QE to get rid of the quantifiers. QE is always
possible for bit-vector constraints, see Section IV-D.3

IV. SOLVING BIT-VECTOR CONSTRAINTS

We now define the extension of the base logic to bit-vector
constraints. The main idea of the extension is to represent bit-
vectors of width w as integers in the interval {0, . . . , 2w−1},
and to translate bit-vector operations to the corresponding
operation in Presburger arithmetic (or possible the ×-predicate
for non-linear formulas), followed by an integer remainder
operation to map the result back to the correct bit-vector
domain. Since the remainder operation tends to be a bottleneck
for interpolation, we keep the operation symbolic and initially
consider it as an uninterpreted predicate bmodb

a . The predicate
is only gradually reduced to Presburger arithmetic by applying
the calculus rules introduced later in this section.

Formally, we introduce a set Pbv = {bmodb
a | a, b ∈ Z,

a < b} of binary predicates. The semantics of bmodb
a is to

relate any whole number x ∈ Z to its remainder modulo b−a
in the interval {a, . . . , b− 1}:

bmodb
a (s, r) ⇔ a ≤ r < b ∧ ∃z. r = s+ (b− a) · z

⇔ a ≤ r < b ∧ r ≡ s (mod b− a)

We also introduce short-hand notations for the casts to the
unsigned and signed bit-vector domains:

ubmodw =def bmod2w

0 , sbmodw =def bmod2w−1

−2w−1 .

A. Translating Bit-Vector Constraints to the Core Language

For the rest of the section, we use the base logic aug-
mented with × and bmodb

a -predicates as the core language to
which bit-vector constraints are translated. For presentation,
the translation focuses on a subset of the arithmetic bit-vector
operations, BVOP = {bvaddw, bvmulw, bvudivw, bvnegw,
zew+w′ , bvulew, bvslew}. All operations are sub-scripted with
the bit-width of the operands; the zero-extend function zew+w′

maps bit-vectors of width w to width w + w′. Semantics

3Non-linear integer arithmetic in general does not admit quantifier-free
interpolants. For instance, (x > 1 ∧ x = y2) ∧ x = z2 + 1 is unsatisfiable,
but no quantifier-free interpolants exist, regardless of whether divisibility
predicates α | t are allowed or not.
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bvaddw(s, t) = r _ ubmodw (s+ t, r) bvnegw(s) = r _ ubmodw (−s, r)
bvmulw(s, t) = r _ ∃x.

(
×(s, t, x) ∧ ubmodw (x, r)

)
zew+w′(s) = r _ s = r

bvslew(s, t) _ ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x ≤ y) bvulew(s, t) _ s ≤ t
¬bvslew(s, t) _ ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x > y) ¬bvulew(s, t) _ s > t

bvudivw(s, t) = r _
(
t = 0 ∧ r = 2w − 1

)
∨
(
t ≥ 1 ∧ ∃x. (×(t, r, x) ∧ s− t < x ≤ s)

)

Fig. 3. Rules translating bit-vector operations into the core language. The rules only apply in negative positions.

follows the FixedSizeBitVectors4 theory of the SMT-LIB [30].
Other arithmetic operations, for instance bvsdivw or bvsmodw,
can be handled in the same way as shown here, though
sometimes the number of cases to be considered is larger.

The translation from bit-vector constraints φ to core formu-
las φcore has two parts: first, BVOP occurrences in a formula φ
have to be replaced with equivalent expressions in the core
language; second, since the core language only knows the
sort of unbounded integers, type information has to be made
explicit by adding domain constraints.

a) BVOP elimination: Like in Section III, we assume
that the bit-vector formula φ has already been brought into
a flat form by introducing additional constants or quantified
variables: the operations in BVOP must not occur nested,
and functions only occur in equations of the form f(s̄) = t
in negative positions. The translation from φ to φ′ is then
defined by the rewriting rules in Fig. 3. Since the rules for
the predicate bvslew distinguish between positive and negative
occurrences, we assume that rules are only applied to formulas
in negation normal-form, and only in negative positions.

The rules for bvaddw, bvnegw, zew+w′ , and bvulew simply
translate to the corresponding Presburger term, if necessary
followed by remainder ubmodw . Multiplication bvmulw is
mapped similarly to the ×-predicate defined in Section III,
adding an existential quantifier to store the intermediate
product. Since rules are only applied in negative positions,
the quantified variable can later be replaced with a Skolem
constant. An optimised rule could be defined for the case
that one of the factors is constant, avoiding the use of the
×-predicate. Translation of bvslew simply maps the operands
to a signed bit-vector domain {−2w−1, . . . , 2w−1 − 1}. The
rule for unsigned division bvudivw distinguishes the cases that
the divisor t is zero or positive (as required by SMT-LIB), and
maps the latter case to standard integer division.

b) Domain constraints: Bit-vector variables/constants x
of width w occurring in φ are interpreted as unbounded integer
variables in φcore , which therefore has to contain explicit
assumptions about the ranges of bit-vector variables. We use
the abbreviation inw(x) =def (0 ≤ x < 2w) and define

φcore =
( ∧

x∈S
inwx

(x)
)
→ φ′

where S ⊆ C ∪ X is the set of free variables and constants
occurring in φ, wx is the bit-width of x ∈ S, and φ′ is the
result of applying rules from Fig. 3 to φ. Similar constraints

4http://www.smtlib.org/theories-FixedSizeBitVectors.shtml

are used to express quantification over bit-vectors, for instance
∃x. (inw(x) ∧ . . .) and ∀x. (inw(x)→ . . .).

Example 3: We consider the SMT-LIB QF BV problem
challenge/multiplyOverflow.smt2, a bit-vector
formula that is known to be hard for most SMT solvers since
it contains both multiplication and division. In experiments,
neither Z3 nor CVC4 could prove the formula within 10min.
In our notation, the problem amounts to showing validity of
the following implication, with a, b ranging over bit-vectors
of width 32:

bvule32(b, bvudiv32(232 − 1, a))→
bvule64(bvmul64(ze32+32(a), ze32+32(b)), 232 − 1)

As a flat formula, with additional constants c1 of width 32 and
c2, c3, c4 of width 64, the implication takes the form:
(
bvudiv32(232 − 1, a) = c1 ∧ bvmul64(c3, c4) = c2 ∧
ze32+32(a) = c3 ∧ ze32+32(b) = c4 ∧ bvule32(b, c1)

)
→

bvule64(c2, 2
32 − 1)

The final formula φcore is obtained by application of the rules
in Fig. 3, and adding domain constraints:
(
in32(a) ∧ in32(b) ∧ in32(c1) ∧ in64(c2) ∧ in64(c3) ∧ in64(c4)) ∧((
a = 0 ∧ c1 = 232 − 1

)
∨(

a ≥ 1 ∧ ∃x.(×(a, c1, x) ∧ 232 − 1− a < x ≤ 232 − 1)
)
)
∧

∃z. (×(c3, c4, z) ∧ ubmod64 (z, c2)) ∧ a = c3 ∧ b = c4 ∧ b ≤ c1
)

→ c2 ≤ 232 − 1

B. Preprocessing and Simplification

An encoded formula φcore tends to contain a lot of re-
dundancy, in particular nested or unnecessary occurrences of
the bmodb

a predicates. As an important component of our
calculus, and in line with the approach in other bit-vector
solvers, we therefore apply simplification rules both during
preprocessing and during the solving phase (“inprocessing”).
The most important simplification rules are shown in Fig. 4.
Our implementation in addition applies rules for Boolean and
Presburger connectives.

The notation Π : φ _ φ′ expresses that formula φ can
be rewritten to φ′, given the set Π of formulas as context.
The structural rules in the upper half of Fig. 4 define how
formulas are traversed, and how the context Π is extended
to Π,Lit ′ when encountering further literals. We apply the
structural rules modulo associativity and commutativity of
∧,∨, and prioritise LIT-∧-RW and LIT-∨-RW over the other
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Π : φ _ φ′ Π : ψ _ ψ′

Π : φ ◦ ψ _ φ′ ◦ ψ′ ◦-RW

Π : Lit _ Lit ′ Π,Lit ′ : φ _ φ′

Π : Lit ∧ φ _ Lit ′ ∧ φ′ LIT-∧-RW

Π : Lit _ Lit ′ Π,¬Lit ′ : φ _ φ′

Π : Lit ∨ φ _ Lit ′ ∨ φ′ LIT-∨-RW

Π : φ _ φ′

Π : ¬φ _ ¬φ′ ¬-RW
Π : φ _ φ′

Π : Qx.φ _ Qx.φ′
Q-RW

⌊
lbound(Π,s)−a

b−a

⌋
= k =

⌊
ubound(Π,s)−a

b−a

⌋

Π : bmodb
a (s, r) _ s = r + k · (b− a)

BOUND-RW

s+ (b− a) · t ≺ s
Π : bmodb

a (s, r) _ bmodb
a (s+ (b− a) · t, r)

COEFF-RW

bmodb′
a′ (s

′, r′) ∈ Π, (b− a) | k · (b′ − a′),
s+ k · (s′ − r′) ≺ s

Π : bmodb
a (s, r) _ bmodb

a (s+ k · (s′ − r′), r)
BMOD-RW

Fig. 4. Simplification rules for bit-vector formulas. In ◦-RW, φ and ψ are
not literals, and ◦ ∈ {∧,∨}. In LIT-∧-RW and LIT-∨-RW, the formula Lit is
a literal. In Q-RW, x must not occur in Π, and Q ∈ {∀, ∃}. In COEFF-RW,
all constants or variables in t also occur in s.

rules. Simplification is iterated until a fixed-point is reached
and no further rewriting is possible. The connection between
rewriting rules and the sequent calculus is established by the
following rules:

Γ, φ′ ` ∆

Γ, φ ` ∆
RW-LEFT

Γ ` φ′,∆
Γ ` φ,∆

RW-RIGHT

if Γ ∪ {¬ψ | ψ ∈ ∆} : φ _ φ′

The lower half of Fig. 4 shows three of the bit-vector-
specific rules. Rule BOUND-RW defines elimination of bmodb

a -
predicates that do not require any case splits; the definition of
the rule assumes functions lbound(Π, s) and ubound(Π, s)
that derive lower and upper bounds of a term s, respec-
tively, given the current context Π. The two functions can
be implemented by collecting inequalities (and possibly type
information available for predicates) in Π to obtain an over-
approximation of the range of s.

Rule COEFF-RW reduces coefficients in bmodb
a (s, r) by

adding a multiple of the modulus b−a to s. The rule assumes
a well-founded order ≺ on terms to prevent cycles during
simplification. One way to define such an order is to choose a
total well-founded order ≺ on the union C∪X of variables and
constants, extend ≺ to expressions α ·x by sorting coefficients
as 0 ≺ 1 ≺ −1 ≺ 2 ≺ · · · , and finally extend ≺ to arbitrary
terms α1t1 + · · ·+ αntn as a multiset order [19].

The same order ≺ is used in BMOD-RW, defining how
bmodb

a (s, r) can be rewritten in the context of a second
literal bmodb′

a′ (s
′, r′). The rule is useful to optimise the transla-

tion of nested bit-vector operations. Assuming bmodb′
a′ (s

′, r′),

∗....
. . . , a ≥ 1, e < 232, b ≤ c1, d ≥ 232, e− d− c1 + b ≥ 0 `
. . . ,×(a, b, d),×(a, c1, e), a ≥ 1, e < 232, b ≤ c1 , d ≥ 232 ` ×

-C
R

O
S

S

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, d = c2 `
(b)

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, ubmod64 (d, c2) `
RW-LEFT

. . . , in32(a), in32(b),×(a, b, d), ubmod64 (d, c2) `
×-ICP

` φcore
(a)

Fig. 5. Proof tree for Example 5, with the sequences (a) and (b) of rule
applications not shown in detail.

the value of s′ − r′ is known to be a multiple of b′ − a′, and
therefore k · (s′ − r′) is a multiple of b − a provided that
b− a divides k · (b′ − a′). This implies that the truth value of
bmodb

a (s, r) is not affected by adding k · (s′ − r′) to s.
Our implementation uses various further simplification

rules, for instance to eliminate × or bmodb
a whose result is

never used; we skip those for lack of space.

Example 4: The expression bvadd32(bvadd32(a, b), c) cor-
responds to ubmod32 (a+ b, r1) ∧ ubmod32 (r1 + c, r2) in the
core language. Using BMOD-RW, the formula can be rewritten
to ubmod32 (a+ b, r1)∧ubmod32 (a+ b+ c, r2), provided that
a+ b+ c ≺ r1 + c.

Example 5: We continue Ex. 3 and show that φcore is
valid, focusing on the a ≥ 1 case of bvudiv32. The proof
(Fig. 5) consists of three core steps: 1) using ×-ICP, from the
constraints in32(a), in32(b), ×(a, b, d) the inequalities 0 ≤ d
and d ≤ 264 − 233 + 1 can be derived; 2) therefore, using
RW-LEFT and BOUND-RW, the literal ubmod64 (d, c2) can be
rewritten to d = c2, capturing the fact that 64-bit multiplication
cannot overflow for unsigned 32-bit operands; 3) using ×-
CROSS, from the inequalities a ≥ 1 and b ≤ c1 and the
products ×(a, b, d), ×(a, c1, e) we can derive e−d−c1+b ≥ 0.
The proof branch can then be closed using standard arithmetic
reasoning. The implementation of our procedure can easily
find the outlined proof automatically.

C. Splitting Rules for bmodb
a

In general, formulas will of course also contain occurrences
of bmodb

a that cannot be eliminated just by simplification. We
introduce two calculus rules for reasoning about such general
literals bmodb

a (s, r). The first rule makes the assumption that
lower and upper bounds of s are available, and are reasonably
tight, so that an explicit case analysis can be carried out;
the rule generalises BOUND-RW to the situation in which the
factors l, u do not coincide:
{

Γ, a ≤ r < b, s = r + i · (b− a) ` ∆
}u
i=l

Γ, bmodb
a (s, r) ` ∆

BMOD-SPLIT

assuming
⌊ lbound(Π,s)−a

b−a
⌋

= l and
⌊ubound(Π,s)−a

b−a
⌋

= u with
Π = Γ ∪ {¬ψ | ψ ∈ ∆}.

If the bounds l, u are too far apart, the number of cases
created by BMOD-SPLIT would become unmanageable, and it
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TABLE I
COMPARISON OF ELDARICA CONFIGURATIONS AND CPACHECKER. FOR EACH FAMILY, THE TABLE SHOWS THE NUMBER OF SAFE/UNSAFE RESULTS,

THE AVERAGE TIME, THE REQUIRED NUMBER OF CEGAR ITERATIONS, AND THE AVERAGE SIZE OF COMPUTED INTERPOLANTS FOR ELDARICA.

Categories Total ELDARICA math ELDARICA ilp32 CPACHECKER -32
Solved Time Iter. P. Size Solved Time Iter. P. Size Solved Time Iter.

All 551 293 21.0 11.1 1.0 217 28.0 13.6 1.4 180 30.6 28.5
101 73.4 31.8 1.0 117 49.7 21.7 1.2 168 48.6 3.9

HOLA 46 44 11.4 8.9 1.1 21 11.0 5.8 2.0 12 84.1 87.4
0 4 6.0 0.0 1.3 4 11.4 0.0

llreve 21 16 13.1 16.1 1.1 8 17.4 27.3 1.6 7 26.5 75.7
5 7.4 7.6 1.1 4 8.5 5.8 1.1 5 37.3 7.0

VeriMAP 155 132 5.8 2.3 1.0 100 5.9 3.6 1.1 87 12.2 18.5
21 8.4 4.4 1.0 41 11.6 2.4 1.5 33 24.8 1.3

SVCOMP 329 101 46.1 22.9 1.0 88 58.1 25.7 1.3 74 44.0 26.3
75 96.0 41.1 1.0 68 77.7 35.5 1.1 126 56.5 4.5

is better to choose a direct encoding of the remainder operation
in Presburger arithmetic:

Γ, a ≤ r < b, s = r + (b− a) · c ` ∆

Γ, bmodb
a (s, r) ` ∆

BMOD-CONST

where c is assumed to be a fresh constant. Rule BMOD-CONST
corresponds to the encoding chosen in [15].

In practice, it turns out to be advantageous to prioritise
rule BMOD-SPLIT over BMOD-CONST, as long as the number
of cases does not become too big. This is because each
of the premises of BMOD-SPLIT tends to be significantly
simpler to solve (and interpolate) than the conclusion; in
addition, splitting one bmodb

a literal often allows subsequent
simplifications that eliminate other bmodb

a occurrences.

Example 6: We consider one of the examples from [15], the
interpolation problem A ∧B defined by

A = ¬bvule8(bvadd8(y4, 1), y3) ∧ y2 = bvadd8(y4, 1)

B = bvule8(bvadd8(y2, 1), y3) ∧ y7 = 3 ∧ y7 = bvadd8(y2, 1)

where all variables range over unsigned 8-bit bit-vectors. An
eager encoding into LIA would typically add variables to han-
dle wrap-around semantics, e.g., mapping y′4 = bvadd8(y4, 1)
to y′4 = y4 + b1 − 28σ1 ∧ 0 ≤ y′4 < 28 ∧ 0 ≤ σ1 ≤ 1.
Additional variables tend to be hard for interpolation, and
the LIA interpolant presented in [15] is the formula ILIA =
−255 ≤ y2 − y3 + 256b−1 y2

256c; the formula can be mapped
back to a pure bit-vector formula if needed.

We outline how our calculus proves the unsatisfiability of
A∧B. Translation of the formulas to the core language gives:

Acore =
ψA ∧ ubmodw (y4 + 1, c1) ∧
c1 > y3 ∧ y2 = c1

Bcore =
ψB ∧ ubmodw (y2 + 1, c2) ∧
c2 ≤ y3 ∧ y7 = 3 ∧ y7 = c2

where ψA = in8(y2)∧ in8(y3)∧ in8(y4)∧ in8(c1) and ψB =
in8(y2) ∧ in8(y3) ∧ in8(y7) ∧ in8(c2) are the domains. The
main reasoning step is application of the rule BMOD-SPLIT to

ubmodw (y2 + 1, c2), using the bounds lbound(Π, y2 + 1) = 4
and ubound(Π, y2 + 1) = 256 that follow from Acore, Bcore:

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 `

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 + 256 `
. . . , ubmodw (y2 + 1, c2) ` BMOD-SPLIT

Due to y7 = 3 ∧ y7 = c2, the cases reduce to y2 = 2 and
y2 = 258, and immediately contradict Acore, Bcore.

D. Quantifier Elimination and Craig Interpolation

Since the bit-vector rules in this section are all equivalence
transformations, QE for bit-vectors can be done exactly as
described in Section III-B. As the ranges of all symbols
are now bounded, it is guaranteed that any formula will
eventually be reduced to Presburger arithmetic, so that we
obtain complete QE for (arithmetic) bit-vector constraints.

Similarly, the interpolation approach from Section III-C
carries over to bit-vectors, with theorem axioms being gen-
erated for each of the rules defined in this section. Since the
translation of bit-vector formulas to the core language happens
upfront, also interpolants are guaranteed to be in the core
language, and can be mapped back to bit-vector formulas
if necessary (e.g., as in [15]). Interpolants might contain
quantifiers, in which case QE can be applied (as described
in the first paragraph), so that we altogether obtain a complete
procedure for quantifier-free interpolation of arithmetic bit-
vector formulas. For interpolation problems from software
verification, it happens rarely, however, that QE is needed.

In our implementation, we restrict the use of the sim-
plification rules RW-LEFT and RW-RIGHT when computing
proofs for the purpose of interpolation. Unrestricted use could
quickly mix up the vocabularies of the individual partitions
in an interpolation problem A ∧ B, and thus increase the
likelihood of quantifiers in interpolants. Instead we simplify
A,B separately upfront using rules in Fig. 4, and apply RW-
LEFT, RW-RIGHT only when the modified formula φ is a literal.

Example 7: We continue Example 6, and show how our
calculus finds the simpler interpolant I ′LIA = y3 < y2 for
the interpolation problem A ∧B. The core step is to turn the

57

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



TABLE II
PERFORMANCE ON SMT-LIB BV AND QF BV PROBLEMS. FOR EACH

FAMILY, THE FIRST/SECOND ROW GIVES SAT/UNSAT PROBLEMS.

Category PRINCESS Z3 CVC4
Total Time Total Time Total Time

Automizer 16 158.2 16 0.1 14 0.1
127 215.1 137 0.0 137 0.3

keymaera 5 268.6 108 6.9 34 1.0
3771 2.5 3923 0.3 3921 0.1

psyco 2 2.5 132 0.1 132 1.5
3 141.6 62 0.2 62 0.5

tptp 15 2.3 17 0.0 17 0.0
54 1.7 56 0.0 56 0.0

RND 2 40.8 40 6.9 25 40.7
5 188.5 28 6.7 22 13.2

RNDPRE 2 7.4 20 19.0 22 26.9
14 53.9 36 14.1 26 29.3

model 16 1.9 144 0.0 73 10.8
0 0 0

Heizmann 13 49.8 15 37.8 18 18.1
27 155.5 17 50.7 108 8.3

ranking 0 34 4.4 32 1.5
5 12.0 19 19.5 13 0.4

fixpoint 25 94.9 36 0.5 54 14.2
26 85.0 73 0.6 75 2.3

QFBV 334 2.3 2701 11.6 2632 17.4
164 16.4 1967 29.7 1919 19.3

application of BMOD-SPLIT into an explicit axiom; after slight
simplifications, this axiom is:

Ax =

(
ubmodw (y2 + 1, c2) ∧ 3 ≤ y2 < 256 ∧ in8(c2)

)
→(

y2 + 1 = c2 ∨ y2 + 1 = c2 + 256
)

The axiom mentions all assumptions made by the rule, in-
cluding the bounds 3 ≤ y2 < 256 that determine the
number of resulting cases (or, alternatively, the formulas
c1 > y3, y2 = c1, c2 ≤ y3, y7 = 3, y7 = c2 from which the
bounds derive). The axiom also includes domain constraints
like in8(c2) for occurring symbols, which later ensures that
possible quantifiers in interpolants range over bounded do-
mains. The quantified axiom is QAx = ∀y2, c2.Ax , and can
be used to construct an interpolating proof:

∗....
bc1 > y3cL, by2 = c1cL, bc2 ≤ y3cR,
by7 = 3cR, by7 = c2cR, by2 + 1 = c2cR ` ∅ I y3 < y2

P
· · · P · · ·

bAcorecL, bBcorecR, bAxcR ` ∅ I y3 < y2

∨-LEFTR

bAcorecL, bBcorecR, bQAxcR ` ∅ I y3 < y2
∀-LEFTR

We only show one of the cases, P , resulting from splitting the
axiom bAxcR using the rules from Fig. 2. The final interpolant
y3 < y2 records the information needed from Acore to derive
a contradiction in the presence of y2 + 1 = c2; the branch is
closed using standard arithmetic reasoning [10].

V. EXPERIMENTS

We have implemented the procedures in the PRINCESS
theorem prover. PRINCESS also partly supports operators like
shift and bit-wise and/or. All experiments were done using
PRINCESS version 2018-05-25 on an AMD Opteron 2220 SE
machine, running 64-bit Linux and Java 1.8. Runtime was
limited to 10min wall clock time, and heap space 2GB.

a) SAT Checking on BV and QF BV Problems: Results
on SMT-LIB benchmarks are given in Table II. We compare
our implementation with Z3 4.8.0 and CVC4 1.6. Our pro-
cedure can solve a similar number of problems as Z3 and
CVC4 on many of the BV families. Although our procedure
is not specifically designed for QF BV, we include overall
numbers for completeness (excluding the families ASP and
Sage). However, the overwhelming majority of the QF BV
benchmarks contains bit-wise operations not fully supported
by PRINCESS yet. QF BV families on which our procedure
does well include Example 3 and the PSPACE family.

b) Verification of C Programs: Since it is difficult to
compare interpolation procedures outside of an application,
we present results of running the ELDARICA version 2.0-
alpha3 model checker5 on a benchmark set of 551 C programs,
using the implementation of our calculus in PRINCESS as
interpolation procedure (Table I). The benchmarks are the pro-
grams used in [31] for evaluating different predicate generation
strategies. The programs use only arithmetic operations, no
arrays or heap data structures. For this paper, we interpret
the programs as operating either on the mathematical integers
(math), or on signed 32-bit bit-vectors (ilp32) with wrap-
around semantics. Both configurations were running a parallel
portfolio of two interpolation strategies (ELDARICA option
-abstractPO): straightforward interpolation to compute
predicates, and the interpolation abstraction technique [32].
The experiments show that our interpolation approach for bit-
vectors can solve almost as many programs as the existing
interpolation methods for mathematical integers, with a sim-
ilar number of CEGAR iterations, and with interpolants of
comparable size. The scatter plot in Fig. 6 indeed shows very
similar runtimes for the two configurations.

As comparison, we also ran CPACHECKER 1.7 [33] on the
benchmarks, using options -predicateAnalysis -32
and MATHSAT as solver; MATHSAT uses the interpolation
method from [15]. As can be seen in Table I, our method is
competitive with CPACHECKER on all considered families,
in particular for the safe programs. We remark, however,
that we are comparing different verification systems here.
Although both ELDARICA and CPACHECKER apply CEGAR
and interpolation, there are many factors affecting the results.

VI. CONCLUSIONS

We have presented a new calculus for Craig interpolation
and quantifier elimination in bit-vector arithmetic. While the
experimental results in model checking are already promising,
we believe that there is still a lot of room for extension and

5https://github.com/uuverifiers/eldarica
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Fig. 6. Scatter plot comparing runtime of math and ilp32 semantics on the
C benchmarks.

improvement of the approach. This includes more powerful
propagation and simplification rules, and more sophisticated
strategies to apply the splitting rules ×-SPLIT and BMOD-
SPLIT. Future work also includes the extension of our calculus
to bit-wise operations like bvand, bvor, or bvxor, for which
we plan to add further uninterpreted predicates to our setting
to preserve laziness as far as possible.
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Abstract—Chord is a protocol that provides a scalable dis-
tributed hash table over an underlying peer-to-peer network.
Since it combines data structures, asynchronous communications,
concurrency, and fault tolerance, it features rich structural and
temporal properties that make it an interesting target for formal
specification and verification. Previous work has mainly focused
on automatic proofs of safety properties or manual proofs of
the full correctness of the protocol (a liveness property). In this
paper, we report on analyzing automatically the correctness of
Chord with the Electrum language (developed in former work)
on small instance of networks. In particular, we were able to
find various corner cases in previous work and showed that the
protocol was not correct as described there. We fixed all these
issues and provided a version of protocol for which we were not
able to find any counterexample using our method.

Index Terms—Chord protocol, distributed systems, formal
specification and verification, Electrum

I. INTRODUCTION

Peer-to-peer systems are distributed systems without hi-
erarchical organization or centralized control. They are an
alternative to the traditional client-server model and enjoy
interesting properties in terms of scalability, robustness and
cost. Chord [11]–[33] is a one of the most popular peer-to-
peer systems. It is a protocol and algorithm for a peer-to-peer
distributed hash table (DHT). A DHT stores key-value pairs by
assigning keys to different nodes (basically computers) in the
network. Chord addresses the efficient and robust localization
of data in such a network. When Chord was initially presented,
three main qualities were highlighted: its simplicity, its prov-
able performance and its provable correctness. Although the
first two claims are true, proving the Chord correctness turns
out to be a hard task, as showed by numerous works by P.
Zave [44]–[88].

In Chord, each node has an identifier and can reach other
nodes using pointers to other identifiers. The nodes and their
pointers form a topology which is essential to ensure the
correct localization of data in the network. Because of the
fact autonomous nodes may join or leave the network (or fail)
at any time, the topology is always evolving. A key aspect of
the Chord protocol consists in the definition of maintenance
operations that are in charge of repairing the network topology
so that the data stored in any node keeps being reachable from
any other node, despite failures, joins and departures.

Thus, the correctness of Chord deals with the network
topology. In fact, the nodes and their successor pointers have
to form a ring, so that each node is accessible from any
other node. Since nodes can join and leave the network, the
ring topology cannot always be ensured. That is why the
the correctness property of Chord is expressed as follows: if,
from a certain instant, there is no subsequent join, departure
or failure, then the network is ensured to recover a ring
topology eventually, and keep it. So, the correctness of Chord
is not only about the structure of the system, but also about
its temporal evolution: it is in fact a liveness property. This
twofold nature is one of the reasons for the hardness to prove
Chord correctness.

We recently developed Electrum [99], a specification lan-
guage based on First-Order Linear Temporal Logic, with
which both structural and temporal properties can easily be
defined and checked. The Electrum language is inspired by
Alloy [1010] for its structural concepts and by Linear Temporal
Logic [1111] for its temporal concepts.

In this article, we propose a formal description of the Chord
protocol in Electrum and focus on proving its correctness. We
show the following benefits of our approach:

• the Electrum ability to deal with structural aspects makes
the specification of the network topology straightforward;

• the Electrum ability to deal with temporal aspects fits with
the specification of the network evolution (throughout
the execution of the maintenance operations) and makes
the specification of the correctness property, which is a
liveness property, direct;

• the automatic verification of the full correctness property
is performed for the first time (only for a limited number
of nodes though)

• thanks to the quick feedback to the user, we have been
able to the detect several shortcomings and corner cases
in the previous formalization of the protocol, and to
clearly identify temporal hypotheses on the ordering of
the maintenance operations (fairness properties) that are
necessary to ensure the correctness.

The rest of this paper is structured as follows. In Sect. IIII
we briefly present the Chord protocol. In sect. IIIIII, we give
an overview of Electrum, and formalize Chord in sect. IVIV.
In Sect. VV, we evaluate the formal verification of our Chord
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model. In Sect. VIVI, we highlight important aspects of our study
and compare to related work. We then conclude in Sect. VIIVII.

II. THE CHORD PROTOCOL

Chord is a distributed lookup protocol which addresses
an essential issue of peer-to-peer applications: the efficient
localization of the network node that stores the desired data.
An important quality that probably explains the popularity
of Chord is its simplicity. Indeed, Chord makes no use of
synchronization or timing constraints on distributed nodes, and
each atomic operation involves a single node. As claimed by
the authors, this simplicity makes Chord easy to implement
and extend. Other interesting features of Chord are its provable
performance and its scalability. However, contrary to another
claim, proving the correctness of Chord. i.e., the reachability
of the data, is not an easy task.

A. The Network Structure

In a Chord network, each node has an identifier (the m-bit
hash of its IP address). Pairs of keys and associated data are
stored in nodes. Every node has a successor list of pointers
to other nodes. We refer to the first element of this list as the
successor. The goal of having a list of successors instead of a
single one is to be robust to the failures: if a node leaves the
network, its predecessor still has successors in the network.
Besides, each node also has a pointer to its predecessor. This
is useful in the execution of the Chord maintenance operations.

When a network is structured as a ring according to the
relation induced by the successor pointers and when the order
of identifiers complies with the order of the successor pointers,
then each node is accessible from any other node, i.e. any data
is accessible from any node. We say that such a network is in
an ideal state.

Since nodes can join and leave the network at any time, the
ring structure cannot be continuously ensured. For instance,
nodes joining a ring create an appendage. The maintenance
operations aim to recover a ring structure eventually, despite
the fact nodes join and leave the network.

B. Network Properties

The authors of Chord have provided explicit properties of
the network that ensure correct data delivery [22]. They define
in particular the ideal state of a network, which we have
introduced informally in the previous section, and a temporary
imperfect state, which we call a valid state following [44].
As our study only deals with the correctness of the protocol,
we do not present the quantitative and probabilistic properties
mentioned in the original Chord articles.

Let us first present some notations and preliminary def-
initions. In the following, we will denote the successor
(resp. predecessor) of a node n by n.SUCCESSOR (resp.
n.PREDECESSOR). A Chord network is locally consistent if,
for any node n, we have (n.SUCCESSOR).PREDECESSOR = n.
A Chord network is globally consistent if, for each node
n1, there is no node n2 in the same ring as n1 such that

N14

N38

N51

N21

K38

N8

K24

K54

K10

K60 

N32

N1

N42

N56

K30

Fig. 1. A Chord network in an ideal state (successor pointers are shown as
a bold arrows, predecessor pointers as dashed arrows and key/node mappings
as dotted arrows).

n1 < n2 < n1.SUCCESSOR. A Chord network is loopy if it is
locally consistent but globally inconsistent.

Definition 1: A Chord network is in an ideal state if:
• ring: the successor relation forms a single ring of nodes

(every node is in the ring);
• non-loopiness: the ring is locally and globally consistent;
• successor list validity: the successor list (of size k) of

each node n contains the first k nodes that follow n in
the ring.

Fig. 1Fig. 1 shows a Chord network in an ideal state, with nine
nodes and storing six key-data pairs (we only represent the
keys). Each key is stored in the node with the least identifier
among the nodes having a greater identifier than the key. For
example, key K10 is stored in node N14.

As explained above, joins and fails of nodes force the
network in a non-ideal state. But the maintenance operations
of Chord aim at recovering from such non-ideal states.

In order to characterize these non-ideal states, we introduce
the notion of valid states (following [22] and [44]) which allow
some nodes not to be in the ring, but in appendages of the
ring. For a node n in the ring, there may be a tree of nodes
rooted at n, consisting of nodes that have recently joined the
network and are not yet in the ring. We refer to this tree as
n’s appendage and denote it An.

Definition 2: A Chord network is in a valid state if:
• connectivity: a subset of nodes form a ring following the

successor relation (there is only one such ring), the rest
of the nodes are part of appendages, which are connected
to the ring;

• non-loopiness:
– the ring is non-loopy;
– and for every node n′ in an appendage An, the path

of successors from n′ to n is increasing (in the sense
of the identifier order).

• successor list validity:
– if n is in the ring, then n.SUCCESSOR is the first

live ring node following n (according to the identifier
order);
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Fig. 2. A Chord network in a valid state.

– if n′ is in appendage An, then n is the first live ring
node following n′ (according to the identifier order);

– if the successor list of n.SUCCESSOR skips over a live
node n′, then n′ is not in n successor list.

Fig. 2Fig. 2 shows a Chord network in a validstate.
From these two definitions, the correctness of the Chord

protocol can be expressed as follows.
Correctness of the Chord protocol: Starting from a network
that is initially valid, in any execution state, if there are no
subsequent join or fail events, then the network will eventually
become ideal and remain ideal.

C. Chord Events

The operations of the Chord protocol consist of four events
(join, fail, stabilize and rectify) each of which changes
the state of at most one node. A join operation occurs when
a node joins the network. We then refer to this node as a
member, or a live node. When a node joins the network, it
contacts a network member and takes the successor list of
this member as its own successor list. It also considers this
member as its predecessor. Diagrams (a) and (b) in Fig. 3Fig. 3
show successor and predecessor pointers in a network where
node 6 joins by contacting node 8.

19

6

1

88

19

1

19

1 6

8

1 6

19

8

19

6

8

1

8 rectifes
1 stabilizes

6 joins

(b) (c) (d) (e)

6 stabilizes     and 6 rectifes

(a)

Fig. 3. Chord Events: predecessor pointers are shown as dashed arrows and
successor pointers as solid arrows

A join event may break the ideal property of the network.
In order to recover, every node performs a stabilize op-

eration periodically. When a member stabilizes, it contacts
its successor and asks it about its predecessor identifier. If
the predecessor identifier is a better candidate for being its
successor than its current successor (according to the identifier
order) then it takes this predecessor as its new successor. In
diagram (c) of Fig. 3Fig. 3, node 6 stabilizes and takes node 8
as its new successor. The contact a node establishes with its
successor during stabilization is also an opportunity to update
its full successor list with information from its successor.

After stabilization, the stabilized node notifies its succes-
sor about its identity. The notified member then executes
a rectify operation. A notified member must adopt the
notifying member as its new predecessor if the notifying
member is closer to itself than its current predecessor, or if
its current predecessor is dead (see below). Diagram (d) in
Fig. 3Fig. 3 shows a rectify operation made by node 8 after the
notification by node 6.

Finally, a node can leave the network in case of a fail
operation. Such a node is no longer a member and is referred
to as a dead node. It obviously does not inform any other
node about its departure and still appears in the successor list
of other nodes.

a) Operating assumptions: Chord relies on an important
assumption, which states that each member always has at least
one live successor. In practice, this depends on the size of
the successor list, and on the ratio between the occurrence
of maintenance operations and the occurrence of failures. For
instance, let us suppose that a given live node n has a successor
list of size 3, and that all three successors of n fail before any
stabilisation and rectification occur, then the network is no
longer in a valid state (the ring structure is broken) and the
protocol is not able to recover from such a situation.

Another assumption is the perfect communication between a
node and its successor, in the sense that each node necessarily
answers a query in bounded time. This allows for perfect
detection of failures (a successor that does not answer a query
before a deadline is considered dead).

III. ELECTRUM IN A NUTSHELL

Electrum [99] is a dynamic extension of Alloy [1010] based
upon Linear Temporal Logic (LTL). It preserves the flexibility
of Alloy while easing the specification of behavioral properties
and enabling verification on traces with a bounded or an
unbounded number of states.

In Electrum, as in classic class-based modelling, structure
is introduced through the declaration of signatures, which
denote sets of indivisible, immutable and uninterpreted atoms;
and fields (between signatures) that denote flat n-ary relations
between sets. Signatures and fields may be constrained by
simple multiplicity constraints.

Unlike in Alloy however, fields and signatures may either
be declared as static (by default) or variable: the former hold
the same valuation throughout a given time trace, while the
latter are mutable and hence may see their valuation change
at every step of a trace.
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If needed, more constraints may be imposed on a specifica-
tion as facts, which are just axioms (i.e. statements that every
instance of the specification conforms to).

Constraints (formulas) are expressed in a logic comprising
both connectives (and quantifiers) of First-Order Logic (FOL)
and LTL, with relational expressions as a term language.
The latter are built by composing signatures and fields with
common set-theoretic operators and relational operators such
as the join � of two relations or the transitive closure ^ of a
relation. Moreover, every relational expression may be primed,
referring thus to its valuation in the succeeding state. For
ease of specification, parameterized, named expressions and
constraints may also be introduced as functions and (resp.)
predicates.

Analysis instructions consist of run and check commands
restricted by scopes that determine the maximum number
of atoms that will be considered for every signature. A run

instructs the Analyzer to search for an instance (a model, in
the logical sense) satisfying a given predicate; while a check
instructs the Analyzer to prove a given assertion (introduced
with the assert keyword) valid in the given scope.

Electrum Analyzer11, an extension of Alloy Analyzer, offers
two alternative model-checking techniques: the first imple-
ments bounded model-checking (BMC) [1212], [1313] over Alloy
itself, thus bounding the number of states in a trace (this
is expressed with a bound over a fake Time signature). The
second one relies on the compilation to the NuSMV [1414] and
nuXmv [1515] model-checkers, relying on unbounded model-
checking (UMC) algorithms.

IV. FORMALIZATION OF THE PROTOCOL

We now present the main aspects of the formalization of the
Chord protocol22, taking inspiration in both the presentation of
Chord in [22], referred to as PODC in the rest of this section,
and in P. Zave’s recent work [44].

A. Data Structures

The main concept in our model is that of a node, which
corresponds to a Chord node identifier (we conflate Chord
nodes, their IP address, and their identifier). As explained
before, node (identifiers) are ordered totally.

Recall that a node also maintain a list of successors: its
purpose is to recover from failures, and its length defines a
threshold for fault tolerance for Chord. To ensure that each
node always remains connected to the network after a failure,
the minimum length of this list is 2. For the sake of readability,
we only show a model with successor list of size 2. Actually,
we “unfold” this list and represent it as the datum of two fields
fst (“first”) and snd (“second”). We made this choice because
using lists here would make the use of explicit quantification
over all possible lists necessary, a fact that is easily overlooked
and that, more importantly, is costly in terms of space.

Finally, to ensure maintenance operations, each node also
holds a pointer prdc to its predecessor in the network. These

1Cf. https://haslab.github.io/Electrumhttps://haslab.github.io/Electrum.
2The full model is available at https://doi.org/10.5281/zenodo.1322052https://doi.org/10.5281/zenodo.1322052.

three fields may mutate, depending on various events hap-
pening in the network, hence they are marked as variable.
Technically, each of this field denotes a partial function from
nodes to nodes, which is specified using the lone multiplicity
(meaning “0 or 1”):

open util/ordering[Node] // total ordering on nodes
sig Node {
var fst, snd, prdc: lone Node,
var todo: Status → Node }

The todo field, also present in the declaration, represents
pending operations that the node will have to perform over
another node (hence this field denotes a ternary relation):
its use will be detailed later. There are two kinds of such
operations, described by a so-called status (its formalization
is a way of saying that it is an enumeration):

abstract sig Status {}
one sig Stabilizing, Rectifying extends Status {}

A node is a member of the Chord network if its successor
pointers effectively point to some nodes (i.e. the pointers are
not null). This is neatly expressed by introducing a variable
subset signature that takes its elements among nodes but the
valuation of which may change at every instant33:

var sig members in Node {}
fact membersDef {
always members = {n: Node | some n � fst && some n � snd}}

Now, at every instant, the successor of a node is the first
living node among its successors. We specify this as a partial
function succ which states that the successor of a node is its
fst field if this field is a member, and its snd field otherwise.

fun succ: Node → lone Node {
{ m1, m2: members | m1 � fst in members ⇒ m2 = m1 � fst

else m2 = m1 � snd } }

Using this definition, we can define ring members as mem-
bers belonging to the cycle maintained by Chord. This is once
again expressed as a variable subset signature, the elements
of which are those that can all reach themselves through the
transitive closure (^) of succ:

var sig ring in members {}
fact ringDef {
always ring = { m : members | m in m � ^succ } }

Finally, the set of appendages can simply be defined as
those members that are not ring members:

fun appendages: set Node { members − ring }

B. Network Properties

As nodes are arranged into a cyclic network, their ordering
must take into account the fact that the successor of the largest
node identifier is the smallest one. Besides, we will often need
to compare nodes by checking whether one node is between
two others. This is reflected by the following definitions:

3always is the classic G (or �) connective of LTL; some applied to an
expression means “not null”; and � is the relational join akin, here, to function
application
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fun nextNode: Node → Node {
{ n, m: Node | no next[n]

implies m = first else m = next[n] } }
pred between [n1, nb, n2: Node] { // ’lt’ is ’<’
lt[n1, n2] implies (lt[n1, nb] and lt[nb, n2])
else (lt[n1, nb] or lt[nb, n2]) }

In Sect. IISect. II, we defined the key properties of Chord networks,
called Valid and Ideal. The former is the conjunction of five
properties: (1) there is at least one ring; (2) there is at most
one ring; (3) any appendage node can reach a ring member by
following successor pointers; (4) non-loopiness: there cannot
be a ring member between a ring member and its successor;
(5) successor list validity: the first successor of any member is
between the member itself and the member’s second successor.

pred valid { atLeastOneRing and atMostOneRing and
orderedRing and connectedAppendages and
orderedSuccessors }

pred atLeastOneRing { some ring }
pred atMostOneRing { all m1, m2: ring | m1 in m2 � ^succ }
pred connectedAppendages {
all m1: appendages | some m2: ring | m2 in m1 � ^succ }

pred orderedRing { // = non−loopy
all disj m1, m2, mb: ring |
// ’disj’ = ’all different’
m2 = m1 � succ implies not between[m1, mb, m2] }

pred orderedSuccessors { // successor list validity
all m: members | between[m, m � fst, m � snd] }

An ideal network is a valid one s.t. (1) every member is
in the ring (i.e. there are no appendages); (2) the fst and
prdc functions are mutual inverses (local consistency) (3) the
successor list of any member of the network contains the first
2 nodes that follow it in the network.

pred ideal {
valid and no appendages and fst = ∼prdc
// ’∼’ means ’transpose’
all m: members { m � snd + m � fst in members

m � snd = m � fst � fst } }

C. Chord Events

1) An Action Layer: To model Chord events, we rely on
an experimental action layer recently added to Electrum [1616]
that makes specification of transition systems much leaner.
Actions are introduced by the keyword act and may take
arguments. Their body is a conjunction of constraints referring
to the current instant or the one following it immediately. The
set of possible traces is automatically defined; notice that it
implements (as of writing this article) an interleaving model
of time: at every instant, exactly one action happens. Finally,
an action comes with a modifies clause that contains the
names of variable signatures and fields that the action may
modify: an implicit fact then states that all other ones remain
invariant under this action (this is usually called the action
frame condition).

2) Communication Model: Following [44], our operations
are atomic actions that may read and modify variables on at
most two nodes. Compared to an asynchronous model, this is
a shared-state abstraction that, in particular, hides the fact that

nodes communicate through queued messages. Notice finally
that the PODC paper states that communication is assumed to
be reliable.

3) Events: The join action modifies fst, snd and prdc
fields, and members and ring variable signatures. Under a join
action, the joining node new must not be a member already. In
PODC, the informal description of this event states that new
contacts any node of the network and then makes a query to
find a node m such that new is between m and its first successor.
In our model, we abstract this query, assuming there is an
oracle to determine this m. This abstraction does not affect the
correctness of the protocol. Indeed, seeking the best position
for the incoming node is an implementation and performance
detail. Then new gets its pointers fst and snd from m and takes
the latter as its predecessor44.

act join [new: Node]
modifies fst, snd, prdc, members, ring {
new not in members
some m: members {
between[m, new, m � fst] and fst’ = fst ++ new→m � fst
snd’ = snd ++ new→m � snd and prdc’ = prdc ++ new→m}}

Failures (or leavings) may happen too. When a member
fails, it should empty all its fields. Besides, we take as an
hypothesis that a node failure should not happen if it would
leave another member with absolutely no live successors,
meaning we forbid too many failures from happening on the
same node to the point where it would completely break
the network (this models the PODC failure assumptions: the
protocol is indeed not able to fix networks split in several
components that are mutually unreachable). Here, as there
are only two successors per node, this requirement is easily
modelled by stating that any node which points at the failing
node using the succ relation keeps at least one of its two
successors live when the failure happens.

Stabilization consists in fixing the first successor of a node.
As in [44], stabilization is split here into two actions, depending
on whether the concerned node has pending operations to do.
This is shown in its todo field. We remark that, contrary to
P. Zave, we may store several pending operations for a given
node (otherwise, the field could be overwritten, which leads
to a benign bug that we found during our analyses).

When there is not any pending operation for this node m
(stabilizeFromFst action), it may contact its first successor.
If the latter is dead (not a member), then m should update its
fst field with its snd successor. The latter must also, in that
case, be updated: to maintain the atomicity of the action, m
should not contact any other node to get a new value for its
snd. The solution here is just to take the immediate successor
in the ring ordering. If it corresponds to no node, it will be
fixed later by other events.

Otherwise, if the fst is a member, its value does not have to
change but we update the snd as a small optimization. Besides,

4In the formalization, e.g. in the fourth line, fst’ represents the value of
fst in the next instant; new→m � fst is the pairing of new and m � fst; and
++ stands for the relational override. All in all, the line says that fst’ is the
current fst except in new where fst’ will yield m � fst.
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we check if fst’s predecessor is not null and is better than
m’s first successor: if that is the case, the second form of
stabilization (stabilizeFromFstPrdc) should be programmed;
otherwise, m asks its first successor to program a future rec-
tification with itself, meaning the first successor must ensure
that m is its predecessor.

act stabilizeFromFst[m: Node]
modifies fst, snd, todo, members, ring {
m in members
no m � todo � Node // no pending operation
m � fst not in members implies {
todo’ = todo and fst’ = fst ++ m→m � snd
snd’ = snd ++ m→nextNode[m � snd] }

else {
fst’ = fst and snd’ = snd ++ m→m � fst � fst
(some m � fst � prdc and between[m, m � fst � prdc, m � fst])
implies todo’ = todo + m→Stabilizing→m � fst � prdc
else todo’ = todo + m � fst→Rectifying→m } }

The second form of stabilization (stabilizeFromFstPrdc)
may happen when a stabilization operation is pending: this
is the case when a better candidate has been found for m � fst
(during an stabilizeFromFst event). The first thing to do is to
check whether the candidate would indeed, still, make a better
fst. Besides, if the candidate is not even a member anymore,
the operation must be cancelled. Otherwise, the fst field must
be updated with the candidate (and the snd field is updated as
well, with the candidate’s fst field). Finally, this candidate is
also told to rectify its predecessor later with m itself.

act stabilizeFromFstPrdc [m, newFst: Node]
modifies fst, snd, todo, members, ring {
m in members and between[m, newFst, m � fst]
m→Stabilizing→newFst in todo
newFst not in members implies {
todo’ = todo − m→Stabilizing→newFst
fst’ = fst and snd’ = snd }

else {
fst’ = fst ++ m→newFst
snd’ = snd ++ m→ newFst � fst
todo’ = todo − (m→Stabilizing→newFst)

+ (newFst→Rectifying→m) } }

Finally, the rectify action aims at fixing a node m’s pre-
decessor: it may only happen if a rectification has been
programmed. There are then three possibilities: (1) if m’s
predecessor is null or if the new candidate is better, then the
predecessor should be updated to the candidate; (2) otherwise,
if the current predecessor is not a member, the update is done
too; (3) otherwise, m’s predecessor is left as is.

D. Traces

As explained at the beginning of this section, the shape of
traces is automatically set by the Electrum action layer. At any
instant, exactly one event happens.

A Chord network must run indefinitely. Nevertheless when
the network becomes ideal, if there are no more join and fail,
the network will deadlock. To avoid this concern, we also add
a skip action, which is a silent action that leaves everything
unchanged and does nothing.

act skip {} // does nothing, modifies nothing

Notice that we also impose that, in every trace, there are
always at least three live nodes: this is due to the fact that
the network should always have a size strictly greater than the
size of successor lists.

E. Initial State

Concerning the initial state, we specify that the ring is the
ideal state (and no node has pending operations and non-
member nodes do not have a predecessor).

fact init { no nonMembers � prdc and no todo and ideal }

Notice that it is stronger than the original claim made in the
PODC paper (proved wrong in [66]). [44] exhibits an invariant
stronger than validity. Although Electrum alleviates us from
expressing such an invariant, we still need to ensure that the
initial state satisfies it. Saying that the network starts in an
ideal state avoids formulating that property explicitly: it is in
our view not that strong an hypothesis as a Chord network
may start with a very small size.

F. Correctness

1) Basic Properties: Using the Electrum Analyzer, we
checked that the specification is consistent (i.e. it admits a
model, in the logical sense) and that all branches of all actions
are realizable.

2) Correctness Statement: The correctness property for the
Chord protocol is a liveness property. The translation from
the PODC paper is straightforward thanks to LTL: it states
that if there are, eventually, never any join or fail events, then,
eventually, the network will become ideal and remain so (recall
the inital state is set in Sect. IV-ESect. IV-E). This is expressed by an
Electrum assertion:

assert correctness {
(eventually always not (join or fail))
implies eventually always ideal }

3) Fairness: Checking this assertion with the Electrum
Analyzer yields a counterexample that manifests itself as the
endless repetition of the skip action in some non-ideal state.
This is to be expected as the correctness property is a liveness
property: any action that may cause starvation to the ones
meant to fix the network will be a problem. Classically, the
solution is to add fairness constraints on the said actions. Here
we use strong fairness constraints, saying for instance that if
the guard of rectify is infinitely often satisfied, then the effect
of rectify will be satisfied infinitely often:

pred rectifyEnabled[m, n: Node] {
m in members and m→Rectifying→n in todo }

fact fairness {
all n, m : Node |
(always eventually rectifyEnabled[n,m])
implies (always eventually rectify[n,m]) }

We added such constraints for all stabilization and rec-
tification actions. Doing so excludes the kind of starvation
described above. Actually, it corresponds to a requirement in
the PODC paper that says that nodes should perform these
actions “periodically”.
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4) Corner Cases: During our analysis of correctness, we
were able to find a few benign corner cases in P. Zave’s
model. They were all found in a matter of seconds, simply by
checking the correctness property (the ease of finding them
comes in our view from the fact that the use of the LTL
layer of Electrum helps circumvent the risk of overlooking
some verifications to be done). This led to make a few simple
fixes w.r.t. her model (e.g. using a todo field to gather several
pending operations instead of only one).

5) Liveness Bug: However, the correctness property is still
wrong: checking the assertion in the Electrum Analyzer yields
a trace with six time instants, the last one looping back in its
predecessor (we recall that traces are infinite and represented
as finite traces with a back loop from the last state to a former
one). We present in Fig. 4Fig. 4 these last two steps only. In the first
one, a stabilizeFromFst[Node$3] event is performed: Node$3
contacts it immediate successor (which is in the ring) and
learns from it that Node$0 may be a better first successor. Then
it programs a stabilizeFromFstPrdc action for itself and this
new candidate.

In the following instant, the said action is performed but, as
Node$0 happens not be a member, the stabilization operation
is cancelled. A rectification on Node$1 would be needed
here, for it to take Node$3 as its predecessor, but a thorough
analysis show that there is no way to trigger it by any of the
stabilization actions.

6) Fixed Model: We fix this by adding another rectifica-
tion action that is not triggered by other actions but done
“periodically” by the nodes themselves (i.e. we also add
a strong fairness constraint for this new action; note that
such an operation was actually present in the original Chord
papers). As nodes cannot guess who they should take as a new
predecessor, they should just set their predecessor pointer to
null if it points to a non member. The bet here is that, by
other operations, the said node will eventually find a correct
predecessor.

act rectifyNull[m: Node] modifies prdc, members, ring {
m in members
m � prdc not in members
implies prdc’ = prdc − m→m � prdc else prdc’ = prdc }

Checking the correctness assertion, once this has been
added, yields no counter-example anymore.

V. EVALUATION OF RESULTS

This section presents the evaluation of various properties as
well as that of the final correctness property with the Electrum
Analyzer. The verification is performed on a GNU/Linux-
based work station featuring an Intel Xeon E5-2699 providing
512 GB RAM (time-out was set to 5 h.).

Depending on the analyses to perform, we relied on the
bounded and unbounded model-checking techniques (BMC
and UMC) provided by the tool: the former relying on either
a translation to BMC over Minisat (performed by an Electrum
extension of Alloy’s Kodkod pivot solver) or to the BMC mode
of nuXmv (check_ltlspec_bmc_inc algorithm); and the latter
through the ultimate compilation to the nuXmv model checker

Fig. 4. Counterexample to correctness (loop part). Step 1 of the
loop: a stabilizeFromFst[Node$3] is done; step 2 of the loop: a
stabilizeFromFstPrdc[Node$3, Node$0], then loop back to step 1.

TABLE I
TIME (S.) FOR CORRECTNESS ANALYSES (BUGGY AND FIXED CASES).

Prop. Scope M 10 M 15 XB 10 XB 15 XU

buggy 4 5 5 9 9 36

fixed 4 69 1 316 21 260 558

fixed 5 1 060 t/o 549 t/o t/o
fixed 6 11 506 t/o 6 930 t/o t/o
fixed 7 t/o t/o t/o t/o t/o

running the check_ltlspec_klive procedure [1515]. As it is
usually far more efficient, we always favored using the BMC
technique when we were expecting to end up with an instance
or a counter-example to a given property.

Although we do not report in detail on all properties due
to lack of space, we first checked that our model is consistent
(i.e. it admits an instance) and that all action branches are
realizable. All these analyses ended positively in at most 10 s.
using the BMC mode of the Electrum Analyzer.

We present in Table ITable I the results for finding the liveness
bug of Sect. IV-F5Sect. IV-F5 and to check the correctness property for
the fixed model (time in seconds; “t/o” means “time-out”; M
is for BMC over Minisat, XB is for nuXmv in BMC mode,
and XU is for nuXmv in UMC mode; for bounded modes, we
considered bounds of 10 and 15 states).

As can be seen, correctness can be checked by the bounded
analyzer for networks with 4-6 nodes and a time bound of 10
(4 nodes for a time bound of 15), while the unbounded Elec-
trum analyzer yields a result for networks with 4 members only
(taking into consideration that a basic ring already contains at
least three nodes). This limitation in the size of the network
with nuXmv is compensated by the fact that verification is
exhaustive. For equal network sizes, the bounded version of
Electrum Analyzer is faster than the unbounded one, as can
be expected for valid properties. Finally, in bounded mode,
nuXmv is faster than the Electrum implementation of BMC
over Minisat, for the fixed model.
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VI. DISCUSSION

In this section, we would like to stress some important
aspects of this work.

First, we modelled the Chord protocol in a very straightfor-
ward way thanks to the ease of use of Electrum. Compared
with previous work, first-order relational logic, temporal logic
and the action setting (with automatic handling of frame con-
ditions and interleaving), combined with the push-button ap-
proach and visual feedback of the Electrum Analyzer, allowed
us to quickly implement and test various approaches. Our
model is inspired by important work of P. Zave, in particular
its last incarnation [44], in that it essentially implements the
same algorithm. But, we argue that our model is simpler, in
particular because we do not have to deal with the details of
state representation and because expressing complex temporal
formulas over infinite traces is immediate.

Compared to P. Zave’s analysis with SPIN [55], our mod-
elling is also more straightforward as the author had to resort
to various C programs to handle the graph notions present in
Chord as well as visualization.

Second, due to this very reliance on LTL, we did not have
to look for an inductive invariant to study the protocol. The
search for the said invariant has been very arduous [44]–[88],
but also illuminating: an invariant is not only a means of
verification but also a way to understand a protocol better and
to provide indications to developers. Notice also that Zave’s
invariant can actually be checked in Electrum exactly as in
Alloy, with performances in the same order of magnitude. For
these reasons, we think that Electrum may be used in early
analysis and provide some help into finding the said invariant.

Third, we were able to find some corner cases in the Alloy
model as well as the manual proof of [44] that were confirmed
by P. Zave. In particular, the claimed invariant is indeed one
but it is not strong enough to prove the protocol correctness.
Fortunately, these issues were rather easy to fix.

Fourth, it is sometimes claimed that liveness “in the ab-
stract” is not that important as what one really longs for is
bounded liveness, which is actually a safety property. Our
work confirms that straightforward temporal specification in
LTL and pure liveness analysis are useful to find various issues
(including a too weak invariant).

Finally, although limited to very small networks, our analy-
sis is, up to our knowledge, the first “push-button” analysis of
the actual correctness property of Chord, which is a liveness
property.

We have insisted in this paper on P. Zave’s work as this has
been an important one but also because it served as a basis to
lots of other works. However, the main recent work [1717] relies
on manual proofs in Coq and proves a safety property over
Raft. [1818] features an interesting mostly-automated approach
but also focuses on an invariant proof. More recent work by
the same authors [1919] addresses liveness properties (for other
protocols) but still with manual interaction.

In another line of work, [2020] relied on π-calculus and for a
bisimulation proof of the correctness of a very simple version
of Chord (without failures). The proof was purely manual.

Besides, other distributed system protocols have been for-
mally studied using “high-level” specification languages. For
instance, Pastry was analyzed using TLA+ [2121] and other work
used Event-B [2222] to partly verify other protocols. However,
these studies are limited to the verification of safety properties.

VII. CONCLUSION

This work presented the specification and verification of
the Chord distributed protocol. We highlighted the usefulness
of a lightweight modeling method that allows modeling and
verifying dynamic systems with rich structural properties, as
exemplified by Electrum (in particular with its action layer).
Electrum allowed a simple and straightforward modeling of
both structural and temporal properties of Chord, with a rather
high abstraction level and without losing the key concepts of
the protocol.

The analysis of the Chord model with the Electrum An-
alyzer is fully automated (on a bounded domain), which
implies that the cost of entry is rather lower than many other
formal methods. This analysis allowed us to find a few minor
issues in the most important previous work (in which we took
inspiration) and to show that the invariant there is not strong
enough. We were able to fix all issues. Up to our knowledge,
this is the first work analyzing the correctness of Chord, a
liveness property, in a “push-button” way.

As of now, this analysis is admittedly limited in the size of
networks, in particular for unbounded model checking. This
was expected to us as one of the reasons to study Chord,
for us, was to get a challenging test bed for our unbounded
model-checking back-end. On the other hand, even with small
networks and bounded model-checking, we were able to find
various shortcomings in previous work, which confirms the
interest on working even with small instances.

In the future, we will work both on improving Electrum and
its analysis tools, and on the Chord protocol. For the former
aspect, we will investigate smarter verification techniques, both
on the bounded and unbounded sides (the latter is in particular,
as of now, implemented in a naive way). For the latter aspect,
we will investigate imperfect detection of failures.
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k-FAIR = k-LIVENESS + FAIR
Revisiting SAT-based Liveness Algorithms

Alexander Ivrii, Ziv Nevo, Jason Baumgartner IBM Corporation

Abstract—We revisit the two main SAT-based algorithms for
checking liveness properties of finite-state transition systems: the
k-LIVENESS algorithm of [1] and the FAIR algorithm of [2].
These approaches are fundamentally different. k-LIVENESS
works by translating the liveness property together with fairness
constraints to the form FGq, and then bounding the number
of times the variable q can evaluate to false. FAIR works by
finding an over-approximation R of reachable states, so that no
state in R is contained on a fair cycle. Each technique has unique
strengths on different problems. In this paper, we present a new
algorithm k-FAIR that builds upon both techniques, synergis-
tically leveraging their strengths. Experiments demonstrate that
this combined approach is stronger than running both in parallel.

I. INTRODUCTION

Efficient verification of liveness properties remains an im-
portant unsolved problem. A common approach is based on
the liveness-to-safety translation [3] that converts liveness
properties to safety properties, enabling the use of any safety
checking technique. In practice this translation works very
well especially for failing properties, though suffers from the
severe performance penalty of doubling the number of state
variables. More direct SAT-based approaches have thus been
proposed: FAIR [2] and k-LIVENESS [1]. In this paper, we
revisit these approaches, and present a new algorithm k-FAIR
that combines the strengths of both in a way that outperforms
running them in parallel.

A liveness property can be converted to form FGq, meaning
that on every path variable q must eventually evaluate to true
forever [1]. A counterexample would illustrate q evaluating to
false infinitely often. As the state-space of hardware models is
finite, such a counterexample may be represented as a lasso-
shaped trace, consisting of a prefix from an initial state to a
¬q-state s, and a repeating loop suffix from s back to itself.

Given a property FGq, k-LIVENESS [1] attempts to bound
the number of times that q can evaluate to false. Effectively,
this technique checks a sequence of safety properties pk which
evaluate to false when q evaluates to false at least k + 1
times. Initially p0 = q, and pk+1 is obtained from pk by
adding “absorbing logic” that masks one occurrence of ¬q.
If ¬pk is proven valid, FGq is clearly valid. A bounded
counterexample to ¬pk does not guarantee the existence of
a counterexample for higher bounds, though if it exhibits a
repeated state sequence within which q evaluates to false, it
is a valid unbounded counterexample. Given a finite state
space, for suitably-large k, either ¬pk will be proven or
will yield a valid unbounded counterexample. k-LIVENESS
is thus sound and complete. As noted in [4], in practice

unbounded counterexamples can often be detected even for
small values of k. Given the close relation between models
being checked for increasing k, an incremental model checker
such as IC3 [5], [6] offers the advantage of reusing information
such as bounded and absolute invariants between each query.

FAIR [2] is an iterative algorithm that incrementally learns
information about reachable states and the SCC-closed regions
of the state space. Roughly speaking, a reachability assertion
R indicates that all the states on a potential lasso-shaped
counterexample belong to R, while a wall W states that all
states on the loop suffix of a potential counterexample either
together belong to W or together belong to the complement of
W . If one side of the wall W has no reachable states, the wall
actually represents a constraint on all states on the loop of a
potential counterexample, called stabilizing constraints in [1].
Specializing to liveness properties of form FGq, FAIR uses
a SAT-solver to obtain a ¬q-state s, subject to the previously-
discovered reachability assertions and walls. If this query is
unsatisfiable, then FGq holds. Otherwise, FAIR tries to com-
pute lasso-shaped counterexample for s, checking whether s is
reachable from an initial state, then whether s can eventually
transition to itself. If both queries are satisfiable, the liveness
property fails. Otherwise, FAIR requires the underlying safety
model checker to produce an inductive proof of unsatisfiability.
If s is not reachable from an initial state, this proof represents
a new reachability assertion. If s cannot transition to itself,
this proof represents a new wall. [2] suggests several methods
to discover new walls, including a method to generalize s to
a set of states sgen, so that no state in sgen has a loop back
to itself; equivalently, ¬sgen is a new stabilizing constraint. In
either case, the algorithm makes progress and must eventually
terminate with a conclusive verification result.

These two algorithms have different strengths. When FGq
is valid, k-LIVENESS works well when a small value of k
is sufficient to prove unsatisfiability; otherwise the underlying
safety queries become unscalable as k becomes large. FAIR
works well when inductive proofs restrict large portions of the
search space; otherwise, too many iterations are required.

In this paper, we propose a new algorithm k-FAIR that com-
bines ideas from both approaches. Similarly to k-LIVENESS,
we pose a safety query that checks for a trace on which
q evaluates to false at least k times. If unsatisfiable, the
liveness property is proven. If satisfiable, we check whether
the bounded counterexample has a repeated ¬q-state; if so,
the liveness property is disproven. Otherwise, we select a ¬q-
state s from the trace, and (similar to FAIR) check if it can
eventually transition back to itself. If so, the liveness property
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is disproven. Otherwise, we extract a new stabilizing constraint
c = ¬sgen, by generalizing s to a larger set of states sgen
without a self-loop. These stabilizing constraints are used to
restrict every occurrence of ¬q in future checks for a trace
on which c → q evaluates to false at least k times. Note
that when a new stabilizing constraint is discovered, there is
no need to increase k for completeness, enabling convergence
with smaller bounds than k-LIVENESS.

In Section II, we describe details for making these restric-
tions more efficient with IC3 queries, and for more-efficient
detection of new stabilizing constraints. Originally [2] suggests
to periodically look for single-literal stabilizing constraints.
[1] improves upon this technique by considering all nets in a
circuit as candidate constraints, and using the liveness signal
q in a stronger way; however, this is purely a preprocessing
technique. k-FAIR uses the best of both worlds: applying the
method of [1] periodically, using the external reachability in-
variants and stabilizing constraints to strengthen the induction
hypothesis.

II. k-FAIR

A. Algorithm Overview

Algorithm 1 k-FAIR

Input: Liveness property FGq
Data: Reachability invariants R, Stabilizing constraints S

1: OnLoop← CreateOnLoopReg ()
2: r ← register with init = true and next = (OnLoop→ q)
3: p← r, k ← 0, R← ∅, S ← ∅
4: while true do
5: if (*) then
6: (st, S)← StabilizingConstraints(R,S)
7: if (st = UNSAT) then
8: return PASS
9: (st, α,R)← Run_kLIVENESS(p,R, S)

10: if (st = UNSAT) then
11: return PASS
12: if α has a state repetition with ¬r then
13: return FAIL
14: if (*) then
15: s← Select last state on α with ¬r
16: (st, β, S)← Run_FAIR(s,R, S)
17: if (st = SAT) then
18: return FAIL
19: if (*) then
20: p← AbsorbingLogic(p, r), k++

Our k-FAIR algorithm is depicted in Algorithm 1. It accepts
a liveness property FGq (which embeds fairness constraints),
and returns PASS or FAIL with counterexample. The algorithm
incrementally updates two important structures: reachability
invariants R (that constrain all states on a potential lasso-
shaped counterexample), and stabilizing constraints S (that
constrain all states on the loop of a potential lasso-shaped

counterexample). In practice, each constraint in R and S is a
clause (disjunction) over registers and internal nets.

Lines 1–3. Function CreateOnLoopReg creates a new
register OnLoop that is initialized to 0, which nondeter-
ministically changes its value to 1 after which it remains 1
forever. We create a new register r with next-state function
OnLoop → q. It is easy to see that the validity of FGq is
equivalent to the validity of FGr, and a counterexample to
FGr is a counterexample to FGq. Intuitively, OnLoop allows
to efficiently pass information to the underlying safety model
checker, while register r simplifies implementation details.
Variable p represents the value of the current safety property.
For clarity, index k corresponds to the safety property pk.

Lines 5–8. Algorithm StabilizingConstraints de-
rives new stabilizing constraints, accepting R and S and
updating S. This function is similar to [1], except that it
additionally uses R and S to restrict both current- and the
next-states in the SAT-solver. Additionally, we have found it
useful to reason about the original fairness constraints instead
of q when looking for nets that stabilize to a constant value.
Theoretically, this allows StabilizingConstraints to
discover more stabilizing constraints as the sets R and S are
extended elsewhere, justifying the value of running this func-
tion periodically. In cases, these new stabilizing constraints
exclude all reachable states, in which case the algorithm
terminates with PASS.

Lines 9–11. Function Run_kLIVENESS(p,R, S) checks
whether an initial state can reach a ¬p-state, subject to
constraints R ∧ (OnLoop→ S). Equivalently, this checks for
a path from an initial state, on which OnLoop ∧ ¬q occurs
at least k times under these constraints. In particular, the
stabilizing constraints S must hold on every state after the
first occurrence of OnLoop ∧ ¬q. This is slightly stronger
than suggested in [1], where the stabilizing constraints are
only used to restrict the ¬q-states. This function returns the
verification status st ∈ {SAT,UNSAT}, counterexample α for
st = SAT, and additional reachability invariants R discovered
in the process. As in [1], we use an incremental IC3-engine,
which reuses bounded and absolute invariants between runs;
this allows to neglect explicitly passing R to this engine.
Instead of synthesizing (OnLoop → S) using new logic, we
have extended the IC3-engine to accept clausal constraints
over registers and internal nets. In particular, for each clause
c ∈ S, we pass the clausal constraint ¬OnLoop ∨ c. If
the verification status st returned by Run_kLIVENESS is
UNSAT, the algorithm terminates with PASS.

Lines 12–13. If the safety query returns SAT, then as
suggested in [4] we analyze the counterexample α to check if
it exhibits a state repetition on which r evaluates to false. If
so, the counterexample is valid and the algorithm terminates
with FAIL. Additionally, we may manipulate α using the
trace manipulation techniques described in [4] to improve the
likelihood of producing a valid counterexample from α.

Lines 14–18. First, we select a ¬r-state s from α; by
construction there are at least k+1 such states. In practice, the
last such state is most effective, though any (or multiple) may
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be selected. Function Run_FAIR(s,R, S) checks for a path
from s back to itself, subject to constraints R∧S. If the result
is SAT, a valid counterexample β exists and the algorithm
terminates with FAIL. (A valid counterexample to FGr can
be constructed by concatenating α and β). If st = UNSAT,
we use the technique of [2] to generalize s to a larger set of
states sgen, none of which can transition to sgen. In this case,
we update S by adding a new stabilizing constraint ¬sgen. As
in [2], we use an IC3-engine, which produces inductive invari-
ants. To avoid trivial 0-length paths, we introduce an additional
register Z with initial value 0 and next-state function 1, and the
actual query checks whether s∧¬Z can reach s∧Z. Note that
passing sets R and S to IC3 is not required for correctness,
so using them most efficiently in the underlying IC3-engine
poses a complex implementation choice. In our experience,
having many redundant clausal constraints may slow down
IC3 (hurting ability to reduce proof obligations by ternary
simulation or alternative techniques). In our implementation,
we pass S as clausal constraints and R as clausal invariants,
the difference being that clausal invariants are ignored when
reducing proof obligations.

Lines 19–20. If Run_FAIR was executed, a new stabilizing
constraint was detected hence the algorithm made progress.
Contrary to k-LIVENESS, adding absorbing logic is not
required for completeness: we may continue with the same
value of k (or even reduced k). In fact, FAIR can be seen as
an instance of this algorithm when k is always zero.

B. Comparison to k-LIVENESS and to FAIR

k-FAIR effectively combines the strengths of k-
LIVENESS and FAIR. If Run_FAIR is never executed
(if the if-condition on line 14 is always false), then k-
FAIR closely corresponds to k-LIVENESS modulo the
ability to detect new stabilizing constraints via reachability
invariants from IC3. k-FAIR can be viewed as k-LIVENESS
extended with an additional technique to look for unbounded
counterexamples. On the other hand, if AbsorbingLogic
is never executed (if the if-condition on line 19 is always
false), k-FAIR corresponds to an alternative implementation
of FAIR. Though instead of using a SAT-solver to find
candidate ¬q-states s and checking if they are reachable from
an initial state, we search for such reachable states directly.
Additionally, when s cannot reach itself, we only borrow
the method of [2] that discovers stabilizing constraint and
not a more general wall constraint. Arguably, this makes our
implementation simpler, but may lose some potential power
enabled by more general constraints.

III. EXPERIMENTS

In this section we present our experimental results. The
techniques described in this paper are implemented in the IBM
formal verification tool Rulebase: Sixthsense Edition [7]. All
experiments are executed on a 2.00 GHz Linux machine with
an Intel Xeon E7540 processor, 16GB of RAM, and 3 hours
time-limit. We used all single-property liveness benchmarks

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

PASS PASS FAIL FAIL
solved time solved time

k-FAIR-fair 108 338,475 89 351,634
k-FAIR-b50 111 301,592 94 321,260
k-FAIR-b5 122 166,655 104 240,458
k-FAIR-klive 123 173,077 97 245,543
k-FAIR-klive-pre 117 250,431 100 225,971
LTS-BMC - - 114 94,103
LTS-IC3 116 225,059 99 226,321
VBS 131 37,270 117 29,315
VBS without klive 130 43,661 117 29,349
VBS without b5,b50 131 37,510 116 31,326
k-FAIR-fair & k-FAIR-klive-pre 124 175,581 107 154,646
LTS-IC3 & k-FAIR-klive 131 37,270 100 206,171
LTS-BMC & k-FAIR-b5 122 166,655 117 57,482

TABLE II
PROVEN k VALUE FOR COMMONLY-SOLVED BENCHMARKS

k-FAIR- fair b50 b5 klive klive-pre
average k 0 0.50 1.84 6.02 10.09

from the 2011–2017 Hardware Model Checking Competi-
tions [8], as well as various proprietary industrial testcases.
For a more realistic setup, the benchmarks are preprocessed
using standard logic synthesis techniques (similar to ABC [9]
commands rewrite, lcorr and ssw).

A. Review of results

The configurations evaluated include: The first five config-
urations are different variants of Algorithm 1. In k-FAIR-
fair, Run_FAIR runs on every iteration of the main loop
but the counter k is never incremented: this is “pure FAIR”
mode. In k-FAIR-b50 and k-FAIR-b5, Run_FAIR runs on
every iteration of the loop, while the counter k is incre-
mented on, respectively, every 50th and 5th iteration. In k-
FAIR-klive and k-FAIR-klive-pre, Run_FAIR never runs,
and the counter is incremented on every iteration of the
loop: this is the “pure k-LIVENESS” mode. In all five
variants, StabilizingConstraints runs on the first
iteration of the main loop as preprocessing. Additionally, in
the first four variants, StabilizingConstraints runs
periodically (either each time the counter increments, or on
every 50th iteration of the loop, whichever happens first).
In k-FAIR-klive-pre, StabilizingConstraints does
not run again, corresponding most closely to [1]. The last
two configurations LTS-BMC and LTS-IC3 correspond to
the liveness-to-safety translation, followed by BMC (Bounded
Model Checking) [10] and IC3, respectively.

Table I summarizes the experiments. Columns “PASS
solved” and “FAIL solved” show the number of passing and
failing instances, respectively, solved by a specific configura-
tion. Columns “PASS time” and “FAIL time” represent the
cumulative time in seconds for passing and failing properties,
respectively. Benchmarks solved by preprocessing alone, and
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TABLE III
COMPARISON OF “PURE FAIR” IN k-FAIR AND FAIR IN IImc

PASS PASS FAIL FAIL
solved time solved time

k-FAIR-fair 108 (18) 208,875 89 (21) 70,834
IImc-fair 101 (11) 277,657 70 (2) 242,762

those not solved by any configuration, are excluded from
further consideration, leaving a total of 131 passing and 117
failing testcases. As BMC cannot prove properties, results are
shown only for failing properties. Row “VBS” corresponds
to the virtual best of all configurations. The last five rows
represent selected portfolios of the configurations above. For
example, row “VBS without klive” corresponds to running in
parallel all configurations except klive. Row “k-FAIR-fair &
k-FAIR-klive-pre” corresponds to running in parallel the two
configurations k-FAIR-fair and k-FAIR-klive-pre.

B. Overall summary

Simple liveness-to-safety followed by BMC is a very strong
falsification strategy, solving all but 3 failing testcases. Inter-
estingly, these 3 are solved by k-FAIR-b5 (with one unique
solve), and in each case the counterexample is detected by
Run_FAIR vs. the state repetition check. This may be because
candidate states returned by Run_kLIVENESS for large k
have a higher chance to belong to a valid counterexample.
The best two-engine parallel portfolio consists of LTS-BMC
and k-FAIR-b5, solving all failing properties with a runtime
improvement of 1.6 vs. LTS-BMC alone. A parallel portfolio
running all seven configurations improves total runtime by an
additional factor of 1.9.

For passing properties, the “pure k-LIVENESS approach
with an incremental detection of stabilizing constraints” per-
forms best (yielding one unique solve), outperforming both the
“pure FAIR” approach, the liveness-to-safety followed by IC3,
and the “standard k-LIVENESS approach” k-FAIR-klive-
pre. A best two-engine portfolio consists of LTS-IC3 and
k-FAIR-klive, solving all passing properties in the smallest
possible time.

C. Examining k sufficient for proof

There are 100 passing testcases (out of 131) solved by
all five variants of k-FAIR. In Table II we restrict to these
testcases and report the values of k sufficient for proof,
averaged over all the testcases. Not surprisingly, this value
is 0 in “pure FAIR” mode, and gradually increases to 6.02
as the variant changes to “pure k-LIVENESS.” This table
shows that stabilizing constraints based upon Run_FAIR
reduce the value of k needed to obtain a proof. Without
the incremental detection of stabilizing constraints based on
StabilizingConstraints, the sufficient value of k is
even larger.

D. Comparing k-FAIR-fair to IImc-fair
As an additional experiment, we compare k-FAIR-fair

– our “pure FAIR” approach, and IImc-fair – the original

FAIR algorithm of [2]. IImc-fair uses the implementation in
IImc [11] with command iimc -t fair -v1 --fair timeout 10800.
The results are summarized in Table III. As before, we present
data only for testcases solved by at least one configuration. The
numbers in parentheses represent unique solves. Overall k-
FAIR-fair performs substantially better than IImc-fair, both
on passing and failing properties, though both variants have
unique value. Unfortunately, a detailed comparison is difficult,
as the two techniques are implemented in very different
verification frameworks, and the improvements may be due
to a large number of different factors, including an improved
method in [1] to find stabilizing constraints, only looking for
loops from a priori reachable states, and the syntactic check
for a state repetition (for failing properties). In any case the
adaptation of FAIR presented in this paper seems as a viable
alternative to the implementation in IImc [11].

IV. CONCLUSION AND FURTHER WORK

In this paper we presented the algorithm k-FAIR, which
combines the strengths of the prominent SAT-based algorithms
for liveness verification: k-LIVENESS and FAIR. We experi-
mented with several variants of k-FAIR and demonstrated that
a combined portfolio approach brings unique value.

Fine-tuning the algorithm is likely to offer addi-
tional performance improvements. Each of the main meth-
ods StabilizingConstraints, Run_kLIVENESS or
Run_FAIR may be the key to success, but may also be
the bottleneck of the approach. Carefully balancing the effort
spent on each component (e.g., by suitably imposing resource
limits, or by increasing or decreasing k more aggressively)
is a subject of further research. Another promising direction
consists of tuning the underlying IC3-engine towards the
safety queries posed by the algorithm. For example, one could
attempt to leverage the fact that all safety queries made by
Run_kLIVENESS (except for possibly the very last one)
are satisfiable, while all safety queries made by Run_FAIR
(except for possibly the very last one) are unsatisfiable. Ad-
ditionally, one could attempt to devise better methods to pass
constraints, invariants, etc. to the IC3-engine, and to use these
more efficiently in the IC3-engine itself.
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Abstract—Various verification techniques for temporal prop-
erties transform temporal verification to safety verification.
For infinite-state systems, these transformations are inherently
imprecise. That is, for some instances, the temporal property
holds, but the resulting safety property does not. This paper
introduces a mechanism for tackling this imprecision. This
mechanism, which we call temporal prophecy, is inspired by
prophecy variables. Temporal prophecy refines an infinite-state
system using first-order linear temporal logic formulas, via a
suitable tableau construction. For a specific liveness-to-safety
transformation based on first-order logic, we show that using
temporal prophecy strictly increases the precision. Further-
more, temporal prophecy leads to robustness of the proof
method, which is manifested by a cut elimination theorem.
We integrate our approach into the Ivy deductive verification
system, and show that it can handle challenging temporal
verification examples.

1. Introduction
There are various techniques in the literature that trans-

form the problem of verifying liveness of a system to the
problem of verifying safety of a different system. These
transformations compose the system with a device that has
the known property that some safety condition σ implies
liveness. The classical example of this is proving termination
of a while loop with a ranking function. In this case, the
device evaluates a chosen function r on loop entry, where
the range of r is a well-founded set. The safety property σ
is that r decreases at every iteration, which implies that the
loop must terminate.

A related transformation, due to Armin Biere [5], applies
to finite-state (possibly parameterized) systems. The safety
property σ is, in effect, that no state occurs twice, from
which we can infer termination. In the infinite-state case,
this can be generalized using a function f that projects the
program state onto a finite set. We can think of this as a
ranking that tracks the set of unseen values of f and is
ordered by set inclusion. However, the property that no value
of f occurs twice is simpler to verify, since the composed
device can non-deterministically guess the recurring value.
In general, the effectiveness of a liveness-to-safety transfor-
mation depends strongly on the difficulty of the resulting
safety proof problem.

Other methods can be seen as instances of this general
approach. For example, the Terminator tool [11] might be
seen as combining the ranking and the finite projection

approaches. Another approach by Fang et al. applies a
collection of ad-hoc devices with known safety-to-liveness
properties to prove liveness of parameterized protocols [16].
Of greatest interest here, a recent paper by Padon et al. uses
a dynamically chosen finite projection that depends on a
finite prefix of the system’s execution [30]. The approach
of [28] also has some similar characteristics.

In the case of infinite-state systems, these transforma-
tions from liveness verification to safety verification are not
precise reductions. That is, while safety implies liveness, a
counterexample to the safety property σ does not in general
imply a counterexample to liveness. For example, in the
projection method, a terminating infinite-state system may
have runs whose length exceeds the finite range of any
chosen projection f , forcing some value to repeat.

In this paper, we show that the precision of a liveness-
to-safety transformation can be usefully increased by the
addition of prophecy variables. These variables are ex-
pressed as first-order LTL formulas. For example, suppose
we augment the state of the system with a variable r�p
that tracks the truth value of the proposition �p, which is
true when p holds in all future states. We can soundly add
two constraints to the transition system. To the transition
relation, we add r�p ↔ (p∧ r�p′), where r�p′ denotes the
value of the prophecy variable in the post-state. We also add
the fairness constraint that r�p ∨ ¬p holds infinitely often.
These constraints are typical of tableau constructions that
convert a temporal formula to a symbolic automaton. As we
show in this paper, the additional information they provide
refines the trace set of the transformed system, potentially
eliminating false counterexamples.

In particular, we will show how to integrate tableau-
based prophecy with the liveness-to-safety transformation
of [30] that uses a history-based finite projection, referred
to as dynamic abstraction. We show that the precision of
this transformation is consequently increased. The result is
that we can prove properties that otherwise would not be
directly provable using the technique.

This paper makes the following contributions:

1) Introduce the notion of temporal prophecy, includ-
ing prophecy formulas and prophecy witnesses, via
a first-order LTL tableau construction.

2) Show that temporal prophecy increases the proof
power (i.e., precision) of the safety-to-liveness
transformation based on dynamic abstraction, and
further show that the properties provable with tem-
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idle wait/ m=n++

[m>s] /

critical[m≤s] / q=*

[q=0] / s++

[q>0] / q--global nat s, n
local nat m, q

Figure 1. The ticket mutual exclusion protocol. Edges are labeled by
condition / action.

poral prophecy are closed under first-order reason-
ing, with cut elimination as a special case.

3) Integrate the liveness-to-safety transformation
based on dynamic abstraction and temporal
prophecy into the Ivy deductive verification
system, deriving the prophecy formulas from
an inductive invariant provided by the user (for
proving the safety property).

4) Demonstrate the effectiveness of the approach on
some challenging examples that cannot be handled
by the transformation without temporal prophecy.

5) Demonstrate that prophecy witnesses can eliminate
quantifier alternations in the verification conditions
generated for the safety problem obtained after the
transformation, facilitating decidable reasoning.

2. Illustrative Example
We illustrate our approach using the ticket protocol

for ensuring mutual exclusion with non starvation among
multiple threads, depicted in Fig. 1. The ticket protocol may
be run by any number of threads, and also allows dynamic
spawning of threads. The protocol is an idealized version
of spinlocks used in the Linux kernel [13]. In the protocol,
each thread can be in one of three states: idle, waiting to
enter the critical section, or in the critical section. The right
to enter the critical section is determined by a ticket number.
A global variable n, records the next available ticket, and a
global variable s, records the ticket currently being served.
Each thread has a local variable m that records the ticket it
holds. A thread only enters the critical section when m ≤ s.
Once a thread enters the critical section, it handles tasks
that accumulated in its task queue, and stays in the critical
section until its queue is empty (tasks are only added to
the queue when the thread is outside the critical section). In
Fig. 1, this is modeled by the task counter q, a thread-local
variable which is non-deterministically set when a thread
enters the critical section (to account for the unbounded,
but finite, number of tasks), and is then decremented in each
step. When q = 0 the thread leaves the critical section, and
increments s to allow other threads to be served.

The protocol is designed to satisfy the following first-
order temporal property:

(∀x.�♦scheduled(x))→ ∀y.� (wait(y)→ ♦critical(y))

That is, if every process is scheduled infinitely often, then
every waiting process eventually enters its critical section.
(Note that we encode fairness assumptions as part of the
temporal property.)

Insufficiency of liveness-to-safety transformations. While
the temporal property is clearly satisfied by the ticket pro-
tocol, proving it is challenging for liveness-to-safety trans-
formations. First, due to the unbounded values obtained
by the ticket number and the task counter, and also due
to dynamic spawning of threads, this example does not
belong to the class of parameterized systems [32], where a
simple lasso argument is sound (and complete) for proving
liveness. Second, while using a finite abstraction can recover
soundness, no fixed finite abstraction is precise enough to
show the absence of a lasso-shaped counterexample in this
example. The reason is that a thread can go to the waiting
state (wait) with any number of threads waiting “ahead of
it in line”.

For cases where no finite abstraction is sufficiently pre-
cise to prove liveness, we may instead apply the liveness-
to-safety transformation of [30]. This transformation relaxes
the requirement of proving absence of lassos over a fixed
finite abstraction, and instead requires one to prove absence
of lassos over a dynamic finite abstraction that is only
determined after some prefix of the trace (allowing for better
precision). Soundness is maintained since the abstraction is
still finite. Technically, the technique requires to prove that
no abstract lasso exists, where an abstract lasso is a finite
execution prefix that (i) visits a freeze point, at which a
finite projection (abstraction) of the state space is fixed, (ii)
the freeze point is followed by two states that are equal in
the projection. We refer to these as the repeating states, and
(iii) all fairness constraints are visited both before the freeze
point and between the repeating states.

Unlike fixed finite abstractions, dynamic abstractions
allow us to prove that an eventuality holds if there is a
finite upper bound on the number of steps required at the
time the eventuality is asserted (the freeze point). The bound
need not be fixed a priori. Unfortunately, due to the non-
determinism introduced by the task counter q, each of the
k threads ahead of t in line could require an unbounded
number of steps to leave the critical section, and this number
is not yet determined when t makes its request. As a result,
there is an abstract lasso which freezes the abstraction when
t makes its request, after which some other thread t0 enters
the critical section and loops, decrementing its task counter
q. Since the value of the task counter of t0 is not captured in
the abstraction, the loop does not change the abstract state.
This spurious abstract lasso prevents this liveness-to-safety
transformation from proving the property.

Temporal prophecy to the rescue. The key to fixing this
problem is to predict the future to the extent that a bound on
the steps required for progress is determined at the freeze
point. Surprisingly, this is accomplished by the use of one
temporal prophecy variable corresponding to the truth value
of the following formula:

∃x.♦�critical(x).

If this formula is initially true, there is some thread t0 that
eventually enters the critical section and stays there. At this
point, we can prove it eventually exits (a contradiction)
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because the number of steps needed for this is bounded
by the current task counter of t0. Operationally, the freeze
point is delayed until �critical(x) holds at which point
t0’s task counter is captured in the finite projection, ruling
out an abstract lasso. On the other hand if the prophecy
variable is initially false, then all threads are infinitely often
out of the critical section. With this fairness constraint,
thread t requires only a finite number of steps to be served,
determined by the number of threads with lesser tickets.
Operationally, the extra fairness constraint extends the lasso
loop until the abstract state must change, ruling out an
abstract lasso.

Though the liveness-to-safety transformation via dy-
namic abstraction and abstract lasso detection cannot han-
dle the problem as given, introducing suitable temporal
prophecy eliminates the spurious abstract lassos. Some spu-
rious lassos are eliminated by postponing the freeze point,
thus refining the finite abstraction, and others are eliminated
by additional fairness constraints on the lasso loop. This
example is explained in greater detail in § 4.3.

3. Preliminaries
In this section, we present the first-order formalism for

specifying infinite-state systems and their properties, as well
as a tableau construction for first-order LTL formulas.

3.1. Transition Systems in First-Order Logic

A first-order logic transition system is a triple (Σ, ι, τ),
where Σ is a first-order vocabulary that contains only
relation symbols and constant symbols (functions can be
encoded by relations), ι is a closed formula over Σ defining
the set of initial states, and τ is a closed formula over Σ]Σ′,
where Σ′ = {`′ | ` ∈ Σ}, defining the transition relation.
The constants in Σ represent the program variables.

A state of the transition system is a first-order structure,
s = (D, I), over Σ, where D denotes the (possibly infinite)
domain of the structure and I denotes the interpretation
function. The set of initial states is the set of all states s
such that s |= ι, and the set of transitions is the set of
all pairs of states (s, s′) with the same domain such that
(s, s′) |= τ . In the latter, (s, s′) denotes a structure over
the vocabulary Σ ] Σ′ with the same domain as s and s′

in which the symbols in Σ are interpreted as in s, and the
symbols in Σ′ are interpreted as in s′.

For a state s = (D, I) over Σ, and for D ⊆ D, we
denote by s|D the partial structure by projecting s to D, i.e.,
s|D = (D, I|D), where I|D interprets only constants c ∈ Σ
for which I(c) ∈ D (making it a partial interpretation),
and for every relation symbol r ∈ Σ of arity k, I|D(r) =
I(r) ∩ Dk. For a vocabulary Σ′ ⊆ Σ, we denote by s|Σ′

the state over Σ′ obtained by restricting the interpretation
function to the symbols in Σ′, i.e., s|Σ′ = (D, I ′), where
for every symbol ` ∈ Σ′, I ′(`) = I(`).

A (finite or infinite) trace of (Σ, ι, τ) is a sequence of
states π = s0, s1, . . . where s0 |= ι and (si, si+1) |= τ for
every 0 ≤ i < |π|. Every state along the trace has its own

interpretation of the constant and relation symbols, but they
all share the same domain.

We note that first-order transition systems are Turing-
complete. Furthermore, tools such as Ivy [31] provide mod-
eling languages that are closer to imperative programming
languages and compile to a first-order transition system.
This makes it easier for a user to provide a first-order
specification of the transition system they wish to verify.

Safety. Given a vocabulary Σ, a safety property P is a set
of sequences of states over Σ, such that for every sequence
of states π 6∈ P , there exists a finite prefix π′ of π, such
that π′ and all of its extensions are not in P . A transition
system over Σ satisfies P if all of its traces are in P .

3.2. First-Order Linear Temporal Logic (FO-LTL)

To specify temporal properties of first-order transition
systems we use First-Order Linear Temporal Logic (FO-
LTL), which combines LTL with first-order logic [1]. For
simplicity, we consider only the “globally” (�) temporal
operator. The tableau construction extends to other operators
as well, and so does our approach.

Syntax. Given a first-order vocabulary Σ, FO-LTL for-
mulas are defined by:

f ::= r(t1, . . . , tn) | t1 = t2 | ¬f | f1 ∨ f2 | ∃x.f | �f
t ::= c | x

where r is an n-ary relation symbol in Σ, c is a constant
symbol in Σ, x is a variable, each ti is a term over Σ and �
denotes the “globally” temporal operator. We also use the
standard shorthand for the “eventually” temporal operator:
♦f = ¬�¬f , and the usual shorthands for logical operators
(e.g., ∀x.f = ¬∃x.¬f ).

Semantics. FO-LTL formulas over Σ are interpreted over
infinite sequences of states (first-order structures) over Σ.
Atomic formulas are interpreted over states, the temporal
operators are interpreted as in traditional LTL, and first-
order quantifiers are interpreted over the shared domain D
of all states in the trace. Formally, the semantics is defined
w.r.t. an infinite sequence of states π = s0, s1, . . . and an
assignment σ that maps variables to D— the shared domain
of all states in π. We define πi = si, si+1, . . . to be the suffix
of π starting at index i. The semantics is defined as follows.

π, σ |= r(t1, . . . , tn)⇔ s0, σ |= r(t1, . . . , tn)

π, σ |= t1 = t2 ⇔ s0, σ |= t1 = t2

π, σ |= ¬ψ ⇔ π, σ 6|= ψ

π, σ |= ψ1 ∨ ψ2 ⇔ π, σ |= ψ1 or π, σ |= ψ2

π, σ |= ∃x.ψ ⇔ exists d ∈ D s.t. π, σ[x 7→ d] |= ψ

π, σ |= �ψ ⇔ forall i ≥ 0, πi, σ |= ψ

When the formula has no free variables, we omit σ. A first-
order transition system (Σ, ι, τ) satisfies a closed FO-LTL
formula ϕ over Σ if all of its traces satisfy ϕ.
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3.3. Tableau for FO-LTL
As part of our liveness-to-safety transformation, we

use a standard tableau construction for FO-LTL formulas
that results in a first-order transition system with fairness
constraints. Unlike the classical construction, we define
the tableau for a set of formulas, not necessarily a single
temporal formula.

For an FO-LTL formula ϕ, we denote by sub(ϕ) the set
of subformulas of ϕ, defined in the usual way. In the sequel,
we consider a finite set A of FO-LTL formulas that is closed
under subformulas, i.e. for every ϕ ∈ A, sub(ϕ) ⊆ A. Note
that A may contain formulas with free variables.
Definition 1 (Tableau vocabulary). Given a finite set A

as above over a first-order vocabulary Σ, the tableau
vocabulary for A, denoted ΣA, is obtained from Σ by
adding a fresh relation symbol r�ϕ of arity k for every
formula �ϕ ∈ A with k free variables.

Recall that � is the only primitive temporal operator we
consider (a similar construction can be done for other opera-
tors). The symbols added in ΣA will be used to “label” states
by temporal subformulas that are satisfied by all outgoing
fair traces. To translate temporal formulas over Σ to first-
order formulas over ΣA we use the following definition.
Definition 2. For a FO-LTL formula ϕ ∈ A (over Σ), its

first-order representation, denoted FO [ϕ], is a first-order
formula over ΣA, defined inductively, as follows.

FO [ϕ] = ϕ if ϕ = r(t1, . . . , tn) or ϕ = t1 = t2

FO [�ψ(x)] = r�ψ(x)(x)

FO [¬ψ] = ¬FO [ψ]

FO [ψ1 ∨ ψ2] = FO [ψ1] ∨ FO [ψ2]

FO [∃x.ψ] = ∃x.FO [ψ]

Note that FO [ϕ] has the same free variables as ϕ. We can
now define the tableau for A as a transition system.
Definition 3 (Tableau transition system). The tableau tran-

sition system for A is the first-order transition system
TA = (ΣA, true, τA), where τA (defined over ΣA]ΣA

′)
is defined as follows:

τA =
∧

�ϕ∈A
∀x. (r�ϕ(x)↔ (FO [ϕ(x)] ∧ r�ϕ′(x))).

Note that the original symbols in Σ (and Σ′) are not
constrained by τA, and may change arbitrarily with each
transition. However, the r�ϕ relations are updated in accor-
dance with the property that π, σ |= �p iff s0, σ |= p and
π1, σ |= �p (where s0 is the first state of π and p is a
first-order formula over Σ).
Definition 4 (Fairness). A sequence of states π = s0, s1, . . .

over ΣA is A-fair if for every temporal formula�ϕ(x) ∈
A and for every assignment σ, there are infinitely many
i’s for which si, σ |= FO [�ϕ(x) ∨ ¬ϕ(x)].

Note that �ϕ(x) ∨ ¬ϕ(x), used above, is equivalent to
♦¬ϕ(x) → ¬ϕ(x). So the definition of fairness ensures
an eventuality cannot be postponed forever. In the sequel,

the set A is always clear from the context (e.g., from the
vocabulary), hence we omit it and simply say that π is fair.

The next claims summarize the properties of the tableau;
Lemma 1 states that the FO-LTL formulas over Σ that
hold in the outgoing traces of a tableau state correspond
to the first-order formulas over ΣA that hold in the state;
Lemma 2 states that every sequence of states over Σ has
a representative trace in the tableau; finally, Thm. 1 states
that a transition system satisfies a FO-LTL formula iff its
product with the tableau of the negated formula has no fair
traces.
Lemma 1. In a fair trace π = s0, s1, . . . of TA (over ΣA), for

every FO-LTL formula ψ(x) ∈ A, for every assignment
σ and for every index i ∈ N, we have that si, σ |=
FO [ψ(x)] iff πi, σ |= ψ(x).

Lemma 2. Every infinite sequence of states ŝ0, ŝ1, . . . over
Σ can be extended to a fair trace π = s0, s1, . . . of TA
(over ΣA) s.t. for every i ∈ N, si|Σ = ŝi.

Definition 5 (Product system). Given a transition system
TS = (Σ, ι, τ), a closed FO-LTL formula ϕ over Σ, a
finite set A of FO-LTL formulas over Σ closed under
subformulas such that ¬ϕ ∈ A, we define the product
system of TS and ¬ϕ over A as the first-order transition
system TP = (ΣP , ιP , τP ) given by ΣP = ΣA, ιP =
ι∧FO [¬ϕ] and τP = τ∧τA, where TA = (ΣA, true, τA)
is the tableau for A.

Theorem 1. Let TP be the product system of TS and ¬ϕ
over A as defined in Def. 5. Then TS |= ϕ iff TP has
no fair traces.

Intuitively, the product system augments the states of
TS with temporal formulas from A, splitting each state into
many (often infinitely many) states according to the future
behavior of its outgoing traces. Note that Thm. 1 holds
already when A = sub(¬ϕ). However, as we will see, taking
a larger set A is useful for proving fair termination via the
liveness-to-safety transformation.

4. Liveness-to-Safety with Temporal Prophecy
In this section we present our liveness proof approach

using temporal prophecy and a liveness-to-safety transfor-
mation. As in earlier approaches, our transformation (i)
uses a tableau construction to construct a product transition
system equipped with fairness constraints such that the latter
has no fair traces iff the temporal property holds of the
original system, and (ii) defines a safety property over the
product transition system such that safety implies that no
fair traces exist (note that the opposite direction does not
hold).

The gist of our liveness-to-safety transformation is that
we augment the construction of the product transition system
with two forms of prophecy detailed in § 4.2. We then
use the definition of the safety property from [30]. In the
sequel, we first present the safety property and then present
the augmentation with temporal prophecy, whose goal is to
“refine” the product system such that it will be safe.
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4.1. Safety Property: Absence of Abstract Lassos
Given a transition system TW = (ΣW , ιW , τW ) with

ΣW ⊇ ΣA (e.g., the product system from Def. 5), we define
a notion of an abstract lasso, whose absence is a safety
property that implies that TW has no A-fair traces. This
section recapitulates material from [30].

The definition of an abstract lasso is based on a dynamic
abstraction that is fixed at some point along the trace,
henceforth called the freeze point. The abstraction function
is defined by projecting a state (a first-order structure) into
a finite subset of its domain. This finite subset is defined
by the union of the footprints of all states encountered until
the freeze point, where the footprint of a state includes the
interpretation it gives all constants from ΣW . Intuitively,
the footprint includes all elements “exposed” in the state,
including those “touched” by outgoing transitions.
Definition 6 (Footprint). For a state s = (D, I) over ΣW ,

we define the footprint of s as f(s) = {I(c) | c ∈ ΣW }.
For a sequence of states π = s0, s1, . . . over ΣW , and
an index i < |π|, we define the footprint of s0, . . . , si
as f(s0, . . . , si) =

⋃i
j=0 f(sj).

Importantly, the footprint of a finite trace is always finite.
As a result, an abstraction function that maps each state to
the result of projecting it to the footprint of the trace until
the freeze point has a finite range.
Definition 7 (Fair Segment). Let π = s0, s1, . . . be a

sequence of states over ΣW . For 0 ≤ i ≤ j < |π|,
we say the segment [i, j] is fair if for every formula
�ψ(x) ∈ A, and for every assignment σ where every
variable is assigned to an element of f(s0, . . . , si), there
exists i ≤ k ≤ j s.t. sk, σ |= FO [(�ψ(x)) ∨ ¬ψ(x)].

Definition 8 (Abstract Lasso). A finite trace s0, . . . , sn of
TW is an abstract lasso if there are 0 ≤ i ≤ j <
k ≤ n s.t. the segments [0, i] and [j, k] are fair, and
sj |f(s0,...,si) = sk|f(s0,...,si).

Intuitively, in the above definition, i is the freeze point,
where the abstraction is fixed. The states sj and sk are the
“repeating states” – states that are indistinguishable by the
abstraction that projects them to the footprint f(s0, . . . , si).
The segment between j and k, respectively, the segment
between 0 and i, meet all the fairness constraints restricted
to elements in f(s0, . . . , sj), respectively, in f(s0). Fairness
of the segment [0, i] is needed to prevent the freeze point
from being chosen too early, thus creating spurious abstract
lassos. Note that the absence of abstract lassos is a safety
property.
Lemma 3. If TW has no abstract lassos then it also has no

fair traces.

Proof: Assume to the contrary that TW has a fair
trace π = s0, s1, . . .. Let i be the first index such that [0, i]
is fair (such an index must exist since the set f(s0), which
determines the relevant fairness constraints is finite). Since
f(s0, . . . , si) is also finite, there must exist an infinite subse-
quence π′ of πi such that for every s, s′ in this subsequence
s|f(s0,...,si) = s′|f(s0,...,si). Let j ≥ i be the index in π of

the first state in π′. f(s0, . . . , sj) is also finite, hence there
exists k′ > j such that the segment [j, k′] of π is fair. Take
k to be the index in π of the first state of πk

′
that is also in

π′. Since π′ is infinite, such a k must exist. Since k ≥ k′,
the segment [j, k] is also fair. This defines an abstract lasso
s0, . . . , si, . . . , sj , . . . , sk, in contradiction.

4.2. Augmenting the Transition System with Tem-
poral Prophecy

In this section we explain how our liveness-to-safety
transformation constructs TW = (ΣW , ιW , τW ), to which
we apply the safety property of § 4.1. Our construction
exploits both temporal prophecy formulas and prophecy
witnesses, explained below. For the rest of this section we
fix a first-order transition system TS = (Σ, ι, τ) and a closed
FO-LTL formula ϕ over Σ that we wish to verify in TS .

Temporal Prophecy Formulas. First, given a set A of
(not necessarily closed) FO-LTL formulas closed under sub-
formula that contains ¬ϕ, we construct the product system
TP = (ΣP , ιP , τP ) defined in Def. 5. By Thm. 1, TS |= ϕ
iff TP has no fair traces. Note that classical tableau con-
structions are defined with A = sub(¬ϕ), and we allow A
to include more formulas. These formulas act as “temporal
prophecy variables” in the sense that they split the states of
TS , according to the future behavior of outgoing traces.

While the liveness-to-safety transformation is already
sound with A = sub(¬ϕ), one of the chief observations
of this work is that temporal prophecy formulas improve
its precision. These additional formulas in A split the states
of TS into more states in TP , and they cause some non-
determinism of the future trace to be “pulled backwards”
(the outgoing traces contain less non-determinism). For
example, if r�ϕ holds for some elements in the current
state, then ϕ must continue to hold for these elements in
the future of the trace. Similarly, for elements where r�ϕ
does not hold, there will be some time in the future of the
trace where ϕ would not hold for them.

This is exploited by the liveness-to-safety transformation
in three ways, eliminating spurious abstract lassos. First,
having more temporal formulas in A refines the definition
of a fair segment, and postpones the freeze point, thus
making the abstraction defined by the footprint up to the
freeze point more precise. For example, if r�ϕ does not
hold for a ground formula ϕ in the initial state, then the
freeze point would be postponed until after ϕ does not hold
for the first time. Second, it strengthens the requirement on
the looping segment sj . . . sk, in a similar way. Third, the
additional relations in ΣP (= ΣA) are part of the state as
considered by the transformation, and a difference in these
relations (projected to the footprint up to the freeze point)
is a valid difference. These three ways all played a role in
the examples considered in our evaluation.

Prophecy Witnesses. The notion of an abstract lasso,
used to define the safety property, considers a finite ab-
straction according to the footprint, which depends on the
constants of the vocabulary. To increase the precision of the
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abstraction, we augment the vocabulary with fresh constants
that serve as prophecy witnesses for existential properties.

To illustrate the idea, consider the formula ψ(x) =
♦�p(x) where x is a free variable. If ψ holds for some
element, it is useful to include in the vocabulary a constant
that serves as a witness for ψ(x), and whose interpretation
will be taken into account by the abstraction. If ψ holds for
some x, the interpretation of the constant will be taken from
such an x. Otherwise, this constant will be allowed to take
any value.

Temporal prophecy witnesses not only refine the abstrac-
tion, they can also be used in the inductive invariant. In
particular, as demonstrated in the TLB Shootdown example
(see § 6), in some cases this allows to avoid quantifier
alternation cycles in the verification conditions, leading to
decidability of VC checking.

Formally, given a set B ⊆ A, we construct TW =
(ΣW , ιW , τW ) as follows. We extend ΣP to ΣW by
adding fresh constant symbols c1, . . . , cn for every formula
ψ(x1, . . . , xn) ∈ B. We denote by C the set of new
constants, i.e., ΣW = ΣP ∪ C. The transition relation
formula is extended to keep the new constants unchanged,
i.e. τW = τP ∧

∧
c∈C c = c′, and we define ιW by

ιW = ιP ∧ FO [(∃x1, . . . , xn.ψ(x1, . . . , xn))→ ψ(c1, . . . , cn)]

Namely, c1, . . . , cn are required to serve as witnesses for
ψ(x1, . . . , xn) in case it holds in the initial state for some
elements, and otherwise they may get any interpretation
at the initial state, after which their interpretation remains
unchanged. Adding these fresh constants and their defining
formulas to the initial state is a conservative extension, in
the sense that every fair trace of TP can be extended to a fair
trace of TW (fairness of traces over ΣW ⊇ ΣA is defined
as in Def. 4), and every fair trace of TW can be projected
to a fair trace of TP . As such we have the following:
Lemma 4. Let TP = (ΣP , ιP , τP ) and TW = (ΣW , ιW , τW )

be defined as above. Then TP has no fair traces iff TW
has no fair traces.

The overall soundness of the liveness-to-safety transfor-
mation is given by the following theorem.
Theorem 2 (Soundness). Given a first-order transition sys-

tem TS and a closed FO-LTL formula ϕ both over Σ,
and given a set of temporal prophecy formulas A over
Σ that contains ¬ϕ and is closed under subformula, and
a set of temporal prophecy witness formulas B ⊆ A, if
TW as defined above does not contain an abstract lasso,
then TS |= ϕ.

4.3. The Ticket Example

In this section we show in greater detail how prophecy
increases the power of the liveness-to-safety transformation.
As an illustration we return to the ticket example of Fig. 1.
As explained in § 2, in this example the liveness-to-safety
transformation without temporal prophecy fails (similarly to
[30, §5.2]), but it succeeds when adding suitable temporal
prophecy.

To model the ticket example as a first-order transition
system, we use a vocabulary with two sorts: thread and
number. The first represents threads, and the second repre-
sents ticket values and counter values. The vocabulary also
includes a static binary relation symbol ≤: number, number,
with suitable first-order axioms to make it a total order. (for
more details about modeling systems in first-order logic see
e.g. [31].) The state of the system is modeled by unary re-
lations for the program counter: idle,wait, critical, constant
symbols of sort number for the global variables n, s, and
functions from thread to number for the local variables m, c.
The vocabulary also includes a unary relation scheduled,
which holds the last scheduled thread.

Next we show that when adding the temporal prophecy
formula ∃x.♦�critical(x) to the tableau construction, no ab-
stract lasso exists in the augmented transition system, hence
the liveness-to-safety transformation succeeds to prove the
property. Formally, in this case, A includes the following
two formulas and their subformulas:

¬ ((∃x.¬�¬�¬scheduled(x)) ∨ ¬∃x.¬� (¬wait(x) ∨ ¬�¬critical(x)))
∃x.¬�¬�critical(x)

And B = {¬� (¬wait(x) ∨ ¬�¬critical(x)) , ¬�¬�critical(x)}.
Therefore, ΣW extends the original vocabulary with the
following 6 unary relations:

r�¬scheduled(x), r�¬�¬scheduled(x), r�¬critical(x),

r�¬wait(x)∨¬�¬critical(x), r�critical(x), r�¬�critical(x)

as well as two constants for prophecy witnesses:
c1 for ¬� (¬wait(x) ∨ ¬�¬critical(x)), and c2 for
¬�¬�critical(x).

We now explain why there is no abstract lasso. To do
this, we show that the tableau construction, combined with
the dynamic abstraction and the fair segment requirements,
result in the same reasoning that was presented informally
in § 2.

First, observe that from the definition of c1
and the negation of the liveness property (both
assumed by ιW ), we have that the initial state
s0 |= FO [¬� (¬wait(c1) ∨ ¬�¬critical(c1))]. For
brevity, denote p = (¬wait(c1) ∨ ¬�¬critical(c1)),
so we have s0 |= FO [¬�p], i.e., s0 |= ¬r�p.
Since c1 is also in the footprint of the initial state,
the fair segment requirement ensures that the freeze
point can only happen after encountering a state
satisfying: FO [(�p) ∨ ¬p] ≡ r�p ∨ FO [¬p]. Recall
that the transition relation of the tableau (τA), ensures
(r�p)↔ (FO [p]∧ r�p′). Therefore, on update from a state
satisfying ¬r�p to a state satisfying r�p can only happen
if the pre-state satisfies FO [¬p]. Therefore, the freeze
point must come after encountering a state that satisfies
FO [¬p] ≡ wait(c1) ∧ r�¬critical(c1). From the freeze point
onward, τA will ensure both r�¬critical(c1) and ¬critical(c1)
continue to hold, so c1 will stay in wait (since the protocol
does not allow to go from wait to anything but critical).
So, we see that the mechanism of the tableau, combined
with the temporal prophecy witness and the fair segment
requirement, ensures that the freeze point happens after c1
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makes a request that is never granted. This will ensure that
the footprint used for the dynamic abstraction will include
all threads ahead of c1 in line, i.e., those with smaller ticket
numbers.

As for c2, the initial state will either sat-
isfy FO [¬�¬�critical(c2)] or it would satisfy
FO [¬∃x.¬�¬�critical(x)]. In the first case, by an
argument similar to the one used above for c1, the freeze
point will happen after c2 enters the critical section and then
stays in it. Therefore, the footprint used for the dynamic
abstraction will include all numbers smaller than q of c2
when it enters the critical section1. Since c2 is required to
be scheduled between the repeating states (again by the
tableau construction and the fair segment requirement), its
value for q will be decreased, and this will be visible in the
dynamic abstraction. Thus, in this case, an abstract lasso is
not possible.

In the second case the initial state satisfies
FO [¬∃x.¬�¬�critical(x)]. By a similar argument
that combines the tableau with the fair segment requirement
for the repeating states, we will obtain that between the
repeating states, any thread in the footprint of the first
repeating state, must both be scheduled and visit a state
outside the critical section. In particular, this includes all
threads that are ahead of c1 in line. This entails a change
to the program counter of one of them (the one that had
a ticket number equal to the service number at the first
repeating state), which will be visible in the abstraction.
Thus, an abstract lasso is not possible in this case either.

5. Closure Under First-Order Reasoning

The transformation from temporal verification to safety
verification developed in § 4 introduces an abstraction, and
incurs a loss of precision. That is, for some systems and
properties, liveness holds but the safety of the resulting
system does not hold, no matter what temporal prophecy
is used. (This is unavoidable for a transformation from
arbitrary FO-LTL properties to safety properties [30].) How-
ever, in this section, we show that the set of instances for
which the transformation can be made precise (via temporal
prophecy) is closed under first-order reasoning. This is
unlike the transformation of [30]. It shows that the use of
temporal prophecy results in a particular kind of robustness.

We consider a proof system in which the above trans-
formation is performed and the resulting safety property is
checked by an oracle. That is, for a transition system TS
and a temporal property ϕ (a closed FO-LTL formula), we
write TS ` ϕ if there exist finite sets of FO-LTL formulas
A and B satisfying the conditions of Thm. 2, such that
resulting transition system TW is safe, i.e., does not contain
an abstract lasso. We now show that the relation ` satisfies
a powerful closure property.

1. When modeling natural numbers in first-order logic, the footprint is
adjusted to include all numbers lower than any constant (still being a finite
set).

Theorem 3 (Closure under first-order reasoning). Let TS
be a transition system, and ψ,ϕ1, . . . , ϕn be closed FO-
LTL formulas, such that FO [ϕ1 ∧ . . . ∧ ϕn] |= FO [ψ].
If TS ` ϕi for all 1 ≤ i ≤ n, then TS ` ψ.

The condition that FO [ϕ1 ∧ . . . ∧ ϕn] |= FO [ψ] means
that ϕ1 ∧ . . . ∧ ϕn entails ψ when using only first-order
reasoning, and treating temporal operators as uninterpreted.
The theorem states that provability using the liveness-to-
safety transformation is closed under such reasoning. Two
special cases of Thm. 3 given by the following corollaries:

Corollary 1 (Modus Ponens). If TS is a transition system
and ϕ and ψ are closed FO-LTL formulas such that TS `
ϕ and TS ` ϕ→ ψ, then TS ` ψ.

Corollary 2 (Cut). If TS is a transition system and ϕ and
ψ are closed FO-LTL formulas such that TS ` ϕ → ψ
and TS ` ¬ϕ→ ψ, then TS ` ψ.

Proof of Thm. 3: In the proof we use the no-
tation TW (TS , ϕ,A,B) to denote the transition system
constructed for TS and ϕ when using A,B as temporal
prophecy formulas. Likewise, we refer to the vocabulary,
initial states and transition relation formulas of the tran-
sition system as ΣW (TS , ϕ,A,B), ιW (TS , ϕ,A,B), and
τW (TS , ϕ,A,B), respectively. Let (A1, B1), . . . , (An, Bn)
be such that TW (TS , ϕi, Ai, Bi) has no abstract lasso, for
every 1 ≤ i ≤ n. Now, let A =

⋃n
i=1Ai and B =

⋃n
i=1Bi.

We show that TW (TS , ψ,A,B) has no abstract lasso. As-
sume to the contrary that s0, . . . , si, . . . , sj , . . . , sk, . . . , sn
is an abstract lasso for TW (TS , ψ,A,B). Since s0 |=
ιW (TS , ψ,A,B), we know that s0 |= ¬FO [ψ], and since
FO [ϕ1 ∧ . . . ∧ ϕn] |= FO [ψ], there must be some 1 ≤ ` ≤
n s.t. s0 |= ¬FO [ϕ`]. Denote Σ′ = ΣW (TS , ϕ`, A`, B`).
Now, s0|Σ′ , . . . , si|Σ′ , . . . , sj |Σ′ , . . . , sk|Σ′ , . . . , sn|Σ′ is an
abstract lasso of TW (TS , ϕ`, A`, B`), which is a con-
tradiction. To see that, we first simplify the notation
and denote sm|Σ′ by ŝm. The footprint f(s0, . . . , si)
contains more elements than the footprint f(ŝ0, . . . , ŝi),
since ΣW (TS , ψ,A,B) ⊇ ΣW (TS , ϕ`, A`, B`). Therefore,
given that sj |f(s0,...,si) = sk|f(s0,...,si), we have that
ŝj |f(ŝ0,...,ŝi) = ŝk|f(ŝ0,...,ŝi) as well. Moreover, the fair-
ness constraints in TW (TS , ϕ`, A`, B`), determined by A`,
are a subset of those in TW (TS , ψ,A,B)), determined
by A, so the segments [0, i] and [j, k] are also fair in
TW (TS , ϕ`, A`, B`).

The proof of Thm. 3 sheds more light on the power of
using temporal prophecy formulas that are not subformulas
of the temporal property to prove. In particular, the theorem
does not hold if A is restricted to subformulas of the
temporal proof goal.

6. Implementation & Evaluation

We have implemented our approach for temporal veri-
fication and integrated it into the Ivy deductive verification
system [31]. This allows the user to model the transition
system in the Ivy language (which internally translates into
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a first-order transition system), and express temporal prop-
erties directly in FO-LTL. In our implementation, the safety
property that results from the liveness-to-safety transforma-
tion is proven by a suitable inductive invariant, provided by
the user. To facilitate this process, Ivy internally constructs a
suitable monitor for the safety property, i.e., the absence of
abstract lasso’s in TW . The user then provides an inductive
invariant for TW composed with this monitor. The monitor
keeps track of the footprint and the fairness constraints, and
non-deterministically selects the freeze point and repeated
states of the abstract lasso. Similar to the construction of [5],
the monitor keeps a shadow copy of the “saved state”,
which is the first of the two repeated states. These are
maintained via designated relation symbols (in addition to
ΣW ). The user’s inductive invariant must then prove that it
is impossible for the monitor to detect an abstract lasso.

Mining Temporal Prophecy from the Invariant. As pre-
sented in previous sections, our liveness-to-safety transfor-
mation is parameterized by sets of formulas A and B. In
the implementation, these sets are implicit, and are extracted
automatically from the inductive invariant provided by the
user. Namely, the inductive invariant provided by the user
contains temporal formulas, and also prophecy witness con-
stants, where every temporal formula �ϕ is a shorthand (and
is internally rewritten to) r�ϕ. The set A to be used in the
construction is defined by all the temporal subformulas that
appear in the inductive invariant (and all their subformulas),
and the set B is defined according to the prophecy witness
constants that are used in the inductive invariant.

In particular, the user’s invariant may refer to the
satisfaction of each fairness constraint FO [�ϕ ∨ ¬ϕ] for
�ϕ ∈ A, both before the freeze point and between the
repeated states, via a convenient syntax provided by Ivy.

Interacting with Ivy. If the user provides an inductive
invariant that is not inductive, Ivy presents a graphical
counterexample to induction. This guides the user to adjust
the inductive invariant, which may also lead to new formulas
being added to A or B, if the user adds new temporal formu-
las or prophecy witnesses to the inductive invariant. In this
process, the user’s mental image is of a liveness-to-safety
transformation where A and B include all (countably many)
FO-LTL formulas over the system’s vocabulary, so the user
is free to use any temporal formula, or prophecy witness for
any formula. However, since the user’s inductive invariant is
a finite formula, the liveness-to-safety transformation needs
only to be applied to finite A and B, and the infinite A and
B are just a mental model.

We have used our implementation to prove liveness for
several challenging examples, summarized in Fig. 2. We fo-
cused on examples that were beyond reach for the liveness-
to-safety transformation of [30]. In [30], such examples were
handled using a nesting structure. Our experience shows
that with temporal prophecy, the invariants are simpler than
with a nesting structure (for additional comparison with
nesting structure see § 7). For all examples we considered,
the verification conditions are in a decidable fragment of
first-order logic which is supported by Z3 (the stratified

Protocol # A # B # LOC # C FO-LTL t [sec]
Ticket w/ Task Queues 1 2 90 60 22% 9.4
Alternating Bit Protocol 4 1 143 70 40% 32
TLB Shootdown 6 3 468 102 49% 283

Figure 2. Protocols for which we verified liveness. For each protocol, # A
reports the number of temporal prophecy formulas used. # B reports the
number of prophecy witnesses used. # LOC reports the number of lines
of code for the system model (without proof) in Ivy’s modeling language.
# C reports the number of conjectures used in the inductive invariant (a
typical conjecture is one or few lines). FO-LTL reports the fraction of
the conjectures that use temporal formulas. Finally, t reports the run time
(in seconds) for checking the verification conditions using Ivy and Z3.
The experiments were performed on a laptop running 64-bit Linux, with a
Core-i7 1.8 GHz CPU, using Z3 version 4.6.0.

extension of EPR [19], [31]). Interestingly, for the TLB
shootdown example, the proof presented in [30] (using a
nesting structure) required non-stratified quantifier alterna-
tion, which is eliminated by the use of temporal prophecy
witnesses. Due to the decidability of verification conditions,
Z3 behaves predictably, and whenever the invariant is not
inductive it produces a finite counterexample to induction,
which Ivy presents graphically. Our experience shows that
the graphical counterexamples provide valuable guidance
towards finding an inductive invariant, and also for coming
up with temporal prophecy formulas as needed. Below we
provide more detail on each example.

Ticket. The ticket example has been discussed in § 1, and
§ 4.3 contains more details about its proof with temporal
prophecy, using a single temporal prophecy formula and
two prophecy witness constants. To give a flavor of what
the proof looks like in Ivy, we present a couple of the
conjectures that make up the inductive invariant for the
resulting system, in Ivy’s syntax. In Ivy, the prefix l2s
indicates symbols that are introduced by the liveness-to-
safety transformation. Some conjectures are needed to state
that the footprint used in the dynamic abstraction contains
enough elements. An example of such a conjecture is:

l2s_frozen & (globally critical(c2)) ->
forall N. N <= q(c2) -> l2s_a(N)

This conjecture states that after the freeze point (indicated
by the special symbol l2s_frozen), if the prophecy
witness c2 (which is the prophecy witness defined for
♦�critical(x)) is globally in the critical section, then the
finite domain of the frozen abstraction (stored in the unary
relation l2s_a) contains all numbers up the c2’s value for
q. Other conjectures are needed to show that the current
state is different from the saved state. One example is:

l2s_saved & (globally critical(c2)) &
˜($l2s_w X. scheduled(X))(c2) ->

q(c2) ˜= ($l2s_s X. q(X))(c2)

The special operator $l2s_w lets the user query whether
a fairness constraint has been encountered, and $l2s_s
exposes to the user the saved state (both syntactically λ-
like binders). This conjecture states that after we saved a
shadow state (indicated by l2s_save), if the prophecy
witness c2 is globally in the critical section, and if we
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have encountered the fairness constraints associated with
scheduled(x) ∨�¬scheduled(x) instantiated for c2 (which
can only happen after c2 has been scheduled), then the
current value c2 has for q is different from the same value
in the shadow state.

Alternating Bit Protocol. The alternating bit protocol is a
classic communication algorithm for transition of messages
using lossy first-in-first-out (FIFO) channels. The protocol
uses two channels: a data channel from the sender to the
receiver, and an acknowledgment channel from the receiver
to the sender. The sender and the receiver each have a state
bit, and messages include a bit that functions as a “sequence
number”. We assume that the sender has an (infinite) array of
values to send, which is filled by some independent process.
The liveness property we wish to prove is that every value
entered into the sender array is eventually received by the
receiver.

The protocol is live under fair scheduling assumptions,
as well as standard fairness constraints for the channels:
if messages are infinitely often sent, then messages are
infinitely often received. This makes the structure of the
temporal property more involved. Formally, the liveness
property we prove is:

(�♦sender scheduled) ∧ (�♦receiver scheduled)∧
((�♦data sent)→ (�♦data received))∧
((�♦ack sent)→ (�♦ack received)) →
∀x.�(sender array(x) 6= ⊥ → ♦receiver array(x) 6= ⊥))

This property cannot be proven without temporal prophecy.
However, it can be proven using 4 temporal prophecy formu-
las: {♦� (sender bit = s ∧ receiver bit = r) | s, r ∈ {0, 1}}.
Intuitively, these formulas make a distinction between traces
in which the sender and receiver bits eventually become
fixed, and traces in which they change infinitely often.

TLB Shootdown. The TLB shootdown algorithm [6] is
used (e.g. in the Mach operating system) to maintain consis-
tency of Translation Look-aside Buffers (TLB) across pro-
cessors. When some processor (dubbed the initiator) changes
the page table, it interrupts all other processors currently
using the page table (dubbed the responders) and waits for
them to receive the interrupt before making changes. The
liveness property we prove is that no processor can become
stuck either as an initiator or as a responder (formally, it will
respond or initiate infinitely often). This liveness depends
on fair scheduling assumptions, as well as strong fairness
assumptions for the page table locks used by the protocol.
We use one witness for the process that does not satisfy the
liveness property. Another witness is used for a pagemap
that is never unlocked, if this exists. A third witness is used
for a process that possibly gets stuck while holding the lock
blocking the first process. We use six prophecy formulas
to case split on when some process may get stuck. Two of
them are used for the two loops in the initiator to distinguish
the cases whether the process that hogs the lock gets stuck
there. They are of the form ♦�pc(c2) ∈ {i3, . . . , i8}. Two
are used for the two lock instructions to indicate that the
first process gets stuck: ♦�pc(c1) = i2. And two are used

for the second and third witness to indicate whether such
a witness exists, e.g., ♦�plock(c3). Compared to the proof
of [30], our proof is simpler due to the temporal prophecy,
and avoids non-stratified quantifier alternation, resulting in
decidable verification conditions.

7. Related Work

Prophecy variables were first introduced in [2], in the
context of refinement mappings. There, prophecy variables
are required to range over a finite domain to ensure sound-
ness. Our notion of prophecy via first-order temporal for-
mulas and witness constants does not meet this criterion,
but is still sound as assured by Thm. 2. In [25], LTL
formulas are used to define prophecy variables in a way
that is similar to ours, but only to show refinement between
finite-state processes. We use temporal prophecy defined by
FO-LTL formulas in the context of infinite-state systems.
Furthermore, we consider a liveness-to-safety transformation
(rather than refinement mappings), which can be seen as a
proof system for FO-LTL.

The liveness-to-safety transformation based on dynamic
abstraction, but without temporal prophecy, was introduced
in [30]. There, a nesting structure was used to increase the
power of the transformation. A nesting structure is defined
by the user (via first-order formulas), and has the effect
of splitting the transition system into levels (analogous to
nested loops) and proving each level separately. Temporal
prophecy as we introduce here is more general, and in
particular, any proof that is possible with a nesting struc-
ture, is also possible with temporal prophecy (by adding
a temporal prophecy formula ♦�δ for every nesting level,
defined by δ). Moreover, the nesting structure does not admit
cut elimination or closure under first-order reasoning, and
is therefore less robust.

One effect of prophecy is to split cases in the proof on
some aspect of the future. This very general idea occurs
in various approaches to liveness, particularly in the large
body of work on lexicographic or disjunctive rankings for
termination [4], [7], [8], [11], [12], [14], [18], [20], [21],
[23], [26], [27], [33], [34], [35], [36], [37], [38]. In the
work of [22], the partitioning of the space of potentially
infinite executions is based on the a priori decomposition
of regular expressions for iterated loop segments. Often
the partitioning here amounts to a split according to a
fairness condition (“command a is taken infinitely often or
it is not”). The partitioning is constructed dynamically (and
represented explicitly through a union of Buchi automata)
in [24] (for termination), in [15] (for liveness), and in [17]
(for liveness of parameterized systems). None of these works
uses a temporal tableau construction to partition the space
of futures, however.

Here, we use prophecy to, in effect, partially determinize
a system by making non-deterministic choices earlier in
an execution. This same effect was used for a different
purpose in refining an abstraction from LTL to ACTL [10]
and checking CTL* properties [9]. The prophecy in this
case relates only to the next transition and is not expressed
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temporally. The method of “temporal case splitting” in [29]
can also be seen as a way to introduce prophecy variables to
increase the precision of an abstraction, though in that case
the transformation was to finite-state liveness, not infinite-
state safety. Moreover, it only introduces temporal witnesses.

We have considered only proof methods that transform
liveness to safety (which includes the classical ranking
approach for while loops). There are approaches, however,
which do not transform liveness to safety. For example,
the approaches in [3], [14], [39] are essentially forms of
widening in a CTL-style backwards fixpoint iteration. It is
not clear to what extent temporal prophecy might be useful
in increasing the precision of such abstractions, but it may
be an interesting topic for future research.

8. Conclusion

We have seen that the addition of prophecy variables in
the form of temporal formulas can increase the precision of
liveness-to-safety tranformations for infinite-state systems.
The prophecy variables are derived from additional temporal
formulas that in our implementation were mined from the
invariants a user provides to prove the safety property.
This approach is effective for proving challenging examples.
By increasing the precision of the dynamic abstraction, it
avoided the need to decompose the proof into nested termi-
nation arguments, reducing the human effort of proof con-
struction. Though completeness is not possible, we saw that
the additional expressiveness of temporal prophecy provides
a cut elimination property. While we considered tempo-
ral prophecy using a particular liveness-to-safety construc-
tion (based on dynamic abstraction), it seems reasonable
to expect that the tableau-based approach would apply to
other constructions and abstractions, including constructions
based on rankings and well-founded relations. Because our
approach relies on an inductive invariant supplied by the
user, it requires the user to understand the liveness-to-safety
transformation and it requires both cleverness and a deep
understanding of the protocol. For this reason, a possible
avenue for future research would be to explore invariant
synthesis techniques, and in particular ones that account for
refinement due to temporal prophecy.
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Abstract—We present a technique for automatic synthesis of
efficient and provably correct synchronization in GPU kernels.
Our technique relies on an off-the-shelf correctness oracle and
achieves efficient synthesis by leveraging the race location in-
formation provided by the oracle in order to encode optimal
synchronization synthesis as a MaxSAT problem. We have
implemented our technique in a tool called AUTOSYNC that
works on kernels written in CUDA and uses a static verifier
GPUVERIFY as the correctness oracle. An evaluation on 18
realistic kernels from the GPUVERIFY benchmark suite shows
that AUTOSYNC is able to synthesize optimal synchronization
placements, and synthesis times are reasonable (20 seconds for
our largest benchmark).

I. INTRODUCTION

Recent years have seen increasing use of graphics pro-
cessing units (GPUs) for speeding up general-purpose com-
putations. GPU computations are highly parallel—with thou-
sands of threads running concurrently—which creates ample
opportunity for data races. To prevent races, programmers
add barrier synchronization statements to their GPU code.
Because synchronization incurs a performance penalty, a GPU
programmer is faced with a challenging task of finding a
placement of barrier statements that is both correct (eliminates
all data races) and optimal (incurs the least overhead).

In response to this challenge, several verification techniques
have been proposed [1], [2], [3], [4], [5], [6] for detecting data
races in GPU code or proving their absence. These techniques
would alert the programmer that a barrier statement is missing,
but they neither suggest where to place the barrier, nor check
whether the current placement is optimal. In this work we
propose a computer-aided approach to GPU programming,
where the programmer omits barrier statements from their
code altogether, and our technique automatically synthesizes
a correct and optimal barrier placement.

Barrier Synthesis. One approach to barrier synthesis is
to search the space of all possible barrier placements, using
an existing GPU verification tool [6], [4] as a black-box
correctness oracle; among all correct placements, we can
then select an optimal one according to some cost model.
The benefit of such a black-box approach is that it automat-
ically takes advantage of any current and future advances in
GPU verification. Brute-force enumeration, however, would be
prohibitively expensive for most programs, since the number
of possible placements grows exponentially with the size of
the program, and verifying each candidate placement is an
expensive operation on its own.

In this paper we show how to leverage the race location
provided by the oracle and the conservative operational se-

Placement
Constraints

Candidate
Barrier

Placement

Candidate program with barriers

Errors

No Errors

AutoSyncGPUVerify

Z3

Program
without
Barriers

Program with
Barriers Error No Solution 

Fig. 1: The AUTOSYNC workflow

mantics used in verification in order to avoid considering most
invalid placements and thereby make the synthesis practical.
Moreover, we demonstrate how to encode this information
together with the cost model as a system of soft Boolean
constraints, which allows our technique to delegate the bulk
of the search to MaxSAT solvers. Our technique is sound and
complete relative to the correctness oracle.

AUTOSYNC. We have implemented this constraint-based
approach to barrier synthesis in a tool called AUTOSYNC
(Fig. 1). The tool takes as input GPU programs—or kernels—
written in the popular CUDA programming model, and uses
the sound static verifier GPUVERIFY [6] as the correctness
oracle. For constraint-based search, the tool relies on the νZ
MaxSAT solver [7], which is part of Z3 [8].

Evaluation. We have evaluated AUTOSYNC on a series
of small but challenging micro-benchmarks, as well as 18
realistic CUDA kernels from the GPUVERIFY benchmark
suite. Our evaluation shows that in all these benchmarks,
AUTOSYNC is able to recover a barrier placement that is
at least as optimal as the one originally provided by the
developer. Surprisingly, in 5 cases the automatically gener-
ated placement is strictly better than the original. Moreover,
synthesis times are moderate and range from 1 to under 30
seconds. AUTOSYNC and all our benchmarks are available at
www.souravanand.com/autosync.html.

II. MOTIVATING EXAMPLES

This section goes through a series of examples of data races
in GPU programs, showcases the challenges of finding correct
and optimal barrier placements, and provides the intuition for
how AUTOSYNC addresses these challenges.
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1 x = A[tid+1];

2 x = x+11;

3 A[tid] += x;

1 x = A[tid + 1];

2 x = x+11;

3 __syncthreads();

4 A[tid] += x;

Fig. 2: (left) A kernel with a race, and (right) the correctly
synchronized version of the kernel.

1. Read A[1]

3. Write A[0]

1. Read A[2]

3. Write A[1]

Tid=0 Tid=1
1. Read A[1]

3. Write A[0]

1. Read A[2]

3. Write A[1]

Tid=0 Tid=1

Fig. 3: Execution traces of kernels in Fig. 2 (left) and (right);
the arrow depicts a data race; the dotted line depicts a barrier.

A. Straight-line Code

In the CUDA programming model, programmers describe
a GPU computation as a kernel: a template to be executed by
each GPU thread, implicitly parametrized by a unique thread
id. For example, a simple kernel in Fig. 2 (left) instructs each
thread to read from a shared array A at a distinct index, which
depends on the thread’s id tid, and then write into the array
at the preceding index.

Fig. 3 (left) depicts an execution of this kernel by two
threads with ids 0 and 1. This execution exhibits a read-write
race: since the two threads are not synchronized, the read from
A[1] by thread 0 is racing with the write to A[1] by thread
1. Eliminating this race requires adding a barrier statement
__syncthreads() between the two racing instructions, as
shown in Fig. 2 (right). A barrier requires all the threads to
reach it before any thread can continue execution. When thread
1 encounters the barrier, it is forced to wait until thread 0
encounters the same barrier; hence the read from A[1] is now
guaranteed to happen before the write to the same location.

Barrier synthesis. Given the kernel in Fig. 2 (left), AU-
TOSYNC first checks its correctness using GPUVERIFY (see
Fig. 1), which reports a possible data race between lines 1
and 3. Based on this race location information, AUTOSYNC
generates a placement constraint:

L1 ∨ L2

Here each Li is a propositional variable that indicates whether
a barrier should be inserted after line i. Although any so-
lution to this constraint would eliminate the race, setting
more than one Li to 1 is suboptimal, since every barrier
incurs a performance overhead. To avoid suboptimal solutions,
AUTOSYNC adds a soft constraint ¬Li for each line i in
the program, which penalizes the solver for setting any Li
to 1. The resulting system of constraints is discharged by
Z3’s MaxSAT solver, producing the solution {L2}1. The
corresponding barrier placement, shown in Fig. 2 (right), is
proven correct by GPUVERIFY, and the synthesis succeeds.

1We write a solution as a set of all variables set to 1.

1 for(i=0; i<n; i++){

2 x = A[tid+1];

3 x = x+i;

4 A[tid] += x;

5 }

1 for(i=0; i<n; i++) {

2 __syncthreads();

3 x = A[tid+1];

4 x = x+i;

5 __syncthreads();

6 A[tid] += x;

7 }

Fig. 4: (left) A kernel with a race inside a loop, and (right)
the correctly synchronized version of the kernel.

2. Read A[1]

4. Write A[0]

2. Read A[2]

4. Write A[1]
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4. Write A[1]

2. Read A[1]

4. Write A[0]

2. Read A[2]

4. Write A[1]

Tid=0 Tid=1

2. Read A[1]

4. Write A[0]

2. Read A[2]

4. Write A[1]

Fig. 5: Execution traces of kernels in Fig. 4 (left) and (right);
each gray box corresponds to one loop iteration.

B. Loops

Given our first example, the reader might be wondering
if all data races can be eliminated by simply inserting a
barrier right before the second racing line. In the presence of
loops, however, barrier placement becomes more challenging.
Consider the kernel in Fig. 4 (left), which preforms a similar
computation, but inside a loop. GPUVERIFY again reports a
race between the two accesses to A (lines 2 and 4), however,
adding a barrier between these two lines turns out to be
insufficient to make the kernel race-free.

To see why, consider the execution trace of this kernel
depicted in Fig. 5: a write to A[1] by thread 1 can race with
a read executed by thread 0 either in the same loop iteration
(intra-iteration race) or in a different one (inter-iteration race).
Adding the “red” barrier between lines 2 and 4 forces the write
to happen after the read in the same iteration, but imposes no
order with the read from the next iteration. To synchronize
this kernel correctly, a second barrier must be added within
the loop body but outside the two racing lines (“green” barrier
after line 1 in Fig. 4 and Fig. 5).

Barrier synthesis. Since the racing lines reported by GPU-
VERIFY are inside a loop, AUTOSYNC generates the following
system of placement constraints:

P 0 ∨ P 1

P 0 ⇒ (L2 ∨ L3)

P 1 ⇒ (L1 ∨ L4)

Intuitively, the verification error does not contain enough infor-
mation to determine the type of the race—intra-iteration, inter-
iteration, or both—hence we encode the possibility of each
race type using a fresh propositional variable (P 0 for intra-
iteration and P 1 for inter-iteration). As before, AUTOSYNC
generates soft constraints ¬Li for all lines i, however, the
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1 x = 0;

2 if(tid%2==0) {

3 x = A[tid+2];

4 }

5 if(tid%6==0) {

6 A[tid] += x;

7 }

1 x = 0;

2 if(tid%2==0) {

3 x = A[tid+2];

4 }

5 __syncthreads();

6 if(tid%6==0){

7 A[tid] += x;

8 }

Fig. 6: (left) A kernel with a race between two different
basic blocks, and (right) the correctly synchronized version
of kernel.

lines inside the loop are given a higher weight. This forces
the solver to prefer placing barriers outside the loop, whereby
minimizing performance overhead.

Given these constraints, Z3 might return a solution
{P 0, L3}, which violates only one soft constraint and cor-
responds to adding the “red” barrier after line 3 alone. An
attempt to verify this solution reveals that the race is still
present. Hence, in a second iteration of barrier synthesis,
AUTOSYNC asks Z3 for a different assignment to the P
variables, by adding a constraint ¬(P 0 ∧ ¬P 1). The second
solution, {P 1, L1} (the “green” barrier alone) does not solve
the race either. In the third iteration, AUTOSYNC further adds
a constraint ¬(¬P 0 ∧P 1), which forces the solver to set both
P j to 1 and results in the final solution {P 0, P 1, L1, L3}.

Nested loops. In general, if both racing statements are
inside a loop nest of depth d, we have to consider d + 1
possibilities: one intra-iteration and d inter-iteration races as
different depths. If the race is inter-iteration, placing a barrier
at depth d is always sufficient, but “shallower” barriers incur
less overhead.

C. Barrier Divergence

Conditionals also complicate barrier placement. Consider
the kernel in Fig. 6 (left), where lines 3 and 6 are racing.
Placing a barrier right after line 3 or right before line 6 (i.e.
inside a conditional) would make that barrier unreachable
for some of the threads executing the kernel, leading to
undefined behavior due to so called barrier divergence [1].
The only correct solution is to insert the barrier between the
two conditionals, as shown in Fig. 6 (right).

Luckily, GPUVERIFY detects and reports if a candidate
barrier placement might cause barrier divergence. In response
to this error, AUTOSYNC adds a hard constraint that excludes
all lines within the problematic if-block from consideration.

D. Multiple Races

When a kernel contains multiple data races, analyzing and
eliminating each race independently might lead to a subopti-
mal barrier placement. Consider the kernel in Fig. 7 (left) with
two pairs of racing lines: 〈1, 3〉 and 〈2, 4〉. Considering the
two races independently might result in inserting two barrier

1 x=A[tid+1];

2 y=B[tid+1];

3 A[tid] = x+y;

4 B[tid] = x-y;

1 x=A[tid+1];

2 y=B[tid+1];

3 __syncthreads();

4 A[tid] = x+y;

5 B[tid] = x-y;

Fig. 7: (left) A kernel with two data races, and (right) the
correctly synchronized version that requires just one barrier.

kernel ::= blk

blk ::= {(` : stmt)∗}
stmt ::= local name | name := expr | barrier

| name := rd(expr) | wr(expr, expr)

| if expr blk | while expr blk

expr ::= name | tid | n | expr op expr

Fig. 8: The syntax of KPL

statements, whereas in fact, a single barrier after line 2 elim-
inates both races. Such interactions between different races
are difficult for programmers to reason about. AUTOSYNC,
on the other hand, generates the optimal placement in the first
iteration, since {L2} is the least-cost solution to the placement
constraints [L1 ∨ L2, L2 ∨ L3].

III. SYNTHESIS ALGORITHM

This section formalizes our synchronization synthesis al-
gorithm for KPL (Kernel Programming Language), a core
language we borrow from the work on GPUVERIFY [1].

A. Kernel Programming Language

Syntax. The syntax of KPL is presented in Fig. 8. Expres-
sions expr are thread-local (do not access shared memory).
Reading and writing from/to shared memory is accomplished
via the statements rd and wr, respectively. A reserved variable
tid gives the execution thread access to its unique id, which
enables different threads to execute different behavior. Com-
pared to the presentation in [1], we omit jump statements and
else branches of conditionals (both can be desugared into our
language in a standard way), and procedures, which—while
not technically challenging—are currently not supported.

Each statement in a kernel is labeled with a unique label
`; stmt(`) denotes the statement with label `. Labels of
compound statements—if and while—double as labels of
their enclosed blocks; the top-level block of the kernel has
a reserved label main . A kernel’s label tree is a tree whose
nodes are statement labels, and a node’s parent is the label
of its enclosing block; in addition, we add a special start
node `s as the leftmost child of each block2. We use blks(`)
to denote the set of enclosing blocks of ` (its ancestors
in the label tree); among those, loops(`) are the enclosing
while blocks and conds(`) are the enclosing if blocks.

2Thus, to place a barrier at the beginning of the block, we place it after `s.
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Sometimes we interpret these sets of blocks as sequences,
ordered from the root downward. We define the program
text order ≺ on labels as the post-order of the label tree.
A label interval [`1, `2) denotes the set of labels ` that lie
between `1 and `2 in the program text (`1 � ` ≺ `2) and
share all enclosing blocks with at least one of the interval
bounds (blks(`) ⊆ (blks(`1) ∪ blks(`2))). For example, on
Fig. 6 (left):3 blks(3) = {main, 2:4}; blks(5:7) = {main};
[3, 6) = {3, 2:4, 5:7s}, while [3, 5:7) = {3, 2:4} (5:7s and 6
are excluded, since they do not share their enclosing block 5:7
with any of the two bounds). Note that the set of all children
of a block ` can be expressed as the interval [`s, `).

Semantics. Prior work [1] defined the semantics of KPL
dubbed synchronous, delayed visibility (SDV). According to
this semantics, all threads execute the kernel instructions syn-
chronously (in lock step) but the effect of a wr statement may
be delayed, i.e. not immediately visible to other threads. Im-
portantly, the semantics of control structures models so-called
predicated execution, illustrated informally in Fig. 9. Under
predicated execution, the body of an if statement is always
executed by all threads, but each statement in the body can be
enabled or disabled for a given thread, depending on the value
of a predicate—a thread-local Boolean variable initialized with
the if guard; when a statement is disabled, it has no effect.
Similarly, a while loop is executed the same number of times
by all threads: it iterates as long as the loop guard holds for
at least one thread. Due to synchronous predicated execution,
at any point at run time all threads are always executing the
same statement (which, however, might be disabled for some
threads). More formally, we can define an execution trace as
a sequence of instructions 〈`1, ~p1〉, . . . , 〈`n, ~pn〉, where each
`i is the label of the statement being executed and each
~pi = [p1i , . . . , p

T
i ] is a Boolean vector of predicate values (here

T is the total number of threads). A kernel’s set of feasible
traces can be derived from the SDV operational semantics.

Races and synchronization. Delayed visibility leads to a
potential data race when two distinct threads access the same
shared memory location, and at least one of the accesses
is a write. Executing a barrier statement makes the effect
of all previous writes visible to all threads, eliminating a
potential data race with any following reads or writes. More
formally, we say that a trace . . . , 〈`i, ~pi〉, . . . , 〈`j , ~pj〉, . . .
exhibits a race between `i and `j , if stmt(`i) and stmt(`j)
are potentially conflicting shared memory accesses and ∀k ∈
(i, j) : stmt(`k) 6= barrier. We say that a trace exhibits
barrier divergence at ` if it contains a barrier instruction 〈`, ~p〉
that is not uniformly enabled, i.e. if stmt(`) = barrier and
∃t, u : pt 6= pu. A kernel is correctly synchronized if none
of its feasible traces exhibit races or barrier divergence. We
define the kernel synchronization problem as follows: given a
KPL kernel without barriers, find a subset L of its labels, such
that inserting a barrier statement as the right sibling of every
` ∈ L yields a correctly synchronized kernel.

3Here each statement is labeled with its line number or line span.

if e {

s1

s2

}

local p

p := e

p => s1

p => s2

while e {

s1

s2

}

local p

p := e

while ∃ t : t.p {

p => s1

p => s2

p => p := e }

Fig. 9: Predicated form of conditionals (left) and loops (right)

B. Placement Constraints

Our approach to solving the kernel synchronization problem
is to encode the set L as a solution to a system of Boolean
placement constraints over the propositional variables L`, for
each label ` in the kernel. Placement constraints are derived
from race locations provided by the verification oracle. A race
location is a pair of leaf labels 〈`, `′〉, such that ` � `′ and
there exists a feasible trace tr that exhibits a race between
` and `′ or between `′ and `. By definition, to eliminate the
race in tr, it is sufficient to add a barrier instruction between
the two racing instructions. Our key insight is that, thanks to
SDV’s synchronous predicated execution, this constraint on
the barrier position in the trace translates into a constraint on
its placement in the program text.

Consider a data race at location 〈`, `′〉. As we demonstrated
in Sec. II, barrier placement depends on whether both racing
statements are inside the same loop body. More precisely, we
identify two types of data races: a simple race and a loop race.

Simple races arise when loops(`) ∩ loops(`′) = ∅. In this
case, all occurrences of ` in any feasible trace tr precede all
occurrences of `′, as illustrated in Fig. 3 (with ` = 1, `′ =
3). Hence, a simple race can always be fixed by placing a
single barrier anywhere in the interval between the two racing
statements, giving rise to the following placement constraint:

∨
{Li | i ∈ [`, `′)}

Loop races arise when both racing statements are inside
a nest of loops of depth d ≥ 1: loops(`) ∩ loops(`′) =
{`1, . . . , `d}. In this case, the occurrences of ` and `′ in tr
are interspersed, as illustrated in Fig. 5 (with ` = 2, `′ = 4).
Not all pairs of occurrences are necessarily conflicting, but
the race location alone has insufficient information to discern
which ones are. For barrier placement, we have d+1 options
that separate distinct subsets of conflicting instructions in tr.

The first option is to insert an intra-iteration barrier: a
barrier inside the interval [`, `′). This barrier will separate
every occurrence of ` in tr from the occurrence of `′ within
the same iteration of the innermost loop `d, as illustrated by
the red barrier in Fig. 5. Alternatively, we can insert an inter-
iteration barrier: outside the two racing statements, but directly
inside the body of one of their shared loops `j , j ∈ [1, d]. This
barrier will separate every occurrence of ` from the occurrence
of `′ in the previous iteration of `j , as illustrated by the green
barrier in Fig. 5. A combination of an inter-iteration barrier
at d and an intra-iteration barrier will separate every pair of
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occurrences of ` and `′ in tr, and hence is guaranteed to fix the
race, but this is also the solution with most run-time overhead.
In the interest of optimality, our algorithm explores all non-
redundant combinations of intra- and inter-iteration barriers.

To this end, for a loop race 〈`, `′〉, we introduce additional
propositional variables that encode the choice of placement
options: P 0

`,`′ for the intra-iteration barrier and P j`,`′ with j ∈
[1, d] for each inter-iteration barrier. The system of placement
constraints for a loop race then includes a guarded constraint
for each placement option:

P 0
`,`′ ⇒

∨
{Li | i ∈ [`, `′)}

P j`,`′ ⇒
∨
{Li | i ∈ [`js, `) ∪ [`′, `j)}

Since only some placement options actually fix the race, the
synthesis engine iterates through all possible P -assignments,
calling the oracle to validate the corresponding candidate
solution. In each iteration, the placement constraints also
contain the negation of each previously encountered invalid P -
assignment, including the initial assignment P`,`′ = ~0, which
corresponds to the input program without barriers. Finally, to
avoid exploring redundant placement combinations, we add a
constraint ¬(P j`,`′ ∧ P k`,`′) for all j, k ≥ 1, j 6= k, since an
inter-iteration barrier in an inner loop always subsumes one in
an outer loop.

Divergence. Given a candidate solution with a barrier at
`, where blks(`) = {main, `1, . . . , `d}, the oracle reports
barrier divergence at `, if at least one of `1, . . . , `d has a
thread-dependent guard (in which case the block might not
be uniformly enabled for all threads). The synthesis engine
responds by extending the placement constraints to disallow
barriers inside the innermost block `d:

∧
{¬Li | i ∈ [`ds , `

d)}

In the next iteration, the barrier will be placed outside of
`d; iteration will continue as long as any of the remaining
enclosing blocks have thread-dependent guards.

C. Cost Model

Our goal is to design a function C : P(L) → Q+ such
that the cost of a barrier placement L correlates with its
overhead on the kernel execution time. Precise static analysis
of execution time, however, is a hard problem; hence we
opted for a simple cost model that approximates the number
of barriers the kernel will encounter during its execution (we
evaluate the adequacy of this model empirically in Sec. IV).
More precisely, the cost of a placement is the sum of costs of
all its barriers, and the cost of an individual barrier depends
on the number of its enclosing loops and conditionals:

C(L) =
∑

`∈L
C(`) where C(`) = LC |loops(`)| × IC |conds(`)|

Here, the constants LC > 1 and 0 < IC < 1 conceptually
represent the average number of times each loop is executed
and the average proportion of times each conditional guard
holds. In practice, the algorithm is not very sensitive to the

Algorithm 1 The AUTOSYNC syntheis algorithm

1: procedure SYNTHESIZE(kernel)
2: S = NEWSOLVER
3: for ` ∈ kernel do S .ASSERTSOFT(¬L`, C(`))
4: races = GETRACES(kernel)
5: for 〈`, `′〉 ∈ races do
6: {`1, . . . , `d} = kernel.loops(`) ∩ kernel.loops(`′)
7: S .ASSERT(P 0

`,`′ ⇒ ∨Li | i ∈ [`, `′))
8: for j ∈ [1, d] do
9: S .ASSERT(P j`,`′ ⇒ ∨Li | i ∈ [`js, `) ∪ [`′, `j))

10: for k ∈ [1, d], k 6= j do
11: S .ASSERT(¬(P j`,`′ ∧ P k`,`′))
12: S .ASSERT(∨P j`,`′ | j ∈ [0, d])

13: return REFINE(kernel, races, S)

14: procedure REFINE(kernel, races, S)
15: kernel′ = kernel
16: while races 6= ∅ do
17: if S .CHECK = UNSAT then
18: return “No solution”
19: L = S .MODEL
20: kernel′ = INSERTBARRIERS(kernel,L)
21: divs = GETDIVERGENCES(kernel′)
22: if divs 6= ∅ then
23: for ` ∈ divs do
24: ld = last(kernel′.blks(`))
25: S .ASSERT(∧¬Li | i ∈ [`ds , `

d))
26: else
27: races = GETRACES(kernel′)
28: for 〈`, `′〉 ∈ races do
29: S .ASSERT(∨(P j`,`′ 6= L[P

j
`,`′ ]))

30: return kernel′

precise values of these constants, since it rarely has to trade-off
two solutions with different numbers of barriers. For example,
in Fig. 4 (left) with LC = 100, C(1:5) = 1 and C(2) = 100.

D. Algorithm

Algorithm 1 describes the full barrier synthesis algorithm.
The top-level procedure, SYNTHESIZE, takes as input a KPL
kernel and returns a correctly synchronized version of this
kernel (or fails).

Initialization. We start by creating a fresh instance of a
MaxSAT solver S and asserting soft constraints that penalize
a barrier after any label ` proportionally to its cost (line 3).
In lines 4–12, we query the oracle for the initial set of
race locations races, and then generate initial placement
constraints for each race. For a loop race at depth d ≥ 1, we
generate guarded placement constraints for an intra-iteration
barrier (line 7) and all possible inter-iteration barriers (line 9);
additionally, line 11 disallows redundant placements (multiple
nested inter-iteration barriers), and line 12 forces the solver
to place at least one barrier for the current loop race, since
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the solution with an empty set of barriers is known to be
incorrect. When d = 0, we are dealing with a simple race;
in this case, lines 7 and 12 together generate an appropriate
placement constraint.

Refinement loop. After asserting the initial constraints we
invoke REFINE. This procedure alternates between asking the
solver for a placement L that satisfies the current constraints
and asking the oracle whether L is valid; if not, the constraints
are refined to exclude L and equivalent invalid placements.

The refinement loop starts by asking the solver whether the
current set of placement constraints is satisfiable (line 17). If
not, the algorithm terminates with failure; otherwise the least-
cost placement L is obtained as the model of the constraints
(line 19). Next, INSERTBARRIERS builds a candidate solution
kernel′ by inserting a barrier statement as the right sibling
of every ` ∈ L into kernel. We assume that INSERTBARRIERS
leaves the labels of existing statements unmodified and assigns
fresh labels to the barrier statements.

On line 21 we query the oracle for the set divs of barrier
divergence locations in the candidate solution. If the barrier at
label ` is diverging, we can safely exclude all statements in
`’s innermost enclosing block from consideration (line 25).

In the absence of divergence, we query the oracle for the
remaining set of races (line 27). Note that each of these
races 〈`, `′〉 must be a loop race for which the solver chose
an invalid assignment to P j`,`′ . In response, on line 29, we
add a constraint that disables the current P -assignment, which
prompts the solver to look for the next best combination of
placement options in the next iteration.

The procedure terminates either when it finds a valid
placement (races = ∅) or when the current constraints are
unsatisfiable (line 18). The latter can happen for two reasons:
(1) a race is of the form 〈`, `〉—a wr statement racing with
itself—so the disjunction in line 7 is empty, or (2) a race is in-
side a block with a thread-dependent guard, so the divergence
constraint in line 25 is inconsistent with the other placement
constraints for this race. Such races cannot be eliminated by
inserting barriers, and hence are out of scope.

E. Guarantees

Soundness. A synchronization synthesis algorithm is sound
if every solution it returns is correctly synchronized. Since
Algorithm 1 relies on the oracle to validate candidate place-
ments, we obtain the soundness guarantee for free as long as
the oracle is sound (which is true for GPUVERIFY).

Completeness. A synchronization synthesis algorithm is
complete if it returns a valid placement as long as one exists.
Algorithm 1 is complete relative to the oracle: it will discover
a placement as long as there is one that the oracle can verify.

Proof. Consider a feasible trace tr that exhibits a race between
its i-th and j-th instructions. If this race can be eliminated by
barrier placement, it must be that ∃k ∈ [i, j) : tr[k] = 〈`k,~1〉,
i.e. a uniformly enabled instruction occurs between i and j,
so the barrier can be inserted after `k. Let us define the set
F`i,`j of feasible labels as follows:

F`i,`j = Ld ∩
{
[`i, `j) if `i ≺ `j
[`ds , `j) ∪ [`i, `

d) if `j ≺ `i
where Ld is the set of children of last(blks(`i)∩blks(`j)). In
other words, feasible labels are labels in the smallest enclosing
block of the two racing instructions, which occur between i
and j in the trace. Note that we can safely pick any label from
F`i,`j as the race solution `k, because (a) F`i,`j is nonempty
according to trace semantics, and (b) its labels are the least
nested in [i, j), hence they must be uniformly enabled if any
[i, j) instructions are.

We can now show that if every trace has a verifiable solution
`k, then the constraints generated by Algorithm 1 never
become inconsistent. We build a (non-optimal) model L of the
placement constraints as follows: for every 〈`1, `2〉 ∈ races

L[P j`1,`2 ]⇐⇒ j = 0 ∨ j = d

L[L`]⇐⇒ ` ∈ F`1,`2 ∨ ` ∈ F`2,`1
This model obviously satisfies line 12; it satisfies lines 7 and 9
by definition of F`,`′ ; it satisfies line 25 because labels in F`,`′
cannot be divergent if a valid placement exists; finally, because
we include at least one feasible label for both orderings of
labels in every race, L is guaranteed to eliminate all races,
hence no further constraints will be added in line 29.

As explained in [1], the SDV semantics is conservative;
in particular, it rejects some barrier placements that could
be considered valid if we made more assumptions about the
concrete GPU platform. Our synthesis algorithm benefits from
SDV in two ways: on the one hand, soundness wrt. SDV
guarantees that the resulting kernel will execute correctly on
any GPU platform; on the other hand, SDV’s synchronous
predicated execution helps us prune the search space while
maintaining relative completeness.

Termination Procedure REFINE terminates because every
iteration eliminates at least one assignment to the propositional
variables, and the number of variables is defined by the size
of the original kernel. Moreover, the number of iterations is
upper-bounded by 2×∑

`∈leaves depth(`).
Optimality. A synchronization synthesis algorithm is op-

timal (relative to a given cost metric) if it always finds the
solution with the lowest cost among all valid solutions. Since
Algorithm 1 relies on a MaxSAT solver to perform the search,
and thanks to the soft constraints in line 3, it always finds the
placement L with the minimal cost C(L) among all models of
the placement constraints. Not all valid placements, however,
satisfy the constraints. Consider the following snippet:

1 for(i=0;i<20;i++){

2 if (i<10 && tid%2==0) {

3 x = rd(tid+i+1) }

4 if (i<10) {

5 x = x + 1 }

6 if (i<10 && tid%6==0) {

7 wr(tid+i,x) }

8 }
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Here, the optimal placement—inside the middle if-
statement—will not be discovered because as discussed above,
5 /∈ [3, 7). The reason for the exclusion is that without
analyzing the if-guards we cannot be sure that 5 occurs in
every trace between each occurrence of 3 and 7. Hence, we
do not provide a theoretical guarantee of optimality, but we
have not encountered such examples in practice.

IV. IMPLEMENTATION AND EVALUATION

We have implemented the technique from Sec. III in a proto-
type tool called AUTOSYNC. The implementation comprises
650 lines of Python code, and uses GPUVERIFY (revision
1937) and Z3 (version 4.6.0).

A. Research Questions

Our empirical evaluation aims to answer the following
research questions:
1 Is AUTOSYNC effective at synthesizing correct barrier

placements?
2 Are the placements synthesized by AUTOSYNC optimal?

Does our cost model faithfully estimate execution time?
3 Is AUTOSYNC efficient?

B. Experiment Setup

Benchmark selection. We evaluated AUTOSYNC on the
kernels from NVIDIA GPU Computing SDK v5.0 which is
used by GPUVERIFY. We have selected 18 benchmarks from
this benchmark suite, which (1) contained a barrier in the
original program (2) were verifiable by GPUVERIFY within
the timeout of five minutes, and (3) did not contain procedures,
which are currently not supported by AUTOSYNC.

For each benchmark, we compare the synthesized solution
with a baseline version, which is correctly annotated with
barrier statements by the developer, and can be verified by
GPUVERIFY. In addition to the benchmark suite, we designed
eight micro-benchmarks that exercise various challenging sce-
narios for barrier synthesis.

Running AUTOSYNC. For each benchmark, we first re-
move all barrier statements from the baseline version, pass
the resulting program to AUTOSYNC, and check whether the
barrier synthesis succeeded. If so, we manually compare the
generated output with the baseline in terms of the number of
barriers and their cumulative cost according to our cost model.

We also developed a naive version of barrier synthesis,
which uses brute-force enumerative search. The naive version
first inserts a barrier after each statement in the input kernel,
then removes all barriers that lead to divergence, and finally,
iterates over the remaining barriers, removing each barrier
unless that causes a data race. The naive method is guaranteed
to correctly synchronize the kernel, but it requires many more
calls to the oracle, and serves as a baseline in our evaluation
of the AUTOSYNC’s synthesis times.

All experiments were conducted on a machine with Intel
i7-4700MQ CPU @ 2.40GHz and 8 GB RAM. Each timing
presented in the results is the median of three runs. The cost
model is evaluated on a p2.xlarge instance of AWS which runs
the GPU kernels on NVIDIA K80 GPU.

Benchmark LoC N-V AS-V N-B AS-B N-Time AS-Time
1-1-If.cu 11 6 4 1 1 7.1 3.6
1-1-loop:inter.cu 10 10 2 1 1 11.5 1.1
1-1-loop:intra.cu 7 6 3 1 1 9.5 3.1
1-1-main.cu 5 6 2 1 1 6.6 1.1
2-1-main.cu 6 7 2 1 1 8.0 1.1
2-1-loop-d2-intra.cu 9 8 5 1 1 12.8 6.4
2-2-loop-d2-both.cu 18 15 5 2 2 25.2 6.6
2-2-loop:both.cu 7 7 4 2 2 8.9 4.0

Loc: Lines of Code, N-*: Naive Method, AS-*: AutoSync, -
V: Number of calls to GPUVERIFY, -B: Number of Barriers
Inserted, -Time: Synthesis Time (sec)

TABLE I: Evaluation on Micro Benchmarks

C. Results

Micro-benchmarks. Tab. I present the evaluation result on
the micro-benchmarks written by us. Benchmark names follow
the convention “n-m-description.cu”, where n is the number
of data races present and m is the minimum number of barriers
required to correctly synchronize the kernel. We make the
following observations about the results:
• All micro-benchmarks are correctly synchronized by both

the naive method and AUTOSYNC.
• The number of barriers inserted in the synthesized kernel

is the same as the expected minimum number of barriers.
• AUTOSYNC is significantly more efficient than the naive

method, because it performs fewer expensive calls to
GPUVERIFY.

• AUTOSYNC’s synthesis time increases linearly with the
number of calls to GPUVERIFY, which in practice is
proportional to the maximum nesting depth of loop races
present in the kernel. On the other hand, the synthesis
time of the naive method increases almost linearly with
the size of the input program.

Original Benchmarks. The results of evaluating AU-
TOSYNC on the 18 original benchmarks from NVIDIA SDK
are presented in Tab. II.
• Most of the barriers synthesized by AUTOSYNC were

placed at the same or equal-cost position as compared to
the baseline version of the kernel.

• For five benchmarks AUTOSYNC was able to generate a
more optimal placement (with fewer barriers) than the
baseline version. After a closer inspection, the reason
was that AUTOSYNC treats barrier placement as a global
optimization problem instead of handling each barrier
independently (as the programmer likely would).

• In practice, AUTOSYNC requires very few iterations of
the refinement loop (2–4), since the race locations are
not nested very deeply; consequently the synthesis time
does not necessarily grow with the size of the program.

Cost Model. We performed an experiment to evaluate the
adequacy of the cost model we proposed Sec. III-C. We wrote
multiple programs which were a combination of loops and
conditionals and added barriers at different locations. We then
measured the time taken by the kernels containing the barrier
at different cost positions and generated the run time vs cost
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Benchmark LoC V O-B AS-B Time
convolutionColumnsKernel.cu 55 2 1 1 13.1
convolutionRowsKernel.cu 57 2 1 1 8.4
d transpose.cu 26 2 1 1 1.1
imageDenoising nlm2 kernel.cu 88 2 1 1 1.9
matrixMul.cu 72 4 2 2 15.5
mergeHistogram256Kernel.cu 25 3 1 1 3.2
mergeHistogram64Kernel.cu 26 3 1 1 3.3
reduce0.cu 26 3 2 1 3.3
reduce1.cu 28 4 2 2 6.1
reduce2.cu 30 4 2 1 5.6
reduce3.cu 32 3 2 1 3.2
reduce5.cu 94 3 4 3 10.1
reduce6.cu 104 4 4 3 15.8
sobol.cu 93 3 1 1 19.9
sum0.cu 25 3 2 2 4.7
sum1.cu 22 3 2 2 4.6
uniformUpdate.cu 17 3 1 1 2.6
uniform add.cu 17 3 1 1 2.4

Loc: Lines of Code, V: Number of calls to GPUVERIFY, O-B:
Number of Barriers in the original benchmark, AS-B: Number
of Barriers in the synthesized program, Time: Synthesis Time
(sec)

TABLE II: Evaluation of original Benchmarks

Fig. 10: The run-time overhead (sec) of placing barriers at
different costs. The cost of barrier is computed as the cost
model discussed above where LC=100 and IC=0.5 and every
loop performs 100 iterations.

graph (Fig. 10). We can clearly see from the graph that the run
time increases rapidly with the cost of the barrier placement.
This graph suggests that the cost model described in Sec. III-C
correlates well with the actual run-time overhead of barrier
placement.

D. Threats to Validity

Out of the 18 benchmarks in our evaluation, 8 contained
some user-provided invariants which were essential for GPU-
VERIFY to successfully verify the kernel. We believe it is fair
to use these annotated programs because our tool is agnostic
to the choice of oracle, and we hope that as invariant inference
improves, our tool will become fully automatic. In addition,
all our benchmarks are obtained by removing barriers from

correctly synchronized kernels; hence a valid barrier placement
always exists. In general, synchronization is not limited to
placing barriers and might require more substantial changes to
the code; such changes are out of the scope for our technique.

V. RELATED WORK

Synchronization synthesis for various concurrency models
is a rich and active area of research. Prior work focused on
traditional shared memory concurrency [9], [10], [11], [12],
[13], [14] and network programs [15]. To our knowledge, AU-
TOSYNC is the first tool to perform synchronization synthesis
for GPUs. GPUs are an interesting new domain for this line
of work, because of the subtleties of the concurrency model,
such as barrier divergence. Our technique shares similarities
with [13], which also uses MaxSAT to find an optimal syn-
chronization placement.

An important difference between AUTOSYNC and prior
work in this area, is that we use an off-the-shelf verifier as
a correctness oracle and define the minimal interface between
the search engine and the oracle—data race locations—that
still supports efficient synthesis. This design decision gives us
soundness for free and allows AUTOSYNC to automatically
leverage any future advances in GPU verification technology.

Code generation. A complementary approach to automatic
synchronization is to compile a high-level language into GPU
code [16], [17]. This approach works well when the high-
level language matches the task at hand, but falls short if the
programmer needs to hand-optimize the low-level GPU code.

Race detection for GPU kernels is also an extremely
active research area [1], [6], [2], [3], [4], [5]. As mentioned
in the introduction, these techniques can detect a missing
barrier, but do not help the programmer find an optimal
placement for the barrier. In this paper we show how to
leverage these verification techniques as correctness oracles
for synchronization synthesis. Even though our implementa-
tion uses GPUVERIFY [6], it can be adapted to work with
any sound verification engine that uses predicated execution
semantics and reports race locations and divergent barriers.

VI. CONCLUSIONS

We have presented a technique for automatically inserting
barrier synchronization in GPU kernels. Our main contribution
is two-fold. First, we show how to reuse an existing verifier
as a correctness oracle and still achieve efficient synthesis by
leveraging error information from failed verification attempts.
Second, we show how to combine this error information with
information about program structure to encode the search for
an optimal barrier placement as a MaxSAT problem.
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Abstract—We present a thread-modular proof method for
complexity and resource bound analysis of concurrent, shared-
memory programs, lifting Jones’ rely-guarantee reasoning to
assumptions and commitments capable of expressing bounds.
We automate reasoning in this logic by reducing bound analysis
of concurrent programs to the sequential case. Our work is
motivated by its application to lock-free data structures, fine-
grained concurrent algorithms whose time complexity has to our
knowledge not been inferred automatically before.

I. INTRODUCTION

A. Program Complexity and Resource Bound Analysis

Program complexity and resource bounds analysis (bound
analysis) aims to statically determine upper bounds on the
resource usage of a program as expressions over its inputs. De-
spite the recent discovery of powerful bound analysis methods
for sequential imperative programs (e.g., [1], [2], [3], [4], [5],
[6], [7]), little work exists on bound analysis for concurrent,
shared-memory imperative programs (cf. Section VII).

From a practical point of view, bound analysis is an im-
portant step towards proving functional correctness criteria of
programs in resource-constrained environments: For example,
in real-time systems intermediary results must be available
within certain time bounds, or in embedded systems applica-
tions must not exceed hard constraints on CPU time, memory
consumption, or network bandwidth.

B. Non-blocking Data Structures

We illustrate the necessity of extending bound analysis to
concurrent, shared-memory programs on the example of non-
blocking data structures: Devised to circumvent shortcom-
ings of lock-based concurrency (like deadlocks or priority
inversion), they have been adopted widely in engineering
practice [8]. For example, the Michael-Scott non-blocking
queue [9] is implemented in the Java standard library’s
ConcurrentLinkedQueue class.

Automated techniques have been introduced for proving
both correctness (e.g., [10], [11], [12], [13]) and progress (e.g.,
[14], [15]) properties of non-blocking data structures. In this
work, we focus on the progress property of lock-freedom, a
liveness property that ensures absence of livelocks: Despite
interleaved execution of multiple threads altering the data
structure, some thread is guaranteed to complete its operation
eventually.

From a practical, engineering point of view it is not enough
to prove that a data structure operation completes eventually.
Rather, it needs to make progress using a bounded, measurable
amount of resources: Petrank et al. [16] formalize and study
bounded lock-free progress as bounded lock-freedom, and
discuss its relevance for practical applications. They describe
its verification for a fixed number of threads and a given bound
using model checking, but leave finding the bound to the
user. Existing approaches for automatically proving progress
properties like the ones presented in [14], [15] are limited
to eventual progress. To our knowledge, bounded progress
guarantees have not been inferred automatically before.

C. Overview

Reasoning about the resource consumption of non-blocking
algorithms is an intricate and manually tedious problem. To
illustrate this point, consider the following common design
pattern for lock-free data structures: A thread aiming to
manipulate the data structure starts by taking as many steps
as possible without synchronization, preparing its intended
update. Then, it attempts to alter the globally visible state
by synchronizing on a single word in memory at a time.
Interference from other threads may cause this synchronization
to fail, and the thread to retry from the beginning. From the
viewpoint of a single thread that accesses the data structure:

1) The amount of interference by other threads directly
affects its resource consumption. In general, this means
reasoning about an unbounded number of concurrent
threads, even to infer resource bounds on a single thread.

2) The point of interference may occur at any point in the
execution, due to the fine granularity of concurrency.

In this paper, we present an automated bound analysis for
concurrent, shared-memory programs to remedy this situation:
In particular, our method analyzes the parameterized system of
N concurrent lock-free data structure client threads. To reason
about this infinite family of systems and its interactions, we
leverage and extend rely-guarantee (RG) reasoning [17]: RG
reasoning considers each thread separately, modeling inter-
leaved steps of other threads in an environment assumption.
However, we will see that classic RG reasoning is too weak
to obtain suitable bounds. Therefore, we extend RG reasoning
to bound analysis. In the following we outline the major
contributions of this paper.
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D. Contributions

1) We present the first extension of rely-guarantee specifi-
cations to bound analysis (Section III).

2) We formulate inference rules to reason about these
extended specifications and instantiate them to derive
our method for bound analysis of concurrent programs
(Section IV).
Apart from their specific use case in this work, we
believe the inference rules are interesting in their own
right, for example in comparison to the reasoning rules
for liveness presented in [14] (cf. the discussion in
Section VII).

3) We reduce bound analysis of concurrent programs to
bound analysis of sequential programs, and obtain an
algorithm for rely-guarantee bound analysis (Section V).

4) We implement our algorithm in the tool COACHMAN
and apply it to lock-free data structures from the liter-
ature. To our knowledge, we are the first to automati-
cally infer runtime complexity for widely studied lock-
free data structures such as Treiber’s stack [18] or the
Michael-Scott queue [9] (Section VI).

II. MOTIVATING EXAMPLE

We start by giving an informal explanation of our method
and of the paper’s main contributions on a running example.

A. Running Example: Treiber’s Stack

Fig. 1 shows the implementation of a lock-free concurrent
stack known as Treiber’s stack [18]. Our input programs
are represented as control-flow graphs with edges labeled by
guarded commands of the form g B c. We omit g if g = true.
We assume edges are executed atomically, and that programs
execute in presence of a garbage collector; the latter prevents
the so-called ABA problem and is a common assumption in
the design of lock-free algorithms [8].

Values stored on the stack do not influence the number of
times its operations are executed, thus we abstract them away
for readability. The stack is represented by a null-terminated
singly-linked list, with the shared variable T pointing to the
top element. The push and pop methods may be called
concurrently, with synchronization occurring at the guarded
commands originating in `3 for push and `13 for pop. These
low-level atomic synchronization commands are usually im-
plemented in hardware, through instructions like compare-and-
swap (CAS) [8].

The stack operations are implemented as follows: Initially,
T points to NULL. The push operation (Fig. 1a)

1) allocates a new list node n (`0 → `1)
2) reads the global stack pointer T (`1 → `2)
3) updates the newly allocated node’s next field to the read

value of T (`2 → `3)
4) atomically: compares the value read in (2) to the ac-

tual value of T; if equal, T is updated to point to n,
otherwise the operation restarts (`3 → `4 and `3 → `1
respectively).

The pop operation (Fig. 1b) proceeds similarly.

B. Problem Statement

Consider a general data structure client P = op1() [] · · · []
opM(), where op1, . . . , opM are the data structure’s operations,
and [] denotes non-deterministic choice. We compose N con-
current client threads P1 to PN accessing the data structure:

‖N P def
= P︸︷︷︸

P1

‖ · · · ‖ P︸︷︷︸
PN

Our goal is to design an automated procedure that automat-
ically infers upper-bounds for all system sizes N on

1) the thread-specific resource usage caused by a control-
flow edge of a single thread P1 when executed concur-
rently with P2 ‖ · · · ‖ PN , or

2) the total resource usage caused by a control-flow edge
in total over all threads P1 to PN .

Remark (Cost model). To measure the amount of resource us-
age, bound analyses are usually parameterized by a cost model
that assigns each operation or instruction a cost amounting to
the resources consumed. In this paper, we adopt a uniform cost
model that assigns a constant cost to each control-flow edge.
When we speak of the complexity of a program, we adopt a
specific uniform cost model that assigns cost 1 to each control-
flow back edge and cost 0 to all other edges; this reflects the
asymptotic time complexity of the program.

Running example. Consider N concurrent copies P1 ‖ · · · ‖
PN of the Treiber stack’s client program push() [] pop(), and
the push operation’s control-flow edge `1 → `2. A manual
analysis yields a thread-specific bound for P1 telling us that
this edge is executed at most N times by P1: Each time that
another thread successfully modifies stack pointer T, P1’s copy
in t may become outdated, causing the test at `3 to fail (t 6=
T), and P1 to restart. After at most N − 1 iterations, all other
threads have finished their operations and returned, and P1

executes `1 → `2 → `3 → `4 without interference.
Similarly, a total bound for P1 ‖ · · · ‖ PN tells us that edge

`1 → `2 is executed at most N(N + 1)/2 times by all threads
P1 to PN in total: The first thread to successfully synchronize
at `3 sees no interference and executes `1 → `2 once. The
second thread may need to restart once due to the first thread
modifying T, and executes `1 → `2 at most twice, etc. The last
thread to synchronize has the worst-case bound we established
as thread-specific bound for P1: it executes `1 → `2 N times.
We obtain N(N + 1)/2 as closed form for the total bound.
In the following, we illustrate how to formalize and automate
this reasoning.

C. Environment Abstraction

Client program ‖N P from above is parameterized in the
number of concurrent threads N . To reason about this infinite
family of parallel client programs, we base our analysis on
Jones’ rely-guarantee reasoning [17]. For each thread, RG
reasoning over-approximates the following as sets of binary
relations over program states (actions):
• the thread’s effect on the global state (its guarantee)
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`0

`1

`2 `3

`4

n := new
Node(next=NULL)

t := T

n.next := t

t == T B
T := n

t != T B
skip

(a) push()

`10`11

`12

`13

`14

t := T

t == NULL B
skip

t != NULL B
skip

n := t.next

t == T B
T := n

t != T B skip

(b) pop()

`A

AId: skip
APop:

T != null B
T := T.next

APush:
n := new Node(next=NULL);

n.next := T;
T := n

(c) Stateless program P (A) for ac-
tions A = {APush, APop, AId} [19].

Fig. 1: Treiber’s lock-free stack [18]. Stack pointer T is the sole global variable.

• the effect of all other threads (its rely) as the union of
those threads’ guarantees.

The effect of all other threads (the thread’s environment) is
thus effectively abstracted into a single relation. Crucially,
this also abstracts away how often each environment action
is performed, rendering Jones’ RG reasoning unsuitable for
concurrent bound analysis.

Running example. The program in Fig. 1c with actions
A = {APush, APop, AId} summarizes the globally visible effect
of P1’s environment P2 ‖ · · · ‖ PN for all N > 0. In
particular, APush summarizes the effect of an environment
thread executing edge `3 → `4 from the point of view1 of
thread P1, APop that of `13 → `14, and AId that of all other
edges. We discuss how to obtain A in Section V-A.

As is, the actions in A may be executed infinitely often. Our
informal derivation of the bound in Section II-B however, had
to determine how often other threads could interfere with the
reference thread P1 (altering pointer T) to bound its number
of loop iterations.

Hence, we lift Jones’ RG reasoning to concurrent bound
analysis by enriching RG relations with bounds. We emphasize
our focus on progress properties in this work: although our
framework extends Jones’ RG reasoning and can express
safety properties, we only use it to reason about bounds; tighter
integration is left for future work.

D. Rely-Guarantee Reasoning for Bound Analysis
In particular, relies and guarantees in our setting are maps

{A1 7→ b1, . . . } from actions Ai (which are binary relations
over program states) to bound expressions bi. Each relation
describes an environment action, and the bound expression
describes how often that action may occur on a run of the
program.

We present a program logic for thread-modular [20] reason-
ing about bounds: A judgement in our logic takes the form

R,G ` {S} P {S′}
1Note that changes to local variables of P2, . . . , PN are not visible to P1.

where {S} P {S′} is a Hoare triple, and R,G are a rely
and guarantee. Its informal meaning is: For any execution
of program P starting in a state from {S}, and environment
interference described by the relations in R and occurring at
most the number of times given by the respective bounds in
R, P changes the shared state according to the relations in G
and at most the number of times described by the respective
bounds in G. In addition, the execution is safe (does not reach
an error state) and if P terminates, its final state is in {S′}.
Running example. For readability, we focus on the analysis
of Treiber’s push method. The steps for pop are similar. To
obtain one bound per edge, we split action AId : skip from
Fig. 1c into several actions Ai,jId : skip, one for each edge
`i → `j . For a rely or guarantee {A0,1

Id 7→ b1, A
1,2
Id 7→ b2,

A2,3
Id 7→ b3, A

3,1
Id 7→ b4, APush 7→ b5}, we fix the order of

actions and write (b1, b2, b3, b4, b5) for short.
First, our method states the following RG quintuple:

R,G ` {Inv} P1 {true}

where Inv is a data structure invariant stated over shared
variables in a suitable assertion language (e.g., separation
logic), R = (∞,∞,∞,∞,∞), and G = (1,∞,∞,∞, 1).
Despite the unbounded environment R (which corresponds
to Fig. 1c), we can already bound two edges, `0 → `1 and
`3 → `4 of P1, and thus the corresponding actions in G: These
edges are not part of a loop and – despite any interference from
the environment – can be executed at most once.

We show how to automatically discharge (or rather, dis-
cover) such RG quintuples in Section V. Next, we use the
bound information obtained in G to refine the environment R
until a fixed point of the rely is reached.

Running example (continued). We established that thread
P1 can perform actions A0,1

Id and APush at most once. In our
example, all threads are symmetric, thus each of the N − 1
other threads can execute A0,1

Id and APush at most once as well.
The abstract environment representing these N−1 threads can
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thus execute each action A0,1
Id and APush at most N −1 times.

We obtain the refined rely R′ = (N − 1,∞,∞,∞, N − 1).
As we have reasoned in Section II-B, once the number of

APush environment actions is bounded, P1 loops only that
number of times. We obtain the refined guarantee

G′ = (1, N,N,N − 1, 1).

By the same reasoning as above, we multiply G′ with (N−1)
(componentwise) and obtain the refined rely

R′′ = (N − 1, N(N − 1), N(N − 1), (N − 1)2, N − 1).

From R′′, we cannot obtain any tighter bounds, i.e., G′′ = G′
is a fixed point, and we report G′′ and G′′+R′′ as the thread-
specific and total bounds of P1 and P1 ‖ · · · ‖ PN :

edge thread-specific bound total bound
`0 → `1 1 N
`1 → `2 N N2

`2 → `3 N N2

`3 → `1 N − 1 N(N − 1)
`3 → `4 1 N

We demonstrate in Section VI that for more complex
examples, more than two iterations of the rely-refinement are
necessary to bound all edges. We formalize our reasoning in
Sections III and IV, explain its automation in Section V, and
describe further case studies in Section VI.

III. RG SPECIFICATIONS FOR BOUND ANALYSIS

In this section, we formalize the technique illustrated in-
formally above. We start by stating our program model and
formally define the kind of bounds we consider:

A. Program Model
Definition 1 (Program). Let LVar and SVar be finite disjoint
sets of typed local and shared program variables, and let
Var = LVar ∪ SVar . Let Val be a set of values. Program
states Σ: Var → Val over Var map variables to values. We
write σ�Var ′ where Var ′ ⊆ Var for the projection of a state
σ ∈ Σ onto the variables in Var ′. Let GC = Guards ×
Commands denote the set of guarded commands over Var
and their effect be defined by J·K : GC → Σ → 2Σ ∪ {⊥}
where ⊥ is a special error state. A program P over Var is a
directed labeled graph P = (L, T, `0), where L is a finite set of
locations, `0 ∈ L is the initial location, and T ⊆ L×GC ×L
is a finite set of transitions. Let S be a predicate over Var
that is evaluated over program states. We overload J·K and
write JSK ⊆ Σ for the set of states satisfying S. We represent
executions of P as sequences of steps r ∈ Σ × T × Σ and
write σ t−→ σ′ for a step (σ, t, σ′). A run of P from S is a
sequence of steps ρ = σ0

`0,gc0,`1−−−−−→ σ1
`1,gc1,`2−−−−−→ . . . such that

σ0 ∈ JSK and for all i ≥ 0 we have σi+1 ∈ JgciK(σi).

Definition 2 (Interleaving of Programs). Let Pi =
(Li, Ti, `0,i) for i ∈ {1, 2} be two programs over Var i =
LVar i ∪ SVar i such that LVar1 ∩ LVar2 = ∅. Their inter-
leaving P1 ‖ P2 over Var1 ∪Var2 is defined as the program

P1 ‖ P2 = (L1 × L2, T, (`0,1, `0,2))

where T is given by ((`1, `2), gc, (`′1, `
′
2)) ∈ T iff

(`1, gc, `
′
1) ∈ T1 and `2 = `′2 or (`2, gc, `

′
2) ∈ T2 and `1 = `′1.

Given a program P over local and shared variables Var =
LVar ∪ SVar , we write ‖NP = P1 ‖ · · · ‖ PN where N ≥ 1
for the N -times interleaving of program P with itself, where
Pi over Var i is obtained from P by suitably renaming local
variables such that LVar1∩· · ·∩LVarN = ∅. Given a predicate
S over Var , we write

∧
N S for the conjunction S1∧· · ·∧SN

where Si over Var i is obtained by the same renaming.

Definition 3 (Expression). Let Var be a set of integer program
variables. We denote by Expr(Var) the set of arithmetic
expressions over Var ∪ Z ∪ {∞}. The semantics function
J·K : Expr(Var) → Σ → (Z ∪ {∞}) evaluates an expression
in a given program state. We assume the usual expression
semantics; in particular, a ◦ ∞ = ∞ and a ≤ ∞ for all
a ∈ Z ∪ {∞} and ◦ ∈ {+,×}.
Definition 4 (Bound). Let P = (L, T, `0) be a program over
variables Var , and let S over Var be a predicate describing
P ’s initial states. Let t ∈ T be a transition of P , and ρ =

σ0
t1−→ σ1

t2−→ · · · be a run of P from S. We use #(t, ρ) ∈
N0∪{∞} to denote the number of times transition t appears on
run ρ. An expression b ∈ Expr(VarZ) over integer program
variables VarZ ⊆ Var is a bound for t on ρ iff #(t, ρ) ≤
JbK(σ0), i.e., if t appears at most b times on ρ.

Given a program P = (L, T, `0) and predicate S over local
and shared variables Var = LVar ∪ SVar , our goal is to
compute a function Bound: T → Expr(SVarZ ∪ {N}), such
that for all transitions t ∈ T and all system sizes N ≥ 1,
Bound(t) is a bound for t of P1 on all runs of ‖NP = P1 ‖
· · · ‖ PN from

∧
N S = S1∧· · ·∧SN . That is, Bound gives us

the thread-specific bounds for transitions of P1. In Section IV,
we explain how to obtain total bounds on ‖NP from that.

B. Extending Rely-Guarantee Reasoning for Bound Analysis

To analyze the infinite family of programs ‖NP = P1 ‖
· · · ‖ PN , we abstract P1’s environment P2 ‖ · · · ‖ PN : We
define actions, which provide an abstract view of transitions
by abstracting away local variables and program locations.

Definition 5 (Action, Environment Assertion). Let ΣS be a
set of program states over shared variables SVar . An action
A ⊆ ΣS × ΣS over SVar is a binary relation over program
states. Let A = {A1, . . . , An} be a finite set of actions. An
environment assertion EA : A → Expr(SVar) over A is a
function that maps actions to bound expressions over SVar .
We omit A from EA wherever it is clear from the context.

We use sequences a of actions to describe interference: In-
tuitively, the bound EA(A) describes how often action A ∈ A
is permissible in such a sequence. This is captured by the |=
relation defined below. We also define operations and relations
on environment assertions to compose and compare them.

Definition 6 (Operations and Relations on Environment As-
sertions). Let A be a finite set of actions over shared variables
SVar , let A ∈ A be an action, and let a be a finite or infinite
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word over actions A. Let EA and E ′A be environment assertions
over A. Let σ ⊆ ΣS be a program state over SVar . We
overload #(A, a) ∈ N0 ∪{∞} to denote the number of times
A appears on a and define

a |=σ EA iff #(A, a) ≤ JEA(A)K(σ) for all A ∈ A.
Let e ∈ Expr(SVar) be an expression over SVar . For all

actions A ∈ A we define

(e× EA)(A) = e× EA(A), and
(EA + E ′A)(A) = EA(A) + E ′A(A).

Further, let S be a predicate over SVar . We define

EA ⊆S E ′A iff JEA(A)K(σ) ≤ JE ′A(A)K(σ)

for all A ∈ A and all σ ∈ JSK.

C. Trace Semantics of RG Quintuples

We abstract environment threads of interleaved programs
with RG quintuples of either form

R,G ` {S} P {S′} or R, (G1,G2) ` {S} P1 ‖ P2 {S′}
where P and P1 ‖ P2 are programs, S and S′ are predicates
such that JSK ⊆ Σ are inital program states, and JS′K ⊆ Σ are
final program states, and rely R and guarantees G and G1,G2

are environment assertions over a finite set of actions A.

Remark (Notation of environment assertions). Note that the
relies and guarantees of a single RG quintuple are defined
over the same set of actions A; in Section V-A we show how
to compute a set A that over-approximates P (or P1 ‖ P2)
in a prelimiary analysis step. We choose to write relies
and guarantees as functions over A as it simplifies notation
throughout the paper. The reader may prefer to think of
environment assertions {A1 7→ b1, . . . } as sets of pairs of
an action and a bound {(A1, b1), . . . }, in contrast to just sets
of actions {A1, . . . } in Jones’ RG reasoning.

In particular, R abstracts P ’s or P1 ‖ P2’s environment.
The guarantees G and (G1,G2) allow us to express both
thread-specific and total bounds on interleaved programs: The
guarantee G of quintuple R,G ` {S} P1 ‖ P2 {S′} contains
total bounds for P1 ‖ P2, while the guarantees G1,G2 of
R, (G1,G2) ` {S}P1 ‖ P2 {S′} contain the respective thread-
specific bounds of threads P1 and P2.

We model executions of RG quintuples as traces, which
abstract runs of the concrete system. In particular, for each
run of the concrete system, there exists a corresponding trace
of the abstract system. This allows us to over-approximate
bounds by considering the traces induced by RG quintuples.

Definition 7 (Trace). Let P = (L, T, `0) be a program of
form P1 or P1 ‖ P2 and S be a predicate over local and shared
variables Var = LVar ∪SVar . Let A be a finite set of actions
over SVar . We represent executions of P interleaved with
environment actions in A as sequences of trace transitions
δ ∈ (L × Σ) × (L × Σ ∪ {⊥}) × {1, 2, e} × A, where the
first two components define the change in program location

R+ G2,G1 ` {S1} P1 {S′1}
R+ G1,G2 ` {S2} P2 {S′2}

PARR, (G1,G2) ` {S1 ∧ S2} P1 ‖ P2 {S′1 ∧ S′2}

R, (G1,G2) ` {S} P1 ‖ P2 {S′}
PAR-MERGER,G1 + G2 ` {S} P1 ‖ P2 {S′}

R1, ~G1 ` {S1} P {S′1}
S2 ⇒ S1 R2 ⊆S2

R1
~G1 ⊆S2

~G2 S′1 ⇒ S′2 CONSEQ
R2, ~G2 ` {S2} P {S′2}

Fig. 2: Rely/guarantee proof rules for bound analysis. We write
~G for either G or (G1,G2). In the latter case, ⊆ is applied
componentwise.

and state, the third component defines whether the transition
was taken by program P1 (1), P2 (2), or the environment (e),
and the last component defines which action summarizes the
state change. For a trace transition δ = ((`, σ), (`′, σ′), α,A),
we write (`, σ)

α:A−−→ (`′, σ′). A trace τ = (`0, σ0)
α1:A1−−−−→

(`1, σ1)
α2:A2−−−−→ . . . is a sequence of trace transitions. Let |τ | ∈

N0 ∪ {∞} denote the number of transitions of τ . We define
the set traces(S, P ) as the set of traces such that σ0 ∈ JSK
and for 0 < i ≤ |τ | we have either
• αi = 1, (`i−1, gc, `i) ∈ T1 for some gc, σi ∈ JgcK(σi−1),

and (σi−1�SVar , σi�SVar ) ∈ Ai, or
• αi = 2, (`i−1, gc, `i) ∈ T2 for some gc, σi ∈ JgcK(σi−1),

and (σi−1�SVar , σi�SVar ) ∈ Ai, or
• αi = e, `i−1 = `i, (σi−1�SVar , σi�SVar ) ∈ Ai, and
σi−1�LVar = σi�LVar .

The projection τ�C of a trace τ ∈ traces(S, P ) to compo-
nents C ⊆ {1, 2, e} is the sequence of actions defined as image
of τ under the homomorphism that maps ((`, σ), (`′, σ′), α,A)
to A if α ∈ C, and otherwise to the empty word.

We now define the meaning of RG quintuples over traces:

Definition 8 (Validity). We define R,G |= {S}P {S′} iff for
all traces τ ∈ traces(S, P ) such that τ starts in state σ0 ∈ JSK
and τ�{e} |=σ0 R (τ ’s environment transitions satisfy the rely):
• if τ is finite and ends in ((`, σ), (`′, σ′), α,A) for some
`, `′, σ, α,A then σ′ 6= ⊥ (the program is safe) and σ′ ∈
JS′K (the program is correct), and

• τ�{1} |=σ0 G (τ ’s P -transitions satisfy the guarantee G).
Similarly, R, (G1,G2) |= {S} P1 ‖ P2 {S′} iff for all τ ∈
traces(S, P1 ‖ P2) s.t. τ starts in σ0 ∈ JSK and τ�{e} |=σ0

R:
• if τ is finite and ends in ((`, σ), (`′, σ′), α,A) for some
`, `′, σ, α,A then σ′ 6= ⊥ and σ′ ∈ JS′K, and

• τ�{1} |=σ0
G1 and τ�{2} |=σ0

G2.

IV. RG REASONING FOR BOUND ANALYSIS

Similar to classic RG reasoning [17], [21], we propose
inference rules to facilitate reasoning about our extended RG
quintuples. Our inference rules are shown in Fig. 2:

98

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



• PAR interleaves two threads P1 and P2 and expresses
their thread-specific guarantees in (G1,G2).

• PAR-MERGE combines thread-specific guarantees
(G1,G2) into a total guarantee G1 + G2.

• CONSEQ is similar to the consequence rule of Hoare logic
or RG reasoning: it allows to strengthen precondition and
rely, and to weaken postcondition and guarantee(s).

We instantiate these rules to derive the main underlying
principle of our bound analysis in the proof of Theorem 2.

Theorem 1 (Soundness). The rules in Fig. 2 are sound.
Proof sketch: By Definition 7 (trace semantics of RG

quintuples) and induction on the trace length.

In the following, we assume existence of a procedure
SYNTHG(S, P,R) that takes a predicate S, a non-interleaved
program P , and a rely R and computes a guarantee G, such
that R,G |= {S}P {true} holds. We present such a procedure
in Section V.

Our main idea is to use SYNTHG to compute correct-by-
construction guarantees for RG quintuple fragments of form
R, ? ` {Inv} P1 {true}. From this, Theorem 2 stated below
allows us to infer guarantees for P1’s environment P2 ‖ · · · ‖
PN and thus for ‖NP = P1 ‖ · · · ‖ PN .

Theorem 2 (Generalization of Single-Thread Guarantees). Let
P be a program over local and shared variables Var =
LVar ∪ SVar and let ‖NP = P1 ‖ · · · ‖ PN be its N -
times interleaving. Let S be a predicate over SVar . Let A
over SVar be the set of actions summarizing the globally
visible effect of ‖NP started from S, and let R and G be
environment assertions over A. Let 0 = (0, . . . , 0) denote the
empty environment.
If

(N − 1)× G ⊆S R and R,G |= {S} P1 {true}

then

0, (G, (N − 1)× G) |= {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}.

I.e., if (N − 1) × G is smaller than R, and if R,G |=
{S} P1 {true} holds, then in an empty environment, P1’s
environment P2 ‖ · · · ‖ PN executes actions A no more than
(N − 1)× G times.

Proof sketch: By induction on the number of threads
and repeated application of rules CONSEQ, PAR-MERGE, and
PAR.

Running example. Let us return to the task of computing
bounds for N threads ‖NP = P1 ‖ · · · ‖ PN concurrently
executing Treiber’s push method. Our method starts from the
RG quintuple fragment

R, ? ` {Inv} P1 {true} (1)

for which it computes a correct-by-construction guarantee: It
summarizes P1’s environment P2 ‖ · · · ‖ PN in the rely R. At
this point, it cannot safely assume any bounds on P2 ‖ · · · ‖
PN , and thus on R. Therefore, it lets R = (∞,∞,∞,∞,∞).

Next, our method runs RG bound analysis. As we have argued
in Section II-D, this yields SYNTHG(Inv , P1,R) = (1,∞,∞,
∞, 1), i.e., we have

(∞,∞,∞,∞,∞), (1,∞,∞,∞, 1) |= {Inv} P1 {true}. (2)

Remark (Role of Theorem 2). At this point, our method
cannot establish tighter bounds for P1 unless it obtains tighter
bounds for its environment P2 ‖ · · · ‖ PN and thus R. In
Section II-D, we informally argued that if G = (1,∞,∞,∞,
1) is a guarantee for P1, then (N − 1) × G = (N − 1,∞,
∞,∞, N − 1) must be a guarantee for the N − 1 threads in
P1’s environment P2 ‖ · · · ‖ PN . Theorem 2 formalizes this
principle: It allows us to switch the roles of reference thread
and environment, i.e., to infer bounds on P2 ‖ · · · ‖ PN in an
environment of P1 from already computed bounds on P1 in
an environment of P2 ‖ · · · ‖ PN .

Running example (continued). Our method applies Theo-
rem 2 to (2) and obtains

R, (G1,G2) |= {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1,∞,∞,∞, 1)

G2 = (N − 1,∞,∞,∞, N − 1)

From the above, we have that (N − 1,∞,∞,∞, N − 1) is
a bound for P1’s environment P2 ‖ · · · ‖ PN when run in
parallel with P1. Going back to the RG quintuple fragment (1),
our technique refines the rely R, which models P2 ‖ · · · ‖ PN ,
by letting R = (N − 1,∞,∞,∞, N − 1). Again, it runs
SYNTHG, which returns (1, N,N,N − 1, 1). Thus,

R,G |= {Inv} P1 {true} where
R = (N − 1,∞,∞,∞, N − 1)

G = (1, N,N,N − 1, 1)

Another refinement of R from G by Theorem 2 and another
run of SYNTHG gives

R,G |= {Inv} P {true} where

R = (N − 1, N(N − 1), N(N − 1), (N − 1)2, N − 1)

G = (1, N,N,N − 1, 1)

This time, the guarantee has not improved any further, i.e.,
our method has reached a fixed point and stops the iteration.
Applying Theorem 2 gives

R, (G1,G2) |= {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1, N,N,N − 1, 1)

G2 = (N − 1, N(N − 1), N(N − 1), (N − 1)2, N − 1)

To compute thread-specific bounds for the transitions of P1,
our method may stop here; the bounds can be read off G1. For
example, the second component of G1 indicates that transition
`1 → `2 is executed at most N times. To compute total bounds
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program P invariant analysis (§V-A)

invariant Inv actions Ainitial rely
R = (∞, . . . ,∞)

R, ? ` {Inv} P {true}
over actions A

instrument Inv ,R to enforce bounds (§V-B)

program P (R) ‖ P

bound analyzer (§V-C)

correct by construction G

obtain refined R′ from G (§V-D)

R′ ( R?

return G

let R = R′

no

yes

Fig. 3: Overview of our analysis.

for the transitions of the whole interleaved system P1 ‖ · · · ‖
PN , our technique applies rule PAR-MERGE, which gives

R,G |= {Inv} P1 ‖ · · · ‖ PN {true} where
R = (0, 0, 0, 0, 0)

G = (N,N2, N2, (N − 1)N,N)

Again, bounds can be read off G, for example the fourth
component indicates that the back edge `3 → `1 is executed
at most (N − 1)×N times by all N threads in total.

V. AUTOMATION

In this section, we describe the rely-guarantee bound al-
gorithm previously presented on an example; Fig. 3 gives an
overview. The algorithm builds on two main insights:
• We reduce RG bound analysis to sequential bound anal-

ysis. This allows us to implement procedure SYNTHG.
• We utilize Theorem 2 to iteratively refine bounds on

environment assertions until a fixed point is reached.

A. Invariant Analysis

Given a program P = (L, T, `0), our algorithm starts with
an invariant analysis to discover a data structure invariant
Inv , a set of actions A, and a map EffectOf : A → 2T that
indicates which transitions a given action abstracts. In our
running example, each action corresponds to one transition, but
in general coarser actions may be chosen. Many methods for
obtaining these have been described in the literature (e.g., [22],
[23], [24], [25], [19]). We use the tool TMREXP [19] as an
off-the-shelf solver, which allows us to obtain A as a stateless
program as shown in Fig. 1c.

This allows us to state the RG quintuple fragment

R, ? ` {Inv} P1 {true} (3)

overA whereR = (∞, . . . ,∞) and the guarantee is unknown.
R soundly over-approximates P1’s environment P2 ‖ · · · ‖

PN . We obtain a correct-by-construction guarantee from the
thread-modular bound analysis described below.

B. Instrumentation

Given the RG quintuple fragment (3), our method first
constructs the program P (R): Let A = {A1, . . . , Am}. It
starts from the stateless program

while (true) do A1 [] · · · []Am done

and instruments it with counter variables ξA to enforce the
bounds in R:

Let P (R) = ({`}, T, `) be the program over variables
{ξA1

, . . . , ξAm
} with initial states Jg0K where

T = {(`, gcA, `) | A ∈ A}

gcA =

{
ξA > 0 B {A; ξA := ξA − 1} if R(A) 6=∞
true B {A} otherwise

g0 =
∧

A∈A

{
ξA = R(A) if R(A) 6=∞
true otherwise

Proposition 1. There exists an isomorphism between runs of
P1 ‖ P (R) from Inv ∧ g0, and traces {τ ∈ traces(Inv , P1) |
τ starts in σ and τ�{e} |=σ R}, such that isomorphic runs
and traces have the same length n, and for all positions 0 ≤
i ≤ n their location and state components are equal up to the
instrumentation location and variables ` and ξA of P (R).

C. Bound Analysis

Our algorithm translates the interleaved heap-manipulating
program P̂ = P1 ‖ P (R) and predicate Inv ∧ g0 into an
equivalent (bisimilar) integer program and predicate using the
technique of [13] (alternatively one could directly compute
bounds on the heap-manipulating program P̂ using techniques
such as described in [26], [27], [28]). From now on, let P̂ and
Inv ∧ g0 refer to these translations.

Note that P̂ is a sequential integer program that can be fed
to an off-the-shelf sequential bound analyzer. Let T̂ denote
the transitions of P̂ . Our method runs the sequential bound
analyzer on P̂ , which computes a function SeqBound: T̂ →
Expr(VarZ ∪ {N}), such that for all t ∈ T̂ and all N ≥ 1,
SeqBound(t) is a bound for t on all runs of P̂ from Inv ∧g0.

Then, our technique maps bounds obtained on transitions
of P̂ back to the corresponding transitions of P1 in P̂ = P1 ‖
P (R), which allows it to compute the desired guarantee for
P1: Letting

G(A) =
∑

t∈EffectOf(A)

SeqBound(t)

for all A ∈ A gives a correct-by-construction guarantee G for
R, ? ` {Inv}P1{true}, i.e., we have R,G |= {Inv}P1{true}.
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D. Bound Refinement

Our algorithm then uses Theorem 2 to refine the rely of P1

and checks if the computation has reached a fixed point yet.
Let R′(A) = (N − 1)× G(A) for all A ∈ A.

1) If R′ ( R, by Theorem 2 R′ is a valid bound for
P2 ‖ · · · ‖ PN . Our algorithm iterates the computation
of bounds for R′, ? ` {Inv} P1 {true} starting from
Section V-B.

2) If R′ = R, the algorithm has reached a fixed point and
reports the results of the analysis:

a) For thread-specific bounds of P1, return G.
b) For total bounds of P1 ‖ · · · ‖ PN , apply Theo-

rem 2 to get a guarantee for P2 ‖ · · · ‖ PN , and
use rule PAR-MERGE to sum up the guarantees of
P1 and P2 ‖ · · · ‖ PN .

3) R′ 6⊆ R can be avoided by implementing a sequential
bound analyzer that is deterministic and monotonic in
the sense that it always finds the same or smaller bounds
on programs with further restricted transition relations.

VI. CASE STUDIES

We have implemented the algorithm of Section V in our
tool COACHMAN [29] and tested it on three well-known lock-
free data structures from the literature: Treiber’s stack [18], the
Michael-Scott queue [9], and the DGLM queue [30]. For the
sequential bound analyzer, we have implemented an algorithm
similar to the one described in [7]; its implementation is
available online [29].

For each data structure, our tool constructs a general client
program P = op1() [] · · · [] opM(), and analyzes its N -times
interleaving ‖NP = P1 ‖ · · · ‖ PN for thread-specific bounds
of a single thread Pi and total bounds of P1 ‖ · · · ‖ PN as
described in Section II. For brevity, we only report complexity
bounds here. All performance results were obtained on a single
core of a 2.0GHz Intel Core i7 processor.

1) Treiber’s stack [18]: We thoroughly discussed Treiber’s
stack in our running example (Section II). Our tool takes 2 it-
erations to obtain the stack’s thread-specific linear asymptotic
complexity O(N) of a single thread Pi, and the total quadratic
complexity O(N2) of P1 ‖ · · · ‖ PN in 3 minutes2.

2) Michael-Scott queue [9]: This lock-free queue has, e.g.,
been implemented in the ConcurrentLinkedQueue class of
the Java standard library. In contrast to Treiber’s stack, the
transitions of the Michael-Scott queue cannot be bounded with
just a single refinement operation: It synchronizes via two
CAS operations, the first one breaking/looping as in Treiber’s
stack, the second one located on a back edge of the main
loop. Thus our algorithm cannot immediately bound the action
corresponding to the second CAS. Rather, it first bounds
the first CAS’ action, refines and bounds the second CAS’
action, and after a final refinement bounds all other edges. Our
tool takes 3 iterations to obtain the queue’s thread-specific

2A further optimization of the bound algorithm only applicable to this case
study allows us to speed up the runtime to 47 seconds.

linear asymptotic complexity O(N), and the total quadratic
complexity O(N2) in 148 minutes.

3) DGLM queue [30]: The DGLM queue is a recent,
optimized version of the Michael-Scott queue. Similar to the
Michael-Scott queue, our tool takes 3 iterations to obtain the
queue’s thread-specific linear asymptotic complexity O(N),
and the total quadratic complexity O(N2) in 77 minutes.

Remark (Discussion of algorithm runtime). The increased
runtime on the queue case studies compared to Treiber’s stack
is due to to their larger program LTS and doubled number
of environment actions. In particular, the counter automaton
produced by [13] for Treiber’s stack has 531 vertices and 2,072
edges, while for the MS queue we obtain 6,165 vertices and
37,402 edges.

The runtime speedup on the DGLM queue compared to the
MS queue is explained by its optimized deq method: Its LTS
has 2 instead of 4 back edges, which drastically reduces the
time spent in bound analysis.

VII. RELATED WORK

Albert et.al. [31] describe a RG bound analysis for actor-
based concurrency. They use heuristics to guess an unsound
guarantee and justify it by proving that all environment actions
not captured by the guarantee occur only finitely often. We
note that the approach of [31] leaves environment actions not
captured by the guarantee completely unconstrained, i.e., they
may change the program state arbitrarily, leading to coarser
than necessary bounds. In contrast, our approach includes
all environment actions, recognizes that actions occurring
boundedly often already carry ranking information, and leaves
their handling to the sequential bound analyzer.

More closely related to our work, Gotsman et al. [14]
present a general framework for expressing liveness prop-
erties in RG specifications and apply it to prove termina-
tion/unbounded lock-freedom. They give rely and guarantee
as words over actions, and instantiate it for properties stating
that a set of actions does not occur infinitely often. They auto-
matically discharge such properties in an iterative proof search
over the powerset of actions. Our approach differs in various
aspects: First, while our RG quintuples may be formulated as
words over actions, the instantiation in [14] is suitable only
for termination, but too weak for bound analysis. Second, the
focus on liveness properties leads to more complicated proof
rules in [14], which have to account for the fact that naive
circular reasoning about liveness properties is unsound [32],
[33], [14]. In contrast, all sequences of actions expressable
by our environment assertions are safety-closed, allowing us
to use the full power of RG-style circular arguments in the
premises of our reasoning rules. Finally, we obtain bounds
for all actions at once in a refinement step by reduction to
sequential bound analysis, rather than iteratively querying a
termination prover whether a particular action occurs only
finitely often.
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VIII. CONCLUSION

We have presented the first extension of rely-guarantee
reasoning to bound analysis, and automated bound analysis
of concurrent programs by a reduction to sequential bound
analysis. In addition, we have for the first time automatically
inferred bounds for three widely-studied lock-free data struc-
tures.

IX. FUTURE WORK

While lock-freedom guarantees absence of live-locks, it
does not guarantee starvation-freedom: If a thread’s environ-
ment interferes infinitely often, the thread may loop forever.
Wait-freedom is a stronger progress property that guarantees
that each individual thread makes progress. Its implementa-
tion exposes global variables per thread; handling this is an
interesting problem for the future.

While our framework extends Jones’ RG reasoning, we
have only given inference rules for parallel composition and
a consequence rule and have left the concrete programming
language and corresponding rules abstract. Our only require-
ment regarding safety is that the environment actions obtained
in Section V-A over-approximate any thread’s effect on the
global state. Giving a full set of rules and exploring a tighter
integretion between safety and (bounded) liveness properties
is left for future work.
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Abstract—We propose a shape analysis suitable for analysis
engines that perform automatic invariant inference using an
SMT solver. The proposed solution includes an abstract template
domain that encodes the shape of the program heap based
on logical formulae over bit-vectors. It is based on computing
a points-to relation between pointers and symbolic addresses
of abstract memory objects. Our abstract heap domain can be
combined with value domains in a straightforward manner, which
particularly allows us to reason about shapes and contents of
heap structures at the same time. The information obtained
from the analysis can be used to prove memory safety and
reachability properties, expressed by user assertions, of programs
manipulating dynamic data structures, mainly linked lists. The
solution has been implemented in the 2LS framework and
compared against state-of-the-art tools that perform the best in
heap-related categories of the well-known Software Verification
Competition (SV-COMP). Results show that 2LS outperforms
these tools on benchmarks requiring combined reasoning about
unbounded data structures and their numerical contents.

I. INTRODUCTION

Reasoning about dynamic data structures is one of the core
problems in software verification. The techniques implemented
in state-of-the-art verification tools for C programs such as
those competing in the Software Verification Competition
(SV-COMP) have shortcomings when it comes to combined
reasoning about shape and content of data structures as our
experiments revealed. We address this problem in this paper
in the context of template-based program verification.

Template-based verification uses a logic-based synthesis ap-
proach to inferring the invariants required for proving program
properties. It delegates semantic reasoning to SMT solvers and
focusses on the design of appropriate template domains and ef-
ficient algorithms for finding the optimal template parameters
(i.e. least fixed points in the abstract interpretation sense [14]).
The use of such templates makes it straightforward to compute
invariants describing both shape and value properties of data
structures, which is more difficult when combining domains
that are based on different principles.

Running example: To better illustrate the concepts and
methods proposed in the paper, we use the program in List-
ing 1 as a running example. It creates a singly-linked list, each
node containing a value between 10 and 20 (Lines 7–15). The
list is afterwards traversed repeatedly and the value of each
node is either incremented by 1 or halved (Lines 16–22). We
add an assertion that, in every iteration, the value of each
node stays between 10 and 20. The goal of the analysis is to
prove that the assertion always holds. This requires an analysis
capable of reasoning about unbounded linked data structures
and numerical content of their nodes at the same time.

Listing 1: A running example
1 typedef struct node {
2 int val;
3 struct node *next;
4 } Node;
5

6 int main() {
7 Node *p, *list = malloc(sizeof(Node));
8 Node *tail = list;
9 *list = {.next = NULL, .val = 10};

10 while (__VERIFIER_nondet_int()) {
11 int x = __VERIFIER_nondet_int();
12 if (x < 10 || x > 20) continue;
13 p = malloc(sizeof(Node));
14 *p = {.next = NULL, .val = x};
15 tail→next = p; tail = p;
16 }
17 while (1) {
18 for (p = list; p!= NULL; p = p→next) {
19 assert(p→val <= 20 && p→val >= 10);
20 if (p→val < 20) p→val++;
21 else p→val /= 2;
22 } } }

To prove this property we have to infer that the value of the
val field of the dynamic objects allocated in Line 7 and 13
is always in the range [10, 20].

With the help of our technique, we will infer an invariant
for the loop on Line 10 that states the following:

• tail may point to the sets of Node objects created in
Line 7 and 13. We denote these sets ao7 and ao13, resp.

• The next field of ao7 may point to ao13 or null. Its
val field has a value in the interval [10,10].

• The next field of ao13 may point to ao13 or null.
However, its val field has a value in the interval [10,20].
This means that ao13 abstracts a set of Node objects
whose val fields have values in the interval [10,20].

For the loop in Line 18, we infer the invariant that the val
fields of ao7 and ao13 must both be in the interval [10,20],
which implies that the property holds.

Contributions: The contributions of this paper, which
form the contents of Sections III–VII, are as follows:

1) We propose a novel abstract template domain for rea-
soning over heap-allocated data structures such as singly
and doubly linked lists using a template-based parameter
synthesis engine.

2) We show how we can build product and power domain
combinations of our heap domain with structural domains
(e.g. trace partitioning) and value domains such as tem-
plate polyhedra that capture the content of data structures.

3) We implement our abstract heap domain in the 2LS ver-
ification tool for C programs. We demonstrate the power
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of the proposed domain on benchmarks, which require
combined reasoning about the shape and content of data
structures, showing that other tools, which performed well
in SV-COMP, cannot handle these examples.

II. TEMPLATE-BASED PROGRAM VERIFICATION

This section describes the approach to program verification
using template-based synthesis of inductive invariants which
the 2LS tool [35] is based upon and that underlies our approach
too. The source program is first translated into single static
assignment (SSA) form. Using this program representation,
the verification task can then be expressed as a second-
order logical formula. However, since suitable solvers for such
formulae are not available, the verification problem is reduced
to synthesising loop invariants using parametrised templates
and an SMT solver to find suitable values of the parameters.

A. Program Verification Using Inductive Invariants

A state of a program is a logical interpretation of logical
variables corresponding to each program variable. A set of
states can be described using a formula—states in the set are
defined by models of the formula. Given a vector of variables
~x, the predicate Init(~x) describes the initial states. A transition
relation is described as a formula Trans(~x, ~x′).

From these, it is possible to determine the set of reachable
states as the least fixed-point of the transition relation starting
from the states described by Init(~x). This is, however, difficult
to compute, so instead, we use an inductive invariant. A ver-
ification task requires showing that the set of reachable states
does not intersect with the set of error states Err(~x). Using
the concept of inductive invariants and existential second-order
quantification (∃2), we can formalise it as:

∃2Inv . ∀~x, ~x′. (Init(~x) =⇒ Inv(~x)) ∧
(Inv(~x) ∧ Trans(~x, ~x′) =⇒ Inv(~x′)) ∧
(Inv(~x) ⇒ ¬Err(~x))

(1)

B. Invariant Inference via Templates

To directly handle Eq. (1) by a solver, it would require
the capability to deal with second-order logic quantification.
Since a suitably general and efficient second-order solver is
not currently available, the problem is reduced to one that can
be solved by an iterative application of a first-order solver.
This reduction is done by restricting the form of the inductive
invariant Inv to T (~x, ~δ) where T is a fixed expression (a so-
called template) over program variables ~x and template param-
eters ~δ. This restriction corresponds to the choice of an abstract
domain in abstract interpretation—a template only captures the
properties of the program state space that are relevant for the
analysis. This reduces the second-order search for an invariant
to a first-order search for the template parameters:

∃~δ. ∀~x, ~x′. (Init(~x) =⇒ T (~x, ~δ)) ∧
(T (~x, ~δ) ∧ Trans(~x, ~x′) =⇒ T (~x′, ~δ))

(2)

Although the problem is now expressible in first-order logic,
the formula contains quantifier alternation, which poses a prob-
lem for current SMT solvers. This is solved by iteratively

checking the negated formula (to turn ∀ into ∃) for different
choices of constants ~d as candidates for template parameters ~δ.
For a value ~d, the template formula T (~x, ~d) is an invariant if
and only if Eq. (3) is unsatisfiable.

∃~x, ~x′. ¬(Init(~x) =⇒ T (~x, ~d)) ∨
¬(T (~x, ~d) ∧ Trans(~x, ~x′) =⇒ T (~x′, ~d))

(3)

From the abstract interpretation point of view, ~d is an
abstract value, i.e. it represents (concretises to) the set of all
program states ~x that satisfy the formula T (~x, ~d). The abstract
values representing the infimum ⊥ and supremum ⊤ of the
abstract domain denote the empty set and the whole state
space, respectively: T (~x,⊥) ≡ false and T (~x,⊤) ≡ true [8].

Formally, the concretisation function γ is: γ(~d) = {~x |
T (~x, ~d) ≡ true}. In the abstraction function, to get the most
precise abstract value representing the given concrete program
state ~x, we let α(~x) = min(~d) such that T (~x, ~d) ≡ true.
Since the abstract domain forms a complete lattice, existence
of such a minimal value ~d is guaranteed.

The algorithm for the invariant inference takes an initial
value of ~d =⊥ and iteratively solves Eq. (3) using an SMT
solver. If the formula is unsatisfiable, then an invariant has
been found, otherwise a model of satisfiability is returned
by the solver. The model represents a counterexample to
the current instantiation of the template being an invariant.
The value of the template parameter ~d is then updated by
combining with the obtained model of satisfiability ~d′ using
a domain-specific join operator [8]. For example, assume we
have a program with a loop that counts from 0 to 10 in variable
x and we have a template x ≤ d. Let’s assume that the
current value of the parameter d is 3 and we get a new model
d′ = 4. Then we update the parameter to 4 by computing
d ⊔ d′ = max(d, d′), because max is the join operator for
a domain that tracks numerical upper bounds.

C. Source Program Encoding

In this paper, we deal with non-recursive programs with all
function calls inlined. As said above, we encode the program
into a formula representing a specific static single assignment
form (SSA). For acyclic programs, the SSA represents exactly
the strongest postcondition of the program—as usual, with a
fresh copy xi of each variable x for each program location i
where the value of x is modified. The effect of loops is over-
approximated as described in [8]. In this encoding, special
variables called guards are used to track the control flow of the
program. In particular, for each program location i, a Boolean
variable gi is introduced, and its value encodes whether the
program location is reachable.

To see how the over-approximation of program loops is
achieved, note that, at the loop head, the program path coming
from before the loop joins with the path coming from the
end of the loop (assuming that all paths within the loop join
before its end; and likewise for the paths coming from before
the loop). To achieve acyclicity of the SSA, we cut the path
coming from the end of the loop. We then represent the value
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of each variable x at the loop head using a phi variable
xphi whose value is defined by a non-deterministic choice
between the value coming from before the loop, say x0, and
the value coming from the end of the loop. The latter value
is represented by a newly introduced loop-back variable xlb.
In particular, we let xphi = gls ? xlb : x0 where gls is a so-
called loop-select Boolean guard that is unconstrained in order
to model the non-deterministic choice. Moreover, to over-
approximate the effect of the loop, the value of the loop-back
variable xlb is initially unconstrained too and later constrained
by the derived candidate loop invariants.

Example. In Listing 1, the loop head at Line 10 joins
two different values of variable tail coming from program
locations 8 and 15. The value of tail coming from the end of
the loop (denoted tail15 in the SSA) is replaced by the loop-
back variable taillb16. The corresponding phi variable listphi10

then non-deterministically joins taillb16 with the value of tail
from before the loop via the loop-select variable gls16:

listphi10 = gls16 ? listlb16 : list8 (4)

III. ABSTRACT MEMORY OPERATIONS IN THE SSA FORM

We now propose a representation of heap memory and
operations over it, designed to be used within the approach laid
out in Section II. The proposal respects the fact that the con-
sidered SSA form is an acyclic program representation, over-
approximating reachable values of variables used in loops.

A. Abstract Memory Representation

Under our assumption of fully inlined, non-recursive pro-
grams, static memory objects correspond simply to a finite set
Var of program variables: we do not need to consider the
stack. We let PVar ,SVar ⊆ Var , PVar ∩ SVar = ∅, be the
sets of variables of pointer and structure type, respectively. A
linked data structure in C is typically defined using a struct
type, which groups together named fields for the payload data
and the link pointers (see Lines 1–4 in Listing 1). We use Fld
to denote the finite set of fields used in the given program.
Let PFld ⊆ Fld be the set of all pointer-typed fields.

1) Abstract Dynamic Objects: We use abstract dynamic
objects to represent dynamic memory objects, i.e. those that are
allocated using malloc (or some of its variants) on the heap.
An abstract dynamic object represents a set of concrete dy-
namic objects allocated at the same allocation site i, e.g. by the
same malloc call located at Line i in Listing 1. However, a
single abstract dynamic object is not sufficient to represent all
concrete dynamic objects allocated by a given malloc. The
reason for this is that the program may use several independent
objects created at an allocation site at the same time. Typically,
this issue is solved by the analysis algorithm materialising
dynamic objects on-demand. We take a different approach
and statically over-approximate the maximum number ni of
concrete objects required (see next section below). Hence, we
use a set AOi = {aoki | 1 ≤ k ≤ ni} of abstract dynamic
objects for that purpose. We let AO = ∪iAOi and require
Var ∩AO = ∅ and AOi ∩AOj = ∅ for i 6= j. The set of all
objects of our program abstraction is then Obj = AO ∪Var .

Pairs consisting of an abstract dynamic object and a field,
i.e. elements of the set AO ×Fld , represent an abstraction of
the appropriate fields of all the represented concrete objects.
We use the “dot” notation to represent such pairs: e.g. aoi.next
denotes the abstraction of the next field of all the concrete
dynamic objects represented by aoi.

We define Ptr = PVar ∪ ((SVar ∪AO)×PFld) to be the
set of all pointers of the given program abstraction. Pointers
can be assigned addresses of objects. Since we currently do not
support pointer arithmetic, the only addresses that we consider
are symbolic addresses of static and dynamic objects together
with the special address null. The symbolic address of an
abstract dynamic object aoi is an abstraction of the symbolic
addresses of the concrete dynamic objects represented by aoi.
To get the address of both static and dynamic objects, we
use the &-operator. Hence, the set Addr of addresses that we
consider is defined as Addr = {&o | o ∈ Obj} ∪ {null}.1

2) Pre-Materialisation: As mentioned above, instead of
materialising dynamic objects on-demand, we pre-materialise
a sufficient number ni of them for each allocation site i and
encode them into our SSA representation. In order for this
abstraction to be sound, it is sufficient that the number ni

equals the maximal number of distinct concrete objects allo-
cated at i that are simultaneously pointed to by some pointer
at any location of the analysed program.

For each allocation site i, we compute the number ni as
follows. First, using a standard static may-alias analysis, we
over-approximate, for each program location j, the set P i

j

of all pointer expressions of the source program that may
point to some object allocated at i. These might be pointer
variables from PVar , pointer-typed fields of static objects
from SVar×PFld , or pointer-typed fields of dynamic objects
accessed through dereferences of pointers—i.e. elements of
PVar × PFld . For simplicity, we assume that all chained
dereferences of the form p → f1 → f2 with f1, f2 ∈ PFld
are broken into two expressions using an intermediate variable.
Overall, P i

j ⊆ PVar ∪ ((SVar ∪ PVar) × PFld). Next, we
compute the must-alias relation ∼j . For each pair of pointers
p and q and for each program location j, p ∼j q iff p and q
must point to the same concrete dynamic object at j. Finally,
we partition the set P i

j into equivalence classes by ∼j , and ni

is given by the maximal number of such classes at any j.

B. Operations over the Abstract Memory Representation

1) Dynamic Memory Allocation: We represent a call to
malloc at program location i by a non-deterministic choice
among the addresses of objects from the set AOi. Hence,
a statement p = malloc(. . .) at i is translated to the formula
pi = gosi,1 ?&ao1i : (gosi,2 ?&ao2i : (. . . (gosi,ni−1 ?&aoni−1

i :
&aoni

i ))) where gosi,j , 1 ≤ j < ni are free Boolean variables,
so-called object-select guards.

1We currently assume that addresses of newly allocated objects are fresh.
Hence, we can miss behaviours where some memory space is recycled while
some pointers are still pointing to it, which is undefined according to the C
standard, but sometimes used in practice. If that was a problem, we could,
e.g., extend our preliminary static analysis to detect objects that can possibly
be in that form and add them among possible returns from the allocation.
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Example. In Listing 1, two calls of malloc occur on
Lines 7 and 13. For Line 7, a single abstract dynamic object
ao7 is created as there is just one concrete object allocated.2

The malloc on Line 13 must be represented by two objects
ao113 and ao213 as, e.g. on Line 14, variables tail and p may
point to different concrete objects allocated by this malloc
call. Specifically, the statement on Line 13 will be translated
into the equality p13 = gos13 ?&ao113 : &ao213. Abstract dynamic
objects ao113 and ao213 then collectively represent all concrete
dynamic objects allocated in the loop.

2) Reading through Dereferenced Pointers: We handle ex-
pressions of the form p → f for p ∈ PVar , f ∈ Fld appearing
on the right-hand side of assignments or in conditions as
follows. We first perform a may-points-to analysis, which over-
approximates for each pointer p ∈ Ptr and each program
location i the set of objects from Obj that p may point to at i.
Using the result of the analysis, we can replace the pointer
dereference p → f by a choice among the values of the field f
of the objects possibly pointed to by p.

To facilitate the replacement, we introduce purely logical
dereference variables. Assume that at program location i there
appears an R-expression p → f and that the pointer p may
point to a set of objects O ⊆ Obj at i. We replace the use
of p → f by using a fresh variable drf(p).fi whose value
is defined by the formula (

∧
o∈O pj = &o =⇒ drf(p).fi =

o.fk)∧((
∧

o∈O pj 6= &o) =⇒ drf(p).fi = o⊥) where pj , o.fk
are the relevant versions of the concerned variables at program
location i and o⊥ denotes a special “unknown object” (a result
of a dereference of an unknown or invalid (null) address).3

Example. We give the translation of the assignment p =
p → next from Line 18 in Listing 1. Since the assignment
is executed at the end of each loop iteration, we define its
program location to be Line 22. At this program location, p
may point to the set of objects {ao7, ao113, ao213}. Hence, the
assignment will be represented by the following formula.

p22=drf(p).next22 ∧(
pphi18 =&ao7 ⇒ drf(p).next22=ao7.next

phi
18

)
∧

∧

l=1,2

(
pphi18 =&aol13 ⇒ drf(p).next22=aol13.next

phi
18

)
∧

((
pphi18 6=&ao7 ∧

∧

l=1,2

pphi18 6=&aol13
)
⇒ drf(p).next22=o⊥

)

The first conjunct represents the transformed assignment, and
the following conjuncts define the value of the dereference
variable. The value of p entering program location 22 is the
value from the loop head pphi18 . If it equals the address of
ao7, ao113, or ao213, the value of drf(p).next22 is ao7.next

phi
18 ,

ao113.next
phi
18 , or ao213.next

phi
18 , otherwise, it equals o⊥.

As an optimisation, if the dereference variable is once
created and the value of the concerned expression does not

2In fact, we should write ao17, but we omit the superscript when a single
abstract object suffices. Likewise for the object-select guards below.

3A dereference of the form ∗p for a non-structured object can be handled
analogously, just without the field f in the above formula.

change, we reuse the existing dereference variable. Second,
when dealing with a statement like v = p → f , the use of
the dereference variable may seem unnecessary as one can
plug vi instead of drf(p).fi into the formula defining the value
of drf(p).fi. This can be done, but, as explained below, the
use of dereference variables can give us more precision when
dealing with sequences of reading and writing operations.

3) Writing through a Dereference: When writing into an
abstract dynamic object aoi, we need to respect the fact that
only one concrete object abstracted by aoi is actually written
to, and the others keep the original value. Hence, we need
to make a join of the original and new value. We again use
dereference variables to facilitate the transformation.

Assume that at program location i, we have an assignment
p → f = v, p ∈ PVar , f ∈ Fld , v ∈ Var , and that p
may point to a set of objects O ⊆ Obj at the entry to i.4

We replace the L-expression p → f by a fresh variable
drf(p).fi whose value is defined by the value of v, i.e. we
assert that drf(p).fi = vl where vl is the version of v valid
at program location i. We then use drf(p).fi to update the
value of the field f of the referenced object, using the formula∧

o∈O o.fi = (pj = &o ∧ gosi ) ? drf(p).fi : o.fk where
pj , o.fk are the relevant versions of the variables p and o.f
at program location i.5 The formula expresses the fact that
o.fi gets updated if p equals the address of o, otherwise
its value remains unchanged; k is the last program location
before i where the value of o.f was changed. The object-
select guard gosi , which is a freshly introduced unconstrained
Boolean variable, enforces that the value of field f is changed
in only one of the concrete objects abstracted by o while it
remains unchanged in the other objects abstracted by o. If o
is not allocated in a loop (and hence representing a single
instance), gosi may be omitted.

Example. For illustration, the assignment tail->next=p
from Line 15 of Listing 1 will be translated into the formula:

(drf(list).next15 = p13) ∧(
ao7.next15 =(listphi10 =&ao7) ?

drf(list).next15 : ao7.next
phi
10

)
∧

∧

l=1,2

(aol13.next15 =(listphi10 =&aol13 ∧ gos15) ?

drf(list).next15 : aol13.next
phi
10 )

As mentioned above, the use of dereference variables may
increase the precision of our analysis. This happens in par-
ticular when we write into an abstract object through some
pointer and later read the written value back through the same
pointer (or a pointer aliased with it) without any change of
the pointers and the concerned value in between. Then, we get
back exactly the value that we wrote, which would otherwise
not happen due to the joins involved.

4) Memory Free: Since the free operation has no effect
on the heap reachability itself, we defer its discussion to
Section V devoted to checking memory safety.

4More complex assignments can be transformed into this form.
5A write to a dereference of the form ∗p to a non-structured object can be

handled analogously, omitting field f from the formula.
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IV. AN ABSTRACT DOMAIN FOR HEAP ANALYSIS

We will now work towards our template-based abstract
domain suitable for reasoning about properties of heap-
manipulating programs, starting from a base shape domain and
refining it. We will show that, due to the fact that all domains
in the considered approach are based on templates, the new
domain can be easily combined with other domains, e.g. for
inferring properties about numerical data of data structures.

A. Base Abstract Shape Domain

In the considered approach, an abstract domain needs to
have the form of a template—a fixed, parametrised, quantifier-
free first-order logic formula describing the desired property
of a program. As described in Section II, templates are used to
efficiently compute loop invariants of the analysed program.
These are used to constrain values of the loop-back variables
that are used in the SSA-based program encoding to over-
approximate values returning from the end of the loop to the
loop head. Hence, a loop invariant describes a property that
holds for some program variables at the end of the loop body
after any iteration of the loop. Hence, we limit our shape
domain to the set Ptr lb of all loop-back pointers. Let L be the
set of all loops in the program. Since there is one loop-back
pointer variable for each pointer variable and each loop, we
define Ptr lb = Ptr × L. We denote elements (p, l) ∈ Ptr lb

by plbi where i is the program location of the end of the loop
l. Intuitively, the value of plbi is an abstraction of the value of
the pointer p coming from the end of the body of the loop
l. The property that our base shape domain describes is the
may-point-to relation between the set Ptr lb and the set Addr .6

The template of our base shape domain has the form of
the formula T S ≡ ∧

plb
i ∈Ptr lb T S

plb
i
(dplb

i
). It is a conjunction

of so-called template rows T S
plb
i

, each row corresponding to

one loop-back pointer from the set Ptr lb. A template row
T S
plb
i
(dplb

i
) describes the may-point-to relation for the loop-back

pointer plbi . The parameter dplb
i
⊆ Addr of the row (a so-called

abstract value of the row) specifies the set of all addresses
from the set Addr that p may point to at the location i.
The template row can thus be expressed as the quantifier-free
formula T S

plb
i
(dplb

i
) ≡ (

∨
a∈d

plb
i

plbi = a).

Abstract values of template rows corresponding to pointer
fields of abstract dynamic objects allow the domain to describe
unbounded linked paths in the heap, such as list segments.

Example. In Listing 1, a list segment is created by the
first loop. Objects in the segment are linked through the
pointer field next, and they are represented by the abstract
dynamic objects ao113 and ao213. In our base shape domain,
the shape of this segment will be described by an invariant
for the first loop, specifically by the two template rows
for ao113.next

lb
16 and ao213.next

lb
16. They will give us the

formula ∧l=1,2T S
aol13.next

lb
16
({&ao113,&ao213, null}) where the

rows T S
aol13.next

lb
16

are the formulae aol13.next
lb
16 = &ao113 ∨

6Note that unlike the previously mentioned point-to relations, this relation
is computed not just syntactically but using the considered abstract semantics.

aol13.next
lb
16 = &ao213 ∨ aol13.next

lb
16 = null. These formulae

say that the next fields of both ao113 and ao213 may either
point to one of the objects themselves or to null. This describes
an unbounded linked path in the heap composed of objects
abstracted by ao113 or ao213 and terminated by null.

B. Guarded Shape Templates

In order to use the base shape domain in our approach, we
have to augment it with information about the guard variables
that encode the program’s control flow in the SSA. The
guards express when an appropriate loop-back control edge
is executed and the loop-back pointer has a defined value7.
A row of a guarded shape template is defined as a formula
T G
plb
i
(dplb

i
) ≡ Gplb

i
⇒ T S

plb
i
(dplb

i
) where Gplb

i
is a conjunction

of SSA guards associated with the definition of the variable
plbi and T S

plb
i

is as in the base shape domain. If Gplb
i

is true
for a program run, the definition of plbi was reached in the
run. A shape template T G with guards is then a conjunction
T G ≡ ∧

plb
i ∈Ptr lb T G

plb
i
(dplb

i
).

Let plbi be a loop-back pointer abstracting the value of
a pointer p ∈ Ptr coming from the end of a loop l ∈ L.
The row guard Gplb

i
is a conjunction of the following guards:

• The guard glhj linked with the head of the loop l located at
program location j, encoding that the loop l is reachable.

• The guard glsi linked with the use of plbi . The value of glsi
is true if plbi is chosen as the value of the corresponding
phi variable at the head of l (see Section II-C).

• If plbi describes a pointer field of some abstract dynamic
object (i.e. it has the form aokj .f

lb
i for some aokj ∈

AO , f ∈ Fld ), we also use the guard gao
k
j linked with

the allocation of aokj at program location j. This guard
conjoins the guard expressing reachability of program
location j with the object-select guards gosj,l and their
negations denoting allocation of the k-th materialisation
aokj of the object allocated at j.

Example. In Section IV-A, we presented a shape invariant
describing the linked segment created by the first loop from
Listing 1. The corresponding guards for the two template rows
of that invariant are Gao113.next

lb
16

= g10∧gls16∧ (g13∧gos13) and
Gao213.next

lb
16

= g10 ∧ gls16 ∧ (g13 ∧ ¬gos13). Here, the loop head
guard is g10, the loop-select guard is gls16, and the allocation
guard is given by the guard of the reachability of the allocation
site g13 and by the appropriate object-select guards (gos13 for
ao113 and ¬gos13 for ao213, respectively).

C. Shape Domain with Symbolic Loop Paths

Unfortunately, guarded shape templates are not precise
enough for many heap-manipulating programs. One often
needs to allow the invariant of a loop to be able to distinguish
which loops were or were not executed while reaching the
given loop. This can, e.g. distinguish which objects were
allocated and can hence be processed in the given loop.

7Using the base domain without the guard variables would be sound.
However, it would produce very imprecise results since the abstract value
would need to cover even states in which the loop-back edge was not taken.
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To deal with the above problem, we introduce the concept
of symbolic loop paths and compute different invariants for
different paths. Since we use loop-select guards to express the
control flow through the loops (see Section II-C), a symbolic
loop path is simply a conjunction of loop-select guards.8

Let Gls be the set of all loop-select guards of all loops in
a program. A symbolic loop path π is then formally defined as
π =

∧
g∈Gls lg where lg is a literal of the variable g, i.e. either

g or ¬g. We use Π to denote the set of all symbolic loop paths
of a given program. A shape template extended with symbolic
loop paths is then given by a formula T L ≡ ∧

π∈Π π =⇒ T G
π

where the T G
π formulae are guarded shape templates as defined

in Section IV-B. Here, π⊥ a special path containing negative
literals only. On that path no loop invariants are computed.

Example. We now show invariants for the pointer p for
the second loop of the program in Listing 1. Using our
(trace-insensitive) guarded shape domain, the corresponding
template row would be T G

plb
22
({&ao113,&ao213, null}). In other

words, p would be understood as possibly pointing to ao113 or
ao213 even on paths where they were not allocated. However,
symbolic loop paths allow us to obtain two different invariants
depending on the execution of the first loop (for simplicity,
we only provide the appropriate template row): namely, gls16 ∧
gls22 ⇒ T G

plb
22
({&ao113,&ao213, null}) for the case when the body

of the first loop is executed and ¬gls16 ∧ gls22 ⇒ T G
plb
22
({null})

for the case when the body of the first loop is not executed.

D. Combinations of Domains

The true power of the template-based verification approach
lies in the simplicity of domain combinations. Since templates
are general logical formulae, they can be easily composed,
forming abstract domains capable of describing more complex
properties of programs while relying on the solver to do the
heavy-lifting on the combination of the domain operations and
the mutual reduction of their abstract values.

1) Power Templates: The definition of shape templates
with symbolic loop paths shows one way how a complex
template can be formed from a simpler one. In this case,
the template parameter, i.e. the abstract value, maps particular
symbolic loop paths to sets of parameters of the original
shape template. In fact, the shape domain could be replaced
by any other abstract domain. The symbolic paths template
can hence be viewed as a power template—in the sense of
power domains [15]—which assigns to each element of the
base domain an element of the exponent domain.

2) Product Templates: From the perspective of program
analysis, a very interesting possibility is the combination of the
shape domain with an abstract domain capable of describing
values of variables of non-pointer types, e.g. numerical vari-
ables (such as the well-known interval or octagon domains).
The simplest way to achieve such a combination is to use
a Cartesian product template that combines templates of
different kinds to be used independently side-by-side. The

8The notion of symbolic loop paths can be easily generalised to program
path sensitivity by including branches of conditional statements too.

proposed shape template with loop-back guards T G from
Section IV-C can be combined with a template for analysis
of numerical values T V by simply taking their conjunction,
i.e. T G∧T V . This not only allows us to analyse programs that
use pointer and numerical variables simultaneously, but also
to reason about the contents of data structures on the heap. We
achieve this by analysing numerical fields of abstract dynamic
objects using the value part of the template.

In addition, we use this product template as the inner
template of the template with symbolic loop paths, forming an
even stronger abstract domain: T LV ≡ ∧

π∈Π π =⇒ T G
π ∧T V

π .
Using this domain for the running example allows us to
analyse the shape and the contents of the linked list at the
same time, obtaining the invariants described in Section I that
enable us to prove the given property of interest.

V. MEMORY SAFETY ANALYSIS

Apart from checking user-defined assertions, we can also
verify memory safety. This includes a number of properties:
(1) pointer dereferencing safety, (2) free safety, and (3) ab-
sence of memory leaks.

A. Dereferencing a null Pointer

Since our invariants are over-approximating the reachable
program states, we can soundly verify may (or better called
must-not) properties. To check dereferences of null, for each
expression ∗p occurring in a program location i, we verify the
assertion pj 6= null where pj is the version of p valid at i.

B. Free Safety

Free safety includes the absence of dereferencing a freed
pointer and freeing an already freed pointer (a so-called “dou-
ble free”). To prove absence from these errors, we introduce
a new special variable fr initialised to null, which is then non-
deterministically set to the address of the object to be freed
in a free call. We replace each call of the form free(p)
at program location i by a formula fr i = gfri ?pj : frk, where
pj and frk are the versions of p and fr , respectively, valid in
i, and gfri is a free Boolean variable (a so-called free guard).
Treating fr as a standard pointer-typed variable allows us to
over-approximate the set of all freed addresses with the help
of our shape domain. Then, in each program location i where
either ∗p or free(p) occurs, we can check for the assertion
pj 6= frk to prove free safety (here, pj and frk are again
versions of p and fr , respectively, valid at i).

Even though this approach is sound, it is often too im-
precise. Freeing one of the concrete objects does not mean
that all objects were freed and that it is not safe any more to
dereference/free the abstract object. To improve precision, we
modify the representation of malloc calls. At each allocation
site i, we add one more object aocoi to the set {aoki }. The
object can be chosen as the result of the allocation non-
deterministically like any other aoki , but it is guaranteed to
be allocated only once (by an additional condition checking
that, upon its allocation, no loop-back pointer can point to
it). Hence, aocoi represents a concrete object. Then, for each
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allocation site i, we only allow &aocoi to be assigned to fr . The
checks for free safety described above are done on concrete
objects only, avoiding possible imprecision stemming from
dealing with multiple objects represented by a single abstract
object which would join the possibly different values of these
objects. Also, as aocoi represents an arbitrary concrete object
allocated at i, if safety can be proven for it, it can be assumed
to hold for any other object allocated at i.

C. Absence of Memory Leaks

Using fr , we then check whether some aocoi object may be
not freed at the end of the program (if there is a leak, it must be
possible to show it on some concrete object). Unfortunately, as
we do not track the sequencing of abstract objects representing
a set of objects allocated at an allocation site (even when
they form a list segment), our analysis typically sees that aocoi
may be skipped in the deallocation loops, and hence remains
inconclusive on the memory leaks.

VI. IMPLEMENTATION

We implemented9 the proposed shape domain within the
2LS framework [35] that uses the template-based verification
method described in Section II. We extended the SSA form
generated by the framework to handle dynamic memory allo-
cation. 2LS is based on the CPROVER framework [13], which
includes an SMT solver based on reduction to propositional
logic. We used Glucose 4.0 as the back-end solver in our
experiments. We let 2LS inline all functions before running our
analysis. For combination with numerical domains described
in Section IV-D, we use the template polyhedra domain that
is already a part of 2LS. Our approach handles any sequential
C program, however, invariants are not inferred for array
contents and memory manipulation using pointer arithmetic.

VII. EXPERIMENTS

We performed the experiments to show how our ap-
proach improves the performance of 2LS and also how
it compares to other state-of-the-art software verifica-
tion tools.10 We used BenchExec [4] to run the experi-
ments with time limit set to 900 s and memory limit to
15GB. The first comparison was done on the subcate-
gories of the SV-COMP benchmarks [36] related to memory
safety, particularly ReachSafety-ControlFlow, ReachSafety-
Heap, MemSafety-Heap, MemSafety-LinkedLists, MemSafety-
Others. Tasks in ReachSafety are checked for reachability
of an error condition, tasks in MemSafety for absence of
invalid pointer dereference, invalid free, and memory leaks.
We compared our implementation to the version of 2LS from
SV-COMP’17 without the proposed shape analysis.

The results are shown in Table I. The proposed method
significantly improves the performance of the tool. Due to
missing heap analysis support, the old version of 2LS often
reported wrong results and therefore it had a negative score in

9Available at https://github.com/diffblue/2ls/releases/tag/2ls-0.7.
10All tools, benchmarks, and results are available here:

https://pschrammel.bitbucket.io/schrammel-it/research/2ls/fmcad18 exp.tar.xz.

three subcategories. 2LS with our analysis obtained a positive
score in all subcategories and it is also faster in some of them.

Although the results show an improvement, we are still
unable to compete with the best tools of SV-COMP’18 in the
heap categories. This is mainly because our analysis does not
yet support pointer arithmetic and is not yet expressive enough
to handle various kinds of trees or nested lists.

However, the main purpose of our work was to extend
possibilities of analysing combined shape and value proper-
ties of programs. To evaluate, we performed an experiment
comparing our tool with the leaders of SV-COMP’18 in the
heap-related categories, on tasks combining manipulation of
unbounded data structures with a need to reason about the
data stored in these structures. All these tasks11 are correct
programs created by our team, since no such programs are part
of the SV-COMP benchmarks yet. For each task, we verify that
no error state is reachable. The results of the evaluation are
shown in Table II. Numbers in the table represent CPU time
in seconds needed for the analysis of the example. The value
unknown means that the tool was not able to analyse the task.

On these benchmarks, 2LS outperforms the other tools
significantly. Even tools specialised in shape analysis,
Forester [17] and Predator [16], often report unknown, time-
out or even find a false error. This is probably caused by
their inability to reason about the data stored in the lists.
More general tools such as Symbiotic [9] or Ultimate Au-
tomizer [18] often time out since they probably lack an
efficient abstraction for combination of shape and value prop-
erties. CPAChecker [3] (in the CPA-Seq configuration from
SV-COMP’18) solved four tasks but times out on the rest.

VIII. RELATED WORK

There is a vast body of work on shape analysis. We can
only give an overview of the main lines of research in this
section. For a more complete survey, we refer to [25].

Many of the existing approaches to shape analysis are based
on abstract interpretation [14], some of them dating back to
1980s [23]. In particular, the TVLA engine [34] came with
a flexible approach based on abstract interpretation over a set
of user-supplied predicates. In comparison, our approach can
be viewed as using a set of parametrised predicates.

Several further approaches based on abstract interpretation
and various underlying formalisms (logics, automata, graphs)
are mentioned below. In general, our approach differs in that it
uses inductive invariant synthesis based on gradually refining
parameters of templates via SMT solving on the SSA form
(with no iterative execution), instead of iteratively executing
the program using abstract transformers and widening until
a fixed point is reached. Hence, our approach does not use
widening over gradually growing instances of dynamic data
structures to capture unbounded sets of instances of such
structures. Also, it does not use on-demand materialisation
of a concrete memory node from an abstract representation of
a set of such nodes followed by again abstracting the resulting

11See https://github.com/diffblue/2ls/tree/2ls-0.7/regression/heap-data.
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TABLE I: Comparison of 2LS using the proposed method with the previous version of the tool over the SV-COMP benchmark.

RS-ControlFlow RS-Heap MS-Heap MS-LinkedLists MS-Other
cpu (s) score cpu (s) score cpu (s) score cpu (s) score cpu (s) score

2LS 252 64 41 106 17.5 59 107 7 29 46
2LS-old 1400 45 53 -161 190 -194 96 -182 23 46

TABLE II: Comparison of 2LS with other tools on examples combining unbounded data structures and their stored data.

2LS CPA-Seq PredatorHP Forester Symbiotic UAutomizer
Calendar 2.88 timeout false unknown timeout timeout
Cart 23.70 timeout false unknown timeout timeout
Hash Function 3.65 8.51 unknown unknown unknown timeout
MinMax 5.14 timeout false unknown timeout timeout
Packet Filter 431.00 timeout timeout unknown unknown timeout
Process Queue 6.62 7.68 timeout unknown timeout timeout
Quick Sort 18.20 3.50 timeout unknown unknown 5.75
Running Example 1.24 timeout timeout unknown timeout unknown
SM1 0.53 timeout 0.31 false timeout timeout
SM2 0.55 5.41 false false timeout 14.50

memory configuration. These aspects are handled by our
encoding into guarded templates and representing malloc
calls by choosing abstract objects from a predefined pool.

Various extensions of Hoare logic have been developed to
cope with heap-manipulating programs. E.g., [22] proposed
a way to reason about lists using the Mona tool, which was
then extended to more complex data structures [29] and their
contents [27]. Another program logic is separation logic [32],
which enables reasoning about local memory modifications,
rather than looking at the memory as a whole. It has been
used for deductive program verification based on user-provided
annotations [11]. Fully automated approaches based on separa-
tion logic and abstract interpretation have also been proposed
and used, e.g., in the Space Invader [37] and SLAyer [2] tools.

More recently, automation of separation logic using SMT
solvers by reduction to effectively propositional logic has been
proposed by [31], [20], [21]. A different approach [30] uses
the Houdini algorithm to find inductive invariants over heap
predicates generated from grammars. These works share the
common approach with our method to use SMT solvers to
reason about heap properties; however, each of them uses
different techniques for synthesising the invariant predicates.
For an overview on template-based analysis techniques for
numerical properties, we refer to [8].

Other fully automated approaches based on abstract inter-
pretation build on shape graphs [26], such as the Predator
tool [16], or tree automata and regular tree model checking,
such as [6] or the Forester tool [17]. These approaches
primarily aim at handling unbounded heap structures. Their
combination with reasoning about value properties is not easy
as shown in the works [1], [19] that extended Forester with rea-
soning about finite data and a specialised support for handling
ordered list segments. As our experiments showed, Forester
and Predator could handle almost none of our examples.

Several further abstract domains have been proposed for
combining shape and data domains (e.g. [10], [5]). Our ap-
proach has the advantage that such domain combinations need
not be designed from scratch.

Beyond the mentioned tools, several participants in SV-
COMP, such as CPAChecker [3], Symbiotic [9], Ultimate
Automizer [18], or CBMC [13], provide support for dealing
with dynamic data structures and their content. However, they
cannot handle data structures of unbounded size.

All the above methods are store-based, i.e., they describe
the heap explicitly by a graph encoded in different ways. Other
approaches are inspired by storeless semantics [24] using
pointer access paths [12], [33], [28], [7] to describe reach-
ability properties on the heap. This idea proved most suitable
for our purposes. A pointer access path does not concretely
express the heap state, it only describes which dynamic objects
are reachable from a pointer. Using a set of access paths for
each pointer, one can efficiently describe the shape of the heap.
Compared with our method, the above approaches, however,
use abstract interpretation over CFGs, and their support of
dealing with the data content is limited [28].

IX. CONCLUSIONS AND FUTURE WORK

We present a verification approach for heap-manipulating
programs based on template-based invariant synthesis. We
propose an abstract template domain capable of expressing
reachability in dynamic data structures. We show that the
domain can easily be combined with other domains to form
power and product domains that are able to express complex
properties about the shape and the contents of data structures.
We experimentally evaluate our approach by within the 2LS
framework. We plan to extend the technique to support pointer
arithmetic and to develop templates that can express more
complex data structure shapes, such as trees, skip-lists, or
nested lists. Moreover, we work on using our method to infer
function summaries to enable a modular verification approach.
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Abstract—The problem of loop bound analysis can conceptu-
ally be seen as an instance of invariant generation. However,
the methods used in loop bound analysis differ considerably
from previous invariant generation techniques. Interestingly,
there is almost no previous work comparing the two sets of
techniques. In this paper, we show that loop bound analysis
methods can efficiently produce invariants which are hard to
prove for state-of-the-art invariant generation techniques (e.g.,
polynomial invariants or invariants relating many variables) and
thus enrich the tool-set of invariant analysis.

I. INTRODUCTION

In this paper we aim at connecting two fields of program
analysis: invariant generation and loop bound analysis. Specif-
ically, we suggest the use of loop bound analysis techniques
for invariant generation. Invariant generation is a traditional
discipline with a long history. Invariants are program proper-
ties (usually given as formulas over program variables) holding
on a specific program location in each program run. A special
case of interest are loop invariants which hold before and
after each loop iteration. For example, in the program from
Figure 1(a), we have the loop invariant x+ c ≤ n ∧ x ≥ 0.
Loop bound analysis is a younger field, where most of the
research was done in the last decade. Its goal is to find an
upper bound on the number of iterations of a given loop inside
a program. Reachability bound analysis [9] generalizes the
problem to finding an upper (or lower) bound on the number
of executions of a specific part of a program (e.g., a branching
inside the loop). For example, in the program from Figure 1(a),
n is a bound of the only loop, as well as a reachability bound
of basic block B1. We will use the term bound analysis to
cover both, loop and reachability bound analysis.

Invariants and loop bounds are linked: 1) Invariants can
be used to infer loop bounds. A straight-forward idea is to
introduce a counter variable c for the loop of interest and to
compute an invariant of shape c ≤ bound . While this idea only
works for simple loops, more elaborated approaches have been
proposed in the literature [8]. 2) Loop bounds can be used to
infer invariants. We are not aware of any publication devoted
to this point except for the brief discussions in [18] and [16].
In this paper, we address this gap and also show that invariant
generation using loop bound analysis techniques can be more
effective than state-of-the-art methods.

We illustrate the use of bound analysis for invariant gener-
ation on example (a) in Figure 1. The invariant c ≤ n holding

after the loop is hard to prove for state-of-the-art invariant
analysis approaches, because of their need to derive suitable
loop invariants. Here, we specifically need the loop invariant
x + c ≤ n ∧ x ≥ 0. Its problematic part is the relation
x + c ≤ n. Since it does not syntactically appear in the
program, it is hard to discover for template-based [15] or
predicate-abstraction [12] approaches, because they need to
rely on heuristics for template/predicate selection. In contrast,
current abstract interpretation based approaches usually fix the
expressible invariants in advance: the popular octagon abstract
domain [14] cannot express the loop invariant (it can relate at
most two variables); the polyhedra domain [4] can express it,
but needs to be carefully controlled in order to scale to larger
problems.

The central idea of using bound analysis for invariant
generation is that variable values after a loop are determined
by their values before the loop and the number of times they
are increased or decreased inside the loop. In our example, we
obtain the equation

Post↑(c) = Pre↑(c) + Exec↑(B1) · 1, (1)

where Post↑(c) (resp. Pre↑(c)) denotes an upper bound
of c after (resp. before) the loop and Exec↑(B1) denotes
an upper bound on the number of executions of the basic
block B1 (containing the instruction c++). We note that
equation 1 is just a different representation of the postcondition
c ≤ Pre↑(c) + Exec↑(B1) · 1. Hence, in order to prove the
postcondition c ≤ n, it suffices to compute Pre↑(c) = 0
and Exec↑(B1) = n. Pre↑(c) = 0 is determined from the
precondition c = 0. The computation of Exec↑(B1) is where
loop bound analysis comes into play, because the number of
executions of block B1 is the same as the number of loop
iterations. The loop bound is inferred in the following way:
Variable x is greater than 0 in the beginning of every loop
iteration and it is decremented by 1 in every iteration, which
means that the maximal value of x in the beginning (which is
n) is an upper bound on the number of iterations. In this way,
we get Exec↑(B1) = n.

In this paper we make the following contributions:
1) We introduce a benchmark of challenging invariant gen-

eration tasks, which we took from previous invariant and
loop bound analysis evaluations. We argue that these
tasks are difficult for state-of-the-art invariant analysis
techniques.
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a b c d e f g
CPACHECKER true unk true t/o unk unk unk
PAGAI true unk unk true unk unk unk
VERIABS true t/o true t/o t/o t/o true
ALIGATOR succ succ fail fail fail fail fail

TABLE I
RESULTS OF THE EVALUATION ON THE EXAMPLES FROM FIGURE 1.

2) We present the essence of the techniques underlying
bound analysis by introducing a few simple concepts.
We define the concepts such that they can be easily
used for generating invariants and illustrate their usage on
the tasks from our benchmark of challenging examples.
The concepts are sufficient to solve all benchmark tasks.
We believe that the concepts will enrich the tool set of
invariant analysis.

3) We provide experimental evaluations on two large bench-
mark sets. Our first experiment is executed on part of the
SV-COMP 2018 benchmark and demonstrates that the
current invariant analysis techniques can be significantly
improved by means of bound analysis. Our second ex-
periment is executed on a large industrial benchmark, it
shows that the class of invariants that can be verified
by state-of-the-art invariant analysis tools is to a large
extent different from the class of invariants that is found
by bound analysis.

II. CHALLENGES FOR STATE-OF-THE-ART INVARIANT
GENERATION

In this section, we introduce our small benchmark of
invariant generation tasks. The tasks are given in Figure 1.
They model some of the invariant generation challenges, which
we found in SV-COMP [22] - category ”Loops” (tasks (a), (b),
(c), (e), (g)) or cBench [21] (tasks (d), (f)). They consist of
a precondition, a while-loop written in a simple imperative
C-like language, and the postcondition to be proven.

a) Challenges: In order to prove the postcondition, state-
of-the-art invariant generation techniques typically need to
infer loop invariants (properties holding before and after each
iteration of a loop). We present three main challenges of our
benchmark tasks 1:

1) Polynomial invariants: Some part of the loop invariant
is a polynomial inequation (resp. equation).

2) Invariants with more than 2 variables: Some part of the
loop invariant is an inequation (resp. equation) relating
more than two program variables.

3) Disjunctive invariants: The loop invariant requires a case
distinction (e.g., max{x, y}).

Next to each example in Figure 1, we state the loop invariant
needed for proving the postcondition. Note that the loop
invariants are often more complex than the postconditions.

b) Experimental Results: We have evaluated several
state-of-the-art invariant generation tools on our benchmark of
challenging examples. PAGAI (git revision 16eed0f ) [11] uses

1Although there is a variety of invariant generation techniques tackling
with these challenges, they are either computationaly expensive or rely on
heuristics. For a lack of space, we omit a detailed discussion about the
techniques and their drawbacks.

abstract interpretation with linear domains (interval, octagon,
polyhedra) and path focusing. CPACHECKER 1.6.12 combines
several analysis in different modes. We used the predicate
abstraction mode which worked the best on the benchmark.
VERIABS [5], the winner of subcategory ReachSafety-Loops
in SV-COMP 2018, abstracts loops by static value analysis
with loop acceleration and k-induction and then uses bounded
model checking to prove properties. ALIGATOR [13] (git revi-
sion eb79fef) is a representative of polynomial loop invariant
generation. The technique is built on recurrence equations.

The input C-programs for the tools were generated by
introducing ”assume” resp. ”assert” statements representing
the pre- resp. post-condition. E.g., for example (a), we gen-
erated the statements assume(0<=m && m<=x && x<=n
&& c==0) and assert(m<=c && c<=n). For ALIGA-
TOR, we had to manually rewrite the examples into its input
format and as ALIGATOR only generates loop invariants, we
could not include the precondition and postcondition.

Table I shows the results: ”unk” stands for an unknown
result, ”true” for a successful proof of the assertion, and
”t/o” for timeout - 60 seconds. A special case is ALIGATOR.
Because it only generates the loop invariants, we distinguish
two cases: ”succ” for successfully generating a loop invariant
which is, together with the precondition, sufficient for proving
the postcondition, and ”fail” otherwise. The experiments were
performed on a Linux system with an Intel dual-core 3.2 GHz
processor using 1.5 GB memory. Regarding the timeouts, the
tools did not finish computation even when we extended the
limit to 5 minutes, so we consider such cases as failures.

The experimental results support our hypothesis that Fig-
ure 1 represents classes of problems which are difficult for
state-of-the-art invariant generation techniques. In contrast, in
Sections IV and V we will present simple concepts of bound
analysis which suffice for analyzing the programs of Figure 1.

III. BASIC DEFINITIONS

Program representation. Programs in our examples are
while-loops without function calls (but with possible nesting)
written in C, together with a precondition that holds before
the loop. The conditions that we are not able to model or
which are non-deterministic (e.g., depending on user input)
are represented by the symbol ?.
Program Variables and States. By V we denote the finite
set of program variables and by C its subset of constant
variables, i.e. variables that are never altered in the program.
For simplicity, we work only with integers.

A program state is a function σ : V → Z mapping program
variables to their values. We denote the set of states by Σ.
Expressions and Conditions. Expressions are terms built
with program variables, integers, and functions +, −, ·, /,
max, and min. Division by default rounds down. We denote
division with rounding up semantics by wrapping it with the
brackets d.e. The set of expressions is denoted by Expr . A
constant expression is an expression that does not contain any
non-constant program variable. We denote the set of constant
expressions by Expr c.
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precondition code postcondition loop
invariant

concepts

a
0 ≤ m ≤ x ≤ n ∧

c = 0

l1:while(x>0){
B1: x--; c++;
l1:}

m ≤ c ≤ n
x+ c ≤ n ∧
x+ c ≥ m ∧

x ≥ 0

RF (IV-A)
MF (IV-B)
VB1 (V-A)

b
n ≥ 0 ∧m > 0 ∧
x = n ∧ c = 0

B1:while(x>0){
B1: x=x-m; c++;
l1:}

c = d nme
x+m · c = n ∧
x ≥ 1−m

RF (IV-A)
MF (IV-B)
VB1 (V-A)

c
0 ≤ x ≤ n ∧
c = 0 ∧
y = 3

B1:while(x>0){
B1: x--; c++;
B1: if(*)
B2: y=c;
B1:}

y ≤max{3, n}
x+ c ≤ n ∧
x ≥ 0 ∧

y ≤max{3, n}
RF (IV-A)
VB2 (V-B)

d
n ≥ 0 ∧ x = n ∧
c = 0 ∧ r = 0

B1:while(x>0){
B1: x--;
B1: if(*)
B2: r++;
B1: else
B1: while(r>0){
B3: r--; c++;}
B1:}

c ≤ n
c+ r + x ≤ n ∧

r ≥ 0 ∧
x ≥ 0

LRF (IV-C)
VB1 (V-A)

e
0 ≤ x ≤ n ∧
m ≥ 0 ∧
y = c = 0

B1:while(x>0){
B1: x--; y=m;
B1: while(y>0){
B2: y--; c++;
B2: }
B1:}

c ≤ m · n c ≤ m · (n− x) ∧
x ≥ 0

LRF (IV-C)
VB1 (V-A)

f
n ≥ 0 ∧

r = y = n ∧
c = x = 0

B1:while(y>0){
B1: x=r;
B1: while(y>0 && *){
B2: x++; y--; }
B1: while(x>0 && *){
B3: x--; r--; c++;
B1: }
B4: y--;
B1:}

c ≤ 2n
c+ max{r, x}+ y ≤ 2n
∧ y ≥ 0 ∧ x ≥ 0

LRF (IV-C)
VB1 (V-A)

g
x ≥ 0 ∧ j = 0 ∧

i = 0

S1:while(i<x){
B1: i++; j=j+i;
S1:}

j ≤ (x−1)·x
2

j ≤ (i−1)·i
2 ∧

i ≤ x
RF (IV-A)

VBRE (V-C)

Fig. 1. Our small invariant generation benchmark. Each task consists of a precondition, a while-loop written in C, and the postcondition to be proven. The
symbol ? is used to abstract from some conditions in the programs, it represents a non-deterministic boolean value (e.g., dependent on a user input). Each
label Bi denotes the basic block (sequence of assignments) associated with the respective line. For each program, we also state the loop invariant needed for
state-of-the-art invariant generation techniques to prove the postcondition. The last column states combinations of concepts from Sections IV and V which
are sufficient to prove the postcondition.

For expressions e1, e2 ∈ Expr and a variable v, e1[v/e2] is
the expression e1 where all occurrences of v are simultane-
ously replaced by e2. Further, e[vi/ei | i ∈ I] denotes multiple
simultaneous replacements.

We can now extend the notion of a program state to whole
expressions. For an expression e ∈ Expr and a state σ ∈ Σ,
we define σ(e) = e[x/σ(x) | x ∈ V]. We say that σ(e) is the
value of e in state σ.

Conditions (except the non-deterministic condition ?) are
formulas built from expressions and classical relational and

logical operators. The set of conditions is denoted by Cond
with Init being the precondition. We extend the concept of a
simultaneous replacement from expressions to conditions. We
say that a state σ satisfies a condition γ (denoted by σ |= γ)
if γ[x/σ(x) | x ∈ V] is a tautology.

Basic Blocks. A program part consisting only of assignments
is called a basic block. We denote the set of basic blocks
in a program by B. We assume a special initial basic block
Bb ∈ B and final basic block Be ∈ B, which both consist of
zero assignments. We also assume that each block either has
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a single successor or exactly two successors connected by a
branching condition.

We further require that Bb does not have any predecessor
and that Be does not have any successor. In our examples,
each basic block is given as one line of code. For example, in
the program from Figure 1(a), the basic block B1 consists of
two assignments, x-- and c++. The blocks Bb and Be are
not explicitly marked in our examples.

Program semantics. The effect of a basic block is a function
E : B → (V → Expr) such that whenever a block B is
executed in a program state σ resulting in a state σ′, it holds
that σ′(v) = σ(E(B)(v)).

E.g., if V = {x, y, c}, C = {c}, and B = x++; y+=x;,
then E(B)(x) = x+1, E(B)(y) = y+x+1, and E(B)(c) = c.

We assume that for each constant variable c ∈ C, E(B)(c) =
c, i.e., constant variables never change their value.

We extend the effect of a basic block to expressions as
follows: For e ∈ Expr , E(B)(e) = e[x/E(B)(x) | x ∈ V]

A program run is a (possibly infinite) sequence
(σ0, B0), (σ1, B1), . . . , where each (σi, Bi) ∈ Σ × B,
B0 = Bb, σ0 |= Init , each Bi+1 is a successor of Bi, σi |= γ
for any branching condition γ between Bi and Bi+1, and for
all v ∈ V we have σi+1(v) = σi(E(Bi)(v)). Further, if the
program run is finite with Bn being the last basic block, then
Bn = Be.

Execution bounds. Given a program run ρ, #(B, ρ) denotes
the number of occurrences of the basic block B in ρ.

An upper (resp. lower) execution bound for a basic block
B is a constant expression b ∈ Expr c such that for each
program run ρ ≡ (σ0, B0), (σ1, B1) . . . , #(B, ρ) ≤ σ0(b)
(resp. #(B, ρ) ≥ σ0(b)).

An execution upper (resp. lower) bound mapping is a
function Exec↑ : B → Expr c (resp. Exec↓ : B → Expr c)
that maps an upper (resp. lower) bound to each basic block
in the program. E.g., Exec↓(B1) = m and Exec↑(B1) = n in
Figure 1(a). 2

Invariants and expression/variable bounds. Let B ∈ B be
a basic block. We say a condition γ ∈ Cond is an invariant
before B if for each program run (σ0, B0), (σ1, B1) . . . holds
that if Bi = B then σi |= γ. For example, x > 0 is an invariant
before B1 in Figure 1(a).

A precondition (resp. postcondition) is an invariant before
Bb (resp. Be). We use the term universal invariant to denote
the invariant holding before each B ∈ B.

An initial, resp. final, resp. universal upper bound of an
expression e is a constant expression b ∈ Expr c such that
b ≥ e is a precondition, resp. postcondition, resp. universal
invariant.

An initial, resp. final, resp. universal upper bound mapping
is a partial function Pre↑, resp. Post↑, resp. Univ↑ that maps

2We note that the upper and lower bound mappings are not unique. We
can infer different mappings depending on the used concept or ranking (resp.
metering) function (see next section). However, for technical convenience and
better readability we always use the same name Exec↑ and Exec↓ for the
mappings.

an initial, resp. final, resp. universal upper bound to each
expression.

We define the initial, resp. final, resp. universal lower bound
analogically with the upper bounds (only the invariant is b ≤ e
instead of b ≥ e) and the bound mappings are denoted as Pre↓,
Post↓, and Univ↓.

For example, in Figure 1(a), we have Pre↓(x) =
m,Pre↑(x) = n,Univ↓(x) = 0,Univ↑(x) = n, and
Post↓(x) = Post↑(x) = 0.

For all the previous definitions, we use the term variable
bound in case e is a variable.

Using Loop Bound Analysis For Invariant Generation.
In this paper, we extract initial expression bounds from the
precondition and use them to infer execution bounds. Based
on the execution bounds and initial expression bounds, we
compute universal and final variable bounds.

Note that computing final and universal expression bounds
can usually be decomposed to several variable bound com-
putations (whether we take an upper or a lower bound of
each variable depends on the sign with which it appears in the
expression). For example, we may compute Post↑(2·x−y+3)
as 2 · Post↑(x)− Post↓(y) + 3.

We will describe concepts for execution bound computation
in Section IV and concepts for variable bound generation in
Section V.

IV. COMPUTATION OF EXECUTION BOUNDS

A. Ranking Functions

A lot of techniques for loop bound analysis use the concept
of ranking functions (e.g., [3], [17], [18], [2]). Ranking func-
tions are expressions that keep decreasing during an execution
of a program and they are bounded from below, thereby
proving that the program must eventually terminate.

Look at the program in Figure 1(a): x is a ranking function
of block B1, because (1) it is decreased by 1 with each
execution of B1, (2) it is never increased, and (3) it is bounded
from below by 0. Note that in this way it measures the number
of the remaining executions of B1.

Definition 1: Let ρ ≡ (σ0, B0), (σ1, B1) . . . be a program
run and e ∈ Expr an expression. We define O(e, ρ) = |{i |
σi(e) > σi+1(e)}|, so O(e, ρ) denotes the number of times e
is decreased on ρ.

Definition 2: An expression e is called a ranking function of
a basic block B ∈ B if for each run ρ ≡ (σ0, B0), (σ1, B1) . . .
the following holds:

1) #(B, ρ) ≤ O(e, ρ) (to each execution of B, we can
assign at least one decrement of e)

2) ∀i ≥ 0. σi |= e ≥ 0 (e is bounded from below by 0)
3) ∀i ≥ 0. σi(e) ≥ σi+1(e) (e is never increased)
The right ranking function can be found by simple heuris-

tics. E.g., in [18], the expression e is a candidate if e > 0
appears in the looping condition.
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Concept RF. Let B be a basic block and e its ranking
function. Then Exec↑(B) = Pre↑(e) is an upper execu-
tion bound for B.

Example 1: As we already mentioned, x is a ranking
function of B1 in Figure 1(a), so we get Exec↑(B1) =
Pre↑(x) = n by Concept RF. We summarize the results for
all the examples in the following table:

ranking fnct execution bounds
a B1 : x Exec↑(B1) = Pre↑(x) = n

b B1 : d xme Exec↑(B1) = Pre↑(d xme) = d nme
c B1, B2 : x Exec↑(B1) = Exec↑(B2) = Pre↑(x) = n

d B1, B2 : x Exec↑(B1) = Exec↑(B2) = Pre↑(x) = n

e B1 : x Exec↑(B1) = Pre↑(x) = n

f B1, B2, Exec↑(B1) = Exec↑(B2) = Exec↑(B4)

B4 : y = Pre↑(y) = n

g B1 : x− i Exec↑(B1) = Pre↑(x− i) = x

Note that the expression representing the ranking function
of some basic block does not have to decrease by executing
the block itself. E.g., in Figure 1(d), x is a ranking function
for block B2 because each execution of B2 is preceded by
an execution of B1 which decreases x. To find the ranking
function of some basic block, it usually suffices to analyse
all possible paths from the block back to itself and find
expressions that decrease on these paths. Also note that the
ranking function does not have to be just one variable (as can
be seen in examples (b) and (g)).

We also want to remark that if we delete the initial condition
0 ≤ n in Figure 1(a) (respectively in the other examples), the
analysis does not fail. We would infer the ranking function
max{x, 0}. The conditions on non-negativity are added to
the examples only for simplicity.

B. Metering Functions

Because the research in bound analysis so far focused
mainly on computing upper execution bounds, there is no
widely adopted term analogical to “ranking function” for
computing lower execution bounds. For our paper, we have
chosen to adapt (and redefine) the term metering function used
in [7].

Definition 3: An expression e is called a metering function of
a basic block B ∈ B if for each run ρ ≡ (σ0, B0), (σ1, B1) . . .
the following holds:

1) #(B, ρ) ≥ O(e, ρ) (to each decrement of e, we can assign
at least one execution of B)

2) ∃j. σj |= e ≤ 0 (e is eventually non-positive)
3) ∀i ≥ 0. σi(e) ≤ σi+1(e) + 1 (e is never decreased by

more than 1 on one block)
Conditions (2) and (3) guarantee that the number of decre-

ments of e is greater or equal to its lowest possible initial
value. Because of condition (1), also the number of executions
of B is greater or equal to e’s lowest possible initial value.
Note that the requirement that e is eventually less or equal to
zero can be checked by a simple analysis. Usually, it follows

from the negated looping condition of the loop. The candidates
for metering functions can be chosen by the same heuristics
as in the case of ranking functions.

Concept MF. Let B be a basic block and e its metering
function. Then Exec↓(B) = Pre↓(e) is a lower execution
bound for B.

Example 2: As in the previous subsection, we summarise
the metering functions and lower execution bounds in a table:

metering function execution bounds
a B1 : x Exec↓(B1) = Pre↓(x) = m

b B1 : d xme Exec↓(B1) = Pre↓(d xme)
= d nme

c B1 : x Exec↓(B1) = Pre↓(x) = n

d B1 : x Exec↓(B1) = Pre↓(x) = n

e B1 : x Exec↓(B1) = Pre↓(x) = 0

f B1, B4 : y Exec↓(B1) = Exec↓(B4)

= Pre↓(y) = n

g B1 : x− i Exec↓(B1) = Pre↓(x− i) = 0

Note that for block B2 in example (c), x is a ranking
function, but not a metering function. For all basic blocks
that are not mentioned in the table, we may use the implicit
metering function 0, which always satisfies all the conditions
of a metering function and leads to the trivial lower execution
bound 0.

C. Lexicographic Ranking Functions

We will now extend the concept of a ranking function. Let
us look at example (d) in Figure 1: r would be a ranking
function of B3 if it was not incremented on B2. However,
we may notice that B2 itself has the ranking function x, so
B2 is executed at most Pre↑(x) = n times (by Concept RF)
and thus r is increased altogether by at most n (by 1 with
each execution of B2). Hence B3 cannot be executed more
than Pre↑(r) + n = n times. We will call r a local ranking
function of B3.

Definition 4: The expression e is called a local ranking
function of a basic block B ∈ B if for each run ρ ≡
(σ0, B0), (σ1, B1) . . . the following holds:

1) #(B, ρ) ≤ O(e, ρ)

2) ∀i ≥ 0. σi |= e ≥ 0

Note that the only difference to Definition 2 is that a local
ranking function may increase during a program run (condition
(3) is missing).

Definition 5: Let B1, . . . , Bn be basic blocks with local
ranking functions e1, . . . , en such that for each 1 ≤ i < j ≤ n
it holds that E(Bj)(ei) ≤ ei (i.e., we can order the basic blocks
such that an execution of any of them does not increase local
ranking functions of the blocks that are higher in the order).
Then we say that (e1, . . . , en) is a lexicographic ranking
function of blocks (B1, . . . , Bn).
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Concept LRF. Let (e1, . . . , en) be a lexicographic rank-
ing function of blocks (B1, . . . , Bn). Let ci,j ∈ Expr c

denote the maximal value by which one execution of Bi
can increase ej , i.e. E(Bi)(ej) ≤ ej + ci,j . Then we set:

Exec↑(Bj) = Pre↑(ej) +

j−1∑

k=1

Exec↑(Bk) · ck,j

More details about lexicographic ranking functions can be
found in [17], [3], and [2]. For the computation of lower
bounds, nothing like lexicographic metering functions has
been published so far. It is possible to define such functions,
but we omit the definition here for lack of space.

Example 3: In example (d) from Figure 1, we have the
lexicographic ranking function (x, r) of blocks (B2, B3). We
also have c1,2 = 1 (otherwise ci,j = 0). Hence by applying
Concept LRF, we get Exec↑(B2) = Pre↑(x) = n and
Exec↑(B3) = Pre↑(r) + 1 · Exec↑(B2) = 0 + 1 · n = n.

On this example, we can see how lexicographic ranking
functions can handle amortized complexity problems. Even
though there are n iterations of the outer loop and B3 can be
executed up to n− 1 times during one iteration, it cannot be
altogether executed more than n times.

For example (e), we infer the lexicographic ranking function
(x, y) of blocks (B1, B2). We now need an auxiliary invariant
y ≥ 0 holding before B1 (which is easily found by a simple
invariant generator) to infer that the upper ranking function y
of B2 is increased by at most m with each execution of B1.
By applying Concept LRF, we get Exec↑(B1) = Pre↑(x) = n
and Exec↑(B2) = Pre↑(y)+m·Exec↑(B1) = 0+m·n = m·n.

On example (f), we can see that the choice of the local
ranking functions can have impact on the obtained bounds.
When choosing x as a local ranking function of B3, we
get the lexicographic ranking function (y, y, x) of blocks
(B1, B2, B3) with c1,3 = n, c2,3 = 1, and c1,2 = 0. Thus
Exec↑(B3) = Pre↑(x) + n · Exec↑(B1) + 1 · Exec↑(B2) =
0 + n · n + 1 · n = n2 + n. However, this bound is
unnecessarily coarse. When choosing max{x, r} as a local
ranking function of B3

3, the reset x=r on B1 does not have
any effect on the local ranking function and we get c1,3 = 0
and thus Exec↑(B3) = Pre↑(max{x, r}) + 0 · Exec↑(B1) +
n · Exec↑(B2) = n+ 0 + n = 2n.

V. COMPUTATION OF VARIABLE BOUNDS

A. A Simple Variable Bound Computation

The simplest approach to variable bound computation was
already suggested in the introduction and it follows from [3]
and [17]. For a variable that is changed only at one basic
block where it is incremented by a constant, we compute the
final variable upper bound by multiplying the constant by the

3Both x and r decrease on B3 so max{x, r} is decremented by 1 with
each execution of B3 and x is always non-negative so also max{x, r} is
non-negative.

maximal number of executions of the block and adding the
maximal initial value of the variable.

We now generalise this idea for a computation of lower
variable bounds and we involve variables that are not only
incremented, but also decremented on possibly more than one
basic block. For each variable v, we define a set of tuples
(B, d) where B is a basic block and d is the amount by which
B increments or decrements v.

Definition 6: Let v ∈ V . We define the increments and
decrements of v in the following way:

I(v) =
{(B, d) ∈ B × Expr c | E(B)(v) = v + d ∧
Init =⇒ d > 0}

D(v) =
{(B, d) ∈ B × Expr c | E(B)(v) = v − d ∧
Init =⇒ d > 0}

In the following simple concept, we require that the variable,
for which we are computing the bound, cannot be changed in
any other way than incrementing and decrementing it by a
constant. Note that if there is an assignment incrementing or
decrementing the variable by a non-constant expression, we
can replace the non-constant expression by its universal upper
or lower bound (depending on whether we compute an upper
or lower variable bound).

Concept VB1. Let v ∈ V and for each basic block B
which does not appear in I(v) or D(v) it holds that
E(B)(v) = v (i.e., it does not change v). Then we set

Post↑(v) =
Pre↑(v) +

∑
(B,d)∈I(v) Exec

↑(B) · d
−∑

(B,d)∈D(v) Exec
↓(B) · d

Post↓(v) =
Pre↓(v)−∑

(B,d)∈D(v) Exec
↑(B) · d

+
∑

(B,d)∈I(v) Exec
↓(B) · d

Univ↑(v) = Pre↑(v) +
∑

(B,d)∈I(v) Exec
↑(B) · d

Univ↓(v) = Pre↓(v)−∑
(B,d)∈D(v) Exec

↑(B) · d

Example 4: For example (a) in Figure 1, we have I(c) =
{(B1, 1)} and D(c) = ∅. Thus Post↑(c) = Pre↑(c) +
Exec↑(B1)·1 = n and Post↓(c) = Pre↓(c)+Exec↓(B1) = m.
We may apply the same computation for examples (b), (d), (e),
and (f) and use the execution bounds computed in the previous
subsections.

We now demonstrate the computation of universal upper and
lower bounds for variable r in example (f). We have I(r) =
∅ and D(r) = {(B3, 1)}. We have computed Exec↑(B3) =
2n in the previous subsection and thus we get Univ↑(r) =
Pre↑(r) = n and Univ↓(r) = Pre↓(r) − Exec↑(B3) · 1 =
n− 2n = −n.

B. Variable Bound Computation with Resets

We will now extend the previous simple variable bound
concept such that it covers also basic blocks which reset the
given variable, i.e. which set it to a new value independent
of its previous value. Assume that we want to compute the
final upper variable bound for a variable v. We do not analyse
the order in which the blocks are executed, but we can safely
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assume that all decrements of v happen before any reset (so
they would not have any effect on the final value), then v is
reset to the biggest possible value and afterwards incremented
the maximum number of times. We proceed analogically with
the lower bound. The concept is partially inspired by [18].

As in the previous subsection, we first define the set of
resets for a given variable. For simplicity, we consider only
resets of the form v=a+expr, where a is a variable and expr
is a constant expression.

Definition 7: Let v ∈ V . We define the resets of v in the
following way:

R(v) = {(B, a, d) ∈ B × V × Expr c | E(B)(v) = a+ d}

To formulate the concept, we will yet need two auxiliary
sets which contain the largest (resp. smallest) values (given as
constant expressions) to which a given variable may be reset.
For that purpose, we consider the initial value of a variable
also as a reset.

Definition 8:

R↑c (v) = {Pre↑(v)} ∪⋃
(B,a,d)∈R(v){Univ↑(a) + d}

R↓c (v) = {Pre↓(v)} ∪⋃
(B,a,d)∈R(v){Univ↓(a) + d}

Now we can formulate the concept. Note that (as discussed
earlier) decrements have no effect on the upper variable bound
and increments have no effect on the lower variable bound.
Thus, there is also no difference between final and universal
variable bounds here.

Concept VB2. Let v ∈ V and for each basic block B
that does not appear in I(v), D(v), or R(v) it holds that
E(B)(v) = v (i.e., it does not change v). Then we set

Post↑(v) = Univ↑(v) =
max(R↑c (v))

+
∑

(B,d)∈I(v) Exec
↑(B) · d

Post↓(v) = Univ↓(v) =
min(R↓c (v))

−∑
(B,d)∈D(v) Exec

↑(B) · d

Example 5: In example (c) from Figure 1, we have R(y) =
{(B2, c, 0)}, D(x) = {(B1, 1)}, I(c) = {(B1, 1)} and I(y) =
D(y) = I(x) = R(x) = D(c) = R(c) = ∅. By Concept VB1,
Univ↑(c) = Pre↑(c) + Exec↑(B1) = 0 + n = n, and thus
we can compute R↑c (y) = {Pre↑(y),Univ↑(c) + 0} = {3, n},
and Post↑(y) = max{3, n} by Concept VB2.

C. Variable Bounds by Recurrence Equations

An alternative approach to Concept VB1 and Concept VB2
for variable bound computation is based on recurrence equa-
tions. It is similar to the technique [13] used by ALIGATOR.

If we have a non-nested loop, we can express variable
values as functions over the loop counter (which represents
the number of finished iterations). For example, the fact that a
variable v is incremented by 1 in each iteration of a loop can
be represented by a recurrence equation [v](n) = [v](n−1)+1
where [v](n) denotes the value of v after n iterations (n is here
the loop counter).

In comparison with [13], our generated invariants are in-
equalities instead of equalities and we incorporate the execu-
tion bounds, and thus take into account conditions in the loop.
The advantage of using recurrence equations over the concepts
VB1 and VB2 is that we can achieve more precise bounds
(as demonstrated next). The disadvantage is that they are less
general - in the way they are defined here, we may apply
them only on non-nested loops without branching. However,
the concept can be further extended to multi-path or nested
loops as in [19].

Definition 9: For v ∈ V , we introduce the functions [v]
↑

:
N → Expr c and [v]

↓
: N → Expr c such that [v]

↓
(n) ≤ v

and v ≤ [v]
↑
(n) holds after n iterations4 of the main program

loop.
For n = 0, we set [v]

↑
(n) = Pre↑(v) and [v]

↓
(n) =

Pre↓(v). For n > 0, we define [v]
↑
(n) and [v]

↓
(n) recursively

with the use of [v]
↑
(n − 1) and [v]

↓
(n − 1) by analysing

the effect of one iteration (the biggest possible increase or
decrease of v). Then we can infer the closed form solution
from the recursive definitions by a syntactic pattern matching
to the following well known case5:

f(n) = f(n−1)+c+d·n  f(n) = f(0)+c·n+d·n · (n+ 1)

2

where n ∈ N and c, d ∈ Expr c.
Definition 10: We say a function f : N→ Expr c is increas-

ing (resp. decreasing) if for each n ∈ N, f(n) ≤ f(n + 1)
(resp.f(n) ≥ f(n+ 1)).

Concept VBRE. Let B be a basic block located immedi-
ately after the loop header. Let v be a variable for which
we know the closed form of [v]

↑
(n) (resp. [v]

↓
(n)). Then

Post↑(v) =

{
[v]
↑
(Exec↑(B)) if [v]

↑
(n) is increasing;

[v]
↑
(Exec↓(B)) if [v]

↑
(n) is decreasing.

Analogically for the lower expression bound:

Post↓(v) =

{
[v]
↓〈Exec↓(B)〉 if [v]

↓
(n) is increasing;

[v]
↓〈Exec↑(B)〉 if [v]

↓
(n) is decreasing.

Example 6: In Figure 1(g), we have [i]
↑
(n) = [i]

↑
(n−1)+1,

hence [i]
↑
(n) = [i]

↑
(0) + n = n. [j]

↑
(n) = [j]

↑
(n − 1) +

[i]
↑
(n − 1) = [j]

↑
(n − 1) + n − 1 = [j]

↑
(0) + (−1) · n +

1 · n·(n+1)
2 = n·(n−1)

2 . By Concept RF, we have already
inferred Exec↑(B1) = x in Subsection IV-A. Because n·(n−1)

2
is increasing (the loop counter n is non-negative), we get
Post↑(j) = x·(x−1)

2 by replacing the counter with the upper
execution bound.

Note that for the computation of upper variable bound for j
with Concept VB1, we would have to replace the assignment
j=j+i (incrementing j by a non-constant expression) by the

4We leave the notion of a loop iteration to the reader’s intuition.
5Closed form computation of other types of recurrences is discussed, e.g.,

in [13].
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assignment j=j+x (incrementing j by a constant expression).
Thus, we would get I(j) = {(B1, x)} and Post↑(j) = 0 +x ·
Exec↑(B1) = x · x which is less precise than x·(x−1)

2 .

VI. EXPERIMENTAL EVALUATION ON TASKS FROM
SV-COMP

We implemented the presented concepts into the tool LOOP-
ERMAN [19]. We set up the following experiment on base
of the SV-COMP 2018 benchmark in order to evaluate the
contribution that bound analysis can make to solving invariant
analysis challenges: We inserted the invariants that LOOPER-
MAN computes based on concepts RF, MF, and VB1 in form
of ”assume” statements into the benchmarks from SV-COMP’s
ReachSafety-Loops category. Specifically the invariants are
added after the loop and immediately after the loop header,
where they relate the current variable values to the values
before the loop. For example, the code from Figure 1(a) looks
as follows after applying the described pre-processing:

x_0 = x;
c_0 = c;
while(x>0){
assume(0<x && x<=x_0);
assume(0<=c && c<x_0);
x--;
c++;

}
assume(x==x_0-max(x_0,0));
assume(c==c_0+max(x_0,0));

We excluded the false-unreach cases (those with an invalid
assertion) from the benchmark as we aim at proving program
properties, not at finding counter-examples, which left us with
111 files with valid assertions. We ran the tools VERIABS,
CPACHECKER and PAGAI on the 111 files with valid asser-
tions that we enriched by our invariants, as well as on the
original 111 files. We did not run ALIGATOR because its inputs
are restricted to a special format. For the evaluation, we used
the same time limit of 900s as in SV-COMP. The files with
generated invariants, LOOPERMAN, as well as a detailed table
of results, is available at [1].

Table II compares the results the respective tool obtains with
the help of the invariants inferred by LOOPERMAN (column 2)
and without these invariants (column 1). CPACHECKER was
able to validate 16 (14.4%) additional assertions with the help
of the invariants. PAGAI improved its results by 9 cases (8.1%).
Given that VERIABS already proves 103 of 111 assertions, it
is hard to further improve its results, and in our experiment it
did not not benefit from the additional ”assume” statements.
However, considering the results of our third experiment (see
below), it seems that CPACHECKER and PAGAI are more
reliable on real world code than VERIABS.

When comparing to other tools from SV-COMP 2018 on
this set of programs, CPACHECKER in predicate analysis mode
would move from the 5th place to the 2nd place by using our
additional invariants, preceded only by VERIABS with 103
proven files, and followed by UTAIPAN [6] with 82 proven
files and UAUTOMIZER [10] with 78 files.

proven true proven true
(without invariants) (with invariants)

CPACHECKER 68 (61.26%) 84 (75.68%)
PAGAI 57 (51.35%) 66 (59.46%)
VERIABS 103 (92.79%) 103 (92.79%)

TABLE II
RESULTS OF THE EVALUATION ON 111 TRUE-UNREACH PROGRAMS OF
REACHSAFETY-LOOPS CATEGORY FROM SV-COMP 2018 WITH AND

WITHOUT OUR GENERATED INVARIANTS.

fail oom timeout unknown false true true (%)
CPACHECKER 98 0 187 165 0 311 40.87%
PAGAI 0 8 36 342 0 375 49.2%
VERIABS 183 0 265 262 10 41 5.4%
CBMC 0 8 474 0 0 279 36.66%

TABLE III
RESULTS OF THE EVALUATION ON ALL 761 LOOPS IN CBENCH FOR WHICH

LOOPUS INFERRED A BOUND OVER THE STACK VARIABLES.

We conclude that bound analysis techniques can consider-
ably improve state-of-the-art approaches to invariant analysis.

VII. EXPERIMENTAL EVALUATION ON AN INDUSTRIAL
BENCHMARK

By our third experiment on an industrial benchmark we
evaluate to which extent invariant analysis tools can solve
bound analysis problems. For this purpose we ran our bound
analysis tool LOOPUS on the program and compiler optimi-
sation benchmark Collective Benchmark [21] (cBench, 1027
different C files with 211.892 lines of code) and annotated the
inferred bounds as assertions into the code: We instrumented
a counter c for each loop and added the assertion c ≤ bound ,
where bound is the loop bound computed by LOOPUS. We
then asked CPACHECKER, PAGAI and VERIABS to prove
these assertions. Since it is to be expected that loop bounds
formulated over heap values are difficult to verify, we only
considered those bounds which are purely formulated over
the stack variables. In this way, we generated 761 assertion
tasks. We also ran the bounded model checker CBMC 5.3 [20]
on our benchmark in order to check the correctness of the
generated assertions (by loop unrolling CBMC can disprove
wrong loop bounds in many cases). We chose a timeout of
60s for LOOPUS as well as for the verification tools because
increasing the timeout did not improve results significantly,
neither for LOOPUS nor the verifiers. The generated files with
assertions, the version of LOOPUS which we used, as well as
a detailed table of results, is available at [1].

Table III shows the overall results. The column ”fail” states
the number of loops (assertions about the loop bounds) for
which the respective tool crashed, ”oom” refers to the cases
for which the tool ran out of memory, ”timeout” are the cases
where the computation exceeded 60 seconds, and ”unknown”,
”false”, and ”true” are the cases where the tool terminated with
results ”unknown”, ”false”, or ”true” respectively. The result
”false” indicates that the tool disproved the bound inferred by
LOOPUS. We checked the 10 loops for which VERIABS refuted
the asserted loop bound and it turned out that the bound is
actually sound.

Interestingly, even though the assertions are usually of a
simple form (we used an industrial, not an academic bench-
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fail oom timeout unknown false true true (%)
CPACHECKER 61 0 186 160 0 309 43.16%
PAGAI 0 8 33 300 0 375 52.37%
VERIABS 179 0 247 239 10 41 5.73%
CBMC 0 8 429 0 0 279 38.97%

TABLE IV
RESULTS OF THE EVALUATION ON 761 LOOPS IN CBENCH FOR WHICH
LOOPUS INFERRED A LINEAR OR CONSTANT BOUND OVER THE STACK

VARIABLES.

mark), the best tool in this comparison, PAGAI, succeeded to
prove only 49% of the assertions. The second CPACHECKER
proved only 41%, CBMC 37%, and VERIABS 5.4%.

The low success rate is partially caused by the fact that some
of the bounds (assertions) are polynomial, which is problem-
atic for the provers, as discussed in Section II. Therefore we
state the results restricted to the case of linear or constant
bounds in Table IV. Nevertheless, the provers were not much
more successful with 52% (PAGAI), 43% (CPACHECKER),
39% (CBMC), and 5.7% (VERIABS) proven assertions.

In conclusion, our experiment demonstrates that in many
cases invariants computed by bound analysis cannot be com-
puted by state-of-the-art invariant analysis techniques.

VIII. CONCLUSION

We have formulated simple bound analysis concepts for
computing invariants which are challenging for state-of-the-art
invariant generation techniques. On a set of tasks from the
SV-COMP 2018 benchmark, we have demonstrated that
current invariant analysis techniques can be significantly
improved by means of bound analysis. Additionally, we
have shown by an experimental evaluation on an industrial
benchmark that the class of invariants which can be verified
by state-of-the-art invariant analysis tools is to a large
extent different from the class of invariants that is found by
bound analysis. Our results show that using bound analysis
techniques for invariant generation is very promising and we
hope that they motivate further research in this area.
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Abstract: Formal verification of arithmetic circuits checks
whether or not a gate-level circuit correctly implements a
given specification model. In cases where this equivalence
check fails – the presence of a bug is detected – it is required
to: i) debug the circuit, ii) identify a set of nets (signals)
where the circuit might be rectified, and iii) compute the
corresponding rectification functions at those locations. This
paper addresses the problem of post-verification debugging
and correction (rectification) of finite field arithmetic circuits.
The specification model and the circuit implementation may
differ at any number of inputs. We present techniques that
determine whether the circuit can be rectified at one particular
net (gate output) – i.e. we address single-fix rectification.

Starting from an equivalence checking setup modeled as
a polynomial ideal membership test, we analyze the ideal
membership residue to identify potential single-fix rectification
locations. Subsequently, we use Nullstellensatz principles to
ascertain if indeed a single-fix rectification can be applied at
any of these locations. If a single-fix rectification exists, we
derive a rectification function by modeling it as the synthesis
of an unknown component problem. Our approach is based
upon the Gröbner basis algorithm, which we use both as a
decision procedure (for rectification test) as well as a quan-
tification procedure (for computing a rectification function).
Experiments are performed over various finite field arithmetic
circuits that demonstrate the efficacy of our approach, whereas
SAT-based approaches are infeasible.

I. INTRODUCTION

Past few years have seen extensive investigations into formal
verification of arithmetic circuits. Circuits that implement
polynomial computations over large bit-vector operands are
hard to verify using methods such as SAT/SMT-solvers, de-
cision diagrams, etc. Recent techniques have investigated the
use of polynomial algebra and algebraic geometry techniques
for their verification. These include verification of integer
arithmetic circuits [1] [2] [3] and also finite field circuits
[4] [5]. While these are successful in proving correctness or
detecting the presence of bugs, the problem of debugging and
correction of arithmetic circuits has only just begun to be
addressed [6], [7].

In this paper, we address the problem of rectification of
buggy finite field arithmetic circuits. A specification model
(Spec) is given either as a polynomial description f over a
finite field, or as a golden model of a finite field arithmetic
circuit. The finite field considered is the field of 2k elements
(denoted by F2k ), where k corresponds to the operand-width

(bit-vector word length). An implementation circuit C is also
given. Equivalence checking is performed between the Spec
and the circuit C, and the presence of a bug is detected. No
restrictions on the number, type, or locations of the bugs are
assumed.

We perform error-diagnosis and a subset N of the nets
of the circuit is identified as potential rectification locations.
Given the Spec, the buggy implementation circuit C, and the
set N of potential rectifiable locations, our objective is to
determine whether or not the buggy circuit can be rectified
at one particular net xi ∈ N . This is called single-fix
rectification in literature [8]. If a single-fix rectification does
exist at net xi in the buggy circuit, then our subsequent
objective is to derive a polynomial function U(XPI) in terms
of the set of primary input variables XPI . This polynomial
can be translated (synthesized) into a logic subcircuit such
that xi = U(XPI) acts as the rectification function for the
buggy circuit C so that C matches the specification.

Our techniques and algorithms are based on symbolic
computer algebra and algebraic geometry – particularly on
the concepts of the Strong Nullstellensatz and Gröbner bases
[9]. We show how to apply our techniques to rectify finite
field arithmetic circuits, where conventional SAT-solver based
rectification approaches are infeasible.

The paper is organized as follows: The following section
reviews related previous work. Section III covers preliminary
concepts. The formulation of the verification test is described
in Section IV. Section V describes conditions for rectification
at a particular net. Section VI describes how rectification func-
tion can be synthesized once single-fix rectification is deemed
possible. Section VII describes our experimental results and
Section VIII concludes the paper.

II. PREVIOUS WORK

Automated diagnosis and rectification of digital circuits
has been addressed in [10], [11]. The paper [12] presents
algorithms for synthesizing Engineering Change Order (ECO)
patches - an analogous problem to rectification. The use of
interpolation for ECO has been presented in [8], [13]. The
single-fix rectification function approach in [13] has been
extended in [8] to generate multiple partial-fix functions.
As these approaches are SAT based, they are not efficient
for arithmetic circuits. In contrast to these works, our work
presents a word-level formulation for single-fix rectification.
Computer algebra has been utilized for circuit debugging and
rectification in [6], [7]. These approaches rely heavily on the
structure of the arithmetic circuit for coefficient calculation.
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Moreover, if the arithmetic circuits contain redundancies, then
we have shown that their approach is incomplete in that it
cannot resolve the rectification question. We have uploaded
an appendix at [14] for detailed discussion on these issues.

Once rectification is deemed feasible, the problem of
finding the rectification function has been considered as a
partial synthesis problem. The most recent and relevant ap-
proach [15], [16] resolves the unknown component problem
using an incremental SAT formulation.

The approach used in [17] inserts logic corrector MUXs
on the unknown sub-circuits and relies on SAT solvers to
realize the functionality. The authors in [18] present a QBF
formulation for answering whether a partial implementation
can be extended to a complete design that models a given
specification.

Despite using state-of-the-art SAT solvers, all the above ap-
proaches fail to verify large and complex finite field arithmetic
circuits. We demonstrate the efficiency of our implementation
by comparing the results against the most recent SAT based
approach [15] showing improvement by several orders of
magnitude.

III. PRELIMINARIES: NOTATION AND BACKGROUND

Let Fq denote the finite field of q elements, where q = pk is
a prime power. To model functions over k-bit vector operands,
we use q = 2k, i.e. the finite field F2k of 2k elements. The
field F2k is constructed as F2k = F2[X] (mod P (X)), where
F2 = {0, 1} is the field of two elements, and P (X) is a given
irreducible polynomial of degree k with α as one of its root,
i.e. P (α) = 0.

Let R = Fq[x1, . . . , xn] be the polynomial ring in variables
x1, . . . , xn with coefficients in Fq . A polynomial f ∈ R
is written as a finite sum of terms f = c1X1 + c2X2 +
· · ·+ctXt. Here c1, . . . , ct are coefficients and X1, . . . , Xt are
monomials, i.e. power products of the type xe11 · xe22 · · ·xenn ,
ej ∈ Z≥0. To systematically manipulate the polynomials, a
monomial order > (also called a term order) is imposed on
the polynomial ring. Subject to >, X1 > X2 > · · · > Xt, and
lt(f) = c1X1, lm(f) = X1, lc(f) = c1, are the leading term,
leading monomial and leading coefficient of f , respectively.
Also, for a polynomial f , tail(f) = f − lt(f). In this work,
we are mostly concerned with lexicographic (lex) term orders.

1) Polynomial Reduction via division: Let f, g be polyno-
mials. If lm(f) is divisible by lm(g), then we say that
f is reducible to r modulo g, denoted f

g−→ r, where
r = f − lt(f)

lt(g) · g. Similarly, f can be reduced w.r.t. a set
of polynomials F = {f1, . . . , fs} to obtain a remainder r.
This reduction is denoted as f F−→+ r, where the remainder
r is said to be reduced – i.e. no term in r is divisible by
the leading term of any polynomial fj in F . Algorithm 1
(Alg. 1.5.1 from [9]) depicts a procedure for this reduction.
Along with the remainder r, the algorithm also returns the set
of quotients {u1, . . . , us} of division of f by {f1, . . . , fs},
respectively, such that f = u1 · f1 + · · ·+ us · fs + r.

Algorithm 1 Multivariate Reduction of f by F = {f1, . . . , fs}
1: procedure multi var division(f, {f1, . . . , fs}, fj 6= 0)
2: uj ← 0; r ← 0, h← f
3: while h 6= 0 do
4: if ∃j s.t. lm(fj) | lm(h) then
5: choose j least s.t. lm(fj) | lm(h)

6: uj = uj + lt(h)
lt(fj)

7: h = h− lt(h)
lt(fj)

fj
8: else
9: r = r + lt(h)

10: h = h− lt(h)

11: return ({u1, . . . , us}, r)

2) Polynomial Ideals, Varieties and Gröbner Bases:

Definition III.1. Given a ring R = Fq[x1, . . . , xn] and a set
of polynomials F = {f1, . . . , fs} from R, the ideal generated
by F is J = 〈F 〉 ⊆ R:

J = 〈f1, . . . , fs〉 = {h1 · f1 + · · ·+ hs · fs : h1, . . . , hs ∈ R}. (1)

The polynomials f1, . . . , fs form the basis of ideal J .

Let a = (a1, . . . , an) ∈ Fnq be a point in the affine space,
and f a polynomial in R. If f(a) = 0, we say that f vanishes
on a. We have to analyze the set of all common zeros of the
polynomials of F that lie within the field Fq . This zero set
is called the variety, which depends on the ideal generated
by the polynomials. We denote it by V (J), where: V (J) =
VFq

(J) = VFq
(f1, . . . , fs) = {a ∈ Fnq : ∀f ∈ J, f(a) = 0}.

An ideal may have many different sets of generators, i.e. it
is possible to have J = 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 = · · · =
〈h1, . . . , hr〉, such that V (f1, . . . , fs) = V (g1, . . . , gt) =
· · · = V (h1 . . . , hr). A Gröbner basis (GB) of an ideal is one
such generating set G = {g1, . . . , gt}, which possesses many
important properties that allow to solve many polynomial
decision problems.

Definition III.2. [Gröbner Basis] [9]: For a monomial or-
dering >, a set of non-zero polynomials G = {g1, g2, · · · , gt}
contained in an ideal J , is called a Gröbner basis of J iff
∀f ∈ J , f 6= 0, there exists gi ∈ G such that lm(gi) divides
lm(f); i.e., G = GB(J) ⇔ ∀f ∈ J : f 6= 0 ∃gi ∈ G :
lm(gi) | lm(f).

Then J = 〈F 〉 = 〈G〉 holds and G = GB(J) forms
a basis for J . The Gröbner basis for an ideal J can be
computed using the Buchberger’s algorithm [19]. It takes as
input a set of polynomials {f1, . . . , fs} and computes its GB
G = {g1, g2, · · · , gt}. The reader may refer to Algorithm 1.7.1
in [9] for a detailed explanation.

Buchberger’s algorithm can be easily extended to output not
just the Gröbner basis G = {g1, . . . , gt} but also a t×s matrix
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M with polynomial entries such that:



g1
g2
...
gt


 = M ·




f1
f2
...
fs


 (2)

An important property of Gröbner bases is that as a decision
procedure, they allow for membership testing of a polynomial
in an ideal.

Proposition III.1. (Ideal Membership Testing) Let G =
GB(J) = {g1, . . . , gt} be the Gröbner basis of ideal J , and
f be any polynomial. Then f ∈ J ⇐⇒ f

G−→+ 0.

Therefore, if f ∈ J , f can be written as a linear combination
(with polynomial coefficients) of the elements of the Gröbner
basis:

f = u1g1 + u2g2 + · · ·+ utgt, (3)

where ui’s correspond to the quotients of division f
g1,...,gt−−−−−→+

0. Subsequently, Eqns. (3) and (2) can be combined to give f
as combination of the original polynomials f1, . . . , fs:

f = v1f1 + · · ·+ vsfs. (4)

Given two ideals J1 = 〈f1, . . . , fs〉, J2 = 〈h1, . . . , hr〉, the
sum J1 + J2 = 〈f1, . . . , fs, h1 . . . , hr〉, and their product J1 ·
J2 = 〈fi · hj : 1 ≤ i ≤ s, 1 ≤ j ≤ r〉. Ideals and varieties are
dual concepts: V (J1+J2) = V (J1)∩V (J2), and V (J1 ·J2) =
V (J1) ∪ V (J2). Moreover, if J1 ⊆ J2 then V (J1) ⊇ V (J2).

3) The Strong Nullstellensatz in Finite Fields: For any el-
ement α ∈ Fq , we have that αq = α. Therefore, the
polynomial xq − x vanishes everywhere in Fq , and we call
it a vanishing polynomial. Let J0 = 〈xq1 − x1, . . . , xqn − xn〉
be the ideal of all vanishing polynomials in the ring R. Then,
VFq (J0) = VFq

(J0) = Fnq . Moreover, given any ideal J ,
VFq (J) = VFq

(J)∩Fnq = VFq
(J)∩ VFq

(J0) = VFq
(J + J0) =

VFq (J + J0).

Definition III.3. Given an ideal J ⊂ R and V (J) ⊆ Fnq , the
ideal of polynomials that vanish on V (J) is I(V (J)) = {f ∈
R : ∀a ∈ V (J), f(a) = 0}.

If f vanishes on V (J), then f ∈ I(V (J)). The Strong
Nullstellensatz, which has a special form over finite fields,
characterizes the ideal I(V (J)).

Theorem III.1 (The Strong Nullstellensatz over finite
fields (Theorem 3.2 in [20])). For any ideal J ⊂
Fq[x1, . . . , xn], I(VFq

(J)) = J + J0.

IV. THE VERIFICATION TEST

Given a specification polynomial f , and a circuit C, the
verification test is formulated as presented in [4]. The cir-
cuit is modeled by a set of multivariate polynomials F =
{f1, . . . , fs} in the ring R = F2k [x1, . . . , xn] for the given
data-path (operand) size k, where x1, . . . , xn denote the nets

(signals) in the circuit. As the circuit comprises Boolean logic
gates, they are modeled as polynomials in F2 ⊂ F2k :

z = ¬a → z + a+ 1 (mod 2)

z = a ∧ b → z + a · b (mod 2)

z = a ∨ b → z + a+ b+ a · b (mod 2)

z = a⊕ b → z + a+ b (mod 2)

(5)

The set of polynomials F generates an ideal, which we
denote by J = 〈F 〉. When C correctly implements f , then
f agrees with every evaluation of all the nets in C. In other
words, f vanishes on V (J), or equivalently f ∈ I(V (J)).
The Strong Nullstellensatz in finite fields (Thm. III.1) tells
us that I(V (J)) = J + J0, where J0 = 〈xqi − xi : i =
1, . . . , n〉. Thus, the verification test can be formulated as ideal
membership testing of f in J + J0 using Gröbner bases: to
check if f

GB(J+J0)−−−−−−−→+ 0?
The Gröbner basis computation GB(J + J0) in R =

Fq[x1, . . . , xn] exhibits high complexity, as it is shown to
be bounded by qO(n) [20]. In [4], the authors showed that
the expensive Gröbner basis computation can be avoided
altogether for this verification test. It was shown that for
any arbitrary combinational circuit, a specialized term order
can be derived by analyzing the topology of the given cir-
cuit. Imposition of this term order on R renders the set of
polynomials F = {f1, . . . , fs} itself a Gröbner basis. Based
on Buchberger’s product criteria, their approach exploits the
fact that when the leading terms of all polynomials in F are
relatively prime, then F already constitutes a Gröbner basis.

Definition IV.1. Let C be an arbitrary combinational circuit
described by a set of polynomials F = {f1, . . . , fs} with
variables {x1, . . . , xn}. Starting from the primary outputs,
perform a reverse topological traversal of C and order the
variables such that xi > xj if xi appears earlier in the reverse
topological order. Impose a lex term order > to represent each
gate as a polynomial fi, s.t. fi = xi + tail(fi). Then the set
F = {f1, . . . , fs} forms a Gröbner basis, as lt(fi) = xi and
lt(fj) = xj for i 6= j are relatively prime. This term order >
is called the Reverse Topological Term Order (RTTO).

Our formulations also contain k-bit word-level variables
corresponding to the input and output word-level operands.
These variables can also be accommodated in RTTO > by
imposing a lex term order with the variable order ”Output
word > input words > bit-level variables ordered reverse
topologically”. In [4], the authors analyzed the effect of such
a term order further on ideal generators that include the van-
ishing polynomials. Let XPI ⊂ {x1, . . . , xn} be the primary
input variables of the circuit. Let FPI0 = {x2i−xi : xi ∈ XPI}
denote the set of bit-level vanishing polynomials in primary
inputs. We utilize the following result from [4].

Proposition IV.1. (Corollary 6.1 in [4]) Using RTTO > to
represent the polynomials in R, the set F ∪FPI0 constitutes a
Gröbner basis of J + J0.
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The benefit of using RTTO > is that the verification test can

be performed solely by way of polynomial division f
F,FPI

0−−−−→+

r, and by checking whether or not r = 0? If r = 0, then C
implements f . Otherwise when r 6= 0, there exists a bug in
the design. Moreover, RTTO > ensures that when r 6= 0, r
comprises only primary input variables XPI . Any assignment
to XPI that makes r 6= 0 generates a counter-example that
can be used for debugging.

We use the verification setup under RTTO > (i.e. Def. IV.1
and Prop. IV.1) to rectify the circuit. Our approach begins
when the verification test detects the presence of a bug in

the design, i.e. f
F,FPI

0−−−−→+ r with r 6= 0. In the sequel, we
will use the circuit shown in Fig. 1 as a running example to
demonstrate our approach to debugging and rectification. The
circuit is a modified version of a Mastrovito multiplier [21],
where extra redundant logic was first added in the circuit, and
then a bug was introduced in the redundant logic.

Fig. 1: Design verification of a 2-bit finite-field multiplier. The circuit
is buggy, with the bug introduced at net e3. A correct implementation
includes an AND gate at e3, which is replaced by an XOR gate to
introduce a bug.

Example IV.1. We perform verification of the design of a 2-
bit finite field multiplier in F4, where the output Z is to be
computed as A · B, where Z = {z1, z0}, A = {a1, a0}, B =
{b1, b0} are the given 2-bit operands. Assume further that
P (X) = X2 + X + 1 is the irreducible polynomial used to
construct F4 = F2[X] (mod P (X)), with P (α) = 0.

The implemented circuit C is given as shown in Fig. 1.
Denote polynomial f : Z+A·B as the design specification. For
the verification test, we perform a reverse topological traversal
of the circuit to derive RTTO >, i.e. a lex term order with
variable order: {Z} > {A > B} > {z0 > z1} > {r0} >
{e0 > e1} > {e2} > {e3} > {s0 > s1 > s2 > s3 > s4 >
s5} > {a0 > a1 > b0 > b1}.
The polynomials describing the circuit are given as:

f1 : Z + z0 + αz1; f9 : e2 + e3 + s4;

f2 : A+ a0 + αa1; f10 : e3 + b0 + s3;

f3 : B + b0 + αb1; f11 : s0 + a0b0;

f4 : z0 + s0 + e0; f12 : s1 + a1b1;

f5 : z1 + e0 + r0; f13 : s2 + a1b0;

f6 : r0 + e1 + s5; f14 : s3 + a0 + b0 + a0b0;

f7 : e0 + s1e2; f15 : s4 + b0 + 1;

f8 : e1 + s2e2; f16 : s5 + a0b1;

Then F = {f1, . . . , f16}, FPI0 = {a20 − a0, a21 − a1, b20 −
b0, b

2
1−b1}, and F∪FPI0 constitutes a Gröbner basis of J+J0.

Computing f
F,FPI

0−−−−→+ r gives r = (α + 1)a0a1b1b0 + (α +
1)a0a1b1+(α+1)a1b1b0+(α)a1b0. Since r 6= 0, the presence
of a bug in the design is detected. Our objective now is to
identify a net where rectification can be performed, and then
to subsequently identify a rectification function.

V. IDENTIFICATION OF THE RECTIFICATION TARGET

After the presence of a bug is detected, we address the
problem of single-fix rectification of C. In this section, we
present an approach that ascertains whether or not a single-fix
rectification can be applied at a given (target) net xi in C.
In principle, our approach can be applied at every net xi in
C to see if C at all admits single-fix rectification. However,
it is possible to prune the search for these target nets xi by
analyzing the non-zero remainder obtained by the Gröbner

basis reduction f
F,FPI

0−−−−→+ r. We show how to construct a
subset N ⊆ {x1, . . . , xn} as possible rectification targets.
This rectification target pruning approach is inspired from [7].
Then we present our rectification theorem and the search for
a rectification function.

1) Potential rectification target nets: The circuit C has k-
bit operands, and the output is expressed as Z =

∑k−1
i=0 ziα

i.
Then the non-zero remainder r can be partitioned based on
the coefficients of the monomials in r and re-expressed as:

r = α0(r0) + α1(r1) + · · ·+ αk−1(rk−1) (6)

Non-zero terms ri (with coefficient αi) imply that the
effect of the bug is observable at the bit-level output zi. We
consider the transitive fanin cones of logic of the output bits zi.
When a bug affects multiple outputs, a single-fix rectification
might exist only at the nets that lie in the intersection of
the respective fanin-cones of the affected outputs. In our
experiments, we include these nets in N to check if any one
of them admits a single-fix rectification.

Example V.1. As shown in Ex. IV.1, f
F,FPI

0−−−−→+ r =
(α+ 1)a0a1b1b0 + (α+ 1)a0a1b1 + (α+ 1)a1b1b0 + (α)a1b0.
We re-write the remainder r = α0r0 +α1r1 = α ·(a0a1b1b0 +
a0a1b1 + a1b1b0 + a1b0) + 1 · (a0a1b1b0 + a0a1b1 + a1b1b0).
Since both r0 and r1 are non-zero, the bug affects both
primary outputs z0, z1. By identifying the nets that lie in the
intersection of the fanin cones of z0, z1, we construct N =
{s4, s3, s2, s1, e3, e2, e0} as potential rectifiable locations.

2) Confirming a rectification target: After post-verification
debugging is performed to identify a set of nets N ⊆
{x1, . . . , xn} that are potential rectification target nets, we
now present an approach that confirms whether or not the
circuit can indeed be single-fix-rectified at net xi. Single-
fix-rectification at target net xi means that there exists a
polynomial function U(XPI) which, when implemented at net
xi, ensures that the circuit C would correctly implement the
specification f . Note that xi = U(XPI) is a polynomial
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function of the type F|XPI |
2 → F2 as it implements a subcircuit

at net xi.
In the set of polynomials F , we replace fi = xi +U(XPI)

as the polynomial for the rectification function at xi, where
U(XPI) is a hitherto unknown/unresolved polynomial func-
tion component. In other words, F is updated to F =
{f1, . . . , fi−1, fi = xi+U(XPI), fi+1, . . . , fs}. We state and
prove the rectification theorem that checks for the existence of
U(XPI) as a single-fix rectification function at xi.

Theorem V.1 (Rectification Theorem). Given the specification
polynomial f , and the implementation circuit C, derive RTTO
> to represent the polynomials. Using RTTO >, construct two
ideals:

• JL = 〈FL〉, where FL = {f1, . . . , fi−1, fi = xi +
1, fi+1, . . . , fs};

• JH = 〈FH〉, where FH = {f1, . . . , fi−1, fi =
xi, fi+1, . . . , fs};

where the polynomials f1, . . . , fi−1, fi+1, . . . , fs are the same
as in the generators of ideal J (representing the circuit), and
fi is replaced with fi = xi + 1 in JL and fi = xi in JH ,
respectively. Perform the reductions:

• f
FL,F

PI
0−−−−−→+ rL

• f
FH ,F

PI
0−−−−−→+ rH

Let VFq
(rL), VFq

(rH) denote the varieties of rL and rH ,
respectively, over the given field Fq . Then the buggy circuit
C admits a single-fix rectification at the net (gate output) xi
if and only if VFq (rL) ∪ VFq (rH) = F|XPI |

q = V (JPI0 ).

Proof. As rectification at net xi makes the circuit C match
the specification f , f should vanish on V (J). Thus, the rec-
tification condition can be equivalently stated as: “f vanishes
on VFq

(J) ⇐⇒ VFq
(rL) ∪ VFq

(rH) = F|XPI |
q .”

(i) To prove ⇒: Let xPI ∈ F|XPI |
q be an assignment to the

primary input variables of C. For every point xPI , there exists
a corresponding assignment xint to the rest of the variables of
the circuit. For each primary input assignment, the target net
xi evaluates to either xi = 0 or xi = 1. When xi = 0, then JH
vanishes on the point (xPI , xint). Likewise, when xi = 1, JL
vanishes on (xPI , xint). Since f

JH ,J0−−−−→+ rH and f
JL,J0−−−−→+

rL, and f vanishes on the point (xPI , xint), we obtain that
either rH(xPI) = 0 or rL(xPI) = 0. In other words, for every
primary input assignment xPI , either rL or rH vanishes. This
implies that V (rL) ∪ V (rH) = F|XPI |

q = V (JPI0 ).
(ii) To prove “⇐”: Say there exists an assignment to the

primary inputs xPI ∈ F|XPI |
q such that rH vanishes on xPI ,

i.e. rH(xPI) = 0. Corresponding to xPI , there exists an
assignment to the rest of the variables of the circuit xint.
As f

JH ,J0−−−−→+ rH , we have that f is a member of the
ideal JH + J0 + 〈rH〉. Therefore, when rH(xPI) = 0, the
ideal JH also vanishes on (xPI , xint), and J0 by definition
vanishes everywhere. This implies that f(xPI , xint) = 0.
Similarly, the argument also holds that when rL(xPI) = 0,
then f(xPI , xint) = 0. This proves that for all primary inputs

if rL or rH vanishes, then f vanishes too; and that completes
the proof.

Note that the check “Is VFq
(rL) ∪ VFq

(rH) = F|XPI |
q =

V (JPI0 )?” can be performed as shown below, where the union
of varieties corresponds to the product of ideals.

VFq (rL) ∪ VFq (rH) =VFq (rL · rH) = VFq
(〈rL · rH〉+ JPI0 )

= VFq
(〈rL · rH〉+ JPI0 )

Thus, to check for single-fix rectification at the net xi, we
need to compute the Gröbner basis G = GB({rL ·rH}∪FPI0 )
and see if G exactly equals FPI0 .

Example V.2. Continuing with our running example, we
demonstrate the rectification checks at nets e3, s1. As the bug
was introduced at e3, it is obvious that the circuit is rectifiable
at e3. For the rectification check at e3, we mark the polynomial
f10 for modification:
• JL = 〈FL〉, where FL = {f1, . . . , f10 = e3+1, . . . , f16},
• JH = 〈FH〉, where FH = {f1, . . . , f10 = e3, . . . , f16}.
Reducing the specification f : Z+A·B modulo these ideals,

we get:

• rL = f
FL,F

PI
0−−−−−→+ (α+ 1)a1b1b0 + (α+ 1)a1b1

• rH = f
FH ,F

PI
0−−−−−→+ (α+ 1)a1b1b0 + (α)a1b0

When we compute the Gröbner basis G = GB(rL ·
rH , F

PI
0 ), we obtain G = {a20−a0, a21−a1, b20− b0, b21− b1},

corresponding to the ideal of all vanishing polynomials in
primary inputs. This implies the existence of a rectification
function at e3.

In fact, the rectification test also passes for the net s4;
implying that the bug at e3 can indeed be rectified at a different
gate which does not lie in the fanin cone of e3. However,
the rectification test fails at net s1. When the problem is
formulated by modifying the polynomial f12 at net s1, the
corresponding computation for G = GB(rL ·rH , FPI0 ) results
in G = {a20 − a0, b20 − b0, a21 − a1, b21 − b1, a1b0, a0a1b1 +
(α)a0a1b0}. Due to the presence of the last 2 polynomials,
G 6= FPI0 , and rectification is not possible at net s1. In our
experiments, the rectification check is performed on subset
N starting from the net closest to the primary inputs with the
intent of reducing variables in computed rectification function.

VI. COMPUTING A RECTIFICATION FUNCTION

After the confirmation that the circuit indeed admits a
rectification function at net xi, our objective is to compute a
rectification function xi = U(XPI). We call U the unknown
component which has to be resolved. Due to the presence
of internal don’t care conditions, there may exist one or
more polynomial functions U that may rectify the circuit.
Our approach computes one of the candidate functions U , and
proceeds as follows.

Once again, we use RTTO > to represent the set of poly-
nomials of the circuit. The polynomial corresponding to the
target net xi is replaced by the polynomial fi = xi+U(XPI),
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where lm(fi) = xi and tail(fi) = U(XPI). In other words,
the set F is updated to F = {f1, . . . , fi = xi + U, . . . , fs}.
Notice that due to RTTO >, the set F still constitutes a
Gröbner basis, as all polynomials in F have leading terms
that are relatively prime. Moreover, by virtue of Prop. IV.1,
the set F ∪ FPI0 also constitutes a Gröbner basis. Thus, for

a correct implementation, the condition f
F∪FPI

0−−−−−→+ 0 still
holds. Using Prop. III.1 and Eqn. 3, we can rewrite f in terms
of these generators as:
f = h1f1+h2f2+· · ·+hifi+· · ·+hsfs+

∑

xl∈XPI

Hl(x
2
l −xl)

(7)
where h1, . . . , hs, Hl are arbitrary polynomials from the ring
R. Substituting fi = xi + U for the unknown component in
Eqn. (7), we have:
f = h1f1 + · · ·+ hi−1fi−1 + hixi + hiU + · · ·+ hsfs

+
∑

xl∈XPI

Hl · (x2l − xl) (8)

f − h1f1 − · · · − hi−1fi−1 − hixi = hiU + hi+1fi+1+

· · ·+ hsfs +
∑

xl∈XPI

Hl · (x2l − xl) (9)

Notice that on the L.H.S. of Eqn. (9), the polynomi-
als f, f1, . . . , fi−1 and the monomial xi are known quanti-
ties/expressions. Therefore, f can be divided by f1, . . . , fi−1,
and by xi, to obtain the respective quotients of the division
h1, . . . , hi and a remainder r where r = f−h1f1−· · ·−hixi.
After hi is computed (as the quotient of this division by xi),
the R.H.S. of Eqn. (9) consists of hi, fi+1, . . . , fs and all the
vanishing polynomials x2l − xl as known expressions. This
implies that:

f − h1f1 − · · · − hixi ∈ 〈hi, fi+1, . . . , fs, x
2
l − xl〉 (10)

r ∈ 〈hi, fi+1, . . . , fs, x
2
l − xl〉 (11)

This ideal membership implies that r can be writ-
ten as some polynomial combination of the generators
hi, fi+1, . . . , fs, x

q
l − xl. This combination can be identi-

fied by first computing the Gröbner basis G of the ideal
〈hi, fi+1, . . . , fs, x

q
l − xl〉, and then performing the ideal

membership test r G−→+ 0, while utilizing Eqns. (3) and (4).
As a result, we can write:
r = h′ihi + h′i+1fi+1 + · · ·+ h′sfs +

∑
Hl(x

2
l − xl) (12)

Then U = h′i is a polynomial function that forms the
solution to the unknown component problem. Algorithmically,
as U = h′i is computed as a quotient of division, U may
contain any variables X ⊆ {x1, . . . , xn} in its support.
However, due to the imposition of RTTO >, U will contain
only those variables xj in its support set that are less than xi
in the reverse topological order. Once such a polynomial U is
obtained, it can be easily expressed in terms of the primary
input variables. To achieve such a normalization, U can be
reduced modulo the set of polynomials {fj = xj + tail(fj)}
such that xj lies in the fanin cone of U . Performing this
division also in a reverse topological fashion results in U

being expressed in primary inputs only. In this fashion, the
polynomial fi : xi + U(XPI) can be identified to implement
the function of a subcircuit at the net xi so that C correctly
implements f .

Note that in Eqn. (11), while {fi+1, . . . , fs} constitutes a
GB under RTTO, the set {hi, fi+1, . . . , fs} may not. So a
GB computation is required. On the other hand, we may also
encounter situations when hi results as being a constant in the
field Fq . When a constant is a member of an ideal J , then
GB(J) = {1}. To arrive at an implementable solution in this
case, we multiply r by the inverse of hi (h−1i ) and reduce the
result modulo the rest of the polynomials{fi+1, . . . , fs}.

r · h−1i
fi+1−−−→ fi+2−−−→ . . .

fs−→+ U. (13)

We now demonstrate the application of this approach on our
running example.

Example VI.1. In Ex. V.2, we showed that rectification is
possible at the net e3, i.e. there exists a polynomial f10 :
e3 + U that can rectify the circuit. Using the same term
order as in the previous examples, we mark f10 = e3 + U
as the unknown component, and include it in the set F =
{f1, . . . , f10 = e3 + U, . . . , f16}. Based on Eqns. (9)-(11),
we begin reducing the specification polynomial f modulo the
set {f1, . . . , f9, e3} ∪ F0. The reduction order for f based on

RTTO > is: f
f1−→ f2−→ f3−→ f4−→ f5−→ f6−→ f7−→ f8−→ f9−→ lt(f10)−−−−→ r.

We will use the following notations to depict this reduction:
’[]’ to represent quotients of division hj’s, ’()’ to represent the
divisors fj’s, and ’{}’ to represent the (partial) remainder fpj
obtained after every reduction step.
f

f1−→ [1](Z + z0 + αz1) + {AB + z0 + αz1} → fp1

fp1
f2−→ [B](A+a0+αa1)+{Ba0+αBa1+z0+αz1} → fp2

fp2
f3−→ [a0+αa1](B+b0+αb1)+{z0+αz1+αa0b1+a0b0+

(α+ 1)a1b1 + αa1b0} → fp3

fp3
f4−→ [1](z0 + e0 + s0) + {αz1 + e0 + s0 + αa0b1 + a0b0 +

(α+ 1)a1b1 + αa1b0} → fp4

fp4
f5−→ [α](z1 + r0 + e0) + {αz1 + e0 + s0 + αa0b1 + a0b0 +

(α+ 1)a1b1 + αa1b0} → fp5

fp5
f6−→ [α](r0 + e1 + s5) + {(α + 1)e0 + αe1 + s0 + αs5 +

αa0b1 + a0b0 + (α+ 1)a1b1 + αa1b0} → fp6

fp6
f7−→ [α+1](e0+ e2 ∗ s1)+{αe1+(α+1)e2s1+ s0+αs5+

αa0b1 + a0b0 + (α+ 1)a1b1 + αa1b0} → fp7

fp7
f8−→ [α](e1 + e2 ∗ s2) + {(α+1)e2s1 +αe2s2 + s0 +αs5 +

αa0b1 + a0b0 + (α+ 1)a1b1 + αa1b0} → fp8

fp8
f9−→ [(α+1)s1+αs2](e2+e3+s4)+{(α+1)e3s1+αe3s2+

s0 + (α+ 1)s1s4 + αs2s4 + αs5 + αa0b1 + a0b0 + (α+ 1)a1b1 +

αa1b0} → fp9
Finally, the obtained remainder fp9 is reduced by lt(f10) =

e3 to obtain the quotient h10 and the remainder r:
fp9

lt(f10)−−−−→ [(α+ 1)s1 + αs2︸ ︷︷ ︸
h10

](e3)+

{s0+(α+1)s1s4+αs2s4+αs5+αa0b1+a0b0+(α+1)a1b1+αa1b0}︸ ︷︷ ︸
r

Now that we have r, h10, f11, f12, f13, f14, f15, f16 available
as known expressions, the unknown component problem can
be formulated as an ideal membership test using Eqn. (11)
such that:
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r ∈ 〈h10, f11, f12, f13, f14, f15, f16〉+ 〈FPI0 〉.

The above ideal membership can be solved by first comput-
ing the Gröbner basis of the generators and then expressing r
as a linear combination of the ideal members:
r = U ·h10+h11f11+h12f12+h13f13+h14f14+h15f15+h16f16

In this case, the ideal membership test results in the poly-
nomial r being expressed as:
r = [b0]h10 + [1]f11 + [α + 1]f12 + [αs4 + αb0]f13 + [0]f14 +

[(α+1)s1+αa1b0]f15+[α]f16+[0]f17+[0]f18+[0]f19+[0]f20;
Thus, U = b0 is a solution to the unknown component f10,

i.e. f10 = e3 + b0. This depicts that e3 implements just the
primary input net b0, thus also identifying redundancy in the
design.

VII. EXPERIMENTS

This section presents experimental results using our ap-
proach to debug the circuits and perform a single-fix rectifi-
cation. We compare results of our implementation against the
incremental SAT-based approach presented in [15] wherever
it’s relevant. The approach presented in [15] is implemented
using PICOSAT [22]. The experiments were performed on a
3.5GHz Intel(R) CoreTM i7-4770K Quad-Core CPU with 32
GB of RAM.

We have performed experiments for the cases when the
bugs are present near the input, middle, or near the output
of the circuit, represented using labels NI , NM , and NO
respectively in the tables. All the algorithms were implemented
in SINGULAR [23].

1) Verification between a word level specification v/s Mas-
trovito implementation: Table I presents the results of our ap-
proach when the bugs are placed in a Mastrovito multiplier im-
plementation compared against a specification, which is given
in terms of a word level polynomial f . A Mastrovito multiplier
has word level specification Z = A×B (mod P (x)), where
P (x) is a given primitive polynomial for the datapath size k.
Bugs in the circuit are introduced, and the presence of the
bugs is detetced. Then we apply our approach to check for
single-fix rectification interatively on the nets selected in N . If
rectification is feasible at xi, the unknown component problem
is solved to identify a rectification function.

We are able to verify and debug the circuits for upto 64-bits
within our stipulated Time Out (TO) period.

2) Word level specification v/s Point addition implemen-
tation: Point addition is an operation required for the task
of encryption, decryption and authentication in Elliptic Curve
Cryptography (ECC). Modern approaches represent the points
in projective coordinate systems, e.g., the López-Dahab (LD)
projective coordinate, due to which the point addition opera-
tion can be implemented as polynomials in the field.

Example VII.1. Given an elliptic curve: Y 2+XY Z = X3Z+
aX2Z2 + bZ4 over F2k , where X,Y, Z ∈ F2k and similarly,
a, b are constants from the field. Point addition over the elliptic

curve is (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, 1). Then X3,
Y3, Z3 can be computed as follows:

A = Y2 · Z2
1 + Y1 B = X2 · Z1 +X1

C = Z1 ·B D = B2 · (C + aZ2
1 )

Z3 = C2 E = A · C
X3 = A2 +D + E F = X3 +X2 · Z3

G = X3 + Y2 · Z3 Y3 = E · F + Z3 ·G

Each of the polynomials in the above design are
implemented as a (gate-level) logic block and are
interconnected to obtain final outputs X3, Y3 and Z3.
Table II shows the comparison of the time required for
debugging and rectification for the implementation of the
block D = B2 · (C + aZ2

1 ).

TABLE II: Single fix rectification debug in Point Addition circuits against
word level specification. Time is in seconds; k = Datapath Size, #Gates = No.
of gates, K = 103, a=verification time, b=time for rectification check, c=time
for component correction computation, d=total time

k #Gates
Our implementation

NI NM NO
a b c d a b c d a b c d

8 244 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 1.2K 1.3 3.9 1.5 6.7 1.2 3.7 2 6.9 1.2 3.7 1.8 6.7
32 3.9K 37 112 77 226 38 110 22 170 37 108 35 180

3) Word level specification v/s Barrett reduction
implementation: Barrett reduction is the other widely
used multiplier design method adopted in cryptography
system designs. Based on Barrett reduction, a multiplier can
be designed in two steps: multiplication R = A × B and a
subsequent Barrett reduction G = R (mod P). Table III shows
results for debugging and rectification of Barrett multipliers
against a polynomial specification.

TABLE III: Single fix rectification debug in Barrett reduction circuits
against word level specification. Time is in seconds; k = Datapath Size, #Gates
= No. of gates, K = 103, a=verification time, b=time for rectification check,
c=time for component correction computation, d=total time

k #Gates
Our implementation

NI NM NO
a b c d a b c d a b c d

8 134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 427 0.1 0.0 0.0 0.1 0.0 0.2 0.1 0.3 0.0 0.1 0.3 0.4
32 1.4K 0.4 1.4 0.1 1.9 0.5 1.5 0.1 2.1 1.2 2.2 1.1 4.5
64 4.9K 19 58 5.4 82 21 60 1.7 83 63 104 141 308

Since the SAT-based approach cannot be applied against a
word level specification polynomial, we perform experiments
while using another multiplier implementation as the specifi-
cation.

4) Verification between a specification and implementation
given as gate level circuits: Mastrovito v/s Montgomery mul-
tipliers: Montgomery architectures [24] are considered more
efficient than Mastrovito multipliers for exponentiation, as they
do not require explicit reduction modulo P (x) after each step.

Table IV presents the results of our approach to debug
and rectification with the bugs placed in the Montgomery
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TABLE I: Single fix rectification debug in Mastrovito circuit against word level specification. Time is in seconds; k = Datapath Size, #Gates = No. of
gates, K = 103, a=verification time, b=time for rectification check, c=time for component correction computation, d=total time

k #Gates
Our implementation

NI NM NO
a b c d a b c d a b c d

9 0.23K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.29K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.35K 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1
12 0.97K 0.1 0.5 0.4 0.9 0.2 0.5 0.4 1.1 0.5 0.8 0.4 1.7
13 0.82K 0.1 0.3 0.2 0.6 0.2 0.6 0.2 1.0 0.7 0.8 0.2 1.7
16 1.8K 0.9 2.6 1.0 4.5 1.1 3.5 1.0 5.6 2.8 5.3 1.0 9.1
32 5.4K 36 110 42 188 40 160 47 247 38 240 150 428
64 21.8K 2210 7100 2432 9532 2200 8000 2575 12775 2150 7840 10020 20010

TABLE IV: Rectification for Mastrovito circuit with Montgomery circuit as specification. Time is in seconds; k = Datapath Size, #Gates = No. of gates,
(TO): Time-Out = 3 hrs, K = 103, a=verification time, b=time for rectification check, c=time for component correction computation, d=total time

k #Gates

Incremental SAT [15] Our Approach

NI NM NO NI NM NO
a b c d a b c d a b c d

9 0.6K 35 37 33 0.1 0.5 0.2 0.8 0.2 0.2 0.1 0.5 1.8 2.2 0.6 4.6
10 0.7K 231 215 214 0.3 1 0.5 1.8 0.3 1 0.8 2.1 4.7 5.4 0.2 10
11 0.9K 2090 1927 2000 0.6 2 1 3.6 0.8 2 32 35 9 10 0.4 19
12 1.6K 8676 23400 24085 3.2 9.6 3.5 16 3.2 9.3 12 24 155 160 1.6 316
13 1.7K TO TO TO 3.3 10 4.5 18 3.5 10 22 35 170 177 1.6 349
16 3K TO TO TO 27 81 35 143 28 83 48 159 210 176 2.5 389
32 9.8K TO TO TO 2060 6595 1870 10525 2100 7320 1289 10709 2215 7870 1204 11289

multiplier with a Mastrovito multiplier circuit used as the
specification. While the approach [15] finds a satisfying
transformation assignment which can be mapped to a library
gate, our approach debugs the circuit and finds a single fix
rectification function. As shown in the table, our approach
shows improvement by several orders of magnitude over [15].

It takes considerable amount of time for verification and
rectification check when the bug is close to the output. We are
working on further improving the experiments by employing
better data structures like ZBDDs ([25]), and devising better
heuristics to perform rectification check. Due to several limita-
tions w.r.t the number of ring variables that can be declared in
SINGULAR, we have had to restrict our experiments within
64-bit data-path size.

VIII. CONCLUSIONS

This paper has presented a fully automated debug approach
for single fix rectification of finite field arithmetic circuits.
Given a specification and its circuit implementation, we verify
the circuit. If verification detects a bug, we identify all poten-
tial single-fix rectification target nets, and perform rectification
check at each of these nets. If a net admits single-fix rectifica-
tion, we compute a corresponding rectification function. The
underlying theory and algorithms are based on Gröbner basis
reductions, Nullstellensatz, and ideal membership test. The
experimental results demonstrate the efficacy of our approach
for finite field arithmetic circuits where we achieve several
orders of magnitude improvement as compared to recent SAT-
based approach. As part of our future work, we are working
on improving the efficiency of our implementation to target
higher bit-widths. We are also investigating how the current
procedure can be extended to cover integer arithmetic circuits.

Further research also includes exploring the current approach
for the case of multi-fix rectification.
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Formal Verification of Galois Field Arithmetic Circuits,” in IEEE Trans.
on CAD, vol. 32, no. 9, 2013, pp. 1409–1420.

[5] A. Lvov, L. Lastras-Montano, B. Trager, V. Paruthi, R. Shadowen,
and A. El-Zein, “Verification of Galois field based circuits by formal
reasoning based on computational algebraic geometry,” Formal Methods
in System Design, vol. 45, no. 2, pp. 189–212, Oct 2014.

[6] F. Farahmandi and P. Mishra, “Automated Debugging of Arithmetic
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Abstract—Black-box components conceal parts of software ex-
ecution paths, which makes systematic testing, e. g., via symbolic
execution, difficult. In this paper, we use automata learning
to facilitate symbolic execution in the presence of black-box
components. We substitute black-boxes in a software system with
learned automata that model them, enabling us to symbolically
execute program paths that run through black-boxes. We show
that applying the approach on real-world software systems in-
corporating black-boxes increases code coverage when compared
to standard techniques.

I. INTRODUCTION

Symbolic execution is a method to analyze software sys-
tems. It has gained attention since its introduction in the 1970s
[1, 2] and is used in testing, invariant detection, model check-
ing, and proving software correctness [3, 4, 5, 6]. Symbolic
execution achieves high test coverage in a setting where the
source code is completely available.

In practice, many software systems incorporate black-box
components for which the source code is not available (e. g.,
third-party software units, hardware peripherals). A thorough
behavioral analysis in the presence of black-box components
is challenging using methods like symbolic execution, because
black-box components conceal parts of software execution. To
symbolically execute such software systems, Cadar et al. [7]
proposed to replace the calls to a black-box component with
calls to manually written stubs that model the component’s
behavior. This is a very challenging and error-prone task
because either one does not have access to documentations
of black-box components or this labor-intensive effort is not
worth it since the resulting model will only be used once.
Consequently, we often use methods that are applicable in
the presence of black-boxes; e. g., random testing, or model-
based testing, which requires behavioral models. Alternatively,
symbolic execution may be combined with concrete execution
of black-box paths, such an approach is for instance used by
concolic execution [4, 8, 9].

In this paper, we use automata learning to enable symbolic
execution in the presence of black-box components. Figure 1
depicts the overall execution flow for our proposed setting.
Given a System Under Test (SUT), divided into a white-box
and a black-box component, we learn a finite-state machine
(FSM) model of the black-box component, and compose
it with the white-box to generate system-level test cases
via symbolic execution; i. e., we replace the black-box with

This work was supported by the Graz University of Technology’s LEAD
project “Dependable Internet of Things in Adverse Environments”. This work
was partially supported by the ECSEL Joint Undertaking (ENABLE-S3, grant
no. 692455), by the European Union (IMMORTAL, grant no. 644905).

White-box SUL

System Under Test (SUT)

White-box FSM

Test Cases
LearnCopy

Software Testing

Symbolic Execution

Fig. 1: System-level testing in the presence of a black-box. The
system under test (SUT) comprises a white-box and a black-
box component that is the system under learning (SUL).

its model for test-case generation. Finally, we execute the
generated test cases on the original system incorporating the
black-box component itself to obtain high coverage on the
white-box. Testing software units in isolation often results in
a broad set of test cases that are not worth the effort of manual
inspection. On the other hand, systematic testing of interactive
software units results in a reduced number of system-level test
cases. An advantage of the proposed approach is that it enables
systematic testing in the presence of black-boxes.

Our approach is currently applicable to black-boxes that we
can model as FSMs, and not applicable to other types of black-
boxes like arithmetic functions. Moreover, there are concerns
about the practicality of automata learning mostly due to the
abstraction layer to counter state space explosion. Meanwhile,
automata learning is successfully applied for systems with
thousands of states [10] and there are techniques to support up
to a million states [11]. Finally, learned FSMs of small abstract
state space are shown to be sufficient for many interesting
scenarios [12, 13] and this paper elaborates on one.

We built our method on top of KLEE [4], and LearnLib [14].
Applying our approach to a variety of real-world scenarios
showed not only the test coverage increases, but the testing
time also decreases, both compared to concolic execution.
Results show coverage increase for units of interest in three
real-world software systems that are dependent on an SPI
controller (52.94%), an MQTT Broker (5.9% & 8.36%), and
an SD-Card controller (75.36%).
Outline. This paper has the following structure. Section II
summarizes automata learning and symbolic execution. Sec-
tion III explains how to learn an automaton from a black-
box and use it to execute the software system incorporating
that black-box symbolically. Sections IV to VI provide case
studies demonstrating the applicability of our approach in real-
world scenarios. Section VII covers related work. Section VIII
concludes and discusses future research directions.
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II. PRELIMINARIES

A. Symbolic Execution

To infer what inputs cause which parts of a program to
execute, symbolic execution assigns symbolic values to input
variables and then explores the control-flow of the program
[1, 2, 3, 4]. By keeping track of the program counter and
constraints on symbolic input values, an execution engine
discovers how inputs influence the execution path. Along each
execution path, symbolic execution collects constraints from
branch conditions and forms a conjunction of these constraints,
called path condition. An execution path is feasible if its path
condition is satisfiable; thus, a constraint solver can reveal
with which input values an execution path is feasible and
with which input values it is not. A feasible execution path
represents multiple program runs whose concrete values satisfy
the path condition; i. e., solutions to the path condition are
concrete test cases.

Definition 1 (Execution State): An execution state is a
triple S = 〈PC, σ, π〉, where PC is the program counter, σ is
a function from program variables to terms over concrete and
symbolic values, and π is the path condition; i. e., a formula
that imposes a set of constraints on the symbolic values.

To symbolically execute a program, symbolic execution
evolves the execution state as soon as (1) an assignment is
evaluated, (2) a conditional branch is evaluated, and (3) the
program counter changes. Executing an assignment statement
will update σ. Executing a conditional branch with the con-
dition c duplicates the current execution state S into Strue
and Sfalse and forks execution. Subsequently, the execution
engine computes a symbolic formula ϑc from c by replacing
program variables with the corresponding terms as determined
by σ; next, it duplicates the path condition π for different
branches and sets πtrue = π ∧ ϑc and πfalse = π ∧ ¬ϑc.
Finally, sometimes the program execution evolves through
unconditional branches like goto statements, which affects the
program counter PC of the execution state.

To tackle the problem of symbolic execution in the presence
of black-box components, one can combine symbolic and
concrete execution such that whenever the program counter is
leaving the program’s scope symbolic values that flow through
the black-box component are concretized and upon returning
to the program’s scope symbolic execution continues with con-
crete values. The approach is often called concolic execution,
dynamic symbolic execution, or directed automated random
testing [4, 8, 9]. In this paper, we propose an alternative
approach via automata learning. For a thorough survey on
symbolic execution please refer to [15].

B. Automata

Definition 2 (Finite-State Transducer): A finite-state trans-
ducer over input alphabet I and output alphabet O is a tuple
M = 〈I,O,Q, q0, δ, λ〉, where Q is a nonempty set of states,
q0 is the initial state, δ ⊆ Q× I ×Q is the transition relation,
and λ ⊆ Q× I ×O is the output relation.

Definition 3 (Mealy Machine): A Mealy machine is a finite-
state transducer M = 〈I,O,Q, q0, δ, λ〉 where its δ and λ are
functions δ : Q× I → Q and λ : Q× I → O.

From this point forward, we write q
i/o−−→ q′ if q′ = δ(q, i)

and o = λ(q, i) for Mealy machines, and if (q, i, q′) ∈ δ and
(q, i, o) ∈ λ for finite-state transducers.

Definition 4 (Observation): An observation over input/out-
put alphabet I and O is a pair 〈ı, o〉 ∈ I∗ × O∗ such that
|ı| = |o|. Given a Mealy machine M, the set of observations
of M from state q denoted by obsM(q) are:

obsM(q) = {〈ı, o〉 ∈ I∗ ×O∗ | ∃q′ : q
ı/o−−→∗q′},

where
ı/o−−→ ∗ is the transitive and reflexive closure of the

combined transition-and-output function to sequences which
implies |ı| = |o|. From this point forward, obsM = obsM(q0).

Definition 5 (Observation Equivalence): Given states
q, q′ ∈ Q, we define q ≈ q′, that is q and q′ are observa-
tion equivalent, only if obsM(q) = obsM(q′). Given Mealy
machinesM1 andM2 over the same alphabet,M1 ≈M2 if
obsM1

= obsM2
.

C. Learning and Abstraction

Angluin [16] proposed an active automata learning algo-
rithm called L∗. This algorithm learns a deterministic finite au-
tomaton accepting an unknown regular language L. It requires
a minimally adequate teacher that needs to be able to answer
two types of queries, membership and equivalence queries.
First, the learner asks membership queries, checking inclusion
of words in the language L. Once the learner has gained
enough information to build a hypothesis automaton, it asks an
equivalence query, checking whether the hypothesis accepts L.
The teacher either responds with yes, signaling that learning
was successful, or with a counterexample to equivalence. If
provided with a counterexample, the learner integrates it into
its knowledge and starts a new round of learning by issuing
membership queries, which is concluded by an equivalence
query. L∗ was adapted to learn various forms of automata,
including Mealy machines [17]. The basic principle remains
the same, but output queries replace membership queries,
which ask for outputs produced in response to input sequences.

To learn models of software systems, teachers are usually
implemented via testing, as shown in Fig. 2 [18]. Output
queries typically reset the System Under Learning (SUL),
execute a sequence of inputs and collect the produced outputs.
Equivalence queries can be approximated with model-based
testing [19]. For that, a Conformance Testing (CT) component
derives test queries from the hypothesis, which are executed
to find discrepancies between SUL and hypothesis, i. e., coun-
terexamples to observation equivalence (see Def. 4 and 5).

L∗ is only affordable for small alphabets I∪O; hence, Aarts
et al. [20] suggested that we abstract away the concrete domain
of the data, by forming equivalence classes in I ∪ O. This is
usually done by a mapper placed in between the learner and
the SUL. For abstraction, the mapper maps concrete inputs I
and outputs O to abstract inputs X and outputs Y .
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Fig. 2: Abstract automata learning through a mapper using L∗

(adapted from a figure in [18]).

Definition 6 (Mapper): A mapper for concrete inputs I , and
concrete outputs O is a tuple A = 〈I,O,R, r0,∆, X, Y,∇〉,
where R is the set of mapper states, r0 is the initial state,
∆ : R × (I ∪ O) → R is a transition function, X is a set
of abstract inputs and Y is a set of abstract outputs, and ∇ :
(R×I → X)∪(R×O → Y ) is an abstraction function. From
this point forward, we write r a−→ r′ if ∆(r, a) = r′.

The mapper communicates with the SUL via the concrete
alphabet, and with the teacher and learner via the abstract
alphabet. In the setting shown in Fig. 2, the learner behaves the
same as the original L∗ algorithm, but the teacher answers to
the queries by indirectly interacting with the SUL through the
mapper. Consequently, whenever the teacher receives a reset
signal from the learner it resets the mapper along with the SUL
to their initial states. Moreover, an individual step executing a
single input and observing the output is performed as follows:

1) Given mapper’s current state r, upon receiving abstract
input x ∈ X , the mapper non-deterministically picks
a concrete input symbol i ∈ I such that ∇(r, i) = x.
If such i ∈ I exists, then the mapper jumps to state
r′ = ∆(r, i) and forwards i to the SUL, otherwise it
returns the output ⊥ to the learner.

2) If the mapper has selected and forwarded an i ∈ I , then
upon receiving a concrete output o ∈ O from the SUL,
the mapper forwards an abstract version y = ∇(r′, o) to
the learner and jumps to state r′′ = ∆(r′, o).

Learning an abstract Mealy machine is a slight generaliza-
tion of L∗ [20]. From the learner’s point of view nothing has
changed; it learns a hypothesis H from observations; but it
actually queries an abstraction αA(M) of a Mealy machine
M induced by a mapper A as described by Def. 7. Meanwhile,
the concretization of αA(M) induced by a mapper A is a
finite-state transducer γA(αA(M)) defined by Def. 8.

Definition 7 (Abstraction): Let M = 〈I,O,Q, q0, δ, λ〉 be
a Mealy machine, and let A = 〈I,O,R, r0,∆, X, Y,∇〉 be a
mapper. The abstraction ofM via A is a finite-state transducer
denoted as αA(M) = 〈X,Y ∪ {⊥}, Q × R, 〈q0, r0〉, δ′, λ′〉,
where δ′ and λ′ are given by the following rules:

q
i/o−−→ q′, r

i−→ r′
o−→ r′′, ∇(r, i) = x, ∇(r′, o) = y

(〈q, r〉, x, 〈q′, r′′〉) ∈ δ′ ∧ (〈q, r〉, x, y) ∈ λ′
@i ∈ I : ∇(r, i) = x

(〈q, r〉, x, 〈q, r〉) ∈ δ′ ∧ (〈q, r〉, x,⊥) ∈ λ′

Note that two issues may arise from abstraction. The
abstraction function ∇ may be undefined for some inputs
(second rule of Def. 7) and non-deterministic behavior may
be introduced by the mapper. This non-determinism might
occur if we have two pairs of concrete input/outputs pairs
(i1, o1) and (i2, o2), observable in the same state, such that
∇(r, i1) = ∇(r, i2) but ∇(r′, o1) 6= ∇(r′, o2); i. e., the inputs
map to the same abstract symbol, but the outputs map to
different ones. While Aarts et al. [20] described a method
to automatically refine the mapper, we manually refine it if
we encounter such issues to ensure the learned model is an
abstract Mealy machine.

Definition 8 (Concretization): Let αA(M) = 〈X,Y ∪
{⊥}, Q, q0, δ, λ〉 be an abstract Mealy machine, and let A =
〈I,O,R, r0,∆, X, Y,∇〉 be the mapper. The concretization
of αA(M) via A is a finite-state transducer denoted as
γA(αA(M)) = 〈I,O ∪ {⊥}, Q × R, 〈q0, r0〉, δ′′, λ′′〉 where
δ′′ and λ′′ are given by the following rules:

q
x/y−−→ q′, r

i−→ r′
o−→ r′′, ∇(r, i) = x, ∇(r′, o) = y

(〈q, r〉, i, 〈q′, r′′〉) ∈ δ′′ ∧ (〈q, r〉, i, o) ∈ λ′′

q
x/y−−→ q′, r

i−→ r′, ∇(r, i) = x, @o ∈ O : ∇(r′, o) = y

(〈q, r〉, i, 〈q, r〉) ∈ δ′′ ∧ (〈q, r〉, i,⊥) ∈ λ′′

III. METHOD

In this section we describe our method as it is depicted in
Fig. 1. First, we give an overview of the proposed configura-
tion and then discuss the involved steps in detail. We start by
learning an FSM of the black-box component with a manually
defined mapper. Then, we compose this with the white-box.
Finally, we execute the SUT symbolically, to generate test
cases exercising as many execution paths as possible.

A. Model Learning

As described in Sect. II-C, we learn models by interacting
with the SUL via a mapper performing abstraction. The con-
crete alphabet I∪O of the SUL generally contains input/output
actions of the form e(p1, . . . , pn), i. e., we have input/output
events e ∈ E with n parameters. Mappers create equivalence
classes of I ∪O by defining constraints on parameters.

The state of the mapper comprises a fixed number of m
variables recording the occurrence of events and storing action
parameters. We can therefore view the mapper state as a tuple
r ∈ R ⊆ (E ∪ X )m, where E is the set of events and X
is a set of values relevant to the application domain, i. e.,
it includes the domains of the action parameters, as well as
terms formed from parameter values. For the update ∆ of
the mapper state, we have l guarded update rules for each
event e: ∆(〈r1, . . . , rm〉, e(p1, . . . , pn)) = 〈r′1, . . . , r′m〉 if gj ,
where the guard gj is a quantifier-free formula over R and
the parameters of e such that

∨l
j=1 gj = > and i 6= j →

gi ∧ gj = ⊥. Similarly, we have k guarded abstraction rules
∇(r, e(p1, . . . , pn)) = z if gz for each e, where z is a unique
abstract symbol in X ∪ Y .
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Input: 1. M = 〈X,Y,Q, q0, δ, λ〉,
Input: 2. A = 〈I,O,R, r0,∆, X, Y,∇〉

1: function i(p1, . . . , pn)
2: switch ∇(r, i(p1, . . . , pn)) do
3: case x1
4: y ← λ(q, x1)
5: q ← δ(q, x1)
6: r ← ∆(r, i(p1, . . . , pn))
7: o(p′1, . . . , p

′
j)← ∇−1(r, y)

8: r ← ∆(r, o(p′1, . . . , p
′
j))

9: return o(p′1, . . . , p
′
j)

10: case x2
11:

...
12: function ∇−1(r, y)
13: o(p′1, . . . , p

′
j)← oc s.t. ∇(r, oc) = y if gy

14: for all p′ ∈ {p′1, . . . , p′j} do
15: MAKESYMBOLIC(p′)
16: ASSUME(gy)

Fig. 3: Composition of learned model and mapper.

Learner Mapper SUL
x

∇(o)

∇−1(x)

o (a)

White-box Mapper FSM
i

∇−1(y)

∇(i)

y (b)

Fig. 4: Mapper in (a) learning vs. (b) symbolic execution

B. Symbolic Execution

Once an abstract model of the black-box component is
learned, we compile it alongside the mapper to symbolically
execute it. For that, we reverse the role of mapper as compared
to learning; see Fig. 4. Therefore, we implement abstraction
and concretization as described in Def. 7 and 8 via translation
to source code. The interface to the translated composition of
mapper and learned model consists of functions i(p1, . . . , pn),
for each input event i, called by the white-box component.
Figure 3 shows abstractly how these functions are imple-
mented. First, we perform abstraction of inputs (Line 2).
Consequently, if such a function is symbolically executed,
execution initially forks to each case-branch and the execution
engine adds the abstraction-rule guard gx of each abstract
input x to the respective path condition, thereby constraining
symbolic parameters of i. After that, we update the model state
(Line 5) and the mapper state (Lines 6 and 8). Finally, we
return concretized outputs o(p′1, . . . , p

′
j) (Line 9). To update

the mapper state, we actually need to check the guards of the
update rules defining ∆. This detail is left implicit in Fig. 3.

Abstraction and updates of the state work as described by
the ∇, ∆, and δ. For the concretization of an abstract output
y, we need ∇−1, but since ∇ performs abstraction, there is no
immediate definition of ∇−1. Instead, we retrieve the output
event o(p′1, . . . , p

′
j) and the abstraction-rule guard gy for y

from the ∇ definition (Line 13). We declare the parameters of
the output event to be symbolic values via MAKESYMBOLIC
(Line 15) and through ASSUME(gy) we instruct the symbolic

SPI
Master

SCLK
MOSI
MISO

SS

(a)

SPI
Slave

SPI
Master

SCLK SCLK
MOSI MOSI
MISO MISO

SS SS

(b)

Fig. 5: Master-mode SPI peripheral in loopback along with
SPI master-slave setup. SCLK is the serial clock, which is an
output line of master, MOSI is the data output line from master
to slave, MISO is the data output line from slave to master, and
SS is the slave select and an output line of master.

1 byte tx_data = 0xdd, rx_data = 0;
2 LPC_SPI->CFG = SPI_CFG_MASTER | SPI_CFG_ENABLE;
3 while(~LPC_SPI->STAT & SPI_STAT_TXRDY);
4 LPC_SPI->TXDATCTL = SPI_TXDATCTL_SSEL_N(0xe)|

SPI_TXDATCTL_FLEN(7)|SPI_TXDATCTL_EOT|tx_data;
5 while(~LPC_SPI->STAT & SPI_STAT_RXRDY);
6 rx_data = LPC_SPI->RXDAT;
7 if(rx_data != tx_data)
8 abort();
9 while(~LPC_SPI->STAT & SPI_STAT_MSTIDLE);

Listing 1: Transmit and receive to/from slave [21, p. 349]

execution engine to add gy to the path condition (Line 16).
Hence, we let the execution engine find an instantiation of the
output-event parameters satisfying gy; i. e., it picks a value in
O that is in the equivalence class corresponding to y.

C. Testing

After translation, we generate system-level test cases via
symbolic execution of the composition of the white-box, the
learned model, and the mapper. We then run these test cases
on the actual SUT, i. e., the white-box interacting with the
black-box component, while profiling the observed behaviour,
outputs, and executed code paths in the white-box. This step
is necessary, because the learned model may not be equivalent
to the black-box under abstraction. This is due to the fact that
learning relies on conformance testing which is incomplete
in general. Hence, running the generated test cases serves as
a spuriousness check, i. e., we ensure that we will not report
spurious errors, or spuriously covered code paths. Our method
is therefore sound, but incomplete as it involves black-box
conformance testing in the learning phase.

IV. SERIAL PERIPHERAL INTERFACE

In this section, we demonstrate how we can symbolically
execute code that depends on a Serial Peripheral Interface
(SPI). First, we study how to learn an SPI controller in its
master-mode with a loopback setup to execute Listing 1 sym-
bolically. Then, we show how we can extend our experiment
to the whole master-slave setup of SPI.

A. Learning Master-Mode Controller of SPI

In this subsection, we symbolically execute Listing 1 that
depends on the SPI bus of the NXP LPC810 micro-controller
(MCU). Listing 1 drives an SPI controller in its master-mode
with the purpose of sending a single byte to a slave-mode SPI
controller and receiving a byte from it. The execution aborts
when the received byte does not conform to the sent byte.
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TABLE I: ∆ & ∇ functions of master-mode SPI mapper.

State (s) Symbol (a) ∆(s, a) ∇(s, a)

r void r ε
r read(STAT) r ST
r read(RXDAT) r RX
r write(TXDATCTL,n) n TX
r STAT(m) r

if m = 0x01 〈0, 0, 1〉
if m = 0x03 〈0, 1, 1〉
if m = 0x102 〈1, 1, 0〉
if m = 0x103 〈1, 1, 1〉

r RXDAT(n) r
if n 6= r 0
if n = r 1

Learning. To simplify the learning, we learn the master-mode
SPI controller in a loopback setup; that is, the same controller
receives the transmitted byte; please see Fig. 5a. Primarily
we need to know how to reset the SPI controller to its master-
mode should the learner ask for a reset. In Line 2, we initialize
the SPI controller to its master-mode by writing bit masks
SPI_CFG_MASTER and SPI_CFG_ENABLE to LPC_SPI->CFG register.
Alphabet. To extract alphabets we ought to know a thing or
two about the NXP LPC810 MCU. In Line 3, we read the
LPC_SPI->STAT register and check if SPI_STAT_TXRDY bit is set
to see if the transmission line is ready or not. The act of
accessing and evaluating the value of LPC_SPI->STAT is an input
symbol in I; accordingly, possible values for SPI_STAT_TXRDY

(bit 0) represent outputs in O. The STAT register provides more
SPI status flags whose possible values represent more outputs
in O. Remaining SPI status flags are SPI_STAT_RXRDY (bit 1)
and SPI_STAT_MSTIDLE (bit 8) [21, p. 239]. We extracted the
following concrete alphabets from Listing 1:

I = {read(STAT), read(RXDAT), write(TXDATCTL, n) | n ∈ N} ,
O = {void, STAT(0x01), STAT(0x03), STAT(0x102), STAT(0x103),

RXDAT(n) | n ∈ N} .
Mapper. We define a mapper over states N∪{⊥} where ⊥ is
the initial state. We define the mapper’s ∆ and ∇ functions by
Table I. The concrete values of the STAT register are mapped
to triples 〈SPI_STAT_MSTIDLE, SPI_STAT_RXRDY, SPI_STAT_TXRDY〉.

Finally, the learning experiment results in the automaton
that is depicted in Fig. 6, with which we were able to execute
Listing 1 symbolically. An interesting observation that we
made is according to the FSM depicted in Fig. 6, a data
transmission in state s0 triggers a state transition to state s1
and an immediate data write to TXDAT, then a move to transmit
holding register, and finally transmit to RXDAT. A subsequent
data transmission results in a data write to TXDAT, then a move
to transmit holding register. Since RXDAT register is occupied in
s1 the transmission to RXDAT never occurs, instead the Master
Idle flag is cleared, indicating the transmit holding register
is not empty, and current state changes to state s2. If we do
another data transmission in this state, current state changes
to state s3; where any data transmission rewrites TXDAT and
clears Transmitter Ready flag.

On the other hand, according to [21], when the transmit
holding register is empty and the transmitter is not send-

s0 s1 s2 s3

RX/0

ST/〈1, 1, 0〉

TX/ε

ST/〈1, 1, 1〉

RX/1

TX/ε

ST/〈0, 1, 1〉

RX/0

TX/ε
TX/ε

ST/〈0, 0, 1〉

RX/0

Fig. 6: Automaton of SPI controller as shown in Fig. 5a.

S1

S2

P1

P2

Fig. 7: Software units interacting via black-box SPI.

ing data the Master Idle flag (i. e., SPI_STAT_MSTIDLE) is set
otherwise it is cleared. The Transmitter Ready flag (i. e.,
SPI_STAT_TXRDY) indicates whether data may be written to the
transmit buffer or not. It is unset when writing data to TXDAT

and set when the data is moved from the transmit buffer
to the transmit shift register. The Receiver Ready flag (i. e.,
SPI_STAT_RXRDY) indicates if data is available to be read from
the receiver buffer, and it is cleared after reading RXDAT or
RXDATSTAT.

B. Learning Master-Slave Setup of SPI

In this subsection, we demonstrate how to generate system-
level test cases for embedded software systems in the presence
of a black-box communication channel.
Test Setup. Our embedded software system implements a
padlock using two software units S1 and S2 that communicate
through black-box peripherals P1 and P2; see Fig. 7. S1

implements a user interface that unlocks a padlock with a 4-
digit pin p0p1p2p3; see Listing 2. Meanwhile, S2 implements
a variant of a combination lock automaton; see Fig. 8. This
automaton progresses on correct inputs p0p1p2p3 and resets
otherwise. In each step, S2 emits 1 in case of success and 0
otherwise. Finally, to check the pin, S1 sends it to S2.

We implemented our embedded software system on a pair
of NXP LPC810 MCUs. Our port of S1 to the primary MCU
firmware (i. e., user interface) uses the SPI controller in its
master-mode configuration to communicate with S2 on the
secondary MCU that uses the SPI controller in its slave-mode

1 int main(int argc, char* argv[]) {
2 do {
3 int pin = getchar();
4 } while(!S2.check(pin))
5 grant_user_access();
6 return 0;
7 }

Listing 2: S1 runs user interface and access control.

0 1 2 3

¬p0/0

¬p1/0

¬p2/0

p0/0 p1/0 p2/0

¬p3/0

p3/1

Fig. 8: S2 runs a combination lock automaton for pin checks.
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TABLE II: Code coverage in the presence of SPI controllers.

Coverage Metric S1 S2

Concolic Symbolic Concolic Symbolic

Line Coverage 84.78% 86.96% 38.24% 91.18%
Branch Coverage 57.14% 71.43% 25.00% 85.00%

configuration. Finally, due to the master/slave architecture of
the SPI bus, communication is always initiated by S1.
Alphabet. We extracted the learning alphabets as follows:
• Skimming the code from [21, p. 350] to work with an

SPI in slave-mode, we extracted alphabets IS and OS .
• Ensuring IS ∩ IM = OS ∩ OM = ∅ by adding a

distinguishing prefix to symbols, we fixed the alphabets
IM and OM to work with an SPI in master-mode.

• Finally, we defined the concrete alphabets as I = IM∪IS
and O = OM ∪OS along with a mapper.

After roughly three hours, the experiment resulted in an
automaton that models the interactive behaviour of the black-
boxes shown in Fig. 7, with 348 states; i. e., P1 × P2.
Symbolic Execution. The granting execution path in S1 is
unlikely to occur using concolic execution and random testing
because it is very improbable to progress in S2 not knowing
the exact combination. On the other hand, unit-level symbolic
execution of both S1 and S2 might reveal numerous execution
paths; most of which, are not possible through interactive
execution of S1 and S2; therefore, not worth the effort of
manual inspection. Therefore, it is necessary to symbolically
reason about how S1 and S2 restrict one another’s behavior.

We symbolically executed S1 along with S2 interactively
against the learned P1 × P2 automaton. Symbolic execution
resulted in five different execution paths almost immediately,
while concolic execution through SPI communication channel
only revealed one execution path after 22 hours. Table II sum-
marizes the increase in test coverage gained by our proposed
methodology against concolic execution.

V. MESSAGE QUEUING TELEMETRY TRANSPORT

Message Queuing Telemetry Transport (MQTT) is a
publish-subscribe connectivity protocol for the Internet of
Things. Whenever publishers publish a message to a topic, that
message gets posted to a broker server. Subscribers register
with the broker on a topic to receive messages published on
it. Testing and verifying MQTT clients is difficult because they
communicate through a black-box message broker.
Test Setup. Library implementations of the MQTT protocol
specifications exist. We implemented our padlock software
system using two MQTT libraries (i. e., libemqtt [22] and
MQTT-C [23]) in C language. The goal is to execute the pad-
lock software system along with the MQTT libraries against
an MQTT broker symbolically; please see Fig. 9.
Test Driver. In our implementation, S1 and S2 agree on the
MQTT Quality of Service level of 1 for a predefined topic to
interact with each other. S1 is the publisher providing the pin
while S2 is the subscriber implementing the combination lock
automaton. Initially, both clients connect to the MQTT broker.
Next, they exchange the pin and S2 performs the pin check

S1

Pub

S2

Sub

MQTT
Library

MQTT
Broker

Fig. 9: Clients communicating via a broker using MQTT.

TABLE III: ∆ & ∇ functions of MQTT mapper.

Source (s) Symbol (a) ∆(s, a) ∇(s, a)

〈l, t,m〉 Publish(S1, t′,m′) 〈l, t′,m′〉 PUB
〈l, t,m〉 Subscribe(S2, t′, QoS1) 〈l ∪ {t′}, t,m〉 SUBQ1
〈l, t,m〉 UnSubscribe(S2, t′) 〈l \ {t′}, t,m〉 UNSUB
〈l, t,m〉 Receive(S2, t′,m′) 〈l, t,m〉

if (t′ ∈ l ∧m = m′ ∧ t = t′) RECV
if (t′ 6∈ l ∨m 6= m′ ∨ t 6= t′) ε

〈l, t,m〉 everything else 〈l, t,m〉 a

granting access to the user should the pin be correct. Finally,
both disconnect from the MQTT broker.
Learning. We used the learning setup configured by Tappler
et al. [24] to learn the automaton of an MQTT broker.
We extracted the concrete input alphabet for the learning
experiment from the test driver as follows:

I = {Connect(c), Disconnect(c), Publish(S1, t,m),

Subscribe(S2, t, QoS1), UnSubscribe(S2, t)} .
where c ∈ {S1, S2} is the client, t ∈ S is a topic, m ∈ S is
a message and S is the set of character strings. Moreover, in
response to above input events, we observe following concrete
output events; set OS1

in S1, and set OS2
in S2.

OS1
= {ConnClosed(S1), ConnAck(S1), PubAck(S1), void} ,

OS2
= {ConnClosed(S2), ConnAck(S2), SubAck(S2),

UnSubAck(S2), Receive(S2,Topic,Msg), void} .
Finally, since the broker triggers outputs in both clients, we
define the concrete output alphabet for this experiment as

O = OS1
×OS2

.

Mapper. The state space R of the mapper is (2S × S × S ∪
{〈∅,⊥,⊥〉}) where 〈∅,⊥,⊥〉 is the initial state. Each state is
a triple 〈l, t,m〉 where l is the set of topics to which S2 is
subscribed, and m is the last message published to the last
topic t. We define the mapper according to Table III. We
learned an automaton of 10 states and 100 transitions from
the EMQ broker (v. 2.3.6).
Symbolic Execution. Since KLEE does not support software
sockets, we compare the coverage obtained by symbolically
executing S1 and S2 against the learned broker automaton with
that of random testing. For random testing, we generated the
test data for the pin randomly and executed n3 times as many
tests as generated by symbolic execution. Table IV summarises
the increase in test coverage for MQTT libraries and dismisses
the coverage of S1 and S2 since their coverage were similar
to that of the previous case study. The gap between coverage
of libemqtt and MQTT-C is due to the fact that MQTT-C
implements more of MQTT protocol.
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TABLE IV: Code coverage in the presence of a MQTT broker.

Coverage Metric libemqtt MQTT-C
Random
Testing

Symbolic
Execution

Random
Testing

Symbolic
Execution

Line Coverage 85.00% 90.90% 47.47% 55.83%
Branch Coverage 47.62% 57.44% 30.11% 33.96%

main.c pff.c diskio.c

Fig. 10: Petit FAT File System.

VI. PETIT FAT FILE SYSTEM

The barrier in symbolic execution of software systems
that are built on top of file systems is already addressed in
KLEE [4]. KLEE models a basic file system that consists of
a directory with n user-specified symbolic files. However,
symbolic execution of file system implementations still re-
mains an issue, because they are usually built using library
level functionalities of disk controllers. In this section, we
enable the symbolic execution of a file system that depends
on a Secure Digital Card (SD-Card) controller. This helps to
generate interesting test cases, which increase test coverage
not only for the file system implementation, but also for the
software system that is built on top of it.
Test Setup. Petit FAT File System (PFF) is an implementation
of the FAT file system for 8-bit micro-controllers [25]. At
the moment of writing this paper, the PFF consists of two
main source files. The first source file, i. e., “diskio.c”, contains
SD-Card specific code that is to be implemented based on the
target MCU’s interface. The second, i. e., “pff.c”, is built on
top of the first source file and implements the file system.
Test Driver. For learning and testing PFF, we used the setup
shown in Fig. 10, i. e., we have diskio.c and pff.c communicat-
ing with an SD card. On top of that, we implemented a driver,
i. e., “main.c”, that (1) mounts a partition, then (2) opens an
arbitrary file, and eventually (3) reads 10 bytes of the file’s
content and tests them against a predetermined value. Once we
learned the SD-Card controller, we are able to symbolically
execute not only our simple software, but also the PFF itself.
Learning. PFF uses the SD Memory Card protocol in SPI
mode. The Physical Layer Simplified Specification [26] con-
tains functional description of SD-Cards and the SD Memory
Card protocol in SPI mode. By inspecting the functional
description of SD-Card and PFF source code, we extracted
following concrete alphabets with which the PFF can run the
SD-Card communication protocol in SPI mode.

I = {GO_IDLE_STATE(0x0), SEND_IF_COND(0x1AA), APP_CMD(0x0),
SD_SEND_OP_COND(0x0), SD_SEND_OP_COND(1<<30),

SEND_STATUS(0x0), READ_SINGLE_BLOCK(n),

SD_STATUS(0x0), READ_OCR(0x0)}
O = {R1(n), R2(n), R3(n), R7(n), 〈R1(n), DATA(b)〉 | n ∈ N} .
In case of successful execution, input READ_SINGLE_BLOCK re-
turns two outputs R1(n), and DATA(b) where b is a data block

TABLE V: Abstraction for PFF.

State (s) Symbol (a) ∇(s, a)

r0, r1 R1(n) R1(n & 0x7F)
r0, r1 R2(n) R2(n & 0x7FFF)
r0 R3(n) R3(n & 0x7FFFFFFFFF)
r1 R3(n) R3(n & 0x00F0000000)
r0, r1 R7(n) R7(n & 0x7FF0000FFF)
r0, r1 〈R1(n), DATA(b)〉

if n & 0x7F 6= 0 ε
if n & 0x7F = 0 DATABLOCK

r0, r1 READ_SINGLE_BLOCK(n) READBLOCK
r0, r1 everything else a

TABLE VI: Coverage results for PFF & Certgate SD-Card.

Coverage Metric pff.c main.c
Concolic Symbolic Concolic Symbolic

Line Coverage 8.53% 83.89% 28.57% 100.0%
Branch Coverage 4.41% 55.15% 10.00% 100.0%

of size 512 bytes. Therefore, we define a compound symbol
〈R1(n), DATA(b)〉 in our output alphabet.
Mapper. We define the state space R as {r0, r1}, and ∆ by:

∆(r, a) =

{
r1 if a = READ_OCR(0x0)

r0 otherwise

and we define the abstraction method by Table V. We ran the
learning on three SD-Card controllers namely Certgate SDC,
Kingston SDC, and Kingston SDHC. Although the abstract
alphabet is very large, in practice we only observed 23, 51,
and 44 abstract outputs for Certgate SDC, Kingston SDC, and
SDHC respectively. The learned Mealy machines are of size
39, 68, and 41 states and 351, 612, and 369 transitions for
Certgate SDC, Kingston SDC, and SDHC respectively.
Symbolic Execution. We ran the experiment for 24 hours
using concolic execution and discovered one execution path.
Meanwhile, symbolic execution increases the code coverage
for both “pff.c” and “main.c” drastically; please see Table VI.
Since “diskio.c” implements the interface to the black-box
component we considered its code coverage to be irrelevant.

VII. RELATED WORK

Anand et al. [27] used type-dependence analysis to auto-
matically pinpoint the variables to which the flow of symbolic
values will cause a problem (e. g., parameters of black-box
methods). They were able to automatically indicate problem-
atic variables before performing symbolic execution along
with contextual information that can help manual interven-
tions. Although a first step towards coping with black-boxes in
symbolic execution, a user had to implement models manually.

Cadar et al. [4] implemented 2500 lines of code to de-
fine simple models for roughly 40 system calls to model
the execution environment. They also compiled and linked
software systems that were built on top of the C standard
library against a much more straightforward implementation
(i. e., µClibc [28]) to facilitate symbolic execution of the whole
software system. This manual effort is only worth for com-
monly used components. Moreover, since deployed software
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systems often consist of more sophisticated implementations
of components, this solution shifts system-level correctness to
the correctness of handwritten models of the black-boxes.

Chipounov et al. [29] point out that manual modelling
of black boxes is labor-intensive and that models are often
inaccurate, especially when systems evolve. They present
the S2E platform, which avoids such problems by allowing
symbolic execution of binaries, if source code is not available.
In this paper, we proposed a method to symbolically execute
codes that are dependent on black-boxes other than binaries.

Davidson et al. [30] encountered the same issue while
extending symbolic execution to embedded platforms. They
elaborated on scenarios in which the black-box is a hardware
component. Not being aware of an architectural specification
in the hardware component, the symbolic execution engine
may follow an incorrect execution path. They manually mod-
eled certain aspects of the hardware to facilitate symbolic
execution. The problem is, architectural specifications are
often abstruse, not well documented, or not published. Simi-
larly, manual modeling of hardware components is often not
practical, because it is both tedious and error-prone.

Jeon et al. [31] proposed to use program synthesis for mod-
eling Java libraries to facilitate symbolic execution of software
systems that are built on top of them. They instrumented the
library source-code such that they can log simulations of tuto-
rial programs exercising the library. Logs descriptively record
either a call to or a return from a method that happened in a
tutorial program discarding details of what happened inside the
library after invocation. They successfully synthesized models
that produced the same instantiations of design patterns as the
library, should it run against the same tutorial program under
the same inputs. This approach requests white-box access to
the third-party components for instrumentation; moreover, it
is based on instantiations of design patterns while we based
our approach on finite-state machines; therefore, addressing a
different and possibly broader set of components.

Godefroid et al. [8] showed that concolic execution might
lead to divergence during system-level testing. Hence, the
method with which concolic execution concretizes symbolic
variables should be black-box specific. A program may induce
exponentially many execution paths and concolic execution
in a way prunes them unsystematically by replacing sym-
bolic variables with random concrete values. This results in
wandering through random execution paths pretty much like
random testing; and like random testing, concolic execution
also provides no sensible guarantees in terms of system-
level coverage in presence of black-box components. Hence,
concolic execution does not excel in presence of a black-box
component whose behavior matters during path exploration.

Păsăreanu et al. [32] applied symbolic execution in unit-
level testing while performing a system-level concrete execu-
tion to generate test cases that satisfy user-specified testing
criteria. They outperformed random testing and manual test-
case generation regarding both coverage and time. In a follow-
up study, Davies et al. [33] used treatment learning to reduce
number of system-level inputs that affect values of unit-level

variables for a path condition of interest. Next, they applied
function fitting to find a predictive relationship between the
unit-level inputs and associated system-level inputs. Once they
have calculated an approximation function for unit-level inputs
with respect to system-level inputs, they form a higher-level
path condition that also takes the approximation function (i. e.,
potentially interesting unit-level inputs) into account. They
achieved higher coverage with fewer test cases compared to
their previous study. The issue with this work is that approxi-
mated inputs of a software unit are not accurate enough to get
a black-box, like a communication-protocol implementation,
to run in practice.

VIII. CONCLUSION & FUTURE WORK

System-level test-case generation is complicated in the pres-
ence of black-box components; e. g., communication channels,
communication protocols, locking mechanisms. This hardship
arises from the fact that exact input values often trigger
interesting behaviors of a software system, but the execution
path affecting the system-level inputs is only partially visible.
To cope with black-boxes, we propose to learn automata
of them and instead execute software units against learned
automata symbolically. Through this system-level symbolic
execution, we can generate test cases for the actual software
system under test. Using multiple case studies, we showed
the applicability of our approach in generating test cases that
cover corner cases and achieve higher coverage.

In this paper, we manually crafted mappers for our learning
experiments using our own domain knowledge. Although
labour intensive, mapper creation requires less effort compared
to modeling systems manually, e. g., for model-based testing.
Moreover, mappers are more easily reusable, e. g., [19] uses
a single mapper for five different but similar systems. Ad-
ditionally, we can avoid manual effort of crafting mappers
for a certain class of systems through register automata
learning [34], or through abstraction refinement [20, 35],
which is our first direction for future research. For the second
research direction, we speculate concolic execution might as
well benefit from the additional information provided by the
mappers; yet, we could not think of an easy way to enable that
unless we assume the state space of black-box component is
irrelevant. The third research direction would be to investigate
how to embed the concept of time into our approach and a
primary step can be extending our approach to the class of
Mealy machines with timers [36]. Finally, we could extend
the applicability of symbolic execution in system-level testing
to a more comprehensive class of systems by investigating the
possibility of approximating outputs of a black-box from its
inputs using machine learning methods like treatment learning
and function fitting as proposed in [33].
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[32] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. R. Lowry, S. Person, and M. Pape,
“Combining unit-level symbolic execution and system-
level concrete execution for testing NASA software,” in
ISSTA’08, 2008, pp. 15–26.
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Abstract—Boolean functional synthesis is the process of con-
structing a Boolean function from a Boolean specification that
relates input and output variables. Despite significant recent
developments in synthesis algorithms, Boolean functional syn-
thesis remains a challenging problem even when state-of-the-art
methods are used for decomposing the specification. In this work
we bring a fresh decomposition approach, orthogonal to existing
methods, that explores the decomposition of the specification
into separate input and output components. We make use of
an input-output decomposition of a given specification described
as a CNF formula, by alternatingly analyzing the separate input
and output components. We exploit well-defined properties of
these components to ultimately synthesize a solution for the entire
specification. We first provide a theoretical result that, for input
components with specific structures, synthesis for CNF formulas
via this framework can be performed more efficiently than in the
general case. We then show by experimental evaluations that our
algorithm performs well also in practice on instances which are
challenging for existing state-of-the-art tools, serving as a good
complement to modern synthesis techniques.

I. INTRODUCTION

Boolean functional synthesis is the problem of constructing
a Boolean function from a Boolean specification that describes
a relation between input and output variables [2], [12], [19],
[35]. This problem has been explored in a number of settings
including circuit design [20], QBF solving [27], and reactive
synthesis [36], and several tools have been developed for its
solution. Nevertheless, scalability of Boolean functional syn-
thesis methods remains a concern as the number of variables
and size of the formula grows. This is not surprising since
Boolean functional synthesis is in fact CO-NPNP-hard.

A standard practice for handling the problem of scalability
is based on decomposing the given formula into smaller sub-
specifications and synthesizing each component separately [2],
[19], [35]. The most common form of such decomposition,
called factorization, is when the formula is represented as
a conjunction of constraints, in which each conjunct can be
seen as a sub-specification [19], [35]. The main challenge
in this approach is that most factors cannot be synthesized
entirely separately due to the dependencies created by shared
input and output variables. The ways to meet this challenge
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Augmented Program Engineering”, by a grant from MHRD, Govt of India,
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are usually to either merge factors that share variables [35]
or perform additional computations in order to combine the
functions synthesized for different factors [19]. All these result
in additional work that must be performed during the synthesis.

In this work, we propose an alternative decomposition
framework, which follows naturally from the fact that vari-
ables in the specification are separated into input and output
variables. This idea was originally inspired by [11], which
explores the notion of sequential relational decomposition, in
which a relation is decomposed into two by introducing an
intermediate domain. Differently from factorization, this form
of decomposition allows the two components to be synthesized
completely independently. That work, however, shows that
decomposition is hard in general, and if the relation is given
as a Boolean circuit, decomposition is NEXPTIME-complete.
Furthermore, there is no guarantee that synthesizing the two
components independently would be easier than synthesizing
the original specification, since the synthesis of one component
might ignore useful information given by the other component.

We instead suggest a more relaxed notion of decomposition
for specifications described as CNF formulas, in which every
clause is split into an input and an output clause and the inde-
pendent analyses of the input/output components “cooperate”
to synthesize a function for the entire specification. Based on
this concept, we describe a novel synthesis algorithm for CNF
formulas called the “Back-and-Forth” algorithm, where rather
than synthesizing the input and output components entirely
independently we share information back and forth between
the two components to guide the synthesis. More specifically,
our algorithm alternates between SAT calls that follow the
input-component structure analysis and MaxSAT calls that
follow the output-component structure analysis. Thus, this
approach builds on recent progress with SAT and MaxSAT
solving [21], [30]. A notable consequence of our method is
that, as the number of SAT calls is dependent on the structure
of the input component, for specifications with some well-
defined input structure we can perform synthesis in PNP,
compared to the generally mentioned CO-NPNP-hardness. An
additional advantage of our algorithm is that it constructs the
synthesized function as a decision list [29]. Compared to other
data structures for representing Boolean functions, such as
ROBDDs or AIGs, decision lists have significant benefits in
term of explainability, allowing domain specialists to validate
and analyze their behavior (see discussion in Section VI for
more details).
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We experimentally evaluate the “Back-and-Forth” algorithm
on a suite of standard synthesis benchmarks, comparing its per-
formance with that of state-of-the-art synthesis tools. Although
these tools perform very well on many families of benchmarks,
our results show that the “Back-and-Forth” algorithm is able
to handle classes of benchmarks that these tools are unable to
synthesize, indicating that it belongs in a portfolio of synthesis
algorithms.

II. RELATED WORK

Constructing explicit representations of implicitly speci-
fied functions is a fundamental problem of interest to both
theoreticians and practitioners. In the contexts of Boolean
functional synthesis and certified QBF solving, such functions
are also called Skolem functions [8], [14], [19]. Boole [9]
and Lowenheim [22] studied variants of this problem when
computing most general unifiers in resolution-based proofs.
Unfortunately, their algorithms, though elegant in theory, do
not scale well in practice [23]. The close relation between
Skolem functions and proof objects in specialized QBF proof
systems has been explored in [8], [14]. One of the earliest
applications of Boolean functional synthesis has been logic
synthesis - see [34] for a survey. More recently, Boolean func-
tional synthesis has found applications in diverse areas such
as temporal strategy synthesis [3], [16], [36], certified QBF
solving [6], [7], [26], [28], automated program synthesis [31],
[33], circuit repair and debugging [18], and the like. This has
resulted in a new generation of Boolean functional synthesis
tools, cf. [1], [2], [12], [14], [19], [27], [28], [35], that are
able to synthesize functions from significantly larger relational
specifications than what was possible a decade back.

Recent tools for Boolean functional synthesis can be broadly
categorized based on the techniques employed by them. Given
a specification F (~x, ~y), where ~x denotes inputs and ~y denotes
outputs, the work of [14] extracts Skolem functions for ~y in
terms of ~x from a proof of validity of ∀~x.∃~y.F (~x, ~y) expressed
in a specific format. The efficiency of this technique crucially
depends on the existence and size of a proof in the required
format. Incremental determinization [27] is a highly effective
synthesis technique that accepts as input a CNF representation
of a specification and builds on several successful heuristics
used in modern conflict-driven clause-learning (CDCL) SAT
solvers [30].

In [12], the composition-based synthesis approach of [17]
is adapted and new heuristics are proposed for synthesiz-
ing Skolem functions from an ROBDD representation of
the specification. The technique has been further improved
in [35] to work with factored specifications represented as
implicitly conjoined ROBDDs. CEGAR-based techniques that
use modern SAT solvers as black boxes [1], [2], [19] have
recently been shown to scale well on several classes of large
benchmarks. The idea behind these techniques is to start with
an efficiently computable initial estimate of Skolem functions,
and use a SAT solver to test if the estimates are correct.
A satisfying assignment returned by the solver provides a
counterexample to the correctness of the function estimates,

and can be used to iteratively refine the estimates. In [1], it is
shown that transforming the representation of the specification
to a special negation normal form allows one to efficiently
synthesize Skolem functions.

Both ROBDD and CEGAR-based approaches make use of
decomposition techniques to improve performance, the most
common of which is factorization [19], [35]. In this method,
every conjunct of a conjunctive specification is considered
individually. The main drawback in this approach is that
the dependencies between conjuncts limit how much each of
them can be analyzed independently of the others, requiring
either partially combining components, as in [35], or going
through a process of refinement of the results [19]. This issue
motivates the search for alternative notions of decomposition
for synthesis problems. Our approach is loosely inspired by the
idea of sequential relational decomposition explored in depth
in [11]. A more direct application of this idea to synthesis
might still be possible, but requires further exploration. In
addition to the above techniques, templates or sketches have
been used to synthesize functions when information about the
possible functional forms is available a priori [32], [33].

As is clear from above, several orthogonal techniques have
been found to be useful for the Boolean functional synthesis
problem. In fact, there remain difficult corners, where the
specification is stated simply, and yet finding Skolem functions
that satisfy the specification has turned out to be hard for all
state-of-the-art tools. Our goal in this paper is to present a
new technique and algorithm for this problem, that does not
necessarily outperform existing techniques on all benchmarks,
but certainly outperforms them on instances in some of these
difficult corners. We envisage our technique being added to
the existing repertoire of techniques in a portfolio Skolem-
function synthesizer, to expand the range of problems that can
be solved.

III. PRELIMINARIES

A. Boolean Functional Synthesis

A specification for the Boolean functional synthesis problem
is a (quantifier-free) Boolean formula F (~x, ~y) over input
variables ~x = (x1, . . . , xm) and output variables ~y =
(y1, . . . , yn). Note that F can be interpreted as a relation
F ⊆ X × Y , where X is the set of all assignments x̂ to
~x and Y is the set of all assignments ŷ to ~y. With that in
mind, we denote by Dom(F ) = {x̂ | ∃ŷ.(F (x̂, ŷ) = 1)} and
Img(F ) = {ŷ | ∃x̂.(F (x̂, ŷ) = 1)} the domain and image
of the relation represented by F . We also use Imgx̂(F ) =
{ŷ | F (x̂, ŷ) = 1} to denote the image of a specific element
x̂ ∈ X . If Dom(F ) = X , then we say that F is realizable.

Two Boolean formulas F (~w) and F ′(~w) are said to be
logically equivalent, denoted by F ≡ F ′, if they have the same
solution space; that is, for every assignment ŵ to ~w, F (ŵ) = 1
iff F ′(ŵ) = 1. Unless stated otherwise, all Boolean formulas
mentioned in this work are quantifier free.

We say that a partial function g : X → Y implements a
relation F ⊆ X × Y if for every x̂ ∈ Dom(F ) we have that
(x̂, g(x̂)) ∈ F . Such a g is also called a Skolem function of F .
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Note that if F is realizable, then g is a total function. Finally,
we define the Boolean-synthesis problem as follows:

Problem 1. Given a specification F (~x, ~y), construct a partial
function g that implements F .

For more information on Boolean synthesis, see [12], [19].

B. Decision lists

Our choice of representation of Skolem functions in this
work is inspired by the idea that we can represent an arbitrary
Boolean function f by a decision list [29]. A decision list
is an expression of the form if f1(~x) then ŷ1 else if
f2(~x) then ŷ2 else . . . else ŷk, where each fi is a
formula in terms of the input variables ~x and each ŷi is an
assignment to the output variables ~y. The length k of the
list corresponds to the number of decisions. Clearly, for a
specification F (~x, ~y) with m input variables we can always
synthesize as an implementation a decision list of length 2m,
where for every possible assignment of ~x we choose an assign-
ment of ~y that satisfies the specification. Many specifications,
however, can be implemented by significantly smaller decision
lists, by taking advantage of the fact that multiple inputs can
be mapped to the same output. Our analysis identifies and
exploits these cases.

Despite being a natural representation, decision lists might
not be appropriate for a physical implementation of the synthe-
sized function as a circuit. In this case, it might make sense to
collect the decisions into a more compact representation, such
as an ROBDD.

C. Conjunctive Normal Form

A Boolean formula F (~w) is in conjunctive normal form
(CNF) if F is a conjunction of clauses C1 ∧ . . . ∧ Ck, where
every clause Ci is a disjunction of literals (a variable or its
negation). A subset S of the clauses of a CNF formula F is
satisfiable if there exists an assignment ŵ to the variables ~w in
F such that Ci(ŵ) = 1 for every clause Ci ∈ S. Similarly, a
subset S of the clauses of F is all-falsifiable if there exists an
assignment ŵ such that Ci(ŵ) = 0 for every clause Ci ∈ S.
A subset S of clauses is a maximal satisfiable subset (MSS)
if S is satisfiable and every superset S′ ⊃ S is unsatisfiable.
Similarly, S is a maximal falsifiable subset (MFS) if S is all-
falsifiable and every superset S′ ⊃ S is not all-falsifiable. For
more information on MSS and MFS, refer to [15].

IV. SYNTHESIS VIA INPUT-OUTPUT SEPARATION

In this section, we present a novel algorithm for Boolean
functional synthesis from CNF specifications. Our approach is
based on a separation of every clause into an input part and
an output part. First, we describe how a decision list imple-
menting the specification can be constructed by enumerating
MFSs of the input clauses, or similarly by enumerating MSSs
of the output clauses. Then, we show how we can benefit from
alternating between the two: the MFSs can be used to avoid
useless MSSs, while the MSSs can be used to cover multiple
MFSs at the same time without enumerating all of them.

Given a CNF formula F (~x, ~y), assume F (~x, ~y) =
∧k
i=1 Ci,

where C1, . . . , Ck are clauses over ~x and ~y. Let Ci|~x denote
the x-part of clause Ci, that is, the disjunction of all x literals
in Ci. Similarly, let Ci|~y be the y-part of clause Ci, the
disjunction of all y literals in Ci. We call S~x = {Ci|~x |
Ci is a clause in F} and S~y = {Ci|~y | Ci is a clause in F}
the set of input and output clauses of the specification,
respectively.

In the following sections, we describe how to perform
separate analyses of the input component S~x and the output
component S~y , and then how to combine these analyses into
a single synthesis algorithm that alternates between the two
components.

A. Analysis of the Input Component

In this subsection we assume that the specification F is
realizable. First, consider a single assignment x̂ to the input
variables ~x. Let Fals(x̂) = {Ci|~x ∈ S~x | Ci|~x(x̂) = 0} be the
subset of input clauses that x̂ falsifies. For a set S′~x ⊆ S~x of
input clauses, let Co(S′~x) = {Ci|~y ∈ S~y | Ci|~x ∈ S′~x} be the
corresponding set of output clauses and let MustSat(x̂) =
Co(Fals(x̂)). Note that Ci ≡ (Ci|~x ∨ Ci|~y) ≡ (¬Ci|~x →
Ci|~y) for every clause Ci. Therefore MustSat(x̂) is the subset
of output clauses that must be satisfied in order to satisfy F
when x̂ is the input assignment.

A key observation is that for two different input assignments
x̂ and x̂′, if Fals(x̂′) ⊆ Fals(x̂), then MustSat(x̂′) ⊆
MustSat(x̂), and therefore every output assignment ŷ that
satisfies the specification for x̂ also satisfies the specification
for x̂′. Hence, it is enough to consider only assignments for
~x that falsify a maximal number of input clauses. This leads
to the following lemma:

Lemma 1. Let M~x be an MFS of S~x, and ŷ be an assignment
that satisfies Co(M~x). Then: (1) For every assignment x̂ such
that Fals(x̂) ⊆ M~x, the assignment (x̂, ŷ) satisfies F (~x, ~y);
and (2) There is no assignment x̂ such that Fals(x̂) ⊃M~x.

Proof. (1) For every clause Ci|~x ∈ Fals(x̂), since Ci|~x ∈M~x,
we have that Ci|~y is in Co(M~x) and therefore is satisfied by
ŷ. Therefore, every clause Ci in F (~x, ~y) that is not satisfied
by x̂ is satisfied by ŷ. Note that (2) follows from M~x being
maximal.

From Lemma 1 and our assumption that F (~x, ~y) is realiz-
able, we can conclude the following.

Corollary 1. F can be implemented by a decision list of length
equal to the number of MFS of S~x, where each fi in the
decision list is of size linear in the size of the specification.

Proof. Construct fi(~x) by taking the conjunction of all input
clauses C|~x not contained in the i-th MFS Mi. Then, fi(~x) is
satisfied exactly by those assignments x̂ such that Fals(x̂) is
a subset of Mi. Then, set the corresponding output assignment
ŷi to an arbitrary satisfying assignment of Co(Mi).

Example 1. Let F (x1, x2, y1, y2) = (x1 ∨ ¬x2 ∨ y1) ∧ (x1 ∨
x2∨¬y1)∧(x2∨y1∨¬y2)∧(¬x1∨x2∨y2). We first construct
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input clauses S~x = {(x1 ∨¬x2), (x1 ∨ x2), (x2), (¬x1 ∨ x2)}
and output clauses S~y = {(y1), (¬y1), (y1 ∨ ¬y2), (y2)}.
S~x has three MFS: {(x1 ∨ ¬x2)}, {(x1 ∨ x2), (x2)} and
{(x2), (¬x1 ∨ x2)}. From these MFS we can construct a
decision list implementing F in the way described above. Note
that this decision list necessarily covers every possible input
assignment:

if (x1 ∨ x2) ∧ (x2) ∧ (¬x1 ∨ x2) then (y1 := 1; y2 := 0)

else if (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) then (y1 := 0; y2 := 0)

else if (x1 ∨ ¬x2) ∧ (x1 ∨ x2) then (y1 := 1; y2 := 1)

Note that we require F (~x, ~y) to be realizable because
otherwise we cannot guarantee that Co(M~x) will be satisfiable
for every MFS M~x of the input clauses. If Co(M~x) is
unsatisfiable, however, it is not enough to simply remove
the corresponding fi(~x) from the decision list, because there
might be a subset M ′~x ⊂M~x for which Co(M ′~x) is satisfiable.

This is the first time to our knowledge that MFS are used
for synthesis purposes. An advantage of enumerating MFS is
that finding an MFS can be easily done, in a precise sense
discussed below. One way to do this is through the conflict
graph of the set of input clauses [13]. Given a set of clauses
S, the conflict graph of S is the graph where every vertex
corresponds to a clause in S, and there is an edge between two
vertices iff the corresponding clauses have a complementary
pair of literals between them (that is, the same variable appears
in positive form in one clause and in negative form in the
other). The complement of the conflict graph is called a
consensus graph [13].

Since two clauses can be falsified at the same time iff there
is no edge between them in the conflict graph, or alternatively
there is an edge between them in the consensus graph, there
is a one-to-one correspondence between MFS of the set of
clauses, maximal independent sets (MIS) in the conflict graph,
and maximal cliques in the consensus graph. Therefore, we can
enumerate the MFS in a set of clauses by either enumerating
MIS in the conflict graph or maximal cliques in the consensus
graph. The benefit of this reduction is that maximal cliques
display a so called polynomial-time listability, meaning that
finding a maximal clique can be performed in polynomial
time, and therefore enumeration takes polynomial time in the
number of maximal cliques [15].

This relation between the set of MFS and maximal cliques
implies that the size of the smallest decision list that imple-
ments a given specification is upper bounded by the number of
maximal cliques in the consensus graph of the input clauses.
Therefore we have the following result.

Theorem 1. Synthesis can be performed in PNP for specifica-
tions for which the consensus graph of S~x has a polynomial
number of maximal cliques (such as planar or chordal graphs).

Proof. Given a specification F , construct the consensus graph
of the input component, enumerate the maximal cliques and
for each one use a SAT solver to obtain a corresponding
satisfying assignment for the output clauses. Since the number

of maximal cliques is polynomial, only a polynomial number
of SAT calls is required.

Theorem 1 demonstrates an improvement relative to the
general CO-NPNP-hardness of synthesis. Moreover, construct-
ing the consensus graph of the input component is easy,
as is testing for certain graph properties, such as planarity,
that ensure a small number of maximal cliques. Therefore,
Theorem 1 provides an elegant method of deciding whether
synthesis can be performed efficiently in practice before even
beginning the synthesis process.

To summarize this section, the analysis of the input compo-
nent provides two insights. First, a decision list implementing
the specification can be constructed from the list of MFS of
the input clauses. Second, analyzing the graph structure of the
input component allows us to identify classes of specifications
for which synthesis can be performed more efficiently. Note
that this analysis, however, does not take into account the
properties of the output component, and as such the decision
list produced by ignoring the output component may be longer
than necessary. With that in mind, the next section presents
a complementary analysis of the output component that can
help to produce a smaller decision list.

B. Analysis of the Output Component

For the analysis of the output component, consider the set
MustSat(x̂), defined in the previous subsection, of output
clauses that must be satisfied when x̂ is the input assign-
ment. Then for every two input assignments x̂ and x̂′, if
MustSat(x̂′) ⊆MustSat(x̂), every output assignment ŷ that
satisfies the specification for x̂ also satisfies the specification
for x̂′. Therefore, it is enough when constructing the decision
list to consider only those satisfiable subsets of S~y that are of
maximal size. Similarly to Lemma 1 in the previous section,
this insight allows us to state the following lemma:

Lemma 2. Let M~y be an MSS of S~y and ŷ be an assignment
that satisfies M~y . Then: (1) for every assignment x̂ such that
MustSat(x̂) ⊆ M~y , the assignment (x̂, ŷ) satisfies F (~x, ~y);
and (2) for every assignment x̂ such that MustSat(x̂) ⊃M~y ,
there is no ŷ′ such that the assignment (x̂, ŷ′) satisfies F (~x, ~y).

Proof. (1) Since ŷ satisfies every clause Ci|~y in M~y , it must be
that ŷ also satisfies every clause in MustSat(x̂). Therefore,
for every clause Ci in F , either Ci|~x is satisfied by x̂ (and
therefore Ci|~y 6∈ MustSat(x̂)) or Ci|~y is satisfied by ŷ.
Therefore (x̂, ŷ) satisfies F (~x, ~y). (2) Since M~y is maximal,
then in this case MustSat(x̂) must be unsatisfiable. Therefore
there is no ŷ′ that can satisfy all clauses that x̂ does not already
satisfy.

Therefore, similarly to the analysis of the input component,
we have:

Corollary 2. F can be implemented by a decision list of
length equal to the number of MSS of S~y , where each fi in the
decision list is of size linear in the size of the specification.
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Proof. Construct fi(~x) by taking the conjunction of all input
clauses C|~x such that C|~y is not contained in the i-th MSS
Mi. Then, fi(~x) is satisfied exactly by those assignments
x̂ such that MustSat(x̂) is a subset of Mi. Then, set the
corresponding output assignment ŷi to an arbitrary satisfying
assignment of Mi.

Example 2. Let F , S~x and S~y be the same as in Example 1. S~y
has three MSS: {(y1), (y1 ∨ ¬y2), (y2)}, {(¬y1), (y1 ∨ ¬y2)}
and {(¬y1), (y2)}. From these MSS we can construct a
decision list implementing F in the way described above. Note
that some decisions in the list might be redundant:

if (x1 ∨ x2) then (y1 := 1; y2 := 1)

else if (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) then (y1 := 0; y2 := 0)

else if (x1 ∨ ¬x2) ∧ (x2) then (y1 := 0; y2 := 1)

Unlike the input component, the output analysis does not
require the specification to be realizable to produce the correct
answer: for every input x̂ for which an output ŷ exists,
MustSat(x̂) will be contained in some MSS, and therefore
will be covered by the decision list. On the other hand, we do
not care about the case where an input x̂ has no corresponding
output ŷ. Note, however, that unlike the input component, we
do not have here a simple graph structure that can be exploited
to obtain the list of MSSs, and finding an MSS is clearly NP-
hard. Therefore, it is unlikely for us to be able to efficiently
identify instances where the number of MSS is polynomial.

More importantly, however, is that taking into account only
the output component and ignoring the input component may
also lead to a large decision list that includes many MSSs that
would never be activated by an input. This fact emphasizes
the drawbacks of independent synthesis of the components,
and motivates the development of an algorithm that combines
the input and output analyses to produce a decision list that
is smaller than either of the ones produced by each analysis
individually.

C. Alternating between Input and Output Components
Our next goal is to combine the input and output analyses

obtained so far into a synthesis procedure that constructs a
decision list of length upper-bounded by the minimum among
the number of MFS of the input clauses and the number of
MSS of the output clauses. Due to the restrictions of the
input analysis, if the specification is unrealizable the procedure
terminates without producing a decision list. Extending the
synthesis to unrealizable specifications is left for future work.
We first state the following lemma:

Lemma 3. If F (~x, ~y) is realizable, then for every MFS M~x

of S~x, Co(M~x) ⊆M~y for some MSS M~y of S~y .

Proof. For every MFS M~x, since M~x is all-falsifiable, there
exists an input assignment x̂ such that Fals(x̂) =M~x. Then,
since F is realizable, MustSat(x̂) = Co(M~x) is satisfiable,
and therefore is contained in some MSS.

Given an MFS M~x for the input clauses, we say that an
MSS M~y for the output clauses covers M~x if Co(M~x) ⊆M~y .

Algorithm 1 Back-and-Forth synthesis algorithm combining
MFS and MSS analysis.

1: initialize a list of MSSs L to the empty list
2: while there are still MFS left to generate do
3: M~x ← MFS of S~x not covered by any MSS in L
4: if MSS M~y ⊆ S~y covering M~x exists then
5: add M~y to L
6: else
7: FAIL: specification is unrealizable
8: end if
9: end while

10: construct decision list from L

Lemma 3 says that for every MFS M~x, there exists at least
one MSS M~y that covers M~x. Therefore, instead of producing
a satisfying assignment for Co(M~x), we can produce a satis-
fying assignment for M~y . In fact, such satisfying assignment
also takes care of every other MFS covered by M~y , making it
unnecessary to generate them.

The above insight gives rise to Algorithm 1, which we
call the ”Back-and-Forth” algorithm. In this algorithm, we
maintain a list L of MSSs that is initially empty. At every
iteration of the algorithm, we produce a new MFS that is not
covered by the MSSs already in L. Then, we find an MSS
that covers this new MFS. If no such MSS exists, it means
the specification is unrealizable, and so the algorithm emits
an error message and terminates. Otherwise, we add this MSS
to L. After all the MFS have been covered, we construct a
decision list from the obtained list L of MSS in the same way
as described in Section IV-B: fi(~x) is a formula that is satisfied
exactly when MustSat(~x) is a subset of the i-th MSS, and the
corresponding output assignment ŷi is a satisfying assignment
for that MSS.

Example 3. Let F , S~x and S~y be the same as in Examples 1
and 2. In the first iteration, we generate the MFS M1

~x = {(x1∨
¬x2)}. Then, we expand Co(M1

~x) = {(y1)} into the MSS
M1
~y = {(y1), (y1 ∨ ¬y2), (y2)} and add M1

~y to L. Note that
M1
~y also covers, besides M1

~x , the MFS {(x2), (¬x1 ∨ x2)},
and therefore this MFS will not need to be generated. The only
remaining MFS is M2

~x = {(x1∨x2), (x2)}. M2
~y = Co(M2

~x) =
{(¬y1), (y1 ∨ ¬y2)} is already an MSS, so we add it to L.
Since all MFS have been covered, the procedure terminates.
Note that we did not need to add the MSS {(¬y1), (y2)} to L,
since no MFS is covered by this MSS. From L, we can now
construct a decision list as described earlier:

if (x1 ∨ x2) then (y1 := 1; y2 := 1)

else if (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) then (y1 := 0; y2 := 0)

a) Implementation details: The key steps of Algorithm 1
are the generation of the MFS M~x in line 3 and the MSS
M~y in line 4. These steps are similar to the input and output
analyses in Sections IV-A and IV-B. Since, however, we use
communication between the input and output components,
we have additional constraints on the MFS and MSS being
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generated. At each step the generated MFS must not be
covered by the previously-generated MSSs, and the generated
MSS must cover the most recently generated MFS.

While generating an arbitrary MFS can be done in polyno-
mial time, we prove that adding the restriction that the MFS
must not be covered by a previous MSS makes the MFS
generation an NP-complete problem (see extended version
of the paper for proper theorem and proof). Therefore, we
implement the MFS generation in the following way. First,
we use a SAT solver as an NP oracle to find an (not-
necessarily maximal) all-falsifiable subset of S~x not covered
by the previous MSSs. Then, we extend this subset to an
MFS by iterating over the remaining input clauses and at each
step adding to the growing set a clause that does not conflict
with the clauses already present in that set. This process of
obtaining an MFS from S~x is easier to implement when we
use the conflict graph representation of S~x. Given k previous
MSSs M1, . . . ,Mk and the conflict graph G = (V,E), we use
the following SAT query to generate an all-falsifiable subset:

ϕ ≡
k∧

i=1


 ∨

Cj |~y ∈ S~y\Mi

zj


 ∧

∧

(Ci|~x,Cj |~x) ∈ E

(¬zi ∨ ¬zj)

We use variable zi to indicate whether clause Ci|~x is present
in the all-falsifiable subset. The first conjunction encodes that
for every previous MSS, the subset must include a clause Cj |~x
not covered by that MSS. The second conjunction expresses
that if two clauses conflict with each other, they cannot both
be added to the subset. Note that whenever we generate a new
MFS, we only need to add extra clauses of the first form to
this query, allowing us to employ incremental capabilities of
SAT solvers.

After extending the subset produced by the SAT solver to
an MFS M~x, we have to generate a new MSS M~y that covers
M~x. For that we use a partial MaxSAT solver as an oracle. In a
partial MaxSAT problem, some clauses are set as hard clauses
and others are set as soft clauses [4]. The solver then returns
an assignment that satisfies all hard clauses and the maximum
possible number of soft clauses. We call the MaxSAT solver
on the set of output clauses S~y , where the clauses in Co(M~x)
are set as hard clauses, and all other clauses are set as soft
clauses. This way, the MaxSAT solver is guaranteed to return a
satisfiable set of clauses containing Co(M~x) and of maximum
size. Since a satisfiable subset of maximum size is necessarily
maximal, the satisfied clauses returned by the MaxSAT solver
is an MSS, as desired.

b) Analysis and Correctness: Since exactly one new
MFS and one new MSS are generated at every iteration,
the number of iterations in Algorithm 1 is upper bounded
by min(#MFS,#MSS). Yet, since Algorithm 1 does not
generate redundant MFS and MSS, the number of iterations,
and thus the size of the decision list, can be much smaller.

We now formalize and prove the correctness of Algorithm 1.

Lemma 4. For a realizable specification F (~x, ~y), let
〈(f1, ŷ1), . . . , (fk, ŷk)〉 be the decision list produced by Al-

gorithm 1. Then (1) For every x̂ such that fi(x̂) = 1,
F (x̂, ŷi) = 1; (2) For every x̂ there is at least one i such
that fi(x̂) = 1.

Proof. (1) Let M~y be the i-th MSS generated by the algorithm.
Then, by construction, fi(x̂) = 1 iff MustSat(x̂) ⊆M~y , and
ŷi is a satisfying assignment to M~y . Therefore, if fi(x̂) = 1
then ŷi satisfies MustSat(x̂), and so (x̂, ŷi) satisfies F .

(2) For every x̂, there exists an MFS M~x such that
Fals(x̂) ⊆ M~x. If M~x was generated by the algorithm, then
an MSS M~y that covers M~x was added to the MSS list. If
M~x was not generated by the algorithm, it must be because
there was already a previously generated MSS M~y that covers
M~x. Either way, since M~y covers M~x and Fals(x̂) ⊆ M~x,
M~y covers Fals(x̂). Therefore, the corresponding fi in the
decision list is such that fi(x̂) = 1.

From Lemma 4 we obtain the following corollary.

Corollary 3. Given a realizable specification F (~x, ~y), the
decision list produced by Algorithm 1 implements F .

It is worth noting that if the number of MFS is small as
discussed in Section IV-A, then purely enumerating MFS, as in
Section IV-A can be theoretically faster than using Algorithm
1. That is because finding an MFS can be done in polynomial
time, while Algorithm 1 requires calls to a SAT and MaxSAT
solvers. In practice, however, we observed that the Back-and-
Forth algorithm often avoids a large number of redundant
MFS, which makes up for the extra complexity in generating
each MFS. Still, for specifications that are known to have a
small number of MFS, restriction to the analysis of the input
component as in Section IV-A can be sufficient.

D. Partitioning the Specification into Distinct Output Vari-
ables

Some of the cases in the back-and-forth analysis which
cause the number of MFS or MSS to be exponential can be
simplified by partitioning the specification into sets of clauses
that do not share output variables. As an example, consider
the specification for the identity function:

F (~x, ~y) = (x1 ↔ y1) ∧ . . . ∧ (xk ↔ yk)

or in a CNF form:

F (~x, ~y) = (¬x1∨y1)∧(x1∨¬y1)∧. . .∧(¬xk∨yk)∧(xk∨¬yk)

It is easy to see that both the number of MFS and MSS for
this formula are 2k. Each output variable, however, does not
appear in the same clause with other output variables. There-
fore, we can consider each pair (¬xi∨yi)∧(xi∨¬yi) of clauses
as a separate specification and synthesize it independently as
a decision list of size 2. As such, the total number of MFS
and MSS grow linearly with k.

Therefore we propose the following preprocessing step.
1) Given the specification F , construct a graph with a vertex

for each clause and an edge between two vertices iff the
corresponding clauses share an output variable.
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2) Separate the graph into connected components
C1, . . . ,Ck. Note that the Ci are completely disjoint in
terms of output variables.

3) For every Ci, define a sub-specification Fi by taking only
the clauses in F whose corresponding vertex is in Ci.

4) Call Algorithm 1 for each specification Fi. This gives us
a decision list Di for Fi that decides on an assignment
for only the output variables in Fi.

Since the Fi have disjoint sets of output variables, every
Di decides on an assignment for a different partition of output
variables. Therefore, given an input x̂ we can produce a corre-
sponding output ŷ by simply evaluating each Di independently
on x̂ and combining the results.

V. EXPERIMENTAL EVALUATION

In order to evaluate the performance of the Back-and-Forth
synthesis algorithm, we ran the algorithm on benchmarks from
the 2QBF track of the QBFEVAL’16 QBF-solving compe-
tition [25]. This track is composed of QBF benchmarks of
the form ∀~x.∃~y.F (~x, ~y), where F is a CNF formula. We
can see these benchmarks as synthesis problems asking if we
can synthesize a Skolem function for the existential variables
in terms of the universal variables such that the formula F
is satisfied. For this experimental evaluation we used only
those benchmarks that are realizable, since adjusting the Back-
and-Forth algorithm to handle unrealizable benchmarks is
future work. The benchmarks can be classified into seven
families: MUTEXP (7 instances), QSHIFTER (6 instances),
RANKINGFUNCTIONS (49 instances), REDUCTIONFINDING
(34 instances), SORTINGNETWORKS (22 instances), TREE (5
instances) and FIXPOINTDETECTION (93 instances). Because
benchmarks in the same family tend to have similar properties,
it makes sense to evaluate performance over each family, rather
than over specific instances.

We compared the running time of the Back-and-Forth
algorithm on these benchmarks with three state-of-the-art
tools that employ different synthesis approaches: the CDCL-
based CADET [27], the ROBDD-based RSynth [35], and the
CEGAR-based BFSS [1]. Since the Back-and-Forth algorithm,
CADET and RSynth are all sequential algorithms, to ensure
fair comparison of computational effort, the version of BFSS
used was compiled with the MiniSAT SAT solver [10] instead
of the parallelized UniGen sampler used in [1]. We leave for
future work the exploration of performance of the different
tools in a parallel scenario.

Our implementation of the Back-and-Forth algorithm used
the Glucose SAT solver [5], based on MiniSAT, and the Open-
WBO MaxSAT solver [24]. The implementation also used the
partitioning described in Section IV-D. All experiments were
executed in the DAVinCI cluster at Rice University, consisting
of 192 Westmere nodes of 12 processor cores each, running at
2.83 GHz with 4 GB of RAM per core, and 6 Sandy Bridge
nodes of 16 processor cores each, running at 2.2 GHz with 8
GB of RAM per core. Our algorithm has not been parallelized,
so the cluster was solely used to run multiple experiments
simultaneously. Each instance had a timeout of 8 hours.
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Fig. 1. Percentage of instances solved by each synthesis algorithm for each
of the benchmark families.

Figure 1 shows for each family the percentage of instances
each tool was able to solve in the time limit. We can divide
the results into three parts:

In the RANKINGFUNCTIONS and FIXPOINTDETECTION
families the Back-and-Forth algorithm timed out on almost
all instances, only being able to solve the easiest instances of
FIXPOINTDETECTION. CADET, on the other hand, performed
very well, being able to solve all instances. RSynth and BFSS
also outperformed the Back-and-Forth algorithm, although
they did not perform as well as CADET.

The TREE, MUTEXP, and QSHIFTER families had almost
all instances solved by the Back-and-Forth algorithm in under
45 seconds (except for the two hardest instances of QSHIFTER,
which timed out), in many cases outperforming RSynth or
BFSS. Even so, CADET still performed the best in these
classes, solving all instances faster than our algorithm.

Lastly, REDUCTIONFINDING and SORTINGNETWORKS
seem to be the most challenging families for existing tools,
with CADET only being able to solve two instances in total,
RSynth one, and BFSS none. In contrast, our Back-and-
Forth algorithm solved 13 cases in REDUCTIONFINDING and
6 in SORTINGNETWORKS. Furthermore, as can be seen in
Figure 2, every instance that was solved by other tools was
also solved by the Back-and-Forth algorithm, which was faster
by over an order of magnitude.

In summary, the Back-and-Forth algorithm performed com-
petitively in 5 out of 7 families, and was strictly superior
in 2 out of 7 families. Due to the difficulty of analyzing
CNF formulas, the exact reason why the algorithm performs
well in these particular families and not in others remains
an open question, to be explored in future work. Still, the
results suggest that the Back-and-Forth algorithm can serve
as a good complement to modern synthesis tools, performing
well exactly in the cases in which these tools struggle the most,
and therefore it would be a good candidate for membership in
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a portfolio of synthesis algorithms.

VI. DISCUSSION

A recurrent observation in recent evaluations [1], [2], [19],
[35] of Boolean functional synthesis tools has been that no
single tool or algorithm dominates the others in all classes
of benchmarks. To build industry-strength Boolean functional
solvers, it is therefore inevitable that a portfolio approach be
adopted. Since decomposition-based techniques (beyond fac-
tored specifications) have not been used in existing tools so far,
our original motivation was to develop a decomposition-centric
framework for Boolean functional synthesis that complements
(rather than dominates) the strengths of existing tools. As
our experiments with the Back-and-Forth algorithm show, we
have been able to take the first few steps in this direction by
successfully solving some classes of benchmarks that state-
of-the-art tools choke on. While we have tried to understand
features of these benchmarks that make them particularly
amenable to our technique, a lot more work remains to be
done to elucidate this relation clearly.

Yet another motivation for exploring a decomposition-
centric synthesis approach was to be able to generate Skolem
functions in a format that lends itself to easy independent
validation by domain experts. Interestingly, despite the sin-
gular importance of this aspect, it has been largely ignored
by existing Boolean functional synthesis tools, most of which
construct a circuit representation of the function using an
acyclic-graph data structure such as an ROBDD or an And-
Inverter Graph. While these are known to be efficient repre-
sentations of Boolean functions, they are not amenable to easy
validation by a domain expert, especially when their sizes are
large, often requiring a satisfiability solver to check that the
generated Skolem functions indeed satisfy the specifications.
Synthesizing functions as decision lists is a natural and well-

studied choice for meeting this objective. Along with each
decision in the decision list, we can also identify the clauses
that contribute to the generation of the outputs (these are
clauses whose input components are falsified by the decision),
thereby providing clues about which part of the specifica-
tion is responsible for the outputs generated in a particular
branch of the decision-list representation. Our work shows
that decomposition-based techniques lend themselves easily
to such representations.

In order to be consistent with performance comparison
experiments reported in the literature, all specifications used
in our evaluation were prenex CNF (PCNF) formulas taken
from the QBFEVAL’16 benchmark suite. While this certainly
presents challenging instances of Boolean functional synthesis,
PCNF is not a natural choice of representing specifications in
several important application areas. For example, the industry
standard (IEC 1131-3) for reactive programs for programmable
logic controllers (PLC) includes a set of languages that allow
the user to specify combinations of outputs based on different
combinations of input conditions. The same is also true
in the specification of several bus protocols like the VME
Bus or AMBA Bus. Scenario-based specifications such as
these are much more amenable to our decomposition-based
approach, since there is a natural separation of input and
output components of the specification. In addition, with such
specifications, it is meaningful to analyze the structure of
dependence between the input and output components, and
exploit structural properties (viz. the size of the MIS in the
conflict graph as explained in Section IV) in synthesis. We
believe that as we look beyond PCNF representations of
specifications, techniques like those presented in this paper
will be even more useful in a portfolio approach to synthesis.

In our experimental evaluation, we chose CADET as a
representative of the state-of-the-art on Boolean synthesis
stemming from the QBF community. This is due to its focus
on 2QBF (which suffices for Boolean synthesis of realizable
specifications) and its performance on recent QBFEVAL com-
petitions. Another certifying QBF solver, CAQE [28], uses
techniques that are similar to the clause splitting used in our
algorithm. But CAQE targets QBF instances with arbitrary
quantifier alternation, requiring additional mechanisms for
handling these cases, and furthermore does not perform the
same analysis as here, based on MFS and MSS. Due to their
similarities, it would be interesting to perform a comparison
between the two algorithms in the future.

Finally, the techniques presented in this work are clearly
not the only ways to achieve synthesis via decomposition,
and there exists scope for significant innovation and creativity,
both in the manner in which a specification is decomposed,
and in the way the decomposition is exploited to arrive at an
efficient synthesis algorithm. One example lies in identifying
algorithms for sequential decomposition, as presented in [11],
which are applicable to a synthesis context. In summary,
synthesis based on input-output decomposition presents un-
charted territory that deserves systematic exploration in order
to complement the strengths of existing synthesis tools.
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[22] L. Lowenheim. Über die Auflösung von Gleichungen in Logischen
Gebietkalkul. Math. Ann., 68:169–207, 1910.

[23] E. Macii, G. Odasso, and M. Poncino. Comparing Different Boolean
Unification Algorithms. In Proceedings of 32nd Asilomar Conference
on Signals, Systems and Computers, pages 17–29, 2006.

[24] R. Martins, V. M. Manquinho, and I. Lynce. Open-WBO: A Modular
MaxSAT Solver. In Theory and Applications of Satisfiability Testing -
SAT 2014 - 17th International Conference, pages 438–445, 2014.

[25] M. Narizzano, L. Pulina, and A. Tacchella. The QBFEVAL web portal.
In Logics in Artificial Intelligence, pages 494–497. Springer Berlin
Heidelberg, 2006.

[26] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Bierre. Resolution-
Based Certificate Extraction for QBF - (Tool Presentation). In Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, pages 430–435, 2012.

[27] M. N. Rabe and S. A. Seshia. Incremental Determinization. In Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, pages 375–392, 2016.

[28] M. N. Rabe and L. Tentrup. CAQE: A Certifying QBF Solver. In
Formal Methods in Computer-Aided Design, FMCAD 2015, pages 136–
143, 2015.

[29] R. L. Rivest. Learning Decision Lists. Machine Learning, 2(3):229–246,
1987.

[30] J. P. M. Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning
SAT Solvers. In Handbook of Satisfiability, pages 131–153. 2009.

[31] A. Solar-Lezama. Program Sketching. STTT, 15(5-6):475–495, 2013.
[32] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Program-

ming by Sketching for Bit-streaming Programs. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, pages 281–294, 2005.

[33] S. Srivastava, S. Gulwani, and J. S. Foster. Template-Based Program
Verification and Program Synthesis. STTT, 15(5-6):497–518, 2013.

[34] L. M. Tabajara. BDD-Based Boolean Synthesis. Master’s thesis, Rice
University, 2018.

[35] L. M. Tabajara and M. Y. Vardi. Factored Boolean Functional Synthesis.
In Formal Methods in Computer Aided Design, FMCAD 2017, pages
124–131, 2017.

[36] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi. Symbolic
LTLf Synthesis. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, pages 1362–1369,
2017.

147

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



Learning Linear Temporal Properties
Daniel Neider

Max Planck Institute for Software Systems
67663 Kaiserslautern, Germany

Email: neider@mpi-sws.org

Ivan Gavran
Max Planck Institute for Software Systems

67663 Kaiserslautern, Germany
Email: gavran@mpi-sws.org

Abstract—We present two novel algorithms for learning for-
mulas in Linear Temporal Logic (LTL) from examples. The
first learning algorithm reduces the learning task to a series
of satisfiability problems in propositional Boolean logic and
produces a smallest LTL formula (in terms of the number of
subformulas) that is consistent with the given data. Our second
learning algorithm, on the other hand, combines the SAT-based
learning algorithm with classical algorithms for learning decision
trees. The result is a learning algorithm that scales to real-world
scenarios with hundreds of examples, but can no longer guarantee
to produce minimal consistent LTL formulas. We compare both
learning algorithms and demonstrate their performance on a
wide range of synthetic benchmarks. Additionally, we illustrate
their usefulness on the task of understanding executions of a
leader election protocol.

I. INTRODUCTION

Making sense of the observed behavior of complex systems
is an important problem in practice. It arises, for instance, in
debugging (especially in the context of distributed systems),
reverse engineering (e.g., of malware and viruses), specification
mining for formal verification, and modernization of legacy
systems, to name but a few examples. However, understanding
a system based on examples of its execution is clearly
a challenging task that can quickly become overwhelming
without proper tool support.

In this paper, we address this problem and develop learning-
based techniques to help engineers understand the dynamic
(i.e., temporal) behavior of complex systems. More precisely,
we solve the problem of learning formulas in Linear Temporal
Logic (LTL) [1], which are meant to distinguish between
desirable and undesirable executions of a system (e.g., to
explain the root-cause of a bug). The particular choice of
LTL in this work is motivated by two observations: first,
logical formulas often provide concise descriptions of the
observed behavior and are relatively easy for humans to
comprehend; second, LTL—together with Computational Tree
Logic (CTL) [2]—is widely considered to be the de facto
standard for specifying temporal properties and, hence, many
engineers are familiar with its use.

The precise problem we are aiming at is the following: given
a sample S consisting of two finite sets of positive and negative
examples, learn an LTL formula ϕ that is consistent with S
in the sense that all positive examples satisfy ϕ, whereas all

negative examples violate ϕ.1 To be as general and succinct as
possible, we here consider examples to be infinite, ultimately
periodic words (e.g., traces of a non-terminating system) and
assume the standard syntax of LTL. However, our techniques
can easily be adapted to the case of finite words and extend
smoothly to arbitrary future-time temporal operators, such
as “release”, “weak until”, and so on. We fix all necessary
definitions and notations in Section II.

The main contribution of this work are two novel learning
algorithms for LTL formulas from data, one based on SAT
solving, the other on learning decision trees.

SAT-based learning algorithm: The idea of our first
algorithm, presented in Section III, is to reduce the problem of
learning an LTL formula to a series of satisfiability problems
in propositional Boolean logic and to use highly-optimized
SAT solvers to search for solutions. Inspired by ideas from
bounded model checking [10], our learning algorithm produces
a series of propositional formulas ΦSn for increasing values
of n ∈ N \ {0} that depend on the sample S and have
the following two properties: (1) ΦSn is satisfiable if and
only if there exists an LTL formula of size n (i.e., with n
subformulas) that classifies the examples correctly, and (2) a
model of ΦSn contains sufficient information to construct such
an LTL formula. By increasing the value of n until ΦSn becomes
satisfiable, we obtain an effective algorithm that learns an LTL
formula that is guaranteed to classify the examples correctly
(given that the sample is non-contradictory).

By design, our SAT-based learning algorithm has three
distinguished features, which we believe are essential in
practice. First, our algorithm learns LTL formulas of minimal
size (i.e., with the minimal number of subformulas). As we
seek to learn formulas to be read by humans, the size of
the learned formula is a crucial metric since larger formulas
are generally harder to understand than smaller ones. Second,
once an LTL formula has been learned, our algorithm can be
queried for further, distinct formulas that are consistent with
the sample. We believe that this feature is important in practice
as it allows generating multiple explanations for the observed
data. Third, our algorithm does not rely on an a priori given

1Note that, in contrast to classical computational learning theory [3] and
modern statistical machine learning [4], [5], we seek to learn a formula that
does not make mistakes on the examples. In fact, separation problems of this
sort are of great interest in automata and formal language theory. Prominent
examples in this area are the minimization of incompletely-specified state
machines [6], [7] and Regular Model Checking [8], [9].
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set of templates, which is in stark contrast to existing work on
learning temporal properties (e.g., Bombara et al. [11]). To the
best of our knowledge, our SAT-based algorithm is in fact the
first learning algorithm that is not restricted to a fixed class of
templates. However, restrictions to the shape of LTL formulas
(e.g., to the popular GR(1)-fragment of LTL [12]) can easily
be encoded if desired.

Learning algorithm based on decision trees: Our second
learning algorithm, which we present in Section IV, trades in
the guarantee of finding minimal solutions in order to attain
better scalability. The key idea is to perform the learning in
two phases. In the first phase, we run the SAT-based learning
algorithm described above on various subsets of the examples.
This results in a (small) number of LTL formulas, named
“LTL primitives”, that classify at least these subsets correctly.
In the second phase we use a standard learning algorithm for
decision trees [13] to learn a Boolean combination of these LTL
primitives that classifies the whole set of examples correctly,
though it might not be minimal. Note, however, that we need
to carefully choose the subsets of examples such that the
resulting LTL primitives (a) separate all pairs of positive and
negative examples and (b) are general enough to permit “small”
decision trees. We have experimented with numerous strategies
to select subsets, but in this paper we present only the two
that performed best. A well known advantage of decision trees
is that they are simple to comprehend due to their rule-based
structure.

In Section V, we evaluate the performance of both learning
algorithms on a wide range of synthetic benchmarks that reflect
typical patterns of LTL formulas used in practice. Additionally,
we illustrate their usefulness for understanding causes of
inconsistencies in the leader election used by Zookeeper’s
atomic broadcast protocol [14].

Details and proofs omitted due to space constraints can be
found in an extended version of this paper [15].

Related Work

Learning of temporal properties from examples has recently
attracted increasing interest, especially in the area of Signal
Temporal Logic (STL) [16] and parametric STL [17]. Examples
include the work by Asarin et al. [17], Kong et al. [18],
[19], Vaidyanathan et al. [20], and Bartocci, Bortolussi,
and Sanguinetti [21]. In contrast to our SAT-based learning
algorithm, however, all of these techniques either rely on
user-given templates or can only learn formulas from very
restricted syntactic fragments. Various techniques for mining
LTL specifications [22], [23] and CTL specifications [24]
exist as well, but these also rely on templates or restrict the
class of formulas severely. To the best of our knowledge, our
SAT-based algorithm is in fact the first that is capable of
learning unrestricted LTL formulas without relying on user-
given templates. Nonetheless, expert knowledge in form of
constraints on the syntax can easily be encoded if desired.

Our SAT-based learning algorithm is inspired by bounded
model checking [10] and earlier work of the first author

on learning (minimal) automata over finite words [7], [9].
However, since regular languages are strictly more expressive
than LTL (the former being equivalent to monadic second-
order logic [25], while the latter being equivalent to fist-order
logic [26]), automata learning techniques—including active
learning algorithms [27], [28] that operate in Angluin’s active
learning framework [29]—are not immediately applicable.
However, lifting the methods developed in this work to an
active learning setup, without a detour via automata, is part of
our plans for future work.

Using decision trees to learn Signal Temporal Logic (STL)
formulas has been explored by Bombara et al. [11], whose main
contribution is an adaptation of the classical impurity measure
to account for STL formulas. However, this work still requires
user-defined STL primitives to be provided, which serve as the
features for the decision tree learning algorithm. By contrast,
our technique uses the SAT-based learning algorithm to infer
LTL primitives fully automatically.

Learning of logical formulas has also been studied in the
context of probably approximately correct learning (PAC) [3].
Grohe and Ritzert [30], for instance, considered learning of
first-order definable concepts over structures of small degree.
Subsequently, Grohe, Löding, and Ritzert [31] studied the
learning of hypotheses definable using monadic second order
logic on strings. Due to the fundamental differences between
PAC learning and the learning model considered here (one
being approximate and the other being exact), their techniques
cannot easily be applied.

II. PRELIMINARIES

In this section, we set up definitions and notations used
throughout the paper.

Finite and Infinite Words: An alphabet Σ is a nonempty,
finite set. The elements of this set are called symbols.

A finite word over an alphabet Σ is a sequence u = a0 . . . an
of symbols ai ∈ Σ, i ∈ {0, . . . , n}. The empty sequence is
called empty word and written as ε. The length of a finite word
u is denoted by |u|, where |ε| = 0. Moreover, Σ∗ denotes the
set of all finite words over the alphabet Σ, while Σ+ = Σ∗\{ε}
is the set of all non-empty words.

An infinite word over Σ is an infinite sequence α = a0a1 . . .
of symbols ai ∈ Σ, i ∈ N. We denote the i-th symbol of
an infinite word α by α(i) and the infinite suffix starting
at position j by α[j,∞). Given u ∈ Σ+, the infinite word
uω = uu . . . ∈ Σω is the infinite repetition of u. An infinite
word α is called ultimately periodic if it is of the form α = uvω

for a u ∈ Σ∗ and v ∈ Σ+. Finally, Σω denotes the set of all
infinite words over the alphabet Σ.

Propositional Boolean Logic: Let Var be a set of proposi-
tional variables, which take Boolean values from B = {0, 1}
(0 representing false and 1 representing true). Formulas in
propositional (Boolean) logic—which we denote by capital
Greek letters—are inductively constructed as follows:
• each x ∈ Var is a propositional formula; and
• if Ψ and Φ are propositional formulas, so are ¬Ψ and

Ψ ∨ Φ.
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Moreover, we add syntactic sugar and allow the formulas true ,
false , Ψ∧Φ, Ψ⇒ Φ, and Ψ⇔ Φ, which are defined as usual.

A propositional valuation is a mapping v : Var → B, which
maps propositional variables to Boolean values. The semantics
of propositional logic is given by a satisfaction relation |=
that is inductively defined as follows: v |= x if and only if
v(x) = 1, v |= ¬Ψ if and only if v 6|= Ψ, and v |= Ψ ∨ Φ if
and only if v |= Ψ or v |= Φ. In the case that v |= Φ, we say
that v satisfies Φ and call it a model of Φ. A propositional
formula Φ is satisfiable if there exists a model v of Φ. The
size of a formula is the number of its subformulas (as defined
in the usual way).

The satisfiability problem of propositional logic is the
problem to decide whether a given formula is satisfiable.
Although this problem is well-known to be NP-complete [32],
modern SAT solvers implement optimized decision procedures
that can check satisfiability of formulas with millions of
variables [33]. Moreover, SAT solvers also return a model
if the input-formula is satisfiable.

Linear Temporal Logic: Linear Temporal Logic (LTL) [1]
is an extension of propositional Boolean logic with modalities
that allow expressing temporal properties. Starting with a
finite, nonempty set P of atomic propositions, formulas in
LTL—which we denote by small Greek letters—are inductively
defined as follows:
• each atomic proposition p ∈ P is an LTL formula;
• if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ

(“next”), and ψUϕ (“until”).
Again, we add syntactic sugar and allow the formulas true :=
p ∨ ¬p for some p ∈ P , false := ¬true, as well as ψ ∧ ϕ
and ψ → ϕ, which are defined as usual. Moreover, we allow
the additional temporal formulas Fψ := true Uψ (“finally”)
and Gψ := ¬F¬ψ (“globally”). The size of an LTL formula
ϕ, which we denote by |ϕ|, is the number of its subformulas.
Finally, let C = {∧,∨,¬,→,F,G,U,X} be the set of LTL
operators.

LTL formulas are interpreted over infinite words α ∈ (2P)ω ,
though there exist various semantics for LTL over finite words
and our techniques smoothly extend to these situations. For
the sake of a simpler presentation, we define the semantics of
LTL in a slightly non-standard way by means of a valuation
function V . This functions maps pairs of LTL formulas and
infinite words to Boolean values and is inductively defined
as follows: V (p, α) = 1 if and only if p ∈ α(0), V (¬ϕ, α) =
1 − V (ϕ, α), V (ϕ ∨ ψ, α) = max {V (ϕ, α), V (ψ, α)},
V (Xϕ, α) = V (ϕ, α[1,∞)), and V (ϕUψ, α) =
maxi≥0 {min {V (ψ, α[i,∞)),min0≤j<i {V (ϕ, α[j,∞))}}}.
We call V (ϕ, α) the valuation of ϕ on α and say that α
satisfies ϕ if V (ϕ, α) = 1.

Our SAT-Based learning algorithm relies on a canonical
syntactic representation of LTL formulas, which we call syntax
DAGs. A syntax DAG is essentially a syntax tree (i.e., the
unique tree labeled with atomic propositions as well as Boolean
and temporal operators that is derived from the inductive
definition of an LTL formula) in which common subformulas
are shared. This sharing turns the syntax tree into a directed,

acyclic graph (DAG), whose number of nodes coincides with
the number of subformulas of the represented LTL formula.
As an example, Figure 1b (on Page 4) depicts the (unique)
syntax DAG of the formula (pUG q) ∨ (FG q), in which the
subformula G q is shared; the corresponding syntax tree is
depicted in Figure 1a. Note that syntactically distinct formulas
have different (i.e., non-isomorphic) syntax DAGs.

Samples and Consistency: Throughout this paper, we assume
that the data we learn from is given as two (potentially empty)
finite, disjoint sets P,N ⊂ (2P)ω of ultimately periodic words.
The words in P are interpreted as positive examples, while
the words in N are interpreted as negative examples. We call
the pair S = (P,N) a sample. Since we want to work with
the ultimately periodic words in a sample algorithmically, we
assume that they are stored as pairs (u, v) of finite words
u ∈ (2P)∗ and v ∈ (2P)+, which can be accessed individually.
To measure the complexity of a sample, we define its size to
be |S| = ∑

uvω∈P∪N |u|+ |v|.
Given an LTL formula ϕ and a sample S = (P,N), both

over a set P of atomic propositions, we call ϕ consistent
with S if V (ϕ, uvω) = 1 for each uvω ∈ P (i.e., all positive
examples satisfy ϕ) and V (ϕ, uvω) = 0 for each uvω ∈ N
(i.e., all negative examples do not satisfy ϕ); in this case, we
also say that ϕ separates P and N . We call ϕ minimally
consistent with S if ϕ is consistent with S and no consistent
LTL formula of smaller size exists.

III. A SAT-BASED LEARNING ALGORITHM

The fundamental task we solve in this section is:
“given a sample S, compute an LTL formula of
minimal size that is consistent with S”.

We call this task passive learning of LTL formulas—as opposed
to active learning [29] where the learning algorithm is permitted
to actively query for additional data. Note that this problem
can have more than one solution as there can be multiple, non-
equivalent LTL formulas that are minimally consistent with a
given sample.

Before we explain our learning algorithm in detail, let us
briefly comment on the minimality requirement in the definition
above. On the one hand, we observe that the problem becomes
simple if no restriction on the size is imposed: for α ∈ P and
β ∈ N , construct a formula ϕα,β with V (ϕα,β , α) = 1 and
V (ϕα,β , β) = 0 that describes the first symbol where α and
β differ using a sequence of X-operators and an appropriate
propositional formula; then,

∨
α∈P

∧
β∈N ϕα,β is consistent

with S since we assume P and N to be disjoint. However,
simply characterizing all differences between positive and
negative examples is clearly overfitting the sample and, hence,
arguably of little help in practice. On the other hand, we believe
that small formulas are easier for humans to comprehend than
large ones, which justifies spending effort on learning a smallest
formula. However, we do not impose any preference amongst
minimal consistent formulas (which is an interesting topic for
future work).

Let us now turn to describing our learning algorithm. Its
underlying idea is to reduce the construction of a minimally
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consistent LTL formula to a satisfiability problem in proposi-
tional logic and use a highly-optimized SAT solver to search
for solutions. More precisely, given a sample S and a natural
number n ∈ N \ {0}, we construct a propositional formula ΦSn
of size polynomial in n and |S| that has the following two
properties:

1) ΦSn is satisfiable if and only if there exists an LTL formula
of size n that is consistent with S; and

2) if v is a model of ΦSn , then v contains sufficient infor-
mation to construct an LTL formula ψv of size n that is
consistent with S.

By increasing the value of n by one and extracting an LTL
formula ψv from a model v of ΦSn as soon as it becomes
satisfiable (indeed, any model is sufficient), we obtain an
effective algorithm that learns an LTL formula of minimal size
that is consistent with S . This idea is shown in pseudo code as
Algorithm 1. In fact, the existence of a trivial solution for the
passive LTL learning task (as sketched at the beginning of this
section) shows that Algorithm 1 is guaranteed to terminate,
and the size of this solution provides an upper bound on the
value of n.

Algorithm 1: SAT-based learning algorithm
Input: a sample S

1 n← 0;
2 repeat
3 n← n+ 1;
4 Construct and solve ΦSn ;
5 until ΦSn is satisfiable, say with model v;
6 Construct and return ψv;

The key idea of the formula ΦSn is to encode the syntax DAG
of an (unknown) LTL formula ϕ? with n subformulas and then
constrain the variables of ΦSn such that ϕ? is consistent with the
sample S. To simplify our encoding, we assign to each node
of this syntax DAG a unique identifier i ∈ {1, . . . , n} such
that (a) the identifier of the root is n and (b) if the identifier
of an inner node is i, then the identifiers of its children are
less than i. Note that such a numbering scheme is not unique
for a given syntax DAG, but it entails that the root always has
identifier n and the node with identifier 1 is always labeled
with an atomic proposition. We refer the reader to Figures 1b
and 1c for an example.

We encode a syntax DAG using three types of propositional
variables:
• xi,λ where i ∈ {1, . . . , n} and λ ∈ P ∪ C;
• li,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}; and
• ri,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}.

Intuitively, the variables xi,λ encode a labeling of the syntax
DAG in the sense that if a variable xi,λ is set to true, then
node i is labeled with λ (recall that each node is labeled
with either an atomic proposition from P or an operator from
C). The variables li,j and ri,j , on the other hand, encode the
structure of the syntax DAG (i.e., the left and/or right child of

∨

U F

p G G

q q

(a) Syntax tree

∨

U F

p G

q

(b) Syntax DAG

6

5 4

2 3

1

(c) Identifiers

Fig. 1: Syntax tree, syntax DAG, and identifiers of the syntax
DAG for the LTL formula (pUG q) ∨ (FG q)

TABLE I: Constraints enforcing that the variables xi,λ encode
a syntax DAG

[ ∧

1≤i≤n

∨

λ∈P∪C
xi,λ

]
∧
[ ∧

1≤i≤n

∧

λ6=λ′∈P∪C
¬xi,λ ∨ ¬xi,λ′

]
(1)

[ ∧

2≤i≤n

∨

1≤j<i
li,j

]
∧
[ ∧

2≤i≤n

∧

1≤j<j′<i
¬li,j ∨ ¬li,j′

]
(2)

[ ∧

2≤i≤n

∨

1≤j<i
ri,j

]
∧
[ ∧

2≤i≤n

∧

1≤j<j′<i
¬ri,j ∨ ¬ri,j′

]
(3)

∨

p∈P
x1,p (4)

inner nodes): if variable li,j (ri,j) is set to true , then j is the
identifier of the left (right) child of node i. By convention, we
ignore the variables ri,j if node i of the syntax DAG is labeled
with an unary operator; similarly, we ignore both li,j and ri,j
if node i is labeled with an atomic proposition. Note that in
the case of li,j and ri,j , the identifier i ranges from 2 to n
because node 1 is always labeled with an atomic proposition
and, hence, cannot have children. Moreover, j ranges from 1
to i− 1 to reflect the fact that identifier of children have to be
smaller than the identifier of the current node.

To enforce that the variables xi,λ, li,j , and ri,j in fact encode
a syntax DAG, we impose the constraints listed in Table I.
Formula (1) ensures that each node is labeled with exactly
one label. Similarly, Formulas (2) and (3) enforce that each
node (except for node 1) has exactly one left and exactly one
right child (although we ignore certain children if the node
represents an unary operator or an atomic predicate). Finally,
Formula (4) makes sure that node 1 is labeled with an atomic
proposition.

Let ΦDAG
n now be the conjunction of Formulas (1) to (4).

Then, one can construct a syntax DAG from a model v of
ΦDAG
n in a straightforward manner: simply label node i with

the unique label λ such that v(xi,λ) = 1, designate node n
as the root, and arrange the nodes of the DAG as uniquely
described by v(li,j) and v(ri,j). Moreover, we can easily derive
an LTL formula from this syntax DAG, which we denote by
ψv . Note, however, that ψv is not yet related to the sample S
and, thus, might or might not be consistent with it.

To enforce that ψv is indeed consistent with S, we now
constrain the variables xi,λ, li,j , and ri,j further. More precisely,
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we add for each ultimately periodic word uvω in S a
propositional formula Φu,vn that tracks the valuation of the
LTL formula encoded by ΦDAG

n (and all its subformulas) on
uvω . The observation that enables us to do this is the following.

Observation 1: Let uvω ∈ (2P)ω, ψ be an LTL formula
over P , and k ∈ N. Then, uvω[|u|+k,∞) = uvω[|u|+m,∞)
with m ≡ k mod |v|. In addition, V (ϕ, uvω[|u|+ k,∞)) =
V (ϕ, uvω[|u|+m,∞)) holds for every LTL formula ϕ.

Intuitively, Observation 1 states that the suffixes of a word
uvω eventually repeat periodically. As a consequence, the
valuation of an LTL formula on a word uvω can be determined
based only on the finite prefix uv (recall that the semantics of
temporal operators only depend on the suffixes of a word). To
illustrate this claim, consider the LTL formula Xϕ and assume
that we want to determine the valuation V (Xϕ, uvω[|uv| −
1,∞)) (i.e., Xϕ is evaluated at the end of the prefix uv). Then,
Observation 1 permits us to compute this valuation based on
V (ϕ, uvω[|u|,∞)), as opposed to the original semantics of
the X-operator, which recurs to V (ϕ, uvω[|uv|,∞)) (i.e., the
valuation at the next position). Note that similar, though more
involved ideas can be applied to all other temporal operators.

Each formula Φu,vn is built over an auxiliary set of propo-
sitional variables yu,vi,t where i ∈ {1, . . . , n} is a node in the
syntax DAG and t ∈ {0, . . . , |uv| − 1} is a position in the
finite word uv. The meaning of these variables is that the
value of yu,vi,t corresponds to the valuation V (ϕi, uv

ω[t,∞))
of the LTL subformula ϕi that is rooted at node i. Note that
the set of variables for two distinct words from the sample
must be disjoint.

To obtain this desired meaning of the variables yu,vi,t , we
impose the constraints listed in Table II, which are inspired
by bounded model checking [10]. Formula (5) implements
the LTL semantics of atomic propositions and ensures that
if node i is labeled with p ∈ P , then yu,vi,t is set to 1 if and
only if p ∈ uv(t). Next, Formulas (6) and (7) implement the
semantics of negation and disjunction, respectively: if node i
is labeled with ¬ and node j is its left child, then yu,vi,t is the
negation of yu,vj,t ; on the other hand, if node i is labeled with
∨, node j is its left child, and node j′ is its right child, then
yu,vi,t is the disjunction of yu,vj,t and yu,vj′,t. Moreover, Formula (8)
implements the semantics of the X-operator, following the
idea of “returning to the beginning of the periodic part v” as
sketched above. Finally, Formula (9) implements the semantics
of the U-operator. More precisely, the first conjunction in the
consequent covers the positions t ∈ {0, . . . , |u| − 1} in the
initial part u, while the second conjunct covers the positions
t ∈ {|u|, . . . , |uv| − 1} in the periodic part v. Thereby, the
second conjunct relies on an auxiliary set t#u,v t

′ defined by

t#u,v t
′ :=

{
{t, . . . , t′ − 1} if t < t′;
{|u|, . . . , t′ − 1, t, . . . , |uv| − 1} if t ≥ t′,

which contains all positions in v “between t and t′”. To avoid
cluttering this section too much, we have omitted the description
of the missing operators ∧, →, F, G and the constants true
and false , which are implemented analogously. Moreover, our

TABLE II: Constraints enforcing that the variables yu,vi,t track
the valuation of the prospective LTL formula on ultimately
periodic words

∧

1≤i≤n

∧

p∈P
xi,p →

[ ∧

0≤t<|uv|

{
yu,vi,t if p ∈ uv(t)

¬yu,vi,t if p /∈ uv(t)

]
(5)

∧

1<i≤n
1≤j<i

(xi,¬ ∧ li,j) →
∧

0≤t<|uv|

[
yu,vi,t ↔ ¬yu,vj,t

]
(6)

∧

1<i≤n
1≤j,j′<i

(xi,∨ ∧ li,j ∧ ri,j′ ) →
∧

0≤t<|uv|

[
yu,vi,t ↔ (yu,vj,t ∨ yu,v

j′,t)

]
(7)

∧

1<i≤n
1≤j<i

(xi,X ∧ li,j) →

[[ ∧

0≤t<|uv|−1

yu,vi,t ↔ yu,vj,t+1

]
∧
[
yu,v
i,|uv|−1

↔ yu,v
j,|u|

]] (8)

∧

1<i≤n
1≤j,j′<i

(xi,U ∧ li,j ∧ ri,j′ ) →

[[ ∧

0≤t<|u|
yu,vi,t ↔

∨

t≤t′<|uv|

[
yu,v
j′,t′ ∧

∧

t≤t′′<t′
yu,v
j,t′′

]]
∧

[ ∧

|u|≤t<|uv|
yu,vi,t ↔

∨

|u|≤t′<|uv|

[
yu,v
j′,t′ ∧

∧

t′′∈t#u,vt′
yu,v
j,t′′

]]]
(9)

SAT encoding is extensible, and additional LTL operators such
as weak until or weak and strong release can easily be added.

For each uvω ∈ P ∪N , let Φu,vn now be the conjunction of
Formulas (5) to (9). Then, we define

ΦSn := ΦDAG
n ∧

[ ∧

uvω∈P
Φu,vn ∧yu,vn,0

]
∧
[ ∧

uvω∈N
Φu,vn ∧¬yu,vn,0

]
.

Note that the subformula Φu,vn ∧yu,vn,0 makes sure that uvω ∈ P
satisfies the prospective LTL formula (more concretely, uvω

starting from position 0 satisfies the LTL formula at the root
of the syntax DAG), while Φu,vn ∧¬yu,vn,0 ensures that uvω ∈ N
does not satisfy it.

To prove the correctness of our learning algorithm, we first
establish that the formula ΦSn has in fact the desired properties.

Lemma 1: Let S = (P,N) be a sample, n ∈ N\{0}, and ΦSn
the propositional formula defined above. Then, the following
holds:

1) If an LTL formula of size n that is consistent with S
exists, then the propositional formula ΦSn is satisfiable.

2) If v |= ΦSn , then ψv is an LTL formula of size n that is
consistent with S.

Termination and correctness of Algorithm 1 then follow
from Lemma 1.

Theorem 1: Given a sample S, Algorithm 1 terminates
eventually and outputs an LTL formula of minimal size that is
consistent with S.

Proof: Since there exists a consistent LTL formula for
every non-contradictory sample, Part 1 of Lemma 1 guarantees
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that Algorithm 1 terminates. Moreover, Part 2 ensures that
the output is indeed an LTL formula that is consistent with
S. Since n is increased by one in every iteration of the loop
until ΦSn becomes satisfiable, the output of Algorithm 1 is a
consistent LTL formula of minimal size.

It is important to emphasize that the size of ΦSn and, hence,
the performance of Algorithm 1 depends on the size of a
sample S = (P,N), as summarized next.

Remark 1: The formula ΦSn ranges over O(n2 + n|S|)
variables and is of size O(n2 + n3

∑
uvω∈P∪N |uv|3).

Finally. we conclude this section with a remark on incorpo-
rating expert knowledge into the learning process.

Remark 2: By adding constraints to the variables xi,λ, li,j ,
and ri,j , one can easily incorporate expert knowledge (e.g.,
syntactic templates) into the learning process.

IV. A DECISION TREE BASED LEARNING ALGORITHM

The SAT-based algorithm described in Section III is an
elegant, out-of-the-box way to discover minimal LTL formulas
describing a sample. Even though it scales well beyond toy
examples, its running time seems too prohibitive for real-world
examples (as discussed in Section V). That is why we now
present a learning algorithm based on a combination of SAT
solving and decision tree learning.

Our second algorithm proceeds in two phases, outlined
in Algorithm 2. In the first phase, we run Algorithm 1 on
small subsets of P and N . This is repeated until we obtain
a set Π of LTL formulas (we call them LTL primitives) that
separate all pairs of words from P and N . In the second
phase, formulas from Π are used as features for a standard
decision tree learning algorithm [13]. The resulting decision
tree is a Boolean combination of LTL formulas ϕi ∈ Π that is
consistent with the sample.

Algorithm 2: Learning algorithm based on decision
trees

Input: a sample S
1 Run Algorithm 1 on small subsets of P and N to

construct a set Π = {ϕ1, . . . , ϕn} of LTL formulas
such that for each pair u1vω1 ∈ P and u2vω2 ∈ N there
exists a ϕi ∈ Π with V (ϕi, u1v

ω
1 ) = 1 and

V (ϕi, u2v
ω
2 ) = 0;

2 Learn a decision tree t with LTL primitives from Π as
features and return the resulting Boolean combination
ψt of LTL primitives (which is consistent with S);

Note that this relaxes the problem addressed in Section III:
we can no longer guarantee finding a formula of minimal size.
However, decision trees are among the structures that are the
easiest to interpret by end-users. That makes them suitable for
our use-case, and the minimality of formulas is replaced by
structural simplicity of decision trees.

Learning Decision Trees: We assume familiarity with
decision tree learning and refer the reader to a standard textbook
for further details [5]. As illustrated in Figure 3, the decision

trees we seek to learn are tree-shaped structures whose inner
nodes are labeled with LTL formulas from Π and whose
leaves are labeled with either true or false . The LTL formula
represented by such a tree t is given by ψt :=

∨
ρ∈P

∧
ϕ∈ρ ϕ

where P is the set of all paths from the root to a leaf labeled
with true and ϕ ∈ ρ denotes that ϕ occurs on ρ (negated if
the path follows a dashed edge).

To learn a decision tree over LTL primitives, we perform a
preprocessing step and modify the sample as follows. For each
word uvω ∈ P ∪N , we use the LTL primitives as features and
create a Boolean vector of size |Π| with the i-th entry set to
V (ϕi, uv

ω); this vector is then labeled with true if uvω ∈ P
or with false if uvω ∈ N . In the second step, we apply a
standard learning algorithm for decision trees to this modified
sample (we used Gini impurity [34] as split heuristic in our
experiments). Since we are interested in a tree that classifies
our sample correctly, we disable heuristics such as pruning.

Obtaining LTL Primitives: Meaningful features are essen-
tial for a successful classification using decision trees. In our
algorithm, features are generated from the set of LTL primitives
Π. We used two different strategies, called Strategy α and
Strategy β, for obtaining Π.

Strategy α iteratively chooses subsets P ′ ⊂ P and N ′ ⊂ N
of size k according to probability distributions probP and
probN on P and N , respectively. After a formula ϕ separating
P ′ and N ′ is found using Algorithm 1 and added to Π, probP
and probN are updated to increase the likelihood of any word
that is not yet classified correctly by any of the ϕ ∈ Π to be
selected. This process is repeated until all pairs of positive
and negative examples are separated by some LTL primitive
or restarted after a user-given number of iterations. Although
this strategy is, in general, not guaranteed to terminate due to
its probabilistic nature, it always did in our experiments.

Strategy β computes LTL primitives in a more aggressive
way. Starting with the set S = P ×N , it uniformly at random
selects k pairs from S and uses Algorithm 1 to compute an
LTL primitive ϕ that separates those pairs. Then, it removes
all pairs separated by ϕ from S and repeats the process until
S becomes empty (i.e., all pairs of examples are separated).

We refer to the extended version of this paper [35] for a
detailed explanation of both strategies.

Correctness: The correctness of Algorithm 2 is formalized
below.

Theorem 2: Given a sample S, Algorithm 2 learns a (not
necessarily minimal) formula ψt that is consistent with S.

Theorem 2 follows from the fact that Step 1 of Algorithm 2
constructs a set of LTL primitives that allows separating any
pair of positive and negative examples. Once such a set is
constructed, any decision tree learner produces a decision tree
t that is guaranteed to classify the examples correctly. The
resulting LTL formula ψt, hence, is consistent with S.

V. EVALUATION

In this section, we answer questions that arise naturally:
how performant is Algorithm 1 and what is the performance
gain of Algorithm 2. Furthermore, what is the complexity of
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TABLE III: Common LTL patterns used in practice [37]

Absence Existence Universality

G(¬p0) F(p0) G(p0)
F(p1) → (¬p0 U p1) G(¬p0 ∨ F(p0 ∧ F(p1))) F(p1) → (p0 U p1)
G(p1 → G(¬p0)) G(p0 ∧ (¬p1 → (¬p1 U(p2 ∧ ¬p1)))) G(p1 → G(p0))

the learned decision trees in terms of the number of decision
nodes, and, finally, how do different parameters influence the
performance of Algorithm 2. After answering these questions
with experiments performed on synthetic data, we demonstrate
the usefulness of our algorithms for understanding executions
of a leader-election algorithm.

We implemented both learning algorithms in a Python tool2

using Microsoft Z3 [36]. All experiments were conducted on
Debian machines with Intel Xeon E7-8857 CPUs at 3 GHz,
using up to 5 GB of RAM.

Performance on Synthetic Data: To simulate real-world
use-cases, we generated samples based on common LTL
patterns [37], which are shown in Table III. Starting from
a pattern formula ψ, we generated sets of random words and
separated them into P and N depending on whether they
are a model of ψ or not. Thereby, we fixed |u| + |v| = 10
for all words in the sample and added noise in form of one
additional atomic proposition that is not constrained by the
pattern formula. The size of the generated samples ranges
between 50 and 5000. In total, we generated 192 samples.

Figure 2 compares the running times of Algorithm 1 and
Algorithm 2 (using Strategy α and k = 3) on samples of
varying sizes. (So as not to clutter the presentation too much,
we selected four LTL patterns that showed a typical behavior
of our learning algorithms. The complete results are available
in the technical report [35].) Overall, Algorithm 1 produces
minimal formulas consistent with a sample. It does so even
for samples of considerable size, but if the sample size grows
beyond 2000 (varies over samples), the SAT-based learner
(Algorithm 1) frequently times out. When Algorithm 2 (using
decision tree learning) is applied to these samples—as shown
on the right-hand-side of Figure 2—none of the computations
timed out and the running times significantly improved.

What kind of trees does Algorithm 2 produce? An example
output of the algorithm is shown in Figure 3. Moreover, as
Table IV illustrates, Algorithm 2 learns small trees, often with
less than five inner nodes. Upon closer inspection, we noticed
that it often happens that one of the LTL primitives was the
specified formula itself. This suggests that small subsets already
characterize our samples completely.

To be able to compare decision trees to the formulas learned
by Algorithm 2, we measure the size of a tree t in terms of the
size of the formula ψt this tree encodes. In our experiments,
the formulas learned by Algorithm 2 were on average 1.41
times larger than those learned by Algorithm 1. However, there
are outlier trees that are four times bigger than the one learned
by Algorithm 1. Nonetheless, about 70 % are of the same size.
Even for the outliers, as emphasized previously, the readability

2Our tool is publicly available at https://github.com/gergia/samples2LTL.
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Fig. 2: Comparison of Algorithm 1 and Algorithm 2

G(p1 → p0)

¬p1 UG(p0) false

true

true ¬F(p1)

false

If a node evaluates to true, the out-
going full edge should be followed
(and the dashed edge otherwise). The
tree on the left represents the formula
ψt = [G(p1 → p0) ∧ (¬p1 UG(p0)] ∨
[G(p1 → p0) ∧ ¬(¬p1 UG(p0)) ∧
¬F(p1)].

Fig. 3: A decision tree obtained from a sample generated from
the LTL pattern G(p1 → G(p0))

does not degrade completely because the rule-based structure of
decision trees is known to be easily understandable by humans.
Note that the runtime and size of decision trees depends on
the parameters of Algorithm 2, which we discuss next.

Tuning the Decision Tree-Based Algorithm: As described
in Section IV, Algorithm 2 can be tuned by various parameters
(sampling strategy for obtaining LTL primitives, size of sample
subsets, probability increase rate, and number of repetitions
inside a single sampling). In this subsection, we explore how
those parameters affect the performance of the algorithm.

TABLE IV: Different parameters used for Algorithm 2

Sampling
strategy Subset size k Number of

timeouts
Avg. running

time in s
Avg. number of
nodes in a tree

α 3 0 / 192 21.00 3.05
α 6 4 / 192 35.28 1.47
α 10 8 / 192 42.72 1.2

β 3 4 / 192 30.92 1.37
β 6 12 / 192 48.46 1.19
β 10 21 / 192 48.11 1.06

Table IV shows the performance of Algorithm 2 for different
parameters, averaged over all 192 benchmarks. As the table
indicates, the less aggressive method of separating sets, Strat-
egy α, performs better. It seems that if the subset sizes are
increased, or Strategy β is used, the sampled subsets already
describe the specified formula completely. Finally, we chose
Strategy α and k = 3 to be our default parameters. Varying the
probability decrease rate and the number of repetitions inside
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a single sampling did not influence the performance much.
Explaining Executions of a Leader Election Protocol: A

number of methods exist for finding errors or reproducing
certain behavior in distributed systems through systematic
testing [38], [39]. However, finding an execution and a corre-
sponding schedule is only a first step towards understanding
an issue. In the following, we demonstrate how to apply our
technique in order to obtain a minimal LTL description of a
specific inconsistency in a leader election protocol.

The leader election protocol we consider is the Fast Leader
Election algorithm [14], [40] used by Apache Zookeeper. In
this protocol, every node has a unique ID and initially tries to
become the leader. To this end, every node sends messages to
all other nodes proclaiming its leadership. Upon receiving a
message by an aspirant leader with a higher ID, a node gives
up its claim and acknowledges its support for the aspirant. If a
node learns that an aspirant node has a support of a majority
of all nodes, it commits (after waiting for a constant time for
new messages) to the aspirant as the leader. Once committed,
the node never again changes its decision and informs any
other node of its commitment (one example is the message
depicted by the dotted arrow in Figure 5). If a node has not
committed and learns about another node that has committed,
it commits to the same leader.

node 1node 0 node 2

aspirantaspirant aspirant

supporting 1

supporting 2

majority
secured

supporting 2

majority
secured

committed 2

committed 2committed 2

P1

P2

A1

P2 A2

Fig. 4: Consistent schedule for
an execution of the leader elec-
tion protocol

node 1node 0 node 2

aspirantaspirant aspirant

aspirant

supporting 1

supporting 2

committed 2

majority
secured

committed 1

committed 1

majority
secured

committed 2

P1

A1

P2

A2

P2

Fig. 5: Inconsistent schedule
for an execution of the leader
election protocol

Figure 4 shows an example of a successful leader election
with three nodes in an UML-style message sequence chart. The
messages exchanged between nodes are proposing the leader i
(Pi) and node j acknowledging the claim of a leader (Aj). The
arrows indicate exchanged messages and imply a precedence
of events. Note that not all messages are shown in the figures,
but only the ones important for understanding the protocol.

In Figure 4 all the nodes have committed to the same
leader. On the other hand, Figure 5 shows a schedule that
ends up in an inconsistent state where nodes committed to
different leaders. This schedule was discovered by the PCTCP
algorithm [41], which systematically explores the space of
possible executions of distributed algorithms. The situation
in Figure 5 is caused by the asynchronous communication:
for performance reasons, nodes commit as quickly as possible

and then discard any messages, which otherwise would have
changed their commitment (indicated as a dashed line in
Figure 5). Note, however, that this is not a bug in Zookeeper’s
broadcast algorithm, as a leader without a quorum will not be
allowed to perform any action in the later phase.

To better understand how this inconsistent state arises, our
goal is to generate an LTL formula that describes the difference
between the schedules in Figures 4 and 5. To this end, we
constructed a sample by generating 20 linearizations of the
schedule from Figure 4 and 20 linearizations of the schedule
from Figure 5. Since we seek an explanation for the inconsistent
behavior, the former (with consistent outcomes) correspond to
negative examples (set N ), and the latter (with inconsistent
outcomes) correspond to positive examples (set P ). The set of
atomic propositions used to construct the examples contains
twelve elements: recv(i, j) for i, j ∈ {1, 2, 3} (meaning that
node j received a message from node i) and comm(i) for
i ∈ {1, 2, 3} (meaning that node i committed to a leader).3

Finally, we ran Algorithm 1 on this sample. The result was
the formula ¬recv(2, 1)U comm(1). Intuitively, node 1 did not
receive a message from node 2 before it committed to a leader.
That is exactly the difference between the schedules in Figures 4
and 5. Also, it hints at a specific reason for the inconsistency
in Figure 5, thus potentially helping the engineers improve
the system. Note, however, that this experiment still required
a significant amount of manual effort. In order to apply the
technique in practice, more automation is needed.

Summary: Algorithm 2 significantly improves upon the
performance of Algorithm 1, though with a small increase
in the size of the formula. The original motivation of getting
readable explanations for the behavior of a system is preserved
due to the fact that decision-trees are easy to comprehend.
Algorithm 2 works the best using Strategy α and subsets of
size k = 3. Finally, our techniques are able to give interesting
insight into real-world systems.

VI. CONCLUSION

We have presented two novel algorithms for learning LTL
formulas from examples. Our first algorithm is based on SAT
solving, while the second algorithm extends the first with
techniques for learning decision trees. We have shown that both
algorithms are able to learn LTL formulas for a comprehensive
set of benchmarks that we have derived from common LTL
patterns. Moreover, we have demonstrated how our methods
can help understand distributed algorithms.

Interesting directions of future work include the integration
of LTL past-time operators, lifting our techniques to an
active learning setup [29], as well as the development of
similar learning algorithms for CTL. Furthermore, we plan
to investigate the use of maximum-margin classifiers, such as
support vector machines. To this end, one needs to develop
a notion of distance between temporal formulas and words,
which is clearly of independent, theoretical interest as well.

3While we could have included more information into propositions, we had
to obscure some in order to avoid “stating the obvious” of the form “node 1
committed to node 1 as a leader, while node 2 committed to node 2”.
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Abstract—This paper presents the ELDARICA version 2 model
checker. Over the last years we have been developing and
maintaining ELDARICA as a state-of-the-art solver for Horn
clauses over integer arithmetic. In the version 2, we have extended
the solver to support also algebraic data types and bit-vectors,
theories that are commonly applied in verification, but currently
unsupported by most Horn solvers. This paper describes the
high-level structure of the tool and the interface that it provides
to other applications. We also report on an evaluation of the
tool. While some of the techniques in ELDARICA have been
documented in research papers over the last years, this is the
first tool paper describing ELDARICA in its entirety.

I. INTRODUCTION

In recent years, the computer-aided verification commu-
nity has been advocating Horn clause solving as a uniform
framework for reasoning about different aspects of software
safety [7], [20], [32], [25]. Horn clauses form a fragment
of first-order logic, modulo various background theories, in
which models can be constructed effectively with the help of
model checking algorithms. Horn clauses can be used as an
intermediate verification language that elegantly captures var-
ious classes of systems (e.g., sequential code, programs with
functions and procedures, concurrent programs, or networks
of timed automata) and various verification methodologies
(e.g., the use of state invariants, verification with the help
of contracts, Owicki-Gries-style invariants, or rely-guarantee
methods). Horn solvers can be used as off-the-shelf back-
ends in verifiers, and thus enable construction of verification
systems in a modular way.

ELDARICA first appeared as a solver for Horn clauses over
Presburger arithmetic in 2013 [32].1 It combines Predicate
Abstraction [19] with Counterexample-Guided Abstraction
Refinement (CEGAR) [12] to automatically check whether a
given set of Horn clauses is satisfiable. The tool has been
significantly improved since then and can now solve problems
over the theories of integers, algebraic data-types [24], and bit-
vectors. It can process Horn clauses and programs in a variety
of formats, implements sophisticated algorithms to solve tricky
systems of clauses without diverging, and offers an elegant
API for programmatic use.

A. An Initial Example

To verify systems using Horn clauses, we first need to fix
a set R of uninterpreted fixed-arity relation symbols, which

1https://github.com/uuverifiers/eldarica/

represent the unknowns in the Horn clauses. A constrained
Horn clause is a formula H ← C ∧B1 ∧ · · · ∧Bn where
• C is a constraint over some background theory;
• each Bi is an application p(t1, . . . , tk) of a relation

symbol p ∈ R to first-order terms, usually including first-
order variables;

• H is similarly either an application p(t1, . . . , tk) of p ∈ R
to first-order terms, or false .

H is called the head of the clause, C∧B1∧· · ·∧Bn the body.
In case C = true , we usually leave out C and just write H ←
B1 ∧ · · · ∧Bn. First-order variables in a clause are implicitly
universally quantified; relation symbols represent set-theoretic
relations over the universe U of a structure (U, I) ∈ S.

A solution to a set of Horn clauses assigns a formula to each
relation symbol in such a way that all Horn clauses become
valid formulas, considering first-order variables as implicitly
universally quantified. When no solution exists, a derivation
of false can be constructed as a counterexample.

Figure 1 shows a simple C program, together with a control-
flow graph illustrating the program structure. The verification
task consists of proving that the assertion in the program can
never fail, i.e., showing program safety. In order to extract
a set of Horn clauses that encode program safety, relation
symbols R = {r1, r2} representing state invariants of the
program are introduced. The arguments of the relation symbols
correspond to the values of program variables that are in scope
at a particular location; in this case, to the value of n. The
Horn clauses in Figure 1c represent the program transitions,
and include a clause with empty body for the function entry
point, two clauses corresponding to the assignments in the
body of the loop, and an assertion clause with head false for
the program assertion.

The clauses are constructed in such a way that safety
of the program is equivalent to satisfiability of the Horn
clauses. Solvers search for solutions of the Horn clauses
with the help of techniques like CEGAR (e.g., in HSF [20]
or ELDARICA) or IC3/PDR (e.g., in Z3 [21]). Beyond just
sequential programs, Horn clauses can elegantly represent also
concurrent programs, programs with functions and procedures,
or timed and parameterized systems (e.g., [20], [25]).

In a verification system based on Horn clauses, Horn solvers
are typically interfaced either using a textual format, most
often just a Horn dialect of SMT-LIB [6], or programmatically.
Figure 2 shows the Horn clauses from Figure 1 in SMT-LIB,
assuming that the program variable n ranges over mathemat-
ical integers. The corresponding clauses in signed bit-vector
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1 int n = 0 ;
2 while (true ) {
3 n = n + 1 ;
4 assert (n >= -10 ) ;
5 n = n - 1 ;
6 }

(a) C program

q1

q2

qe

n := n+ 1

n < −10

n := n− 1

n = 0

(b) Control-flow graph

r1(0)←
r2(n+ 1)← r1(n)

r1(n− 1)← r2(n)

false ← ¬(n ≥ −10) ∧ r2(n)

(c) Horn Clause Representation

Fig. 1: Sample code with corresponding Control-Flow-Graph and Horn clauses.
The clauses are satisfied by setting r1(n) ≡ (n = 0) and r2(n) ≡ (n = 1).

1 (set-logic HORN )
2
3 (declare-fun r1 (Int ) Bool )
4 (declare-fun r2 (Int ) Bool )
5
6 (assert (r1 0) )
7 (assert (forall ( (n Int ) )
8 (=> (r1 n ) (r2 (+ n 1) ) ) ) )
9 (assert (forall ( (n Int ) )
10 (=> (r2 n ) (r1 (- n 1) ) ) ) )
11 (assert (forall ( (n Int ) )
12 (=> (and (r2 n ) (not (>= n (- 10) ) ) ) false ) ) )
13
14 (check-sat )

Fig. 2: The example from Figure 1 in SMT-LIB notation, with
mathematical integer semantics.

1 (set-logic HORN )
2
3 (declare-fun r1 ( (_ BitVec 32) ) Bool )
4 (declare-fun r2 ( (_ BitVec 32) ) Bool )
5
6 (assert (r1 (_ bv0 32) ) )
7 (assert (forall ( (n (_ BitVec 32) ) )
8 (=> (r1 n ) (r2 (bvadd n (_ bv1 32) ) ) ) ) )
9 (assert (forall ( (n (_ BitVec 32) ) )
10 (=> (r2 n ) (r1 (bvsub n (_ bv1 32) ) ) ) ) )
11 (assert (forall ( (n (_ BitVec 32) ) )
12 (=> (and (r2 n )
13 (not (bvsge n (bvneg (_ bv10 32) ) ) ) )
14 false ) ) )
15
16 (check-sat )

Fig. 3: The example from Figure 1 in SMT-LIB notation, with
bit-vector semantics.

arithmetic of width 32 is shown in Figure 3. Both sets of
Horn clauses can easily be proven satisfiable by ELDARICA
and other tools.

B. Related Work.

Horn solvers have been implemented using a variety of
algorithms, often by extending methods from hardware or
software model checking to the more general case of solving
sets of Horn clauses. Existing state-of-the-art tools can be

classified according to their underlying solving algorithm as
the following:
• CEGAR and predicate abstraction, such as HSF [20],

Duality [30], and ELDARICA;
• IC3/PDR, such as the PDR engine in Z3 [21]. The algo-

rithm implemented in SPACER [28] extends IC3/PDR by
maintaining both under- and over-approximations during
analysis;

• Transformation of Horn clauses, such as VeriMAP [13]
and Rahft [26];

• Machine learning, such as SynthHorn [33], FreqHorn
[17] and HoIce [11], which progressively drive concrete
invariant samples and use machine learning classification
techniques to find the inductive invariant.

Many of the solvers in addition use techniques like abstract
interpretation to synthesise invariants, and this way support
the main algorithm.

Compared to other Horn solvers, distinguishing features of
ELDARICA are the set of convergence heuristics implemented
(Section II-C), which enable ELDARICA to solve particularly
tricky Horn problems, the range of supported theories (includ-
ing algebraic data types and bit-vectors), and the provided API.

II. AN OVERVIEW OF ELDARICA

We start by describing the ELDARICA design and imple-
mentation. ELDARICA is open source, entirely implemented
in Scala, and only depends on Java or Scala libraries,2 which
implies that ELDARICA can be used on any platform with
a JVM. ELDARICA can be used as a standalone tool, but
can also easily be integrated as a library into other systems
implemented in Scala or Java. To reduce the JVM start-
up/warm-up delay in standalone use, ELDARICA can also be
run in a daemon mode.

ELDARICA uses PRINCESS [31] as SMT solver for satis-
fiability and implication checks, and as interpolation proce-
dure for Presburger arithmetic [9], algebraic data-types [24],
and bit-vectors [3]. The CEGAR engine of ELDARICA also
loads PRINCESS as a library that provides the data-structures

2With the exception of the FLATA library optionally used for acceleration,
as described below, which depends on Yices [16].
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Fig. 4: The Main Architectural Components of ELDARICA

to represent terms, formulas, and background theories. This
approach initially reduced the implementation effort, but also
helps to speed up SMT queries because copying and conver-
sion of expressions largely becomes unnecessary.

A. Available Front-ends and Formats

Figure 4 presents an overview of the ELDARICA’s architec-
ture. ELDARICA accepts input in a range of formats: the main
input format for Horn clauses is (standard-compliant) SMT-
LIB v2 [6], writing each clause as an explicitly quantified
disjunction or implication. Support for the SMT-LIB rule
dialect offered by Z3 is considered for the future. ELDARICA
also supports Prolog-style input of Horn clauses over integer
arithmetic.

ELDARICA is also able to parse programs in two (simple)
formats, and handle the clause encoding internally. ELDARICA
can read and verify input in the Numerical Transition Systems
(NTS) format [1], [23], a format handled and produced by
several verification tools. ELDARICA can also parse pro-
grams in a fragment of the C language (currently excluding
pointers, arrays, and heap), as well as networks of timed
automata in a C-like language with support for unbounded
parallelism, clocks, binary communication channels, and time
invariants [25].

B. The Main Algorithms Used in ELDARICA

To check the satisfiability of Horn clauses, ELDARICA
applies lazy Cartesian predicate abstraction [19], [5], in combi-
nation with a variant of Counterexample-Guided Abstraction
Refinement (CEGAR) [12], [4]. Horn clauses are first sent
through a number of preprocessing stages, applying transfor-
mations such as (forward) slicing, (forward and backward)
reachability analysis to eliminate dead relation symbols, clause
inlining, splitting of clauses with complicated constraints or
long bodies, constant propagation, abstract interpretation over
an interval domain to infer basic information about variable
ranges, as well as interval constraint propagation to further
narrow down variable ranges.

The main CEGAR engine of ELDARICA then attempts to
construct an abstract reachability (hyper)graph (ARG) that
would witness satisfiability of Horn clauses, starting from a

(user-provided, and often empty) set of predicates for each
relation symbol. Implication properties are checked with the
help of the SMT solver PRINCESS. If ARG construction fails,
the obtained abstract counterexample DAG is checked for
spuriousness by PRINCESS, resulting in either a concrete coun-
terexample, or additional predicates computed through Craig
interpolation. By default, ELDARICA maps the counterexample
DAG to a tree interpolation problem for this purpose, but also
disjunctive interpolation [32] can be switched on using the
command-line option -disj.

C. Convergence Heuristics

Beyond basic CEGAR and Craig interpolation, ELDARICA
applies two methods to minimise the likelihood of divergence,
i.e., of the phenomenon that a model checker can sometimes
fail to discover the right predicates, and continue refining
the constructed abstraction indefinitely. The first method is
based on acceleration: if during preprocessing cycles con-
sisting of only linear clauses (with only conjunctive, numeric
constraints) are detected, then precise static acceleration [10],
[22] is applied to replace the cycle with a single clause with
the same effect. ELDARICA loads the FLATA tool3 as a
Java library for this purpose. Acceleration later helps Craig
interpolation to discover sufficiently general predicates, and
has been shown to significantly extend the reach of CEGAR
for tricky verification tasks [22]. Since this optimisation can
sometimes slow down the model checker, and it is only
applicable for cycles with linear clauses, it is optional and
can be switched on with the command-line option -stac.

As a second method, ELDARICA uses interpolation abstrac-
tion [29] to control the predicates computed through Craig
interpolation. Interpolation abstraction is driven by the results
of a global analysis of the cycles (corresponding to program
loops) present in a set of Horn clauses, including information
about modified loop variables and strides of loop counters,
derived during preprocessing. Among others, interpolation ab-
straction helps to analyse loops modifying multiple variables,
e.g. the Horn clauses corresponding to the following program:

1 int x = 0 , y = 0 ;
2 while (x < N ) {
3 x++; y++;
4 }
5 assert (N < 0 | | y == N ) ;

In this case, loop analysis will identify the term x - y as a
useful expression (or interpolation template) in invariants, and
interpolation abstraction will guide the interpolation process
towards expressions that avoid the variables x, y, unless they
occur in the context x - y. This approach enables ELDAR-
ICA to rank interpolants according to their expected generality,
and has been shown to speed up the solving process, as well
as to significantly reduce the possibility of divergence [29],
[14]. Interpolation templates can also be specified manually
by the user to control the derived predicates.

Interpolation abstraction is enabled by default, but can
optionally be switched off with the option -abstract:off.

3http://nts.imag.fr/index.php/Flata
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There is also an option -abstractPO for running a portfolio
of two solvers, one with interpolation abstraction enabled, and
one without interpolation abstraction.

III. STATUS OF THEORY SUPPORT

A. Unbounded Integers

The development of ELDARICA initially focused on the
theory of unbounded linear integer arithmetic (LIA, quantifier-
free Presburger arithmetic, but also including Booleans), for
which efficient Craig interpolation is well understood. Among
the supported theories, linear integer arithmetic in ELDARICA
is at this point the most refined and mature, and has been
evaluated extensively in previous work [22], [29], [14].

Based on the interpolation procedure presented in [3],
we have recently also added support for non-linear integer
arithmetic (NIA) to ELDARICA. The handling of NIA is best-
effort though: procedures for NIA are necessarily incomplete,
and quantifier-free interpolants do not exist in all cases. We
have not yet collected a lot of experience with NIA problems.

B. Arrays

ELDARICA can also handle problems with arrays, and
can compute quantified solutions for such problems using
the transformation approach from [8]. ELDARICA accepts
an extended Horn fragment for problems with arrays, with
additional universal quantifiers allowed in front of each occur-
rence of a relation symbol specifying the intended quantifier
structure of solutions. As an example, we consider a program
filling an array with consecutive numbers:

1 int n , int ar [ ] ;
2 assume (n > 0) ;
3
4 int i = 0 ;
5 while (i < n ) {
6 ar [i ] = i ;
7 i++;
8 }
9
10 assert (forall int j ; 0 <= j && j < n => ar [j ] >= 0) ;

A simple Horn representation of this verification task, using
a single relation symbol inv representing the required loop
invariant, is given in Figure 5. The encoding specifies that
solutions are supposed to be of the form inv(n, i, ar) =
∀ind . invM (n, i, ind , ar [ind ]), where the matrix invM is the
actual unknown to be determined by the Horn solver.

Instead of providing the quantifier pattern explicitly in the
SMT-LIB input, it is also possible to leave the introduction
of quantifiers to ELDARICA, and simply declare inv to be a
symbol with an array argument:

1 (declare-fun inv (Int Int (Array Int Int ) ) Bool )

The number of quantifiers to be introduced can be controlled
using the command-line option -arrayQuans:n.

C. Algebraic Data-Types

Moving towards version 2, we have recently added support
for algebraic data-types (ADTs) with fully-free constructors
to ELDARICA. This makes it possible to analyse Horn clauses

1 (set-logic HORN )
2
3 (declare-fun invM (Int Int Int Int ) Bool )
4
5 (define-fun inv ( (n Int ) (i Int )
6 (ar (Array Int Int ) ) ) Bool
7 (forall ( (ind Int ) ) (invM n i ind (select ar ind ) ) ) )
8
9 (assert (forall ( (n Int ) (ar (Array Int Int ) ) )
10 (=> (> n 0) (inv n 0 ar ) ) ) )
11
12 (assert (forall ( (n Int ) (i Int ) (ar (Array Int Int ) ) )
13 (=> (and (inv n i ar ) (< i n ) )
14 (inv n (+ i 1) (store ar i i ) ) ) ) )
15
16 (assert (forall ( (n Int ) (i Int ) (ar (Array Int Int ) ) )
17 (=> (and (inv n i ar ) (>= i n ) )
18 (forall ( (j Int ) )
19 (=> (and (<= 0 j ) (< j n ) )
20 (>= (select ar j ) 0 ) ) ) ) ) )
21
22 (check-sat )

Fig. 5: An array example in SMT-LIB. To solve the example
using ELDARICA, the option -splitClauses is needed.

1 (set-logic HORN )
2
3 (declare-datatype list ( (nil )
4 (cons (hd Int ) (tl list ) ) ) )
5
6 (declare-fun C (list list list ) Bool )
7
8 (define-fun len ( (l list ) ) Int (- (_size l ) 1 ) )
9
10 (assert (forall ( (y list ) ) (C nil y y ) ) )
11
12 (assert (forall ( (x list ) (y list ) (r list ) (i Int ) )
13 (=> (C x y r )
14 (C (cons i x ) y (cons i r ) ) ) ) )
15
16 (assert (forall ( (x list ) (y list ) (r list ) )
17 (=> (and (not (= r nil ) ) (C x y r ) )
18 (or (= (hd r ) (hd x ) )
19 (= (hd r ) (hd y ) ) ) ) ) )
20
21 (assert (forall ( (x list ) (y list ) (r list ) )
22 (=> (C x y r )
23 (= (len r ) (+ (len x ) (len y ) ) ) ) ) )
24
25 (check-sat )

Fig. 6: A list example in SMT-LIB.

with common data-types like enumerations, unions, tuples,
lists, or trees. Clauses can also contain size constraints,
i.e., reason about the number of occurrences of constructor
symbols in a term.4 This can be used to talk about the length
of lists or the size of trees. ADTs are handled with the help
of the decision and interpolation procedure presented in [24].

Figure 6 shows a Horn problem over the data-type of lists
of integers. The data-type is defined with constructors nil,
cons, and selectors hd, tl. The size of a list, in terms of
the number of constructor symbols, can be accessed using the
built-in operator _size; since _size also counts the nil
operator, in line 8 we define a function len that computes

4SMT-LIB does currently not define a size operator for ADTs, so that
resulting input is not SMT-LIB compliant.
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standard list length. The relation symbol C is then defined to
compute list concatenation, and in lines 16–23 two properties
of concatenation are verified. A programmatic version of the
example is provided in the next section.

At this point, ELDARICA is only able to compute quantifier-
free (and recursion-free) solutions of Horn clauses over ADTs,
which restricts the class of systems and properties that can
meaningfully be analysed. For instance, ELDARICA cannot
derive solutions that state sortedness of an unbounded list,
or the property that all list elements are positive.

D. Bit-Vectors

ELDARICA version 2 also supports Horn clauses over bit-
vectors, using a lazy encoding approach to map bit-vector
constraints to quantifier-free Presburger constraints, which can
then be solved and interpolated using the existing procedures
in PRINCESS. The details of the interpolation procedure are
described in a companion paper at FMCAD 2018 [3]. EL-
DARICA supports almost the full SMT-LIB bit-vector theory,
although the interpolation procedure used for bit-vectors is
optimised mainly for arithmetic constraints (as opposed to bit-
wise operators) in Horn clauses. An SMT-LIB example with
bit-vectors is given in Figure 3, and a programmatic example
in the next section.

IV. PROGRAMMATIC USE OF ELDARICA

A. Algebraic Data Types

Since ELDARICA is implemented in Scala, it offers a conve-
nient embedded domain-specific language for writing formulas
and clauses, and can easily be integrated into other Scala
applications. Integration into Java applications takes a similar
form, but lacks the syntactic sugar provided through Scala,
and at the moment requires the programmer to go through the
slightly cumbersome process of calling Scala methods from
Java. Formulas and data-types are constructed using the API
of the underlying SMT solver PRINCESS.5

A complete runnable example is shown in Figure 7. In
line 11, debugging assertions are switched off. In lines 13–
17, again the ADT of lists over integers with sort name list,
constructors nil, cons, and selectors hd, tl is defined (mu-
tually recursive data-types can be created similarly). Lines 26–
29 declare variables of sort integer and list, respectively, and
line 31 a ternary relation symbol C over lists. The clauses in
lines 34–35 are written in Prolog-like notation, and axiomatise
C to represent concatenation. In line 39, a property about
the head of a list resulting from concatenation is stated as a
third clause. In line 41 the satisfiability of the three clauses is
checked, with solution C(x, y, r) ≡ y = r∨ hd(r) = hd(x).

To run the example, it is only necessary to have the Scala
build tool sbt installed, which is included in many Linux
distributions. Further dependencies, such as the Scala compiler
and ELDARICA itself, will be downloaded automatically by the
command sbt run.

5http://www.philipp.ruemmer.org/princess/doc/

1 // List-example.scala
2
3 import ap .SimpleAPI
4 import ap .theories .ADT
5 import lazabs .horn .bottomup ._
6 import ADT ._
7 import HornClauses ._
8 import ap .parser .IExpression ._
9
10 object ListExample extends App {
11 lazabs .GlobalParameters .get .assertions = false
12
13 val listADT = new ADT (Seq ( ” l i s t ” ) ,
14 Seq ( ( ” n i l ” , CtorSignature (Seq ( ) , ADTSort ( 0 ) ) ) ,
15 ( ” cons ” , CtorSignature (Seq (
16 ( ” hd ” , OtherSort (Sort .Integer ) ) ,
17 ( ” t l ” , ADTSort ( 0 ) ) ) ,
18 ADTSort ( 0 ) ) ) ) )
19
20 val Seq (list ) = listADT .sorts
21 val Seq (nil , cons ) = listADT .constructors
22 val Seq (_ , Seq (hd , tl ) ) = listADT .selectors
23
24 SimpleAPI .withProver { p =>
25 import p ._
26
27 val n = createConstant ( ” n ” , Sort .Integer )
28 val x = createConstant ( ” x ” , list )
29 val y = createConstant ( ” y ” , list )
30 val r = createConstant ( ” r ” , list )
31
32 val C = createRelation ( ”C” , Seq (list , list , list ) )
33
34 val defClauses = List (
35 C (nil ( ) , y , y ) :- true ,
36 C (cons (n , x ) , y , cons (n , r ) ) :- C (x , y , r )
37 )
38
39 val prop =
40 (hd (x ) === hd (r ) | hd (y ) === hd (r ) ) :- (
41 C (x , y , r ) , r = /= nil ( ) )
42
43 SimpleWrapper .solve (prop : : defClauses ) match {
44 case Left (sol ) =>
45 println ( ” s a t ” ) ; println (sol mapValues (pp (_ ) ) )
46 case Right (cex ) =>
47 println ( ” u n s a t ” ) ; println (cex )
48 }
49 }
50 }

1 name := ” l i s t−e x a m p l e ”
2 scalaVersion := ” 2 . 1 1 . 8 ”
3 resolvers += ” u u v e r i f i e r s ” at ” h t t p : / / l o g i c r u n c h .←↩

r e s e a r c h . i t . uu . s e / maven / ”
4 libraryDependencies += ” u u v e r i f i e r s ” %% ” e l d a r i c a ” % ”←↩

2 . 0−alpha2 ”

1 // Output of the program
2 > sbt run
3 [ . . . ]
4 sat
5 Map (C / 3 -> _1 = _2 | hd (_2 ) = hd (_0 ) )
6 [ . . . ]

Fig. 7: Runnable ELDARICA example, analysing Horn clauses
over the data-type of lists. The program can be compiled
and run with the command sbt run, which takes care of
downloading all dependencies (including ELDARICA itself),
compilation, and execution.
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Benchmarks #
Int BV

ELDARICA Z3 ELDARICA Z3
sat/unsat sat/unsat sat/unsat sat/unsat

Consistency 56 27/27 28/27 5/16 0/0
HOLA [15] 46 45/0 36/0 29/4 1/0
IntDualyzer 6 5/1 5/1 3/3 1/0
SLayer (chain.) 68 0/6 17/34 0/2 10/28
SLayer (fan.) 66 0/6 20/31 0/0 15/24
qarmc 13 9/1 11/1 5/1 0/0
ssh-simplified 23 13/8 9/9 13/6 1/0

Fig. 8: Results for ELDARICA 2.0-alpha3 and Z3 4.7.1 on
integer and bit-vector benchmarks, an AMD Opteron 2220
SE machine, running 64-bit Linux and Java 1.8. Runtime was
limited to 30min wall clock time, and heap space to 2GB. The
table shows total number of benchmarks and the number of
the benchmarks that each solver could solve.

B. Bit-vectors

We show an example of Horn clauses over bit-vectors in
Figure 9. The overall structure of the program is similar
as in the previous section. Bit-vector expressions are again
constructed using the corresponding PRINCESS API, with the
bit-vector operators provided in class ModuloArithmetic.
The expression bv(32, n) generates the literal 32-bit con-
stant n, while bvadd represents bit-vector addition. More gen-
erally, the bit-vector API offers access to the complete SMT-
LIB bit-vector theory. The option useTemplates of the
SimpleWrapper enables interpolation abstraction, which is
in the API disabled by default.

V. EXPERIMENTAL RESULTS

Extensive experimental evaluations of ELDARICA have been
published in multiple recent research papers [29], [14], we
only report some experiments on some of the new features of
ELDARICA version 2. Figure 8 shows a comparison of ELDAR-
ICA 2.0-alpha36 and Z3 4.7.1 on integer and bit-vector bench-
marks. ELDARICA was run with the option -abstractPO,
and Z3 with default options.

We use a collection of benchmarks in linear integer arith-
metic from various sources.7 C programs from HOLA [15]
were first translated to NTS using Frama-C, and then to Horn
clauses by ELDARICA. Since there are not many benchmarks
for Horn clauses in bit-vector arithmetic, we wrote a script
to convert all the operations in linear integer arithmetic to
their equivalent bit-vector operations (32 bit signed). Using
the script we transformed the original linear integer arithmetic
benchmarks to bit-vector benchmarks. Of course, this can
potentially change the satisfiability of the original benchmark,
but it is useful for making a library of benchmarks of Horn
clauses in bit-vector arithmetic.

The experiments show that ELDARICA performs well on
most benchmark families. This might be due to the effec-
tive convergence heuristics in ELDARICA (Section II-C). An

6https://github.com/uuverifiers/eldarica/releases
7Benchmarks available at https://github.com/chc-comp/eldarica-misc and

https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/

1 // BV-example.scala
2
3 import ap .SimpleAPI
4 import ap .theories .ModuloArithmetic ._
5 import lazabs .horn .bottomup ._
6 import HornClauses ._
7 import ap .parser .IExpression ._
8
9 object BVExample extends App {
10 lazabs .GlobalParameters .get .assertions = false
11
12 SimpleAPI .withProver { p =>
13 import p ._
14
15 val x = createConstant ( ” x ” , UnsignedBVSort ( 3 2 ) )
16 val y = createConstant ( ” y ” , UnsignedBVSort ( 3 2 ) )
17
18 val C = createRelation ( ”C” ,
19 Seq (UnsignedBVSort ( 3 2 ) ,
20 UnsignedBVSort ( 3 2 ) ) )
21 val D = createRelation ( ”D” ,
22 Seq (UnsignedBVSort ( 3 2 ) ,
23 UnsignedBVSort ( 3 2 ) ) )
24
25 val defClauses = List (
26 C (bv ( 3 2 , 1 ) , bv ( 3 2 , 1 ) ) :- true ,
27 C (bvadd (x , bv ( 3 2 , 1 ) ) ,
28 bvadd (bv ( 3 2 , 1 ) , y ) ) :- C (x , y ) ,
29 D (x , y ) :- (C (x , y ) ,
30 x === bv ( 3 2 , 0 ) )
31 )
32
33 val prop =
34 (y === bv ( 3 2 , 0 ) ) :- D (x , y )
35
36 SimpleWrapper .solve (prop : : defClauses ,
37 useTemplates = true ) match {
38 case Left (sol ) =>
39 println ( ” s a t ” ) ; println (sol mapValues (pp (_ ) ) )
40 case Right (cex ) =>
41 println ( ” u n s a t ” ) ; println (cex )
42 }
43 }
44 }

1 name := ” e l d a r i c a−e x a m p l e ”
2 scalaVersion := ” 2 . 1 1 . 8 ”
3 resolvers += ” u u v e r i f i e r s ” at ” h t t p : / / l o g i c r u n c h .←↩

r e s e a r c h . i t . uu . s e / maven / ”
4 libraryDependencies += ” u u v e r i f i e r s ” %% ” e l d a r i c a ” % ”←↩

2 . 0−alpha2 ”

1 // Output of the program
2 > sbt run
3 [ . . . ]
4 sat
5 Map (C / 2 -> _0 = _1 , D / 2 -> _1 = 0 & _0 = 0)
6 [ . . . ]
7 >

Fig. 9: Runnable ELDARICA example, analysing Horn clauses
over bit-vectors. As in Figure 7, the program can be compiled
and run with the command sbt run.
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exception are the benchmarks in the SLayer families, which
are solved more efficiently by Z3, possibly due to a large
number of Boolean relation symbols arguments. Converting
the problems to bit-vector semantics tends to produce harder
benchmarks for both solvers. On many families ELDARICA
can still solve a comparable number of problems, but generally
fewer than with integer semantics.

VI. ADOPTION

ELDARICA has been used in a variety of applications, we
list some examples. CoCoSim [2] is an analysis and code
generation framework for Simulink that uses ELDARICA as
one possible back-end. Similarly, JayHorn [27], a software
model checking tool for Java supports ELDARICA as one
of its back-ends. VAC [18] (Verifier of Access Control) an
automatic tool for the analysis of Administrative Role Based
Access Control (ARBAC) policies also relies on ELDARICA
for solving Horn clauses. ELDARICA has also been used for
the analysis of business processes expressed as Petri nets [29].

VII. CONCLUSIONS

ELDARICA is an efficient open source Horn solver sup-
porting integer arithmetic, arrays, algebraic data types, and
bit-vectors. It supports various input formats including SMT-
LIB, Prolog, and numerical transition systems, and provides
a Scala API. Future work includes (i) integration of further
background theories, (ii) further improved heuristics to solve
Horn clauses while avoiding divergence, (iii) generation of
quantified solutions for problems with algebraic data types,
and (iv) optimisation.
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Abstract—We introduce TRAU, an SMT solver for an ex-
pressive constraint language, including word equations, length
constraints, context-free membership queries, and transducer
constraints. The satisfiability problem for such a class of con-
straints is in general undecidable. The key idea behind TRAU is
a technique called flattening, which searches for satisfying assign-
ments that follow simple patterns. TRAU implements a Counter-
Example Guided Abstraction Refinement (CEGAR) framework
which contains both an under- and an over-approximation
module. The approximations are refined in an automatic manner
by information flow between the two modules. The technique
implemented by TRAU can handle a rich class of string constraints
and has better performance than state-of-the-art string solvers.

I. INTRODUCTION

The recent years have seen a wealth of research on string
constraints, in particular in the form of SMT solvers that can
efficiently check satisfiability of quantifier-free formulas over
a background theory of strings and regular expressions (e.g.,
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]). String solvers
can be applied in a variety of verification approaches, for
instance in software model checking to take care of implication
and path feasibility checks; the most widespread adoption has
occurred in the area of security analysis for languages like
JavaScript and PHP, for instance to discover information leaks
or vulnerability to injection attacks (e.g., [12], [13], [14]). To
process constraints from those domains, it is necessary for
string solvers to handle a delicate combination of (theoretically
and practically) highly challenging operations: concatena-
tion in word equations, to model assignments in programs;
context-free grammar, to model properties or attack patterns;
string length, to express string manipulation in programs; and
transduction, to express sanitisation, escape operations, and
replacement operations in strings. Since the full combination
of those theories is known to be undecidable, many SMT
solvers are complete only for certain fragments of the full
logic.

In this paper, we present TRAU, an SMT solver for string
constraints, that can handle all of the above mentioned
operations. TRAU implements the framework of Counter-
Example Guided Abstraction Refinement (CEGAR) proposed
in [8]. This framework contains both an under- and an over-
approximation module. The key idea behind TRAU is a tech-
nique called flattening [8]. It is based on the observation that

both satisfiability and unsatisfiability of common constraints
can be shown through witnesses of simple patterns that can
be captured by flat languages (i.e., a language consisting of
the set of words in w∗

1w
∗
2⋯w∗

n where w1,w2, . . . ,wn are
finite words). Compared to [8], TRAU implements several
optimizations that are keys to its current efficiency (namely,
a precise and efficient over-approximation module and a
better strategy for splitting equalities). Furthermore, TRAU can
handle efficiently the case of transduction, which is the string
operation that is currently least well supported in existing
string solvers, albeit extremely important for security analysis,
and often a bottleneck in applications. (Observe that the tool
in [8] does not support transducer constraints.) We show
that transduction can elegantly be reduced to context-free
membership constrains. In fact, the technique implemented by
TRAU can handle a rich class of string constraints and has
better performance than state-of-the-art string solvers.

Related Work. During the last years, several SMT solvers for
strings and related logics have been introduced. A number of
tools handle string constraints, including context-free member-
ship, by fixing an upper bound on the length of the possible
solutions (e.g., [1], [12], [13], [15], [16]). In contrast, the
under-approximation module of TRAU does not impose any
bound on the length of solutions but rather limits the search
only for solutions that belong to flat languages in a similar
manner to [8]. More recently, DPLL(T)-based string solvers
lift the restriction of strings of bounded length; this generation
of solvers includes Z3-str [3], CVC4 [5], S3 [4], Norn [17],
and Sloth [11]. Most of those solvers are more restrictive than
TRAU in their support for language constraints. To the best
of our knowledge, TRAU and Hampi [1] are the only string
solvers which can handle context-free membership constraints.
Observe that TRAU does not impose any bound on the length
of the solutions while Hampi does. Furthermore, TRAU im-
plements a DPLL(T)-style proof procedure for strings in a
similar manner to [17] in order to gain in efficiency. Another
related technique are automata-based solvers for analyzing
string-manipulated programs (e.g., [2], [6], [18]). However,
many kinds of constraints, including length constraints, word
equations, and context-free grammars, cannot be handled by
such automata-based solvers in a complete manner. Compared
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to [8], TRAU implements several optimizations, including a
DPLL(T)-style proof procedure, that are keys to its current
efficiency. Furthermore, TRAU supports transducer constraints
which is not the case of [8].

II. PRELIMINARIES

Let Σ be a finite alphabet. We use Σ∗ to denote the set
of finite words over Σ, and use ε to denote the empty word.
For a word w ∈ Σ∗, we use length (w) to denote the length
of w. We denote by wR the reverse image of w. A language
L ⊆ Σ∗ is said to be (p,q)-flat, for some p,q ∈ N, if there are
words w1,w2, . . . ,wq ∈ Σ∗ such that length (wi) ≤ p for all
i ∶ 1 ≤ i ≤ q, and L = (w1)∗ ⋅ (w2)∗⋯(wq)∗.

A Context-Free Grammar (CFG) is defined by a quadrupleG = ⟨N,T,P,S⟩ where N is a finite set of non-terminals, T is
a finite set of terminals, P is a finite set of productions, and
S ∈ N is the start symbol. The language L(G) of the grammarG is defined in the standard manner.

A Pushdown Automaton (PDA) is defined by P =⟨Q,Σ,Γ,∆, qinit, qacc⟩ where Q is a finite set of states, Σ
is a finite input alphabet, Γ is a stack alphabet, ∆ ⊆ (Q×Γ∗ ×(Σ ∪ {ε}) × Γ∗ × Q) is a finite set of transitions, qinit ∈ Q
is the initial state, and qacc ∈ Q is the accepting state. The
language L(P) of the pushdown automaton P is defined in
the standard manner (where the stack content is empty at
the initial and final configurations). It is well-known that the
class of languages accepted by pushdown automata and the
one accepted by context free grammars coincide (i.e., given
a pushdown automaton P (resp. a context-free grammar G),
one can construct a context-free grammar G (resp. a pushdown
automaton P) such that L(P) = L(G)).

A Finite-State Transducer is T = ⟨Q,Σ,∆, qinit , qacc⟩,
where Q is a finite set of states, Σ is a finite alphabet,
∆ ⊆ Q × (Σ ∪ {ε}) × (Σ ∪ {ε}) ×Q is the transition relation,
qinit ∈ Q is the initial state, and qacc ∈ Q is the accepting state.
For words w1,w2 ∈ Σ∗, we write w2 ∈ T (w1) to denote that
there is a sequence q0 ⟨a1, b1⟩ q1 ⟨a2, b2⟩⋯ ⟨an, bn⟩ qn such
that q0 = qinit , qn = qacc , ⟨qi, ⟨ai+1, bi+1⟩ , qi+1⟩ ∈ ∆ for all
i ∶ 0 ≤ i < n, w1 = a1a2⋯an, and w2 = b1b2⋯bn.

III. THE STRING CONSTRAINT LANGUAGE

In this section, we define string constraints over a finite
alphabet Σ and a finite set of variables X ranging over Σ∗.

ψ ::= φ ∣ ψ ∧ ψ
φ ::= φs ∣ φi ∣ φt ∣ φg
φs ::= trs = trs ∣ trs ≠ trs
φt ::= trs ∈ T (trs)
φg ::= trs ∈ G
φi ::= tri ≥ tri
trs ::= w ∣ x ∣ trs ● trs
tri ::= length (trs) ∣ k

Fig. 1: Constraint Syntax

The syntax
of a formula
ψ is given in
Figure 1. ψ is
given in the
conjunctive
normal form
where each
literal clause
can be either
a string (dis-
)equality φs,
a context-free

Over-Approx

Z3

Under-Approx

ψ, Covered = ∅
UNSAT

SAT ⟨p,q⟩

ϕ

UNSAT

Covered← {⟨p,q⟩}

Fig. 2: Architecture of TRAU

membership φg , a transducer constraint φt or an arithmetic
constraint φi. A string equality (resp. disequality) is of the
form trs = trs (resp. (trs ≠ trs)) where trs is a (string) term.
Each string term trs is a sequence composed of variables in
X and symbols from Σ.

Formally, a string term is either a word w ∈ Σ∗, a string
variable x ∈ X or a concatenation of two string terms. A
transducer constraint is of the form trs ∈ T (trs) where T is
a transducer and trs is a string term. A context-free grammar
membership constraint is of the form trs ∈ G where G is a
context-free grammar and trs is a string term. An arithmetic
constraint φi is a relational expression between two integer
terms tri where an integer term is either the length of a string
term length (trs) or an integer k.

The formula ψ is said to be satisfiable iff there is an
interpretation η ∶ X ↦ Σ∗ such that η satisfies ψ. Otherwise,
it is said to be unsatisfiable.

IV. ARCHITECTURE OVERVIEW

In this section, we present the architecture of our tool TRAU
which checks the satisfiability of string constraint formulae (as
defined in Section III). The architecture of TRAU is shown in
Figure 2. TRAU consists of two main modules, namely the
Over-Approx module and the Under-Approx module. It uses
the SMT solver Z3 to handle arithmetic constraints.

The Over-Approx module takes as input a formula ψ and
a finite set Covered ⊆ N2 of (abstract) parameters. The set
Covered is empty at the beginning. This set stores abstract
parameters used by the Under-Approx module to check the
satisfiability in previous iterations. The Over-Approx then
constructs an over-approximation ψ′ of ψ. The formula ψ′
is constructed such that it falls in the decidable fragment
of the theory of strings with regular membership constraints
and length constraints [7]. Thus, we are able to apply similar
techniques as the ones used in Norn [7] to check the satisfia-
bility of ψ′. If ψ′ is unsatisfiable, then ψ is unsatisfiable, and
TRAU terminates. If ψ′ is satisfiable, a satisfying assignment
for ψ′ is returned. Then we extract an abstract parameter
α = ⟨p,q⟩ ∈ N2 from the satisfying interpretation η ∶ X ↦ Σ∗
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as follows: α is one of minimal pairs such that for any variable
x ∈ X, the word η(x) belongs to an α-flat language [8].

The Under-Approx module takes as input the abstract pa-
rameter α and the set of constraints ψ. It limits the search
only for solutions of ψ that belong to an α-flat language. By
[8], checking the existence of a solution ψ that belongs to an
α-flat language can be reduced to the satisfiability problem
of an existential Presburger formula. Therefore, the Under-
Approx module produces as output an existential Presburger
formula ϕ such that ϕ is satisfiable iff there is an interpretation
η ∶ X↦ Σ∗ such that η satisfies ψ and for every variable x ∈ X,
we have that η(x) belongs to an α-flat language.

Then, Z3 checks the satisfiability of the existential Pres-
burger formula ϕ. If Z3 returns that ϕ is satisfiable, then
we deduce that ψ is also satisfiable. In that case, we can
even construct an interpretation η that satisfies ψ, and TRAU
terminates. In the case Z3 returns that ϕ is unsatisfiable, we
are unable to find a solution of ψ that is accepted by an α-
flat language. Thus, α is added to the set Covered and the
control is given back to the Over-Approx module to produce
a new pair α which is not in Covered (by requiring that the
solutions do not belong to an α-flat language).

V. EFFICIENT HANDLING OF TRANSDUCER CONSTRAINTS

TRAU handles transducer constraints differently from the
method presented in [8]. Rather than extending the Under-
Approx module to transducers, we transform transducer con-
straints to context-free membership constraints. Let ψ be a
string constraint and let φt be a transducer constraint appearing
in ψ. Let us assume that φt is of the form t′ ∈ T (t) whereT = ⟨Q,Σ,∆, qinit , qacc⟩ is a transducer and t and t′ are
string terms. In order to construct the context-free membership
constraints, we first construct a pushdown automaton P such
that a word w is accepted by P iff there are two words
u and v such that u ∈ T (v) and w = v ⋅ ♯ ⋅uR where♯ is a fresh symbol (not in Σ). The pushdown automatonP = ⟨Q ∪ {qfinal},Σ ∪ {♯},Σ,∆′, qinit, qfinal⟩ has the same
set of states as T plus one extra accepting state qfinal ∉ Q.
Any accepting run of P can be split into two phases. In the first
phase, the pushdown automaton simulates the transducer by:(i) performing the same changes on the state, (ii) reading the
same input letter, and (iii) pushing into the stack the output
letter read by the transducer. Formally, for each transition⟨q, ⟨a, b⟩ , q′⟩ of T , the pushdown automaton P has a transition
of the form ⟨q, ε, a, b, q′⟩. At the end of this phase, the push-
down automaton reaches the same state as the transducer, reads
the same input word, and stores the output word read by the
transducer into its stack. The second phase of the pushdown
automaton P starts, in non-deterministic manner, when its
current state is qacc. First, the pushdown moves its state from
qacc to qfinal while reading the special ♯ (i.e., the pushdown
automaton P has the following transition ⟨qacc, ε, ♯, ε, qfinal⟩).
From the state qfinal, the pushdown automaton P starts
emptying its stack while reading each popped symbol (i.e.,
the pushdown automaton P has a transition of the form⟨qfinal, a, a, ε, qfinal⟩ for each letter a ∈ Σ). It is easy to see

that a word w is in L(P) iff there are two words u and v
such that u ∈ T (v) and w = v ⋅ ♯ ⋅uR.

Let G be a context-free grammar that accepts the same
language as the pushdown automaton P (i.e., L(G) = L(P)).
Let G1 (resp. G2) be the context-free grammar that accepts
exactly the following set of words {w ⋅ ♯ ⋅wR ∣w ∈ Σ∗} (resp.
Σ∗).

Now, we can replace the transducer constraint φt by the
conjunction of the following context-free membership con-
straints: t ⋅ ♯ ⋅y ∈ G, y ⋅ ♯ ⋅t′ ∈ G1 and t ⋅ y ⋅ t′ ∈ G2 where
y is a fresh variable. Observe that we need the constraint
t ⋅ y ⋅ t′ ∈ G2 to enforce that the interpretations η(y), η(t),
and η(t′) are over the alphabet Σ (since the alphabet of the
newly constructed formulas is {Σ ∪ ♯}). Let us assume that
ψ′ is the string constraint obtained from ψ by replacing any
transducer constraint by the conjunction of the three context-
free membership constraints (constructed as described above).
Then, it is easy to see that ψ is satisfiable iff ψ′ is satisfiable.

VI. OPTIMIZING THE OVER-APPROXIMATION MODULE

Suppose that we have a constraint formula ψ together with
a set Covered ⊆ N2 of parameter values. We assume w.l.o.g.
that ψ does not contain any transducer constraints (see Section
V). The over-approximation module in [8] proceeds as follows:
First, it replaces any context-free membership constraint of the
form trs ∈ G in ψ by a constraint of the form trs ∈ L where
L is a regular language accepting the upward closure of L(G)
[19], [20]. Then, it limits the search only for solutions that do
not belong to any α-flat language with α ∈ Covered. Finally,
it replaces any occurrence of a variable x by a fresh copy
of x that satisfies the same word equation, membership and
length constraints as x. The resulting string constraints falls
in the decidable fragment of the theory of strings [7], [17].
In contrast, TRAU adopts a lazy approach in the replacement
of variables. More precisely, TRAU starts by choosing an
occurrence of a variable x to replace by a fresh copy that
satisfies the same membership and length constraints. Then,
TRAU checks if the resulting string constraint satisfies the
acyclicity condition of [7], [17]. If it is the case then the
replacement procedure terminates. Otherwise, TRAU chooses
another occurrence of a variable to replace by a fresh copy.

VII. OPTIMIZING THE UNDER-APPROXIMATION MODULE

We present one important optimization that TRAU imple-
ments. This optimization significantly improves the Under-
Approx module (implemented in [8]) when applied to equality
constraints. In practice, after flattening an equality constraint
(i.e., computing a finite-state automaton that characterizes the
intersection of flat languages), the size of the constructed
automaton A could become fairly large. Consequently, the
arithmetic SMT solver may have poor performance when
checking the satisfiability of the constructed existential Pres-
burger formula characterizing the Parikh image [21], [22] of
A. We found that problem can be improved by combining the
flattening technique proposed in [8] with the DPLL(T)-style
proof procedure and the length-guided splitting of equalities
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CVC4 Z3-str3 S3P TRAU-PRE TRAU

sat 35235 34495 35264 35202 35264
unsat 12014 11799 12014 12019 12014
timeout 35 350 6 63 6Kaluza suite

error/unknown 0 640 0 0 0
sat 7 8 6 - 8
unsat 4 4 1 - 4
timeout 0 0 5 - 0PISA suite

error/unknown 1 0 0 - 0
sat 7 8 6 - 8
unsat 0 0 0 - 0
timeout 1 0 1 - 0AppScan suite

error/unknown 0 0 1 - 0
sat - - 3 - 11
unsat - - 10 - 2
timeout - - 0 - 4Transducer suite

error/unknown - - 4 - 0
sat 618 605 - - 723
unsat 160 190 - - 261
timeout 247 207 - - 0StringFuzz suite

error/unknown 0 23 - - 41

TABLE I: Experimental results. All satisfying results of TRAU are cross-checked by S3P to guarantee correct solutions. Runtime
was limited to 20s for the Kaluza, PISA, AppScan, StringFuzz suites and to 100s for the Transducer suite. The row “(un)sat”
indicates the number of benchmarks for which the solvers report (un)satisfiable.

procedure used in [7]. This is mainly due to the fact that we
limit the search for solutions that belong to α-flat languages.

Fix a set of constraints ψ, a finite set of variables X, and
an abstract parameter α = ⟨p,q⟩. To handle the equality con-
straints efficiently, we proceed as follows: First, we construct
the string constraint ψ′ by replacing any occurrence of a
variable x in ψ, that belongs to an (p,q)-flat language, by
x1 ⋅x2⋯xq where x1, x2, . . . , xq are fresh variables that belong
to (p,1)-flat languages. Assume w.l.o.g that ψ′ contains an
equality constraint φs of the form x1⋯xm = y1 ⋅ y2⋯yn.
Observe that x1, . . . , xm, y1, . . . , yn belong to (p,1)-flat lan-
guages. Then, for every j ∶ 1 ≤ j ≤ m (resp. i ∶ 1 ≤ i ≤ n),
we construct a string constraint ϕ (resp. ϕ′) from ψ′ by: (1)
deleting the equality constraint φs from ψ′, (2) replacing
any occurrence of the variable y1 (resp. x1) by x1 ⋅ x2⋯xj
(resp. y1 ⋅ y2⋯yi), and (3) adding the equality constraint
xj+1⋯xm = y2⋯yn (resp. x2⋯xm = yi+1⋯yn). For each string
constraint ϕ (resp. ψ′), we repeat the procedure of splitting
of the equality constraints until the obtained string constraint
does not contain equality constraints. Finally, we declare the
string constraint ψ to be satisfiable if one of the constructed
string constraints is satisfiable; otherwise we add the abstract
parameter α = ⟨p,q⟩ to the set Covered.

Observe that such a splitting strategy will limit the search
space for solutions to a subset of (p,q)-flat languages. How-
ever, this is not a restriction since if ψ is satisfiable then for
the abstract parameter α = ⟨1,q⟩, with q is the maximal length
of the strings appearing in a satisfying assignment of ψ, the
splitting strategy will lead to a satisfiable string constraint.

This splitting strategy is also significantly improved by
using a DPLL(T)-Style proof procedure and a length-guided
splitting procedure as in [7].

VIII. EXPERIMENTAL RESULTS

In this section, we describe the experimental evaluation of
the TRAU solver to validate the effectiveness of the techniques
presented in the paper. We have implemented TRAU as an
open source solver and used Z3 [23] as the SMT solver
to handle generated arithmetic constraints from the Under-
Approx module. TRAU takes inputs in SMTLIB format. TRAU
does not run any parts concurrently to boost the performance.
We compare TRAU against four other state-of-the-art string
solvers, namely Z3-str3 [10], CVC4 [5], [24] (the newest
version), S3P [25], and TRAU-PRE [26]. We do not compare
with Sloth [11] since it does not support length constraints
which disqualifies it in a majority of our test cases. For our
comparison with Z3-str3, we use the version that is part of Z3
4.6. Each benchmark suite draws from real world applications
with diverse characteristics. The summary of the results is
given in Table I. All experiments were performed on an Intel
Core i7 2.7Ghz with 8 GB of RAM. In most experiments, the
time limit is 20s since it is widely used in the evaluation of
other string solvers.

Kaluza suite. The Kaluza suite [12] is generated by a
JavaScript symbolic execution engine. It consists of 47284 test
cases, including length, regular and (dis)equality constraints.
For this suite, CVC4 times out on 35 cases while TRAU-PRE
times out on 63 cases. Z3-str3 times out on 350 cases and
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cannot answer on 640 cases. TRAU and S3P have the same
performance, which is better than the other solvers as they
time out only in 6 cases. When increasing the timeout to 40s,
TRAU can solve all the remaining cases (they all are sat cases)
while other solvers cannot.

PISA and AppScan suite. The PISA suite includes constraints
from real-world Java sanitizer methods that were used in the
evaluation of the PISA system [27]. The suite has 12 tests,
including transducer constraints such as Substring, IndexOf,
and Replace operations. The AppScan suite is derived from
security warnings output by IBM Security AppScan Source
Edition [28]. The suite has 8 tests, including transducer
constraints and (dis)equality constraints. In both suites, the
performance of TRAU is comparable to Z3-str3 (they are able
to solve all test cases). CVC4 cannot give an answer for 1 test
case in each suite. TRAU-PRE cannot run these suites since it
does not support transducer constraints.

Transducer suite. The Transducer suite is inspired by the
Google closure library [29], which supports sanitizing strings
to protect websites from vulnerabilities. The suite has 17
tests, including transducer constraints such as Replace and
ReplaceAll. Since only S3P and TRAU support ReplaceAll
constraints, we do not include Z3-str3, CVC4, and TRAU-PRE
in this comparison. Within the time limit, TRAU showed the
satisfiability of 11 tests while S3P did it only for 3 tests.

StringFuzz suite. StringFuzz [30] is a fuzzer for automatically
generating SMT-LIB string constraints. StringFuzz can help
in exposing bugs and performance issues for string solvers.
We use StringFuzz to generate 1025 tests including word
(dis)equalities and regular membership constraints. These gen-
erated tests consist of a combination of small and large
examples (in terms of the number of used variables and
expected lengths of satisfying string assignments). TRAU can
solve 984 tests (of them 723 tests are sat and 261 tests are
unsat) in the suite. CVC4 and Z3-str3 can determine the
satisfiability of only 778 and 795 tests, respectively. We do
not run S3P and TRAU-PRE because they do not support some
constraints in the suite. TRAU gives up in 41 tests containing
non-membership constraints that are currently not supported.
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Abstract—A Constrained Horn Clause (CHC) is a logical
implication involving unknown predicates. Systems of CHCs are
widely used to verify programs with arbitrary loop structures:
interpretations of unknown predicates, which make every CHC
in the system true, represent the program’s inductive invariants.
In order to find such solutions, we propose an algorithm based
on Syntax-Guided Synthesis. For each unknown predicate, it
generates a formal grammar from all relevant parts of the
CHC system (i.e., using syntax). Grammars are further enriched
by predicates and constants guessed from models of various
unrollings of the CHC system (i.e., using data). We propose an
iterative approach to guess and check candidates for multiple
unknown predicates. At each iteration, only a candidate for one
unknown predicate is sampled from its grammar, but then it gets
propagated to candidates of the remaining unknowns through
implications in the CHC system. Finally, an SMT solver is used to
decide if the system of candidates contributes towards a solution
or not. We present an evaluation of the algorithm on a range
of benchmarks originating from program verification tasks and
show that it is competitive with state-of-the-art in CHC solving.

I. INTRODUCTION

To formally prove that a program meets a given safety
specification, one needs to discover inductive invariants for
every loop that appears in the program. Each loop invariant
safely approximates the set of program states reachable before
and after the corresponding loop. However, it is hard to
synthesize them in isolation: if there is a program path through
two loops, then invariants for these loops are likely related.
For existing approaches to invariant synthesis, the increase
in complexity of loop structure enlarges the search space
drastically and lowers the chances of finding a suitable system
of invariants.

We view the task of program verification as an instance of
a more general problem of Constrained Horn Solving (e.g.,
[1], [2], [3], [4], [5], [6]). It takes as input a set of logical
implications, called Constrained Horn Clauses (CHCs), over a
set of unknown predicates, and aims at either finding a suitable
interpretation for all predicates, that makes all implications
true or showing that no such interpretation exists. Therefore,
a conventional formulation of the invariant synthesis task for a
transition system is an instance of the CHC task itself, which
involves only one unknown predicate.

In this work, we present an algorithm for solving CHC
tasks of arbitrary structure. It is based on a recently proposed
solution for the CHC task for transition systems [7], [8],
[9]; and it relies on a paradigm of Syntax-Guided Synthesis
(SyGuS) [10]. In our context, each unknown predicate of

the CHC system gets its own formal grammar that encodes
the search space for a solution. Then, candidate formulas are
sampled from the corresponding grammars and substituted in
the CHC system, and the resulting formulas are checked by a
Satisfiability Modulo Theories (SMT) solver for validity.

Our central idea behind the grammar construction is to use
both syntax and data. In particular, this process relies on 1)
pre-computed predicates obtained by parsing the interpreted
parts of the CHC system, and 2) pre-computed predicates
and constants synthesized from various traces (i.e., models
of unrollings) of the CHC system. With these ingredients at
hand, a single grammar per unknown predicate is created. By
construction, it describes all the pre-computed predicates and
possibly more. The use of syntax and data to obtain grammars
are complementary to one another. Using syntax makes a
number of useful candidates readily available that may be
computationally expensive to derive from data. Whereas using
data provides meaningful semantic candidates that the CHC
system may be syntactically oblivious to.

However, the need to synthesize interpretations for multiple
unknowns from multiple grammars produces a bottleneck: all
candidates should be consistent with each other. That is, each
pair of candidates for two unknowns that might appear in one
CHC should make the CHC true. It is hard to enforce this
requirement in practice: usually, either one or both candidates
would be withdrawn and re-synthesized – this would make our
algorithm inefficient. Instead, our algorithm exploits a more
accurate approach to sampling: it generates a candidate for
one unknown predicate at a time, and then propagates it to
candidates of the remaining unknowns through all possible
implications in the CHC system.

In comparison to existing approaches to CHC solving, our
approach has several unique features. First, to the best of our
knowledge, it exploits data more extensively than any other
tool: it allows generating candidates on the fly, for which
it gets models from various formulas obtained from CHCs.
Furthermore, our algorithm does not necessarily consider
candidates of a fixed predetermined shape: due to the use
of grammars to learn candidates, the shape of pre-computed
predicates (using syntax and data) is modified during the run
of the algorithm. Compared to the algorithm of generating data
candidates for transition systems [9], our algorithm explores
unrollings modularly (i.e., for each loop in isolation), and thus
it avoids SMT solving for potentially large formulas.

Finally, our approach does not involve a potentially expen-
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sive fixed-point computation. Although our propagation rou-
tine is algorithmically similar to that in Generalized Property
Directed Reachability [1], [4], we do not apply it recursively.
Thus, our algorithm can never diverge while unwinding loops.
The tradeoff is that our approach is not guaranteed to find
an invariant, but it often does due to the rich grammars we
generate, as shown in our experimental evaluation.

Our algorithm has been implemented on top of FREQHORN,
a SyGuS-based CHC solver [7]. We have evaluated its ef-
fectiveness on a range of benchmarks originated from the
verification tasks (i.e., programs with two or more loops and
their safety specifications). Compared to state-of-the-art, our
prototype exhibits a competitive performance and delivers
results for most of the examples where the competing tools
diverge. Our tool is particularly effective while discovering
complex invariants over non-linear arithmetic.

The rest of the paper is structured as follows. Sect. II
gives definitions, notation, and useful lemmas. Then, Sect. III
presents our algorithm for a SyGuS-based CHC solver, driven
by syntax, data and the candidate propagation. Finally, Sect. IV
summarizes the evaluation, Sect. V outlines the related work,
and Sect. VI concludes the paper.

II. PRELIMINARIES

For a given formula 𝜙 in a first-order theory T , the
Satisfiability Modulo Theories (SMT) task is to decide whether
there is an assignment 𝑚 of values to variables in 𝜙 that makes
𝜙 true. If every satisfying assignment to 𝜙 is also a satisfying
assignment to some formula 𝜓, we write 𝜙=⇒ 𝜓. By ⊤ and
⊥ we denote constants true and false, respectively. By Expr
we denote a space of all possible quantifier-free formulas in
T and by Vars a range of possible variables in T .

A. Constrained Horn Clauses

Definition 1. A linear constrained Horn clause (CHC) over
a set of uninterpreted relation symbols R is a formula in
first-order logic that has the form of one of three implications
(called respectively a fact, an inductive clause, and a query):

𝜙(𝑥1) =⇒ 𝑖𝑛𝑣1(𝑥1)

𝑖𝑛𝑣1(𝑥1)∧𝜙(𝑥1, 𝑥2) =⇒ 𝑖𝑛𝑣2(𝑥2)

𝑖𝑛𝑣1(𝑥1)∧𝜙(𝑥1) =⇒⊥

where 𝑖𝑛𝑣1, 𝑖𝑛𝑣2 ∈ R are uninterpreted symbols, 𝑥1, 𝑥2 are
vectors of variables, and 𝜙, called a body, is a fully interpreted
formula (i.e., 𝜙 does not have applications of 𝑖𝑛𝑣1 or 𝑖𝑛𝑣2).

For a CHC 𝐶, by src(𝐶) we denote an application of 𝑖𝑛𝑣 ∈
R in the premise of 𝐶 (if 𝐶 is a fact, we write src(𝐶)

def
= ⊤).

Similarly, by dst(𝐶) we denote an application of 𝑖𝑛𝑣 ∈ R in
the conclusion of 𝐶 (if 𝐶 is a query, we write dst(𝐶)

def
= ⊥).

We define functions rel and args , such that for each 𝑖𝑛𝑣(�⃗�),
rel(𝑖𝑛𝑣(�⃗�))

def
= 𝑖𝑛𝑣 and args(𝑖𝑛𝑣(�⃗�))

def
= �⃗�. For a CHC 𝐶,

by body(𝐶) we denote the body (i.e., 𝜙) of 𝐶.

Example 1. Fig. 1 shows a small C-like program1 with three
loops and its CHC-encoding. Each loop corresponds to one of
the uninterpreted relation symbols R = {𝑖𝑛𝑣1, 𝑖𝑛𝑣2, 𝑖𝑛𝑣3}.
CHC A encodes the initial assignments to variables (including
a nondeterministic choice for 𝑚 and 𝑛) and assumptions over
values of 𝑚 and 𝑛. CHCs B, D, and F encode bodies of the
first, the second, and the third loops, respectively. In order
to represent a nondeterministic conditional in the first loop,
CHC B contains the disjunction of encodings of both branches.
CHCs C and E encode the fragments of the program between
loops. Importantly, they include negations of the guards of
preceding loops. Finally, CHC G encodes the negation of the
assertion and the negation of the guard of the last loop.

Linear CHCs can encode programs with nested loops, but
cannot encode programs with non-inlined function calls2. For
simplicity of presentation, the paper considers systems of
CHCs that have only one query.

Definition 2. Given a set of uninterpreted relation symbols R
and a set 𝑆 of CHCs over R we say that 𝑆 is satisfiable if
there exists an interpretation for each 𝑖𝑛𝑣 ∈ R that makes
all implications in 𝑆 valid.

Strictly speaking, an interpretation assigns to each symbol
𝑖𝑛𝑣 ∈ R with arity 𝑛 a relation over 𝑛-tuples. This relation
can be represented by a formula 𝜙 over (at most) 𝑛 free
variables, denoted fv(𝜙) ⊆ Vars . In a specific application
of 𝑖𝑛𝑣 to arguments �⃗�, the free variables of 𝜙 are substituted
by �⃗�.

Example 2. The system of CHCs in Fig. 1 is satisfiable
(which means the program is safe), and a possible solution
maps uninterpreted symbols to their interpretations as follows:
𝑖𝑛𝑣1 ↦→ 𝑥+ 𝑦 + 𝑛 = 𝑚, 𝑖𝑛𝑣2 ↦→ (𝑥+ 𝑦 + 𝑛 = 𝑚 ∧ 𝑛 = 0),
and 𝑖𝑛𝑣3 ↦→ (𝑥+ 𝑦 + 𝑛 = 𝑚 ∧ 𝑛 = 0 ∧ 𝑥 = 0).

B. Unrolling of CHCs

The following is built on ideas from Bounded Model
Checking (BMC) [11] which aims at exploring finite length
traces of programs.

Definition 3. Given a system 𝑆 of CHCs over R , an un-
rolling of 𝑆 of length 𝑘 is a conjunction 𝜋⟨𝐶0,...,𝐶𝑘⟩

def
=⋀︀

0≤𝑖≤𝑘
body(𝐶𝑖)(�⃗�𝑖, ⃗𝑥𝑖+1), such that 1) each 𝐶𝑖 ∈ 𝑆, 2)

for each pair 𝐶𝑖 and 𝐶𝑖+1, rel(dst(𝐶𝑖)) = rel(src(𝐶𝑖+1)),
and variables of each 𝑥𝑖 are shared only between
body(𝐶𝑖−1)(�⃗�𝑖−1, 𝑥𝑖) and body(𝐶𝑖)(�⃗�𝑖, ⃗𝑥𝑖+1).

Note that Def. 3 gives a more general notion of unrolling
than it is customary for BMC. In particular, it allows the first
step 𝐶0 to be taken from an arbitrary place of the CHC system,
i.e., 𝐶0 is not necessarily a fact. We can consider unrollings,
search for their models, and generate so called behavioral

1Because the presentation of our approach in terms of CHCs could be
difficult to comprehend (e.g., notation is heavyweight in parts), here and
throughout the paper we bring the analogy with program verification.

2We elaborate on the case with nonlinear CHCs in Sect. III-F.
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int x = 0, y = 0;
int m = n = nondet();
assume (m >= 0);
while (n != 0) {
n--;
if (nondet()) x++;
else y++;

}
while (x != 0) { m--; x--; }
while (y != 0) { m--; y--; }
assert (m == 0);

(A) 𝑥′= 0∧𝑦′= 0∧𝑚′= 𝑛′∧𝑚′ ≥ 0 =⇒ 𝑖𝑛𝑣1(𝑥
′,𝑦′,𝑚′,𝑛′)

(B) 𝑖𝑛𝑣1(𝑥,𝑦,𝑚,𝑛)∧¬(𝑛 = 0)∧𝑛′= 𝑛−1∧𝑚′= 𝑚∧
(︁
(𝑥′= 𝑥+1∧𝑦′= 𝑦)∨(𝑥′= 𝑥∧𝑦′= 𝑦+1)

)︁
=⇒ 𝑖𝑛𝑣1(𝑥

′,𝑦,′𝑚′,𝑛′)

(C) 𝑖𝑛𝑣1(𝑥,𝑦,𝑚,𝑛)∧(𝑛 = 0)∧𝑛′= 𝑛∧𝑚′= 𝑚∧𝑥′= 𝑥∧𝑦′= 𝑦 =⇒ 𝑖𝑛𝑣2(𝑥
′,𝑦,′𝑚′,𝑛′)

(D) 𝑖𝑛𝑣2(𝑥,𝑦,𝑚,𝑛)∧¬(𝑥 = 0)∧𝑛′= 𝑛∧𝑚′= 𝑚−1∧𝑥′= 𝑥−1∧𝑦′= 𝑦 =⇒ 𝑖𝑛𝑣2(𝑥
′,𝑦,′𝑚′,𝑛′)

(E) 𝑖𝑛𝑣2(𝑥,𝑦,𝑚,𝑛)∧𝑥 = 0∧𝑛′= 𝑛∧𝑚′= 𝑚∧𝑥′= 𝑥∧𝑦′= 𝑦 =⇒ 𝑖𝑛𝑣3(𝑥
′,𝑦,′𝑚′,𝑛′)

(F) 𝑖𝑛𝑣3(𝑥,𝑦,𝑚,𝑛)∧¬(𝑦 = 0)∧𝑛′= 𝑛∧𝑚′= 𝑚−1∧𝑥′= 𝑥∧𝑦′= 𝑦−1 =⇒ 𝑖𝑛𝑣3(𝑥
′,𝑦,′𝑚′,𝑛′)

(G) 𝑖𝑛𝑣3(𝑥,𝑦,𝑚,𝑛)∧𝑦 = 0 ∧ ¬(𝑚 = 0) =⇒⊥

Fig. 1: Example program: (left) source code, and (right) its CHC encoding.

candidates for interpretations of unknown symbols that appear
in the unrollings. We elaborate on this in Sect. III-C.

The following lemma provides yet another use of unrollings
(for which 𝐶0 is required to be a fact, and 𝐶𝑘 – the query). We
can enumerate various such unrollings and check satisfiability
of the resulting formulas. Once a satisfiable formula is found,
it does not make any sense to search for interpretations of any
symbols in R .

Lemma 1. Given a system of CHCs 𝑆, let 𝜋⟨𝐶0,...,𝐶𝑘⟩ be one
of its unrollings, such that 𝐶0 is a fact, and 𝐶𝑘 is the query.
Then if 𝜋⟨𝐶0,...,𝐶𝑘⟩ is satisfiable then 𝑆 is unsatisfiable.

C. Polynomial behavioral candidates

We recall a few basic definitions from linear algebra that
are needed for the generation of behavioral candidates. Given
a vector space V over a field F, its basis B = {v1, . . . , v𝑛} is
a minimal subset of V satisfying:

1) ∀𝑎1, . . . , 𝑎𝑛 ∈ F, if
∑︀

1≤𝑖≤𝑛
𝑎𝑖 ·v𝑖 = 0, then

⋀︀
1≤𝑖≤𝑛

𝑎𝑖 = 0.

2) ∀v ∈ V,∃𝑎1, . . . , 𝑎𝑛 ∈ F such that v =
∑︀

1≤𝑖≤𝑛
𝑎𝑖 · v𝑖.

Consider the following fixed-degree polynomial equation:

𝑐1 · 𝛼1 + 𝑐2 · 𝛼2 + · · ·+ 𝑐𝑛 · 𝛼𝑛 = 0 (1)

where 𝛼𝑖 = 𝑥𝑘11 · · ·𝑥𝑘𝑙𝑙 are monomials, 𝑐𝑖 ∈ Q are coefficients,
and 𝑥1, . . . , 𝑥𝑛 are the variables from Vars . The degree of a
monomial is the sum

∑︀
1≤𝑖≤𝑛

𝑘𝑖, and the degree of a polynomial

equation is the highest degree among its monomials.
Given the values of variables from Vars , let a data matrix

contain values of monomials for Vars up to degree 𝑑. We rely
on [12] to obtain equations of form (1) over Vars using a data
matrix. When these values are substituted for monomials, we
get a system of linear equations over 𝑐1, . . . , 𝑐𝑛. Solutions to
these equations form a vector space, and the basis of this vector
space, computed by the well-known Gauss-Jordan elimination
algorithm, gives coefficients of polynomial equations.

III. CHC SOLVING AS ENUMERATIVE SEARCH

In this section, we first give a general idea of our setup,
then proceed to describe details that make the search procedure
effective in practice and finally summarize everything in one
algorithm.

A. Basic idea

A solution for a system of CHCs 𝑆 with uninterpreted
symbols R is a mapping ℓ from each symbol to a formula
(written as ℓ : R → Expr ) that makes each CHC in 𝑆 true.
For a synthesis of ℓ, suppose that every 𝑖𝑛𝑣 ∈ R has its
grammar 𝐺(𝑖𝑛𝑣) that describes a set of possible candidate
formulas for 𝑖𝑛𝑣. In a naive scenario, in each iteration of a
synthesis loop, a candidate formula for each 𝑖𝑛𝑣 gets sampled
from 𝐺(𝑖𝑛𝑣). All candidates are substituted in 𝑆, and if at
least one of the implications is invalid then the entire system
of candidates is failing and the synthesis loop iterates.

Clearly, this naive approach has a large search space. For
example, if for the system of CHCs in Fig. 1, the candidate
for all three uninterpreted symbols 𝑖𝑛𝑣1, 𝑖𝑛𝑣2, and 𝑖𝑛𝑣3

is 𝑥 + 𝑦 + 𝑛 = 𝑚, then all of them will be rejected
because the candidate for 𝑖𝑛𝑣3 is too coarse to prove the
query (i.e., it needs to be conjoined with 𝑥 = 0 ∧ 𝑛 = 0).
However, following [7] and [8], we can optimize the search by
synthesizing conjunction-free lemmas for each 𝑖𝑛𝑣𝑖 separately
and then by conjoining them together.

Definition 4. For a system of CHCs 𝑆 over R and a mapping
ℓ : R → Expr , we say that ℓ is a set of lemmas for 𝑆 if it
makes every CHC in 𝑆 (except the query) valid.

Example 3. For the system of CHCs in Fig. 1, a mapping
from all 𝑖𝑛𝑣1, 𝑖𝑛𝑣2, and 𝑖𝑛𝑣3 to 𝑥 + 𝑦 + 𝑛 = 𝑚 is one
set of lemmas. A mapping 𝑖𝑛𝑣1 ↦→ ⊤, 𝑖𝑛𝑣2 ↦→ 𝑛 = 0, and
𝑖𝑛𝑣3 ↦→ 𝑛 = 0 is another set of lemmas.

Lemma 2. Given a system of CHCs 𝑆 over R and two sets
of lemmas ℓ1 and ℓ2, let a mapping ℓ3 : R → Expr be such
that for each 𝑖𝑛𝑣 ∈ R . ℓ3(𝑖𝑛𝑣)

def
= ℓ1(𝑖𝑛𝑣) ∧ ℓ2(𝑖𝑛𝑣). Then

ℓ3 is a set of lemmas for 𝑆.

Our algorithm generates grammars based on a set of for-
mulas, called seeds [8]. By construction, grammars should be
able to describe all seeds and, as a side effect, also formulas
which are syntactically close to seeds (called mutants). In the
next two subsections, we outline the process of determining
seeds automatically.

B. Collecting seeds from syntax

Given a system 𝑆 of CHCs over R , let 𝑖𝑛𝑣 ∈ R be
an uninterpreted symbol for which we wish to generate a
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formal grammar. Perhaps, the most obvious sources of seeds
are the bodies of CHCs in 𝑆 that have applications of 𝑖𝑛𝑣.
First, the body of a CHC 𝐶 that has applications of 𝑖𝑛𝑣 is
parsed, and clauses that contain only variables in args(src(𝐶))
or only variables in args(dst(𝐶)) are extracted. Then, the
obtained formulas are rewritten in terms of variables �⃗� ⊆ Vars
(practically, it is convenient to specify �⃗�

def
= args(src(𝐶 ′)) of

some CHC 𝐶 ′ with 𝑖𝑛𝑣 = rel(src(𝐶 ′))).
Formally, for a formula 𝜙 in Conjunctive Normal Form,

let Cnjs(𝜙) be a set of its clauses. For sets of variables �⃗�
and �⃗�, let a set 𝐹�⃗�,�⃗�(𝜙) be defined as 𝐹�⃗�,�⃗�(𝜙)

def
= {𝜓 | ∃𝜑 ∈

Cnjs(𝜙) . 𝜓 = 𝜑[�⃗�/�⃗�] ∧ fv(𝜑) ⊆ �⃗�}, where 𝜑[�⃗�/�⃗�] denotes
the result of substitutions of variables �⃗� in 𝜑 by variables �⃗�.
Thus, a set of seeds obtained from bodies of CHCs can be
defined as follows.

Definition 5. Given a system 𝑆 of CHCs over R , let 𝑖𝑛𝑣 ∈ R .
Then

SyntSeeds(𝑖𝑛𝑣)(�⃗�)
def
=⋃︁

𝐶∈𝑆 s.t. rel(src(𝐶))=𝑖𝑛𝑣

𝐹args(src(𝐶)),�⃗�(body(𝐶)) ∪
⋃︁

𝐶∈𝑆 s.t. rel(dst(𝐶))=𝑖𝑛𝑣

𝐹args(dst(𝐶)),�⃗�(body(𝐶))

Example 4. For the system of CHCs in Fig. 1, all four
conjuncts of body(𝐴) give seeds {𝑥 = 0, 𝑦 = 0,𝑚 =
𝑛,𝑚 ≥ 0} for 𝑖𝑛𝑣1 and �⃗� = ⟨𝑥, 𝑦,𝑚, 𝑛⟩. Furthermore, seeds
¬(𝑛 = 0) and 𝑛 = 0 are obtained from body(𝐵) and body(𝐶)
respectively.

C. Collecting seeds from data

We bootstrap the grammar generation by seeds that are
learned from the concrete values of variables produced while
checking satisfiability of various unrollings of CHCs. If a CHC
system 𝑆 encodes some program, then an unrolling 𝜋⟨𝐶0,...,𝐶𝑘⟩
would correspond to a program trace whose sequentially
executed statements are encoded by bodies of each 𝐶𝑖. If such
an unrolling is unsatisfiable, then the corresponding program
trace is infeasible. Otherwise, a model of the unrolling gives
the concrete values of program variables at each execution
step. We follow the ideas of the generation of behavioral seeds
from models of program unrollings recently presented in [9].

The CHC task makes our setting different from [9], which
considers CHCs with one uninterpreted relation symbol only.
First, the presence of multiple symbols (and consequently,
multiple loops) drastically complicates the creation of un-
rollings: the resulting formulas become too large and might
become difficult for SMT solving. Second, it might be difficult
to find a satisfiable unrolling since an unwinding number
suitable for one loop might not be suitable for another loop.
For example in Fig. 1, if the first and the second loops are
unrolled 𝑛 times, then to get a satisfiable unrolling, the third
loop should be unrolled only zero times.

To overcome these two challenges, we propose to explore
unrollings modularly: for each cycle in isolation. Recall that
Def. 3 allows an unrolling 𝜋⟨𝐶0,...,𝐶𝑘⟩ to start from the body of

some CHC 𝐶0, where 𝐶0 is not a fact. Thus, when determining
behavioral seeds for some 𝑖𝑛𝑣 (e.g., when there is no fact
in 𝑆 with an application of 𝑖𝑛𝑣), we are free to consider
any unrolling that starts from an arbitrary 𝐶0, as long as
rel(dst(𝐶0)) = 𝑖𝑛𝑣. In addition, we must ensure that 𝑖𝑛𝑣 is
visited often enough, and the cycle has been terminated after
𝐶𝑘; otherwise, the collected data would not be sufficient for
generating meaningful seeds. Def. 6 reflects these conditions
formally.

Definition 6. Given a system 𝑆 of CHCs over R , let
𝑖𝑛𝑣 ∈ R . If an unrolling 𝜋⟨𝐶0,...,𝐶𝑘⟩ is such that
1) rel(src(𝐶0)) ̸= 𝑖𝑛𝑣, 2) rel(dst(𝐶0)) = 𝑖𝑛𝑣, 3)
rel(src(𝐶𝑘)) = 𝑖𝑛𝑣, and 4) rel(dst(𝐶𝑘)) ̸= 𝑖𝑛𝑣, and⃒⃒
{𝐶𝑖 ∈ ⟨𝐶0, . . . , 𝐶𝑘⟩ s.t. rel(dst(𝐶𝑖)) = 𝑖𝑛𝑣}

⃒⃒
= 𝑛, we call

it modular for 𝑖𝑛𝑣 and denote it 𝜋𝑛𝑖𝑛𝑣 .

For practical reasons, we are interested in minimal un-
rollings 𝜋𝑛𝑖𝑛𝑣 satisfying Def. 6 for some 𝑛 and 𝑖𝑛𝑣 ∈ R .
Then we obtain a model 𝑚𝑖𝑛𝑣 of 𝜋𝑛𝑖𝑛𝑣 and compute the data
matrix using the values in 𝑚𝑛

𝑖𝑛𝑣 for every args(dst(𝐶𝑖)) ∈
⟨𝐶0, . . . , 𝐶𝑘⟩, such that rel(dst(𝐶𝑖)) = 𝑖𝑛𝑣. This data matrix
is then used to discover behavioral seeds for 𝑖𝑛𝑣, denoted
BehavSeeds(𝑖𝑛𝑣), that have the fixed-degree polynomial
form (1) (recall Sect. II-C).

Example 5. For CHCs in Fig. 1, 𝜋3
𝑖𝑛𝑣1

def
= body(𝐴)(�⃗�0) ∧

body(𝐵)(�⃗�0, 𝑥1) ∧ body(𝐵)(�⃗�1, 𝑥2) ∧ body(𝐶)(�⃗�2, �⃗�3). We
are interested in values of variables in �⃗�0, �⃗�1 and �⃗�2 (which
correspond to program variables ⟨𝑥, 𝑦,𝑚, 𝑛⟩ at the beginning
of each loop iteration) that make 𝜋3

𝑖𝑛𝑣1
true. For instance:

x y m n
0 0 2 2
0 1 2 1
1 1 2 0

Using this data matrix, we can generate a set
BehavSeeds(𝑖𝑛𝑣)(⟨𝑥, 𝑦,𝑚, 𝑛⟩) = {𝑥+ 𝑦−𝑚+𝑛 = 0}. It is
easy to see that this equality holds for every row of the data
matrix.

D. Candidate propagation

In practice, seeds obtained using methods from Sect. III-B
and Sect. III-C are often insufficient for generating rich enough
formal grammars. Consequently, candidate formulas that are
sampled from these grammars, are often insufficient for the
discovery of useful lemmas. Recall a solution of the system
of CHCs in Fig. 1, as shown in Ex. 2. It requires a set of
lemmas that have conjunct 𝑛 = 0 in interpretations of 𝑖𝑛𝑣2

and 𝑖𝑛𝑣3. However, the set of formulas shown in Ex. 4, can
offer 𝑛 = 0 only for 𝑖𝑛𝑣1. Our main idea, described formally
in the rest of this subsection, is to exploit that every CHC 𝐶
with rel(dst(𝐶)) = 𝑖𝑛𝑣2 or rel(dst(𝐶)) = 𝑖𝑛𝑣3 has a clause
𝑛′ = 𝑛 in its body (i.e., it merely reuses an old value of 𝑛),
and thus the candidate 𝑛 = 0 of 𝑖𝑛𝑣1 can be pushed forward
to become a candidate of 𝑖𝑛𝑣2 and 𝑖𝑛𝑣3.

Before propagating candidates, we need to ensure that they
are self-consistent in the following sense.
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Definition 7. Given a system of CHCs 𝑆 over R and a subset
R ′ ⊆ R . A mapping Cand : R ′ → Expr is called self-
consistent if it makes every CHC in 𝑆′ def

= {𝐶 ∈ 𝑆 | (src(𝐶) =
⊤ ∨ rel(src(𝐶)) ∈ R ′) ∧ rel(dst(𝐶)) ∈ R ′} valid.

Clearly, if the candidates are not self-consistent, they cannot
be extended to a set of lemmas. Alg. 1 gives a simple routine
to check the self-consistency of candidates with respect to
CHCs 𝑆′ that have applications of symbols from R ′ only.
If the algorithm finds an invalid CHC 𝐶, then it weakens
the candidate for rel(dst(𝐶)) and repeats the self-consistency
check. Intuitively, if 𝐶 has the form (2), then (3) is invalid.

𝑖𝑛𝑣𝑖(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ 𝑖𝑛𝑣𝑗(𝑥𝑗) (2)
Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗) (3)

Alg. 1 weakens Cand(𝑖𝑛𝑣𝑗) to ⊤, and thus (3) becomes
trivially valid. Continuing such operation for other CHCs from
𝑆′ guarantees discovering a self-consistent set of candidates.
Note that Alg. 1 takes as additional input a set of formulas
which are already proved to be lemmas (recall Def. 4).

Further reasoning of the candidate propagation, given self-
consistent formulas Cand for some R ′ ⊆ R , boils down to
recursive post- and precondition inference: for any CHC in 𝑆
that has the form (2), where 𝑖𝑛𝑣𝑖 ∈ R ′ and 𝑖𝑛𝑣𝑗 /∈ R ′, we
wish to identify a formula Cand(𝑖𝑛𝑣𝑗), such that (3) holds.
Symmetrically, if 𝑖𝑛𝑣𝑖 /∈ R ′ and 𝑖𝑛𝑣𝑗 ∈ R ′, we wish to
identify a formula Cand(𝑖𝑛𝑣𝑖), such that again (3) holds.

The method of candidate propagation is based on quantifier
elimination.

Definition 8. Given a formula that has the form (4).

Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ 𝑖𝑛𝑣𝑗(𝑥𝑗) (4)

Forward propagation of Cand(𝑖𝑛𝑣𝑖) gives a formula
Cand(𝑖𝑛𝑣𝑗), such that:

Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗)
def
= ∃𝑥𝑖 .Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) (5)

Intuitively, if 𝜙(𝑥𝑖, 𝑥𝑗) encodes a transition from a pro-
gram state 𝑥𝑖 to a program state 𝑥𝑗 , then Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗)
encodes a set of all possible states that are reachable from
Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) by making the 𝜙(𝑥𝑖, 𝑥𝑗) step. Note that in
case Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) = ⊤, propagating⊤ can still give mean-
ingful candidates, if e.g., the dst-arguments do not depend on
the src-arguments. On the other hand, if Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) =
⊥, propagating ⊥ ends up with ⊥ again.

Note that the result of forward propagation (5) can be sub-
stituted back to implication (4) and make it true. Interestingly,
the operation of backward propagation (defined below) does
not have such property; and to enforce it, we should apply an
additional weakening of the propagated formula.

Definition 9. Given a formula that has the form (6).

𝑖𝑛𝑣𝑖(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗) (6)

Backward propagation of Cand(𝑖𝑛𝑣𝑗) gives a formula
Cand(𝑖𝑛𝑣𝑖), such that:

Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖)
def
= ∃𝑥𝑗 .Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) (7)

Algorithm 1: WEAKEN: establishing self-consistency.
Input: CHCs 𝑆′ over R ′, set of candidates

Cand : R ′ → Expr ; learned Lemmas : R → 2Expr

Output: weakened Cand

1 allGood ← ⊤;
2 for all 𝐶 ∈ 𝑆′ do
3 if

⋀︀
ℓ∈Lemmas(rel(src(𝐶)))

ℓ(args(src(𝐶))) ∧

Cand(rel(src(𝐶)))(args(src(𝐶))) ∧ body(𝐶) ≠⇒
Cand(rel(dst(𝐶)))(args(dst(𝐶))) then

4 Cand(rel(dst(𝐶)))← ⊤;
5 allGood ← ⊥;
6 break;
7 if allGood then return Cand ;
8 else return WEAKEN(Cand ,R ′, 𝑆′,Lemmas);

Algorithm 2: EXTEND: recursive propagation.
Input: CHCs 𝑆 over R ; R ′ ⊆ R , set of candidates

Cand : R ′ → Expr ; learned Lemmas : R → 2Expr

Output: res ∈ {⊤,⊥}, extended Cand

1 Cand ← WEAKEN(Cand ,R ′, 𝑆′,Lemmas);
2 if ∀𝑖𝑛𝑣 ∈ R ′ .Cand(𝑖𝑛𝑣) = ⊤ then return ⟨⊥, ⟩;
3 for all 𝐶 ∈ 𝑆 s.t. rel(src(𝐶)) ∈ R ′ and rel(dst(𝐶)) /∈ R ′

do
4 Cand(rel(dst(𝐶)))←

PROPAGATEFORWARD(𝐶,Cand);

5 ⟨positive,Cand⟩ ←
EXTEND(𝑆,R ′ ∪{rel(dst(𝐶))},Cand ,Lemmas);

6 if ¬positive then return ⟨⊥, ⟩;
7 for all 𝐶 ∈ 𝑆 s.t. rel(dst(𝐶)) ∈ R ′ and rel(src(𝐶)) /∈ R ′

do
8 Cand(rel(src(𝐶)))←

PROPAGATEBACKWARD(𝐶,Cand);

9 ⟨positive,Cand⟩ ←
EXTEND(𝑆,R ′ ∪ {rel(src(𝐶))},Cand ,Lemmas);

10 if ¬positive then return ⟨⊥, ⟩;
11 return ⟨⊤,Cand⟩;

Both forward and backward propagation can be applied re-
cursively for any set of candidates Cand and a subset R ′ ⊆ R .
This is shown formally in Alg. 2. After establishing the self-
consistency of candidates (line 1), Alg. 2 extends Cand by
adding inferred candidates using forward propagation (line 4)
for all CHCs 𝐶 that have rel(src(𝐶)) ∈ R ′ and rel(dst(𝐶)) ∈
R ∖ R ′, and inferred candidates using backward propagation
(line 8) for all CHCs 𝐶 that have rel(dst(𝐶)) ∈ R ′ and
rel(src(𝐶)) ∈ R ∖R ′. Each round of propagation enlarges the
set of symbols annotated by candidates R ′ as well as Cand ,
and Alg. 2 is called recursively (lines 5 and 9). If R ′ = R then
it is enough to check self-consistency of Cand (and weaken
it if needed) before returning Cand as a set of lemmas.

Theorem 1. Assuming termination of the quantifier elimi-
nation procedure and termination of each implication check,
Alg. 2 always terminates.
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Algorithm 3: SOLVECHCS: overall algorithm.
Input: CHCs 𝑆 over R
Output: res ∈ {SAT, UNKNOWN}, Lemmas : R → 2Expr

1 for all 𝑖𝑛𝑣 ∈ R do
2 Seeds ← SyntSeeds(𝑖𝑛𝑣) ∪ BehavSeeds(𝑖𝑛𝑣);

3 𝐺(𝑖𝑛𝑣)← GETGRAMMAR(Seeds);
4 Lemmas(𝑖𝑛𝑣)← ∅;

5 while ∀𝐶 ∈ 𝑆 . (dst(𝐶) = ⊥) =⇒(︁ ⋀︀
ℓ∈Lemmas(rel(src(𝐶)))

ℓ(args(src(𝐶)))∧body(𝐶) ≠⇒ ⊥
)︁

do
6 if ∀𝑖𝑛𝑣 ∈ R . ALLBLOCKED(𝐺(𝑖𝑛𝑣)) then
7 return ⟨UNKNOWN,∅⟩;
8 𝑖𝑛𝑣 ← PICKRELATIONALSYMBOL(R );
9 Cand(𝑖𝑛𝑣)← SAMPLE(𝐺(𝑖𝑛𝑣));

10 ⟨positive,Cand⟩ ←
EXTEND(𝑆, {𝑖𝑛𝑣},Cand ,Lemmas);

11 for all 𝑖𝑛𝑣 ∈ R do
12 if positive then
13 Lemmas(𝑖𝑛𝑣)←

Lemmas(𝑖𝑛𝑣) ∪ {Cand(𝑖𝑛𝑣)};
14 𝐺(𝑖𝑛𝑣)← BLOCK(𝐺(𝑖𝑛𝑣),Cand(𝑖𝑛𝑣), positive);

15 return ⟨SAT,Lemmas⟩;

For theories which do not admit a terminating quantifier-
elimination procedure, Alg. 2 can be safely modified by
replacing the results of calling the propagation methods on
lines 4 and 8 by constant ⊤.

E. Core algorithm

Our main contribution is an effective search strategy for
a solution of a given system of CHCs 𝑆 over a set of
uninterpreted symbols R . The search is over a set of candidate
formulas for each 𝑖𝑛𝑣 ∈ R which is described by a formal
grammar 𝐺(𝑖𝑛𝑣). In this section, we instantiate the setup
outlined in Sect. III-A by the components that make the entire
procedure practical. The pseudocode of the algorithm is shown
in Alg. 3.

Alg. 3 starts by creating the sampling grammars 𝐺(𝑖𝑛𝑣)
for each 𝑖𝑛𝑣 ∈ R . Grammars are constructed automatically:
first (line 2), by collecting Seeds as described in Sect. III-B
and Sect. III-C; and then (line 3) by creating production
rules that would be able to produce all Seeds recursively.
We do not impose any restrictions on the implementation
of this routine, and in practice, one could additionally add
a normalization pass over all Seeds before processing them.
Note that various unrollings, considered for constructing the
behavior candidates, can be enhanced with the bodies of the
query (and of other clauses if necessary) to be checked for
the existence of counterexamples (recall Lemma 1). If no
counterexamples are found, the algorithm starts guessing and
checking candidate formulas Cand(𝑖𝑛𝑣) for each 𝑖𝑛𝑣 ∈ R .

Simultaneous sampling from multiple grammars might lead
to many iterations of Alg. 3. To be turned to a set of lemmas,
each set of candidate formulas should be self-consistent. But

if the candidates are sampled without taking into account
any relationship among loops, the weakening by Alg. 1
might be too aggressive and might withdraw many good
candidates. Instead, we propose to fix precisely one grammar
(say, 𝐺(𝑖𝑛𝑣) for some 𝑖𝑛𝑣 ∈ R ) per iteration, to sample a
candidate formula Cand(𝑖𝑛𝑣) from 𝐺(𝑖𝑛𝑣), and to propagate
Cand(𝑖𝑛𝑣) recursively to candidate formulas Cand(𝑖𝑛𝑣′) for
all 𝑖𝑛𝑣′ ∈ R through all implications in 𝑆 (lines 8-10).

In particular, at each iteration, Alg. 3 picks 𝑖𝑛𝑣 ∈ R (in our
implementation, we use Weak Topological Ordering [13], but
any other heuristic can be used instead). Then the algorithm
samples a formula Cand(𝑖𝑛𝑣) – it could either be one of
Seeds or a syntactically mutated formula. The goal now is to
find candidate formulas for all other 𝑖𝑛𝑣′ ∈ R ∖ {𝑖𝑛𝑣} and
to check all implications in CHCs. The algorithm performs
inference of preconditions and postconditions using the routine
described in Sect. III-D (Alg. 2).

Recall that Alg. 2 not only populates Cand with candi-
date formulas for some symbols but also drops some un-
successful candidate formulas due to weakening. Note that
Alg. 1 implements a simple strategy, in which a candidate
formula Cand(𝑖𝑛𝑣𝑗) can only be dropped to ⊤ – this
helps when Cand(𝑖𝑛𝑣𝑗) is conjunction-free. However, in case
Cand(𝑖𝑛𝑣𝑗) is conjunctive (which could be due to quantifier
elimination), a more careful weakening (e.g., [14], [15]
or [16]) can be used. In the worst-case scenario, weakening
ends up with an empty candidate, which means that nothing
was learned at this iteration, and a new candidate formula
should be sampled.

In the case when a sequence of weakening-propagation
calls has converged, the entire Cand is learned as a lemma
(line 13). The process is repeated until the conjunction of
lemmas is strong enough to be a solution for the entire system
(apply Lemma 2). Finally, for the progress of the algorithm,
both failed and positive attempts are noted, and the algorithm
ensures that the candidates are not sampled again in the future
(line 14). If all candidates of all grammars are blocked, the
algorithm terminates with an unknown result (line 6). The
facts that each formal grammar admits only a finite number
of candidates and that each candidate is considered only once
enable us to prove the following theorem.

Theorem 2. Alg. 3 always makes a finite number of iterations,
and if it converges with SAT, the set of all learned lemmas
constitutes a solution of the CHC system.

Similarly to [8], the algorithm can be optimized by intro-
ducing bootstrapping and sampling stages, candidate batching
and exploiting counterexamples-to-induction, and thus it can
be effectively integrated with the elements of Generalized
Property Directed Reachability (GPDR) [1], [4].
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F. Extension to nonlinear CHCs

Definition 10. A nonlinear CHC is a formula in first-order
logic that has the form of one of three implications:

𝜙(𝑥1) =⇒ 𝑖𝑛𝑣1(𝑥1)⋀︁

0≤𝑖≤𝑛
𝑖𝑛𝑣𝑖(𝑥𝑖)∧𝜙(𝑥0, . . . , ⃗𝑥𝑛+1) =⇒ 𝑖𝑛𝑣𝑛+1( ⃗𝑥𝑛+1)

⋀︁

0≤𝑖≤𝑛
𝑖𝑛𝑣𝑖(𝑥𝑖)∧𝜙(𝑥0, . . . , 𝑥𝑛) =⇒⊥

Our synthesis algorithm can be adapted to solve systems of
nonlinear CHCs with limited backward propagation. The rest
of the components operate in the same way: each 𝑖𝑛𝑣 ∈ R
gets its grammar, and candidates are iteratively sampled from
them.

In the future, we would like to discover ways of effective
backward propagation for nonlinear CHCs. In particular, a
variant of (6) for nonlinear CHCs might be as follows:

𝑖𝑛𝑣𝑖(𝑥𝑖) ∧ 𝑖𝑛𝑣𝑗(𝑥𝑗) ∧ 𝜙(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) =⇒ Cand(𝑖𝑛𝑣𝑘)(𝑥𝑘)

Applying quantifier elimination, we get candidates for con-
junctions Cand(𝑖𝑛𝑣𝑖)∧Cand(𝑖𝑛𝑣𝑗), but not necessarily for
individual conjuncts Cand(𝑖𝑛𝑣𝑖) and Cand(𝑖𝑛𝑣𝑗).

IV. IMPLEMENTATION AND EVALUATION

We have implemented the algorithm from Sect. III-E on
top of our previous implementation FREQHORN3. The tool
takes a system of CHCs, automatically performs its unrolling,
searches for counterexamples (if any), generates behavioral
candidates, propagates and weakens candidates. To elimi-
nate quantifiers, FREQHORN uses the technique based on
Model-Based Projections [17]. For solving SMT queries, it
uses Z3 [18]. For matrix operations, FREQHORN uses Ar-
madillo [19], a C++ library for linear algebra.

We evaluated FREQHORN on 101 satisfiable CHC-systems4

taken from the literature on program verification (e.g. [20])
and crafted by ourselves. There are 81 systems of CHCs over
the theories of linear (LIA) and 20 over nonlinear integer
arithmetic (NIA). All systems have two or more uninterpreted
relation symbols. Because our quantifier-elimination engine
has limited support for NIA, we disabled candidate propa-
gation for the cases when the body of corresponding CHCs
contains nonlinear arithmetic. In such cases, we assigned ⊤ to
the propagated candidates and performed the self-consistency
checks. Thus, disabling candidate propagation did not lead to
incorrect results.

Among the 101 benchmarks, FREQHORN was able to solve
81 within a timeout of 5 minutes: 65 over LIA, and 16
over NIA. The remaining 20 benchmarks require disjunctive
invariants which are difficult to find for FREQHORN. In
order to evaluate the significance of candidate propagation,

3The source code is available at https://github.com/grigoryfedyukovich/
aeval/tree/rnd.

4Available at https://github.com/grigoryfedyukovich/aeval/tree/rnd/bench
horn multiple, and also contributed to CHC-COMP: http://chc-comp.github.
io/.

behavioral candidates, and candidates guessed from syntax,
we performed controlled experiments with the corresponding
features disabled. Fig. 2 gives the scatter plots that compare
configurations on all benchmarks. Each point in a plot repre-
sents a pair of the runtime (sec) of the full configuration of
FREQHORN (x-axis) and the runtime (sec) of the restricted
configuration of FREQHORN (y-axis). In each plot, the color
saturation roughly reflects the benefits of the full configuration,
i.e., the delta between the runtimes.

The configuration of FREQHORN with candidate propaga-
tion disabled (thus, candidates for all unknowns had to be
sampled independently) was able to solve 56 benchmarks, and
it was on average three times slower than the full configuration.
After disabling behavioral candidates (but with candidate
propagation), FREQHORN was able to solve 60 benchmarks.
Time-wise, this experiment gave less consistent results: for
15 benchmarks the restricted configuration outperformed the
full one. Finally, after disabling syntactic candidates (but with
candidate propagation and behavioral candidates), FREQHORN
was able to solve only 37 benchmarks. The experiment con-
firmed that all features of our algorithm are essential for its
efficacy, and it leaves room for devising heuristics to apply in
specific contexts.

We also compared our tool to SPACER v.3 [4], 𝜇Z
v.4.4.2 [1], and ELDARICA v.1.3 [2] CHC solvers (shown in
Fig. 3)56. Among the 101 benchmarks, SPACER was successful
on 45, 𝜇Z on 42, and ELDARICA on 71. FREQHORN solved
41 benchmarks on which SPACER diverged, 44 on which 𝜇Z
diverged, 22 on which ELDARICA diverged. In total, it solved
16 benchmarks on which all the competitors diverged, and 10
of them are over NIA.

In our benchmark selection, there are 8 tricky tasks which
were solved by none of the tools. Investigating bottlenecks in
solving them motivates our future work.

V. RELATED WORK

Conceptually, our algorithm for solving CHCs can be
viewed as an extension of the syntax-guided invariant synthe-
sizer [7] for transition systems (i.e., CHCs with one uninter-
preted relation symbol). Thus, [7] is built around one sampling
grammar, and does not require any candidate propagation.
For arbitrary CHCs, as shown in our experiments, a naively
extended approach of [7] does not scale well. Furthermore, in
many cases, for convergence, it would require some symbolic
constraints to be propagated across CHCs before the grammar
is constructed (otherwise, the grammars might not be suffi-
cient, and sometimes might be even empty). Our new solution
is insensitive to these challenges.

Other instantiations of [7] include [8] and [9], but they
still do not span beyond the transition systems. Our approach
incorporates essential details of [8] and [9], namely enriching
the grammars by externally created seeds. In particular, as
in [9], we use polynomial equations as candidates for a

5We excluded the time needed to start Java Virtual Machine from the
running time of ELDARICA.

6Full statistics are available at https://goo.gl/ADZdez.
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FREQHORN: with vs. without behavioral candidates.
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FREQHORN: with vs. without syntactic candidates.

Fig. 2: Internal statistics on FREQHORN (sec×sec): points above the diagonal represent runtimes for benchmarks on which full configuration outperformed
the restricted configuration.
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FREQHORN vs. SPACER.
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FREQHORN vs. 𝜇Z.
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FREQHORN vs. ELDARICA.

Fig. 3: Comparison of FREQHORN (sec×sec) and external tools: points above the diagonal represent runtimes for benchmarks on which the best configuration
of FREQHORN outperformed the competitor.

relation between variables, generated after analyzing mod-
els for unrollings of CHCs. But again, [9] does not deal
with multiple uninterpreted relation symbols. Our approach
required solutions to several new challenges. First, a satisfiable
unrolling for every loop must be found to obtain behavioral
data. Second, even if we get a good candidate for interpretation
of one symbol, often a weakening or a strengthening of this
candidate is needed to accommodate suitable candidates for
other symbols. We have addressed these issues by introducing
a concept of modular unrolling of a system of CHCs, and
by considering the seeds obtained from data to bootstrap the
grammar generation.

Apart from solving unrollings as in [9], there are promi-
nently two ways to get behavioral data – from infeasible
paths using interpolation [21], and from reachable states along
feasible paths using test-based executions [22], [12], [23], [24].
These techniques are not only limited by the expressiveness
of their grammar, which is fixed, they also take the naive
approach to dealing with multiple loops, i.e., the candidates
are learned independently for all loops. In contrast, we use
behavioral seeds to bootstrap the grammar. Furthermore, we
propagate candidates learned for one loop to obtain constraints
on those for adjacent loops.

Propagation of candidates and search for inductive subsets

is at the heart of the approaches based on Generalized Property
Directed Reachability (GPDR) [1], [4]. In a nutshell, they
are based on implicit unrollings of loops and a monotonic
fixed-point computation, driven by spurious counterexamples.
However, such methods often diverge due to failures to gener-
alize an inductive invariant from counterexamples. In contrast,
our approach does not perform a fixed-point computation,
and propagates candidates only through a finite number of
implications, specified directly in CHCs. Failures to propagate
lead to withdrawing the candidate and generating a new
guess from the grammar. In practice, this makes our solution
effective on many benchmarks which are difficult for GPDR.

VI. CONCLUSIONS

We have presented an algorithm for solving systems of
CHCs based on Syntax-Guided Synthesis. For each unknown
predicate in CHCs, our algorithm generates a formal grammar
from the syntax of the CHC system and models of various
unrollings of the system. A solution for the system (i.e., an
interpretation of each unknown predicate that makes all CHCs
true) is then guessed from the corresponding grammars and
checked by an SMT solver. It is crucial for the effectiveness of
the approach to use modular unrollings of CHCs and to propa-
gate candidates through all available implications in the CHC
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system. We have presented the evaluation of our prototype
built on top of the FREQHORN tool and have confirmed that
the algorithm is effective on a range of benchmarks originating
from program verification tasks and competitive with state-of-
the-art CHC solvers. As we go ahead, we plan to optimize the
algorithm using heuristics, to develop effective strategies for
backward candidate propagation in case of nonlinear CHCs,
and to extend our tool with the support of CHCs over arrays,
algebraic data types and bit-vectors.
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Abstract—Relay Interlocking Systems (RIS) are analog elec-
tromechanical networks traditionally applied in the safety-critical
domain of railway signaling. RIS consist of networks of intercon-
nected components such as power supplies, contacts, resistances,
and electrically-controlled contacts (i.e. the relays). Due to cost
and flexibility needs, RIS are progressively being replaced by
equivalent computer-based systems. Unfortunately, RIS are often
legacy systems, hard to understand at an abstract level, hence
the valuable information they encoded in them is not available.

In this paper, we propose a methodology and a tool chain
to analyze and understand legacy RIS. A RIS is reduced to
a Switched Multi-Domain Kirchhoff Network (SMDKN), which
is in turn compiled into hybrid automata. SMT-based model
checking supports various forms of formal analyses for SMDKN.
The approach is based on the modeling of the RIS analog
signals (i.e. currents and voltages) over continuous time, and their
mapping in terms of railways control actions. Starting from the
diagram representation, we overcome a key limitation of previous
approaches based on purely Boolean models, i.e. the presence of
spurious behaviors. The evaluation of the tool chain on a set of
industrial-size railway RIS demonstrates practical scalability.

I. INTRODUCTION

Railway signaling systems guarantee the safe operation of
train traffic. Trains run between points of the rail network,
moving from section to section along exclusively allocated
routes and crossing roads. Protection against catastrophic
events, such as train-to-train and train-to-car collisions, is
devoted to various devices such as semaphores, barriers at the
level crossing, and train detection systems. These devices must
be suitably controlled and coordinated by a logic that ensures
the safety of operation even in case of multiple device faults.

Traditionally, the logic has been implemented by means
of the Relay technology, in the form of networks of in-
terconnected analog electro-mechanical components, such as
power supplies, contacts, circuit breakers, and many forms of
electrically-controlled contacts, also known as relays.

RIS are progressively being replaced by computer-based
logics (CBL), that ensure greater flexibility and lower cost.
The key question is how to ensure that the CBL is compliant
with the (trusted) behavior of the relay-based interlocking

being replaced. In some sense, the specification for the CBL
is hidden in the relay circuit. Unfortunately, RIS are often old,
legacy systems, hard to understand for software engineers at
the level of abstraction required to specify the CBL. Thus, the
valuable information they encode is not readily available.

Although relays may be thought of as Boolean components,
that is just open or closed, this turns out to be a gross
simplification. In order to operate (e.g. switching from open
to closed), relays may require time, and go through transients
required to fully excite the circuitry. Hence, a simple Boolean
propagation is in fact a coarse abstraction of a sequence
of intermediate states before stability. Furthermore, relays
are subject to faults that may either delay or prevent the
correct operation. Thus, relay networks are often designed in
a redundant fashion in order to mitigate the effect of faults
and to ensure safety (at the cost of liveness) in all conditions.

In this paper, we propose a methodology and a tool chain
to analyze and understand legacy RIS, adopted in an ongoing
research project of Rete Ferroviaria Italiana (RFI). At the sur-
face, a graphical tool supports the component-based modeling
of the RIS. The designer selects components from a palette of
over 100 elements, and connects them according to the input
description – typically, a printout of the electrical schematic.
This step does not require any deep understanding of the nature
of the circuit, and ensures that the semantic gap w.r.t. the
legacy description is as limited as possible. The corresponding
internal representation is reduced to a Switched Multi-Domain
Kirchhoff Network (SMDKN), which has a semantic based on
Differential Algebraic Equations (DAE). In turn, the SMDKN is
compiled into a network of hybrid automata, based on the tech-
niques proposed in [1]. Then, various forms of formal analysis
are supported by means of SMT-based model checking. At its
core, the approach is based on the modeling of the RIS analog
signals (i.e. currents and voltages) over continuous time. The
ability to analyze the circuit at the physical level supports a
comprehensive understanding at the symbolic level in terms
of railways control actions. This is done by defining suitable
symbolic predicates in terms of the analog state: for example,
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Fig. 1: Conceptual architecture of a RIS.

a green light to the train may correspond to a suitable current
and voltage drop in the corresponding semaphore lamp.

The methodology is fully supported by an automated SMT-
based verification tool chain. We evaluated the approach on
a set of industrial-size railway RIS, with schematic having
more than a thousand components and four-meter long plotter
printouts. The results demonstrate practical scalability: we are
able to prove (or disprove) conjectured properties, simulate
scenarios, and construct fault-trees (FT) corresponding to
undesirable events.

This approach was devised as a consequence of a previ-
ous unsatisfying modeling attempt we carried on basing our
analysis on the traditional formal modeling at the Boolean
level. Since relays are not instantaneous Boolean switches,
substantial ingenuity from the modeler was required to bridge
the gap with respect to the electrical semantics. This made the
modeling task unmanageable in terms of conceptual hardness,
and led to imprecise results (due to spurious behaviors) that we
will report in the following sections. From a pragmatic per-
spective, the proposed approach provides invaluable support
for the understanding of the legacy circuit (and ultimately the
reverse-engineering of requirements for the CBL design).

The paper is structured as follows. In Section II we de-
scribe Relay Interlocking Systems. In Section III we overview
SMDKN. In Section IV we describe the modeling approach.
In Section V we present the analysis methods. In Sections VI
and VII we present the tool chain and the experimental evalu-
ation on a scalable industrial-size case study. In Sections VIII
and IX we describe related work, draw some conclusions, and
outline ongoing and future work.

II. RELAY INTERLOCKING SYSTEMS

A Relay Interlocking System (RIS) is an electromechanical
system that conveys messages between the railway agents
(e.g., trains, dispatchers, technicians). Fig. 1 shows the con-
ceptual architecture of a RIS: the agents interacts with the
field devices (e.g., semaphores, level crossing barriers, railroad
switches) that are in turn controlled through the relay control
logic (an interconnection of relays).

The agents interact with the field devices observing their
state (e.g., if a semaphore light is on or off, the position of a
barrier or of a railroad switch) and perform some actions (e.g.,
toggling an electrical contact, pushing a button) to change the
current state of the RIS. The field devices are then connected
to the relay control logic that reacts to the state change to

Fig. 2: Principle schemata of the RIS R2G1 that controls the
semaphore lights for a RIS level crossing. The RIS is formed
by 4 sub-circuits not connected electrically — from left to
right: a lever handle, the lever sub-circuit, the sub-circuit that
controls the red lights of the traffic semaphore, and a sub-
circuit that controls the green light of the train semaphore.

implement the signaling system (e.g., lower the barrier of a
level crossing when a train is approaching).

The RIS is implemented as a network of switching elec-
tromechanical components where relays are the main switch-
ing components. Relays are electrically-controlled analog
switches that implement the relay logic. A relay contains a
mechanical contact that can open or close a contact (e.g., a
relay can open or close the circuit of a semaphore light turning
it on or off). A relay controls its contact with a coil that
is physically disconnected from the contact itself. The relay
switches the contact when the current that flows in the coil
falls within or exceeds a current threshold. The relay is in the
dropped state when the coil’s current is below the threshold
and it is in the drawn state otherwise. When a component in
a RIS switches to a different state, for example when an agent
pushes a button, it induces different circuit contacts and hence
a different behavior of the currents and voltages in the RIS.
The changes in the currents and voltages can in turn change
the state of the relays in the circuit (e.g., the change of the
current on the relay coil switches the state of the relay). Thus,
a single state change in the RIS may generate a sequence of
subsequent state changes.

A principle schemata is the standard graphical represen-
tation1 of the design of a RIS. Fig. 2 shows the principle
schemata for the RIS that controls the semaphore lights for
a level crossing (we will refer to this example as R2G1). In
the RIS a lever handle (the component named L1 in the lower
left part of the diagram) controls the semaphore for the level
crossing (the red lights R1 and R2) and the semaphore for the
train track (the green light G1).

Each connected set of components in the RIS represents a
sub-circuit (i.e., sub-circuits are not connected electrically to
each other). In Fig. 2 there are 4 sub-circuits — from left to

1We use the graphical representation defined in the Italian railway regula-
tion UNIFER-CEI S-461 [2].
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right, the sub-circuits are the lever handle L1 (note that the
lever handle is by itself a sub-circuit), the sub-circuit that is
controlled by L1, the sub-circuit that controls the red lights,
and the sub-circuit that controls the green light.

The sub-circuits are not connected electrically (i.e., with
a wire), but are “connected” with some other means (e.g.,
mechanically, as for a lever, or magnetically, as for a relay
coil). A component on one sub-circuit (e.g., a relay coil)
opens or closes its contacts (e.g., the relay contacts) that are
on other (electrically disconnected) sub-circuits. The principle
schemata separates the representation of the components (e.g.,
a relay coil) and their contacts (e.g., the relay contact). In
Fig. 3 we show the symbols for a relay coil and its contacts.
In a schemata, the components and their contacts are identified
by name: the contacts for a relay coil named RL1 will be also
named RL1. In a well formed schemata the same component
name is used only for a component and its contacts (e.g., two
relay coils cannot have the same name) and a contact must
have a correspondent component (e.g., if a schemata has a
contact named RL1, it must also have a relay coil named RL1).
We say that there is a logical connection between a component
and its contacts. The contact symbols in the diagrams further

Fig. 3: Symbols of the relay coils and their contacts.

define when the contact should be open or closed. The two
left-most components in Fig. 3 are the relay coil RL1 and an
“open” contact RL1 (in this case, the “open” qualifier identifies
a contact that is open by default). The downward arrow shown
on the left of the “open” relay contact specifies what will be
the state of the contact (i.e. open or closed) depending on the
state of its relay coil. In Fig. 3, the contact RL1 is open when
the relay coil RL1 is dropped and closed otherwise. Note that
for the “closed” contact RL3 of Fig. 3 the downward arrow
specifies that the contact is closed when the relay coil RL3 is
dropped, and open otherwise.

The graphical representation of the components further
defines the electrical terminals of the components with blue
square boxes and the electrical connections among terminals
with black solid lines. The orientation of a component (impor-
tant to determine the physical position, such as if a lever in
the left, center, or right position), is uniquely represented with
a red triangle in the bottom right corner of the component.
The graphical representation describes also the initial state of
switching components like lever handles and relay coils. For
relay coils (see Fig. 3) the initial state is determined by the
upward or downward arrow at the left of the component, while
for lever handles the initial state is the position (left, center,
right) of the lever handle (e.g., in the schemata of Fig. 2, the
lever handle L1 is initially in the left position).

In the RIS R2G1 we further have other electrical compo-
nents like power generators (PS1, PS2, and PS3) that generate
a current on the sub-circuit and “ground components” (GND1,
GND2, and GND3) that determine the ground for each sub-
circuit. The lever “open” contact L1 in the RIS R2G1 is further
closed only if the lever handle L1 is in the center position (see
the position of the lever on the left of the L1 contact in Fig. 2).

The RIS R2G1 implements a control logic that ensure that
every time the green light is on (i.e. the train can travel through
the track section with the level crossing), the red lights are
also on (i.e. the cars have to stop at the level crossing). In
the initial configuration of the RIS R2G1 both the red lights
and the green lights are off. This is because the lever handle
L1 is in the left position, thus the lever contact L1 is open,
and hence no current flows in the sub-circuit and the coil RL1

is dropped. Since the coil RL1 is dropped, the contact RL1

is open and no current flows through the red lights and the
relay coil RL2, which are respectively off and dropped. The
contact RL2 is further open and the green light is off. When
an operator moves the lever handle L1 to the center position
she starts a sequence of state changes in the RIS.

1) The operator moves the lever handle L1 to the center
position. This change instantaneously closes the lever
contact L1, and the current starts flowing on the coil RL1.

2) After a small amount of time (the “transient” time of the
relay), the relay coil RL1 switches from the dropped to
the drawn state, and the relay contact RL1 closes. At
this point, some current flows on the red lights and on
the relay coil RL2. The red lights turn on.

3) After a small amount of time, the relay coil RL2 switches
to the drawn state and the relay contact RL2 closes,
powering the green light that turns on.

III. SWITCHED MULTI-DOMAIN KIRCHHOFF NETWORKS

Switched Multi-Domain Kirchhoff Networks (SMDKN) are
a formalism that models a network of components connected
according to the Kirchhoff conservation laws. SMDKN models
systems where the components are from different domains
(e.g., electrical, hydraulic, mechanical).

The components of a SMDKN are hybrid systems that
change a set of discrete modes instantaneously, with a discrete
transition, and the value of the physical variables (e.g., the
current on a branch) continuously as a function of time.
For each possible combination of the discrete modes of the
components the SMDKN has a different continuous behavior.
Technically, for each configuration the continuous behavior of
the SMDKN is defined with a Differential Algebraic Equation
derived from the behavior of each single component of the
network and the Kirchhoff conservation laws.

IV. MODELING APPROACH

A. Choosing the modeling abstraction level for relays

The physical behavior of a RIS is determined by the
complex electromechanical phenomena of the relays. The
“stationary” relay’s states are the drawn and dropped states.
However, the real behavior of a relay is more complex due to
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inertial electromechanical phenomena: the transition between
two stationary states is not instantaneous when the current on
the relay’s coil exceeds (or falls below) the threshold. Thus,
we face the problem of modeling the relay’s “transient states”.

On the one hand a precise modeling of the “transient
states” of the relays is challenging. First, such modeling
requires complex differential equation; second, a RIS designer
cannot reason precisely about the dynamic of the relay in
the transient states. On the other hand, a purely “Boolean
abstraction” approach that abstracts the physical quantities of
the relay (e.g., the current on the coil) is also not adequate.
Such abstraction does not permit reasoning about the physical
quantities and the relative time between events.

We adopt an intermediate approach where we model the
physical quantities of the system but we abstract the “transient
state” of the relays. We model that after the relay’s current
crosses the threshold the change of state of the relay happens
in a non-deterministic (but bounded) time interval. This time
interval is a known design parameter of a relay. Our approach
preserves the actual stationary physics of the system and
enables automatic reasoning on the relative time distance
between events, that are two key aspects for the designer.
In our ongoing project we identified this abstraction level as
the suitable trade-off between the designer’s needs and the
availability of precise and efficient model checking algorithms.

B. Modeling RIS with SMDKN

RIS are networks of components electrically connected by
means of the Kirchhoff conservation laws. For this reason,
we model RIS with SMDKN. The main advantages of the
SMDKN modeling are: (i) Preserve the RIS structure. We
model the RIS network as a SMDKN that has the same network
structure (i.e. electrical connections on the components’ termi-
nals). Thus, RIS designer can easily model the RIS principle
schemata as a SMDKN. (ii) Compositional modeling. SMDKN
allow us to define the component behaviors independently. Our
modeling effort is thus limited to create a library of compo-
nents for the RIS domain. (iii) SMDKN are an expressive
and flexible modeling language. SMDKN allow us to model
the behavior of switching components as hybrid automata.
With hybrid automata we can easily model the “abstraction
level” described above. (iv) Availability of formal analysis
techniques. There already exist efficient formal verification
techniques SMDKN [3], [1] that we can apply off-the-shelf.

In the following, we describe in depth our modeling of the
principle schemata as SMDKN, focusing on the components,
their electrical connections, and the logical connections.

Components: we model a component in the RIS domain
as a component in the SMDKN with a hybrid automaton.
The hybrid automaton is standard [4]: it defines a finite set
of discrete modes and continuous variables. In each discrete
mode the automaton defines with a differential equation how
the contiguous variables change in function of time, and with
a conjunction of Boolean inequalities the invariant conditions.
Transitions between discrete modes models the instantaneous

state changes. Both RIS and SMDKN components have elec-
trical terminals. We follow the standard approach in acausal
modeling [5] to encode terminals with two variables, the flow
and effort variables. In the electrical domain, the flow variable
represents the current on the terminal, while the effort variable
represent the potential on the terminal. Flow and effort vari-
ables will then be used to model the Kirchhoff conservation
laws. The terminal implicitly has two continuous variables to
represent flow and effort. Note that a component only exposes
the effort and flow variables to the other components.

We describe in depth the modeling of a relay coil and of
a faulty lamp. Both components are representative of the RIS
library we developed that contains more than 100 components.

The model of the delayed relay coil shown in Fig. 4 follows
the abstraction level described above where the transient
states of the relay coil are modeled non-deterministically. The
two modes Dropped and Drawn of the automaton represent
two stable states where the coil has completely actuated its
contacts. The two modes Drawing and Dropping encodes the
transient states of the coil. The automaton uses a clock variable
clock to encode the bounded and non-deterministic transition
delays between the stable modes. In particular, the automaton
transition from the Dropped to the Drawn mode only fires
when the electrical current I through the coil continuously
exceeds the current threshold Ith for a non-deterministic time
within the specified time interval [∆T−,∆T+]. The same
happens for the transition from the Drawn to the Dropped
mode.

Fig. 4: Hybrid automaton of the delayed relay coil.

Fig. 5 shows the model of a faulty lamp, a lamp that can
fail either creating a short-circuit or opening the circuit. The
Nominal mode encodes the correct behavior of the lamp, which
behaves as an ohmic load resistor. The automaton encodes the
two fault conditions in the FaultShort and FaultBlown modes,
where the lamp behaves respectively as a short-circuit and
as an open circuit. The automaton can non-deterministically
transition from the nominal mode to the two faulty modes.
Since the lamp does not exhibit commutation delays, the
hybrid automaton does not have continuous variables.

Physical connections: the semantics of the terminal con-
nections follows the Kirchhoff’s conservation laws. Given a set
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Fig. 5: Hybrid automaton of the faulty-lamp.

of connected terminals, all the effort variables of the terminals
take the same value, and the sum of all the flow variables
of the terminals equals zero. The SMDKN semantics already
considers the Kirchhoff’s law.

Logical connections: We model the logical connection
among two components (e.g., a relay coil and one of its
contacts) with additional synchronization constraints among
the discrete modes of the hybrid automata of two components.
For instance, for the relay coil RL1 and the relay contact RL1

of Fig. 3 the constraint encodes that the coil is in the Dropped
mode if and only if the contact is in the Open mode, and in
the Closed mode otherwise. Similarly, for the lever handle L1

and lever contact L1 of Fig. 2, we say that the handle is in
the Center mode if and only if the contact is Closed mode.

Physical behavior of the running example: we present the
relevant electrical behavior of the R2G1 system when lamps
can fail either blown or short-circuited. The relay coil RL2

of Fig. 2 senses the electrical current IPS2
flowing through

the parallel connection of the red lamps R1 and R2 in order
to monitor their status. The current threshold of the coil RL2

should be properly set to prevent inadvertent activation of the
green lamp G1 when the red lamps are either off or faulty.
Tab. I shows the value of the current IPS2

as a function of
the 9 possible system modes resulting from the cross product
of the 3 modes of the red lamps (see Fig. 5).

System mode Current IPS2

Both red lamps failed blown 0.0 Ampere
One red lamp failed blown, one red lamp nominal 3.0 Ampere
Both lamps nominal 4.0 Ampere
At least one red lamp failed short-circuited 6.0 Ampere

TABLE I: Values of the electrical current IPS2
sensed by the

relay coil RL2 when the red lamps are power supplied by the
closed relay contact RL1.

To detect the simultaneous activation of the red lamps, the
current threshold of the relay RL2 must be set in the interval
]3.0A, 4.0A[, for instance to 3.5A. Notice that, in the system
design of Fig. 2, the configurations “both lamps nominal” and
“at least one red lamp failed short-circuited” are indistinguish-
able to the coil RL2 because in both cases the current IPS2

exceeds the coil threshold of 3.5A. In the following section,
we discuss the implication of this consideration on the overall
system safety and we show how the proposed methodology
supports the designer on this kind of quantitative reasoning.

V. FORMAL ANALYSIS

In a RIS, the agents determine their next action observing
the state of the field devices. Thus, the agents observe a partial-

state of the system because the internal state of the control
logic is hidden from their point of view. Nevertheless, the
correctness of the signaling protocol is implicitly dependent
from the implementation of the relay logic.

In our methodology, we propose to analyze the system at
two levels of detail: at the higher railway level we consider
only high-level properties over the field devices (e.g., the lamp
emits light, the barrier is closed), despite the technological
details of the control logic; at the lower physical level we
consider properties that investigate the internal technological
aspects of the control logic and of its physics (e.g., two
terminals must be short-circuited when a relay is in a specific
mode). This layered approach reduces the total effort to specify
properties: the properties at the railway level are independent
from the implementation of the control logic and can be reused
for multiple control logic implementations.

Properties specification: a property at the physical level
predicates on low level aspects of the system such as physical
quantities and operating modes of the components. Focusing
on the electrical domain, we can predicate either on the voltage
drop ∆V across a pair of terminals, or on the current I that
flows through a terminal. A similar approach holds in the
mechanical domain replacing current and voltage with torque
and angular velocity. A property can further predicate on the
operational modes of the components.

A railway property is automatically mapped onto a combi-
nation of physical properties, hiding its implementation details.
For instance, consider the sentence “the lamp G1 emits light”.
Since a lamp is electrically equivalent to an ohmic load
resistor, the property is equivalent to “the lamp G1 consumes
electrical power” that in turns is equivalent to the first-order
logical formula IG1

6= 0.0 ∧ ∆VG1
6= 0.0. Notice that in

the context of physical reasoning it is necessary to predicate
on both currents and voltage drops in order to distinguish
the nominal behavior of the lamp from the faulty ones (i.e.
those in which the lamp is power supplied, but does not
emit light). In fact, a short-circuited lamp is traversed by a
non-null current (IG1

6= 0.0), but its voltage drop is zero
(∆VG1

= 0.0); similarly, a blown lamp is traversed by a
null current (IG1

= 0.0) even if its voltage drop is different
from zero (∆VG1

6= 0.0). In our specification settings, we
could also refine the property exploiting detailed information
available to the designer. Assuming to know the range of
nominal currents absorbed by the lamp (e.g., from its data
sheet), we could rewrite the predicate IG1

6= 0.0 into a more
precise one such as 1.5 ≤ |IG1

| ≤ 2.3.
Analysis of the running example: in the following we

demonstrate the need of the quantitative reasoning, which
is enabled by our modeling approach, using the RIS R2G1
of Fig. 2. We further consider variants of the R2G1 model
changing the fault model for the red lamps and the current
threshold of the relay coil RL2. The red lamps may either not
fail, or the red lamps may blown (see the FaultBlown state
in Fig. 5), or the red lamps can introduce a short circuit (see
the FaultShort state in Fig. 5). The current threshold on the
relay coil RL2 may be either 2.5A, or 3.5A, or 4.5A. We
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Nr. R2G1 Variants Verification results
Faults RL2 thresh. RP SP

1 None 2.5A Hold Hold
2 None 3.5A Hold Hold
3 None 4.5A Doesn’t hold Hold
4 Blown 2.5A Hold Doesn’t hold
5 Blown 3.5A Hold Hold
6 Blown 4.5A Doesn’t Hold Hold
7 Short 2.5A Hold Doesn’t hold
8 Short 3.5A Hold Doesn’t hold
9 Short 4.5A Hold Doesn’t hold

TABLE II: Verification results (property holds or does not
hold) on variants of R2G1 introducing faults on the red lamps
and changing the current threshold on the relay coil RL2.

consider the reachability property RP := “the green lamp
G1 can emit light”, and the safety property SP := “if the
green lamp G1 emits light, then both red lamps R1 and R2

emit light”. We expect RP to hold for R2G1, witnessing an
execution scenario where green lamp is on, and SP to hold to
ensure the safety of the R2G1 system. The verification results
are available in Tab. II.

When the current threshold of the relay coil RL2 is over-
dimensioned to 4.5A, the unexpected verification of the prop-
erty RP proves that the green lamp cannot emit light because
the relay contact RL2 will never supply power to the lamp
(rows 3, 6). Decreasing the threshold, RP always holds and
this fact guarantees that the green lamp can turn on.

When the current threshold is under-dimensioned to 2.5A,
the safety property SP is violated in the system variant with
blown lamps (row 4). The counterexamples returned by the
model checker provide execution scenarios able to reach the
violation, but do not represent an exhaustive analysis. To
determine all the minimal configurations of faults that lead to
the violation, we perform formal safety assessment to compute
fault-trees. For the system variant of row 4, the fault-tree of the
safety property SP shows two possible fault configurations:
when one red lamp fails blown, the other red lamp can
still emit light absorbing 3.0A (see Tab. I) from the power
supply PS2. The 3.0A current exceeds the under-dimensioned
threshold of 2.5A, thus the relay RL2 inadvertently supplies
power to the green lamp, violating the safety property. We fix
this design flaw setting the coil threshold to 3.5A (row 5).

Unfortunately, the safety violation still occurs when the
lamps fail short-circuited (row 8). The safety assessment
process reveals that if any red lamp fails short-circuited, a
current of 6.0A is drawn from PS2 (see Tab. I), and the relay
coil RL2 is again deceived. This design flaw cannot be fixed
by simply adjusting the electrical parameters of the system, but
requires the upgrade of the entire design as shown in Fig. 6.
In the system upgrade, the additional relay coil RL3 is Drawn
when the current IPS2

exceeds the threshold of 4.5A, that
makes its contact RL3 open, thus preventing the green lamp
from turning on if a red lamp is short-circuited.

Need of quantitative modeling for verification: we make a
small digression to report the main limitations we encountered

Fig. 6: Upgraded design of the RIS R2G1 from Fig. 2

while applying the traditional Boolean modeling approach (i.e.
the one based on the concept of conductive paths) that led us
to this work. Referring to the upgraded R2G1 design of Fig. 6,
Fig. 7 shows the value of the current IG1

flowing through the
green lamp G1 as a function of the current IPS2

sensed by
the relay coils RL2 and RL3. Our physical modeling approach
(Fig. 7-(2)) is able to properly discriminate the faulty scenarios
(i.e. IPS2

< 3.5A and IPS2
> 4.5A, where 3.5A is the RL2

threshold and 4.5A is the RL3 threshold), keeping the green
lamp properly turned-off (i.e. IG1

= 0.0A). Differently, the
expressiveness of the Boolean approach ((Fig. 7-(1))) cannot
discern between different values that are greater than zero.
This means that, for every current IPS2

> 0.0A, the relay coils
RL2 and RL3 would be considered always Drawn, resulting
in a spurious behavior with the green lamp always turned-off.

Fig. 7: Spurious behavior on the green lamp G1 introduced
by the Boolean modeling. The relay coils RL2 and RL3 are
permanently Drawn, and keep G1 always turned off.

VI. TOOL CHAIN

The proposed methodology was implemented in a tool chain
composed of various blocks. The first block is a graphical
front end (Fig. 8) based on a customization of the DIA [6]
modeling environment. The palette of the front end supports
over 100 distinct graphical symbols, corresponding to a subset
of the components that can be found in RIS according to the
Italian regulation. Each symbol is associated to an internal data
structure, where parameters of various kinds are associated
(e.g. delay in response time, resistance, and angular velocity).
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Fig. 8: Front end of our design tool.

The front end supports the connection between components,
and carries out a number of sanity checks to pinpoint errors
such as dangling terminals, missed components in logical
connections, and conflicting logical connections between in-
compatible symbols. The front end also supports the definition
of railway predicates representing some relevant physical
conditions. Properties are expressed in form of linear temporal
logic over both railway and physical predicates.

The second block is a compiler from SMDKN to hybrid
automata network, symbolically expressed in the HYDI lan-
guage [7]. The compiler is written in Python, and implements
the conversion traversing the network based on an extensible
library of behavioral component descriptions.

The third block is the HYCOMP model checker [8], that
processes the resulting HYDI network and carries out the
required analyses, leveraging various SMT-based engines for
model checking [9], together with XSAP [10] for safety
analysis and fault-trees production.

VII. EXPERIMENTAL EVALUATION

Benchmarks: we evaluated the proposed methodology
analyzing a scalable, industrial-size RIS referred to as RISCS.
Fig.9 shows a simplified layout of the RISCS, omitting both
the electrical connections among devices and other confidential
details of the relay logic. The RISCS[i] system represents a
railway section along a bidirectional train line containing a
sequence of i level crossings, with 1 ≤ i ≤ 10. The section is
protected on each track side by a warning and a protection
semaphore. The warning/protection semaphores have three
yellow/red lamps (WYL/PRL) and two green/green lamps
(WGL/PGL). The lamps of the same color are electrically
connected in parallel to improve the redundancy of each
semaphore. Every level crossing is protected on each street
side by a barrier (LCB) and by a vehicular semaphore consist-
ing of one red lamp (LCL). The presence of the train along
the line is detected by means of the train approaching pedals
(TAP) and of the train detection pedals (TDP). The maintainers
can completely/partially disable the section acting on several
maintenance levers (GML, TAML, LCML) at the maintenance
place. The train dispatcher can activate the section acting on

the section enabling lever (SEL) at the train station. The relay
logic is electrically connected to all the devices shown in
Fig.9. The relays sense the electrical currents flowing through
every connected device and actuate a specific control sequence,
transferring energy between the devices. For instance, when
the train pushes the left train approaching pedal (left TAP),
closing its sub-circuit, the logic checks the magnitude of the
current flowing through the level crossing lamps (up/down
LCL) of the vehicular semaphores, and, if all the lamps work
properly, the logic powers on the engines of the barriers (LCB)
to start the lowering sequence.

We modeled the RISCS case studies with our tool, selecting
and modeling the components and their parameters, their
interconnections, and verifying properties of interest. The
overall modeling task lasted for about 3 weeks, including the
creation of a reusable behavioral component library.

The largest system RISCS[10] contains 141 power supplies,
22 resistors, 113 relays, 15 levers, 12 pedals, 678 contacts,
40 lamps, 23 maintenance lights, and 54 circuit breakers
(printed on twenty A4-sheets of paper). These components
are distributed over 125 sub-circuits. The conversion of the
corresponding SMDKN into hybrid automaton returns an SMT
encoding that uses 437 Boolean variables to encode the dis-
crete part, and 6281 real-valued variables to encodes the phys-
ical part. Clearly, the size of the state-space makes traditional
manual inspection extremely time-consuming, expensive, and
unfeasible in practice.

We presents the results of the analysis on the nominal and
faulty variants of the RISCS system, where up to 80 electrical
faults (i.e. blown or short-circuited lamp) are injected on the
40 semaphore lamps in the case of the RISCS[10] benchmark.

Verification: we model checked the RISCS system
against 190 invariant properties, running the two verification
algorithms IC3 [11] and BMC [12] that represent complemen-
tary techniques to either verify or falsify properties. We run the
experiments on a 3.5 GHz cpu with 16GB RAM, with time out
(TO) set to 3600 seconds. About half of the properties represent
scenarios that are supposedly feasible, and are used to validate
the system design. The first validation round reported that
some scenarios were found to be (unexpectedly) unfeasible.
Upon fixing some buggy components in the behavior library,
all the scenarios were proved to be feasible, within the timeout
of 3600s, in both the nominal and faulty case. The resulting
execution traces were analyzed and validated by the domain
experts. Examples of scenario include that every lamp of every
semaphore can be turned on and then off, or that every barrier
can be completely lowered and then raised.

The remaining properties express the absence of safety
violations. Most of them are verified in the nominal case within
the timeout, except for three properties on the synchronization
among the warning and protection semaphores.

Some relevant properties expressing the proper synchroniza-
tion between the semaphore lights and the barriers positions
hold also under the non-nominal case (i.e. when components
are subject to faults). For instance, the model guarantees that
the green lamps of the protection semaphores are off when the
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Fig. 9: Physical layout of the RISCS[i] case study. Legend: Warning Yellow Lamp (WYL), Warning Green Lamp (WGL), Protection Red Lamp (PRL), Protection

Green Lamp (PGL), Level Crossing Lamp (LCL), Level Crossing Barrier (LCB), Train Approaching Pedal (TAP), Train Detection Pedal (TDP), Level Crossing Maintenance Lever

(LCML), Train Approaching Maintenance Lever (TAML), General Maintenance Lever (GML), Section Enabling Lever (SEL).

level crossing barriers are not completely closed. Moreover, we
are guaranteed that the colors of every semaphore are turned
on in a mutually-exclusive way. Noteworthy, we successfully
verified an electrical safety requirement (a low-level electrical
property) prescribed by the national regulation: the level
crossing lamps are short-circuited when the barriers are open
and resting to prevent inadvertent activation.

59 safety properties were violated in the faulty case. Some
of them check for each semaphore if there is always at least
one lamp turned on. Of course, in case of multiple lamp
faults, this condition cannot be avoided because all the lamp
might fail. With safety analysis, we compute the fault tree
responsible for the violations. For a warning semaphore, the
fault tree shows that the violation might be reached in 7
distinct circumstances: either all yellow lamps are blown, or
all green lamps are blown, or at least one yellow lamp is short-
circuited, or at least one green lamp is short-circuited. The first
two circumstances represent fault configurations of size 3 and
2, respectively the number of yellow and green lamps, that
would be hard to spot by manual inspection.

VIII. RELATED WORK

Formal methods have been heavily applied in the railway
domain. Important works on the verification of interlocking
systems include (but are not limited to) [13], [14], [15], [16],
[17], [18]. These works are not related, since they do not
consider the specific case of relay circuits.

To the best of our knowledge, no works address the verifica-
tion problem of a RIS based on its hybrid physical behavior.
Closely related works are [19], [20], [21], [22]. While we
model the evolution of continuous signals over time, the above
works model Boolean signals evolving over discrete time.
Furthermore, these works assume that the interaction with the
environment is limited to one input per cycle to ensure that the
internal micro-sequence of relay commutations started from
an input command is fully extinguished (run to completion)
before the arrival of the next input. In [22], two interesting
observations are made. First, the discrete model of time does
not support reasoning about relative time distances (e.g., be-
tween events, and on parasitic delays); second, the restriction
on the number of inputs per execution cycle only works under
the assumption that the control logic reacts “quickly enough”
to every change in its environment. Our approach overcomes

both limitations adopting a continuous model of time and not
imposing restrictions on the environment. Thus, we deal with
an arbitrary number of concurrent inputs and analyze the effect
of inputs received in the middle of an internal micro-sequence.

We now analyze these works in more detail. The works
[19], [20] present a practical approach to the RIS safety
certification. A Boolean model is extracted from the RIS
and analyzed via SAT-based abstraction-refinement. Our SMT-
based approach enables more fine grained analyses, modeling
the precise physics of the system and preventing spurious
behaviors introduced by the Boolean abstraction. The work
[21] builds a Boolean model based on the abstraction concept
of conductive path: a relay coil is drawn iff all the conduction
conditions along a conductive path from a power supply to
the coil are satisfied. This approach is subject to several
limitations: it is only valid under some assumptions on the
system physics (e.g., all the power supplies are always up
and running); it requires the enumeration of a potentially
exponential number of conductive paths; it does not permit a
quantitative reasoning (e.g., how much current flows through
a conductive path). There is only one work [22] that considers
risk analysis and the effects of single-mode faults on the
system safety. These faults are Boolean and limited to the
discrete state of relays (e.g., stuck at dropped/drawn). In our
work we allow the designer to specify a larger class of faults,
both on the discrete and physical state of components, with
no limitation on the contemporaneity of fault occurrences.

IX. CONCLUSION

In this paper we proposed an approach to understand legacy
relay circuits in the railway domain. We rely on an accurate
representation at the physical level in form of Switched
Kirchhoff Networks, that is then reduced to a symbolically
represented network of hybrid automata, and then analyzed
by means of SMT-based model checking. The experimental
evaluation demonstrates the precision and scalability of the
analyses. The proposed methodology is at the core of an
ongoing research project aiming at the in-the-large analysis
of legacy railway interlocking and the open specification
of computer-based solutions. Directions for future research
include the definition of a library of property patterns, the
definition of specific verification engines, and the integrated
animation of counterexamples.
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Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made – there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. 1 shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
• Low-level running time analysis – verify the time re-

quired for getting from point A to point B.
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• Low-level schedulability analysis – verify frequency of
trains arriving at a station, and simultaneous opportunities
for crossing, parking, loading, etc.

• Combinations – verify running time requirements on
schedulable operations.

Our approach: In this paper we suggest a formalization
of capacity requirements as a set of operational scenarios
involving a set of trains, a set of locations to visit, and a
set of timing constraints.

Verification in this domain can in principle be encoded into
the SMT [1], [2], [3] or PDDL+ [4] languages, essentially
resulting in a SAT modulo non-linear real arithmetic problem
[5], [6]. Many solvers can handle such problems [7], [8],
[9], but we found that the problem size of our test cases,
in terms of the number of planned actions and in terms of
number of interacting Boolean and non-linear real logic terms,
were out of reach for agile verification. Also, train dynamics
using only constant acceleration x′′ = c is in some cases too
simplistic for engineering. We would like to be able to extend
the dynamics equations using e.g. polynomials of higher order
or even numerical integration.

Therefore, we have developed a verification tool chain that
uses a simple CEGAR-loop between a SAT-based planning
tool that works on a discrete abstraction of control system
commands, and a discrete event simulation engine (DES) [10]
that calculates detailed continuous results for a specific plan,
taking the physics of moving trains into account.

The SAT-based planner uses bounded model checking
(BMC) [11] where time is reduced to a series of partially
ordered actions with unknown durations, and the choice of
actions are the available commands in the control system.
The DES component verifies the continuous time/space results
given the Boolean decisions of control system commands, and
adds new SAT constraints excluding unsatisfactory solutions.

The separation of discrete and continuous domains also has
the advantage that the simulation component can be extended
to handle more complex models, such as engine power curves,
tunnel air resistance, curve rolling resistance, train weight
distribution, etc., without affecting the planning logic or its
computational complexity.

We have tested our method and tool on practical examples
from existing infrastructure and ongoing construction projects
in collaboration with railway engineers in Railcomplete AS.

The rest of the paper is organized as follows: Sec. II
contains an overview of the railway design process and the
principles for analysis of these designs. We present a structure
for capacity specifications, together with examples of how
they can be used in construction projects. Sec. III describes
the tool chain and the solver architecture that we propose to
verify performance properties and integrate agile verification
in the construction project workflow, and how each of the
components of our solver are implemented. Sec. IV contains
performance evaluations in a set of relevant case studies.
Sec. V gives pointers to related work, and Sec. VI presents
our conclusions.

II. DOMAIN BACKGROUND AND PROBLEM DESCRIPTION

Railway capacity is hard to define precisely (see [12],
[13] for a discussion). Any capacity measure will necessarily
make assumptions about the operation of the railway. One can
say that the railway infrastructure does not have an inherent
capacity, only capacity for specific use cases. As such, a fully
accurate assessment of capacity can only be made under a
fully specified timetable, meaning that every train’s arrival and
departure times at all stations in the network must be known.
This makes for a highly coupled analysis, as constructing
an actual timetable requires bringing together details about
infrastructure, rolling stock, transportation demands, and crew
schedules. Such work can be done using commercial tools like
RailSys [14], OpenTrack [15], or LUKS [16]. Good overviews
of methods are presented in [17] and [18].

The so-called analytical approaches to capacity analysis
using networked queuing theory [19], maximum flow (orig-
inally posed as a railway capacity problem [20]), or max-plus
algebra [21], can give preliminary or low-precision network-
wide results, but fail to account for the critical low-level factors
which are relevant for verification in construction projects,
specifically discrete control system logic, communication, and
train acceleration and braking dynamics.

Because the verification feedback loop between design and
capacity analysis is either very time-consuming or too coarse-
grained, railway engineers end up re-using proven design
concepts or allowing sizable margins, e.g., in track lengths.

However, modern construction practice expects and de-
mands optimization. When space requirements, performance
requirements and costs are squeezed to the limit, the tradition-
based railway engineering approach lacks the methods to
accurately reason about the expectations of the finished system
from partially finished design plans.

Using agile verification of high-level properties from the
beginning of a design project, and in every step of the
process, allows engineers to better see the consequence of each
decision, and immediately uncover errors and shortcomings
that would otherwise be discovered only months or years later.

Railway design

The railway design activity produces the following artifacts:

• Track and trackside component layout, describing the
locations of tracks, switches, signals and detectors (see
Fig. 2a).

• Interlocking specifications, describing the requirements
for the logic of the control system (see Fig. 2b).

These design artifacts are the subject of verification, i.e. the
model. Ensuring performance in the context of a construction
project consists of verifying properties describing a set of
trains moving on the tracks and the goals which need to be
accomplished by these movements.

To verify performance properties, we need to find a se-
quence of trains and elementary routes for the train dispatcher,
i.e., a dispatch plan, which when executed under safety and
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(a)
Elementary
route

Start
signal

End
signal

Switch
position

Track
segments

Conflicts

AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

(b)

Fig. 2: Railway design artifacts: (a) Cut-out from 2D geo-
graphical CAD model (construction drawing) of preliminary
design of the Arna station signalling. (b) Simplified example
of tabular interlocking (control system) specifications.

correctness constraints (described in Sec. II-A below), demon-
strate the properties described in the performance requirements
(detailed in Sec. II-B below).

A. Safety and correctness of train movements

Low-level analysis of train movements covers a wide range
of constraints given by the track layout, the control system, and
operational procedures, to be certain that the analysis produces
detailed, realistic results. The following subsections give an
overview of these constraints, divided into four classes.

1) Physical infrastructure: Trains travel on a network of
railway tracks which have physical properties such as length,
gradient, curvature, etc. Tracks branch off using switches,
whose setting determines where the train goes. Detectors on
the track are used by the control system to determine whether
track segments are occupied. The physical infrastructure also
determines the sight areas: the set of locations where a train
receives information from a given signal.

2) Allocation of resources: Avoiding collisions by exclu-
sive use of resources is the responsibility of the interlocking,
which takes requests from the dispatcher for activating ele-
mentary routes. An elementary route is the smallest unit of
resources that can be allocated to a train, see Fig. 3. Route
activation is a process which proceeds as follows:

1) Wait for all required resources, such as track segments
and switches, to be free. Resources required by a route
are typically any resource in the train path (or sometimes
outside of it), which ensure that all movements are
performed at a safe distance from each other.

2) Movable elements (e.g. switches) must be set to correct
positions. If they are not, start a sub-process which moves
the element into place, and wait for this process to finish
before proceeding.

3) Signals are then set to show the ’proceed’ aspect to the
train when the above steps are finished. When the front

Signal A Signal C

Fig. 3: Elementary route AC from signal A to the adjacent
signal C. The thick line indicates track segments on the train’s
path which are reserved for this movement, and the dashed
lines indicate reserved track segments outside the path.

of the train has passed the signal, it is immediately reset
to show the ’stop’ aspect.

4) A release process is started, which waits for the train
to finish using the allocated resources (i.e. to travel over
them) and frees them when this has happened.

3) Communication constraints: After movement has been
allowed by the control system, the driver must be informed
of this fact. When a route is activated, a train inside the sight
area of the route’s entry signal reads the signal’s message that
movement authority is given. The train driver may then drive
the train forward until the next signal. The following types of
signalling systems are common in railways:

• Traditional signaling with trackside lamps. Communica-
tion is limited by how many different aspects the lamps
can show. To avoid high-speed trains slowing down at
every signal, several consecutive elementary routes can
be signaled in advance using so-called distant signals.

• Automatic train protection systems (ATP) work similarly
to signals, but may give more information. Many ATP
systems communicate information through magnets or
short-range radio at specific locations on the track, cor-
responding to a signal sight area of zero length.

• The European Rail Traffic Management System
(ERTMS) currently being implemented in many European
countries replaces lamp signals with trackside marker
boards, and uses long-range radio for communication.
This effectively removes the communication constraint,
as the radio can be used to update any train’s movement
authority at any time.

4) Laws of motion: Trains move within the limits of given
maximum acceleration and braking power. Train drivers need
to plan ahead for braking so that the train respects its given
movement authority and speed restrictions at all times.

The speed increase from v0 to v over a time interval ∆t is
limited by the train’s maximum acceleration a:

v − v0 ≤ a∆t.

However, when there is a more restrictive speed restriction
ahead, the driver must start braking in time to meet the
restriction. A signal showing the ’stop’ aspect can be treated
as a speed restriction of zero. Since speed restrictions change
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with time, the driver must re-evaluate their actions whenever
new information is received.

A train has the following constraint on its velocity v for
each restriction,

v2 − v2i ≤ 2bsi,

where vi is the maximum allowed speed, si is the distance to
the location where the restriction starts, and b is the maximum
retardation achieved by braking.

See [22] for a more in-depth description of railway opera-
tion principles.

B. Station performance requirements
To capture typical performance and capacity requirements

in construction projects, we define an operational scenario
S = (V,M,C) as follows:

1) A set of vehicle types V , each defined by a length l, a
maximum velocity vmax, a maximum acceleration a, and
a maximum braking retardation b.

2) A set of movements M , each defined by a vehicle type
and an ordered sequence of visits. Each visit q is a set
of alternative locations {li} and an optional minimum
dwelling time td.

3) A set of timing constraints C, which are two visits
qa, qb, and an optional numerical constraint tc on the
minimum time between visit qa and qb. The two visits can
come from different movements. If the time constraint tc
is omitted, the visits are only required to be ordered, so
that tqa < tqb .

To demonstrate how this structure captures requirements of
railway construction projects, we give some examples using
the syntax of the file format used in our tool1. First, we define
the following vehicle types:
vehicle passengertrain length 220.0

accel 1.0 brake 0.9 maxspeed 55.0
vehicle goodstrain length 850.0

accel 0.5 brake 0.5 maxspeed 20.0

The following set of performance specifications are se-
lected prototypical versions of specifications that railway en-
gineers have suggested as useful for automated verification:
• Running time: expresses an expectation of how long it

should take for a train to travel between two locations.
To specify this, we simply require that a train visits some
location b1 and later visits some other location b2. A
timing constraint of 90.0s between these visits sets the
running time requirement.
movement passengertrain {

visit #a [b1]; visit #b [b2] }
timing a <90.0 b

• Train frequency: a train station processes a set of trains
arriving and departing with a fixed frequency. On a two-
track station, we exemplify a sequence of four trains and
their relative departure times.

1For details of the input file formats, see https://luteberget.github.io/
rollingdocs/usage.html

movement passengertrain {
visit [b1]
visit [platform1,platform2] wait 60.0
visit #e1 [b2] }

// ...3 more trains with visits e2, e3, e4.
timing e1 <90.0 e2
timing e2 <90.0 e3
timing e3 <90.0 e4

• Overtaking: trains traveling in the same direction can
be reordered. For example, we specify a passenger train
traveling from b1 to b2, and a goods train with the same
visits. Timing constraints ensure that the passenger train
enters first while the goods train exits first.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b1]; visit #g_out [b2] }

timing p_in < g_in
timing g_out < p_out

• Crossing: trains traveling in opposite directions can visit
this station simultaneously. This example is similar to
the previous one, but the goods train now travels in the
opposite direction, and the timing constraints require that
the trains are inside the model simultaneously.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b2]; visit #g_out [b1] }

timing p_in < g_out
timing g_in < p_out

Similar specifications, and combinations of such specifica-
tions, are relevant in most railway construction projects. Since
we typically only need to refer to locations such as model
boundaries and loading/unloading locations, these specifica-
tions are not tied to a specific design, and can often be re-used
even when the design of the station changes drastically.

III. TOOL CHAIN AND SOLVER ARCHITECTURE

We have investigated several logic-based approaches for the
domain and problem described above. The PDDL+ language
has been designed to express planning problems in mixed
discrete/continuous domains. As each discrete change is rep-
resented by a planning step, our test case problem instances
would need at least 50-100 steps to be solvable. We were only
able to solve the most trivial test cases in less than one second
using the SMTPlan+ solver.

Encoding into SMT can be done by expressing planning as
BMC. This approach suffers from the same problem of having
a high number of planning steps (some improvements can be
made, s.a. making train driver choices implicit in constraints
on the relation between velocity, distance and time).

In response to all these, we developed a CEGAR-style
tool which exploits the limited number of control system
commands to make an abstraction of the planning problem,
see Fig. 4.

A verification tool chain which solves the low-level railway
infrastructure capacity verification problem and supports agile
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Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational
scenarios

(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

192

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is
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demonstrated in the crossing example in Fig. 1, where the two
plans shown are the only alternatives given by the planner.

The simulator component, which evaluates the time con-
sumption of plans, reports which parts of the plan fail the
timing constraints, and the negation of this partial plan is
added to the SAT instance. Since the timing calculations are
path dependent, we use the part of the plan starting from the
beginning and going up to the step where the timing specifica-
tion violation occurs. This way of refining the abstraction can
cause performance problems when many different choices are
possible early in the plan, and the timing violation can only
be found near the end of the plan, as demonstrated in Sec. IV.
Finding a way to make more precise refinements could be
necessary for larger problem instances.

The implementation of each of these constraints as propo-
sitional logic statements is described below. Constraints apply
separately to all states i unless noted otherwise.

1) Resource conflicts (C1): Any two routes which require
the same resources cannot both be allocated in the same state.

∀ra ∈ Routes : ∀rb ∈ conflict(ra) : oira = Free∨ oirb = Free.

2) Train path (C2): At most one alternative route is taken
by a train in a single state. First, ensure that only one route
from a given start signal may be taken at any time.

∀t ∈ Trains : ∀s ∈ Signal :

atMostOne(
{
oir = t | entry(r) = s

}
)

We use a standard sequential encoding to encode atMostOne
and other similar constraints, as explained in e.g. [30]. Note
that entry signals for all routes entering from a model boundary
share the same null value, so that this constraint also excludes
plans where a single train appears in several positions at once.
Each train should only enter the plan once, thus the appearance
Boolean changes to true in exactly one transition.

∀t ∈ Trains : bit ⇒ bi+1
t .

∀t ∈ Trains : exactlyOne
({
¬bjt ∧ bj+1

t | j ∈ States
})

,

A train appears when an entry boundary route is allocated:

∀t ∈ Trains : ∀r ∈ {r ∈ Routes | entry(r) = null} :(
oir 6= t ∧ oi+1

r = t
)
⇒ bi+1

t .

Routes which are not entry routes can only be allocated to
a train when they extend some other route which was already
allocated to the same train, i.e. consecutive routes must match
so that the exit signal of one is the entry signal of the next:

∀t ∈ Trains : ∀r ∈ {r ∈ Routes | entry(r) 6= null} :(
oir 6= t ∧ oi+1

r = t
)
⇒∨{

oi+1
rx = t | rx ∈ Routes, entry(r) = exit(rx)

}

3) Partial release (C3): Partial release is represented by
splitting each elementary route into separate routes for each
component which is released separately. The set Partial con-
tains such sets of routes. Partial routes are allocated together:

∀t ∈ Trains : ∀q ∈ Partial :

allEqual(
{
oir 6= t ∧ oi+1

r = t | r ∈ q
}

)

4) Deallocation (C4, C7): Routes are freed when sufficient
length has been allocated ahead to fully contain the train.

∀t ∈ Trains : ∀r ∈ Routes :

oir = t⇒ (oi+1
r = t) = freeabler,t(

{
oi
}

),

Note that the equality sign on the right hand side implies
that deallocation is both allowed (C4), and required (C7). The
freeable predicate is a disjunction of paths (conjunction of
routes) ahead which are long enough to contain the train.

5) Visits (C5, C6): Visits and their order are given by the
set VisitOrder, which contains pairs of (t, v), where t is a train
and v is a set of alternative routes. Visits must happen using
any of the alternative routes, and must be in an order such that
the visit (t1, v1) comes before (t2, v2):

∀((t1, v1), (t2, v2)) ∈ VisitOrder :∨{
oira = t1 ∧ ojrb = t2 ∧ i ≤ j
| ra ∈ (v1), rb ∈ (v2), i, j ∈ States}

6) Forced progress (C8): In addition to the constraints on
allocation and freeing that are required to produce a valid plan,
we also add constraints which force each train to get allocated
routes further along a path forward unless there is a conflict.
Routes ahead are either allocated, or the train is deferred p:

∀t ∈ Trains : ∀r ∈ Routes :

oir ⇒ pit,r ∨
∨{

oirx | rx ∈ Routes, entry(rx) = exit(r)
}

Deferred progress must be resolved by freeing a conflicting
route, and then allocating it to the train in the following step:

∀t ∈ Trains : ∀r ∈ Routes :

pit,r ⇒ pi+1
t,r ∨

∨{
oirc 6= Free ∧ oirx 6= t ∧ oi+1

rx = t

| rc, rx ∈ Routes, exit(r) = entry(rx), rc ∈ conflict(r)}
When i is the last state, pi+1

t,r is considered to be false, which
forces the deferred progress to be resolved eventually. Note
that it is not required that the conflicting trains are distinct.

IV. CASE STUDIES AND PERFORMANCE

This section presents running times for different typical
performance specifications on different types of railway infras-
tructure where the size and complexity of the model is typical
for the scope of railway construction projects. Verification
performance on various test examples as well as real stations
is presented in Table I. The table shows the time spent in each
solver component, and also shows the number of invocations
nDES of the simulator, which is very low in most of the
practical cases. This supports our hypothesis that the chosen
abstraction and CEGAR loop is efficient. The two-track station
used in Fig. 1 is not too complex, having only 6 elementary
routes. Even so, this scale is still interesting for verification in
practice, since there are many possible mistakes to uncover.

The Norwegian railway infrastructure manager Bane NOR
has supplied a railML infrastructure model of the whole
national railway network [31] from which we have extracted
some more complex examples. Fig. 8 shows cut-outs from the
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Fig. 8: Stations Kolbotn, Eidsvoll, and Asker from Bane
NOR’s model of the Norwegian national network [31].

Infrastructure Property Result nDES tSAT tDES ttotal
Simple
(3 elem.)

Run.time Sat. 1 0.00 0.00 0.00
Crossing Unsat. 0 0.00 0.00 0.00

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) is shown
for each infrastructure to indicate the model’s size. nDES is
the number simulator runs, tSAT the time in seconds spent in
SAT solver, tDES the time in seconds spent in DES, and ttotal
the total calculation time in seconds.

visual representation of these models, i.e., the stations Kolbotn,
Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructure model from the
Arna construction project that uses the RailCOMPLETE CAD
design software, a realistic use case for agile verification.

Finally, to test the limitations of scalability in our method,
we construct a set of examples where m stations each with n
parallel tracks each are serially connected by a single track.
In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with nm plans
for timing evaluation. This scenario is outside the intended use
case for our method: path selection can on this scale instead
be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the
PDDL+ solver SMTPlan+, but found that even for greatly
simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second
verification times.

V. RELATED WORK

Railway timetabling and capacity analysis has often been
posed as a planning problem and solved using mixed integer
programming and similar approaches. Zwaneveld et al. [32]
use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem.
Isobe et al. [33] formulate a similar model in timed CSP,
representing train locations, velocities, and control logic. Our
definition of the problem in this paper includes non-linear
constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have
not been informed of movement authority), which are relevant
in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in
railway dynamic analysis, see e.g. [34], [35], [36].

In the planning literature, the PDDL+ language [4] has
been introduced to capture mixed discrete/continuous planning
problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time
domain discretization (DiNo [37]) or the SMT theory of non-
linear real arithmetic (SMTPlan+ [38]).

VI. CONCLUSIONS AND FURTHER WORK

The goal of our suggested tool chain for railway engineering
is (1) to allow fully automated performance verification and (2)
use minimal input documentation for the verification. Both of
these aspects encourage bringing in performance verification
into frequently changing early-stage design projects, avoiding
the costly and time-consuming backtracking required when
later-stage analysis reveals unacceptable performance.

As future work we plan to integrate the current prototype
in the RailCOMPLETE tool and test the usability with the
engineers using this tool in their design work.

Acknowledgments: We thank the engineers at Railcomplete
AS, especially senior engineer Claus Feyling, for guidance on
railway operations and design methodology.
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a standard data interface for railroad applications,” in Computers in
Railways IX. WIT Press, 2004, pp. 233–240.

[29] “railML. The XML interface for railway applications,” 2018. [Online].
Available: http://www.railml.org

[30] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in Principles and Practice of Constraint Programming
- CP 2005, ser. Lecture Notes in Computer Science, P. van Beek,
Ed., vol. 3709. Springer, 2005, pp. 827–831. [Online]. Available:
https://doi.org/10.1007/11564751 73

[31] “Bane NOR: Model of the Norwegian rail network,” 2016.
[Online]. Available: http://www.banenor.no/en/startpage1/Market1/
Model-of-the-national-rail-network/

[32] P. J. Zwaneveld, L. G. Kroon, and S. P. van Hoesel, “Routing trains
through a railway station based on a node packing model,” European
Journal of Operational Research, vol. 128, no. 1, pp. 14 – 33,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0377221700000874

[33] Y. Isobe, F. Moller, H. N. Nguyen, and M. Roggenbach, “Safety
and line capacity in railways – an approach in timed csp,” in
Integrated Formal Methods, J. Derrick, S. Gnesi, D. Latella, and
H. Treharne, Eds. Springer, 2012, pp. 54–68. [Online]. Available:
https://doi.org/10.1007/978-3-642-30729-4 5

[34] M. Montigel, “Modellierung und gewährleistung von abhängigkeiten
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[36] E. Kamburjan and R. Hähnle, “Uniform modeling of railway
operations,” in Formal Techniques for Safety-Critical Systems FTSCS
2016, ser. Communications in Computer and Information Science,
vol. 694. Springer, 2016, pp. 55–71. [Online]. Available: https:
//doi.org/10.1007/978-3-319-53946-1 4

[37] W. M. Piotrowski, M. Fox, D. Long, D. Magazzeni, and F. Mercorio,
“Heuristic planning for PDDL+ domains,” in International Joint
Conference on Artificial Intelligence, IJCAI 2016, S. Kambhampati,
Ed. IJCAI/AAAI Press, 2016, pp. 3213–3219. [Online]. Available:
http://www.ijcai.org/Abstract/16/455

[38] M. Cashmore, M. Fox, D. Long, and D. Magazzeni, “A compilation
of the full PDDL+ language into SMT,” in International Conference
on Automated Planning and Scheduling, ICAPS 2016, A. J.
Coles, A. Coles, S. Edelkamp, D. Magazzeni, and S. Sanner,
Eds. AAAI Press, 2016, pp. 79–87. [Online]. Available: http:
//www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13101

196

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



Complete and Efficient DRAT Proof Checking
Adrián Rebola-Pardo

TU Wien
arebolap@forsyte.com

Luı́s Cruz-Filipe
University of Southern Denmark

lcf@imada.sdu.dk

Abstract—DRAT proofs have become the standard for ver-
ifying unsatisfiability proofs emitted by modern SAT solvers.
However, recent work showed that the specification of the format
differs from its implementation in existing tools due to optimiza-
tions necessary for efficiency. Although such differences do not
compromise soundness of DRAT checkers, the sets of correct
proofs according to the specification and to the implementation
are incomparable. We discuss how it is possible to design DRAT
checkers faithful to the specification by carefully modifying
the standard optimization techniques. We implemented such
modifications in a configurable DRAT checker. Our experimental
results show negligible overhead due to these modifications,
suggesting that efficient verification of the DRAT specification
is possible. Furthermore, we show that the differences between
specification and implementation of DRAT often arise in practice.

I. INTRODUCTION

Recent years have seen SAT solvers become increasingly
popular, with many sucess stories in their application to
several open problems, e.g. the recent computation of the
Schur number five [11]. Popularity has also brought about
the question of reliability: how much can we trust an answer
provided by a SAT solver? A satisfiability result can be easily
checked, since SAT solvers output a satisfying assignment. In
the case of unsatisfiability results, several formats have been
developed aimed at representing proofs of unsatisfiability in a
way that is both compact and efficient to check. In this paper
we focus on the DRAT format [10], [16], which has been
widely adopted in SAT competitions and can represent most
inferences done by SAT solvers. DRAT proofs can be checked
both by efficient, untrusted programs such as DRAT-trim,
and by certified, slower programs that work on extended
formats such as LRAT [2] and GRAT [12].

A mismatch between the definition of DRAT proofs and
the results of state-of-the-art proof checkers has been recently
exposed [15]. The class of correct DRAT proofs and that of
proofs accepted by modern checkers are incomparable: simple
proofs which are correct but rejected, or incorrect but accepted,
exist. This is not as catastrophic as it may sound, since it can
be shown that whenever checkers accept a DRAT refutation
of a formula, the latter is indeed unsatisfiable. Hence, one
may consider state-of-the-art checkers as implicitly defining
a proof system of their own. These two notions of correct
DRAT refutations have been refered to as flavors: the original
definition of a DRAT proof corresponds to the specified flavor,
whereas the one defined by the results of DRAT checkers is
the operational flavor. The fundamental difference between

them is that in the operational flavor specific clause deletion
instructions, called unit deletions, are ignored.

While this issue attracted some interest within the SAT
solving community, a discussion on the convenience of either
flavor is hindered by the absence of specified-DRAT checkers.
The reason for this unavailability lies deep down at the
heart of how DRAT checkers work. Deleting unit clauses
breaks invariants required by some lazy data structures for
unit propagation, which are necessary for the huge efficiency
of checkers. Without specified-DRAT checkers, it is virtually
impossible to assess how often discrepancies between the two
flavors occur in proofs produced by SAT solvers in practice.

In this paper, we explain how an efficient specified-DRAT
checker can be implemented. By carefully repairing the in-
volved data structures, the invariants necessary for effective
unit propagation can be restored. Extensively applying these
repairs would be extremely expensive; we identify restrictions
that greatly curb the induced overhead. To measure the repara-
tion overhead in specified-DRAT checking, we implemented
our method in a configurable checker, which can be run to
check proofs on either flavor. To the best of our knowledge,
this is the first specified-DRAT checker available. Experimen-
tal data suggests that the overhead of checking specified-DRAT
proofs over checking operational-DRAT proofs is negligible.
Furthermore, we find that discrepancies between both flavors
occur relatively often in practice, and are not just an artifact
of carefully handcrafted proofs.

Related work: There is extensive literature on clausal
proof generation and checking for SAT solvers [5], [6], [8],
[10], [16]. Several methods to validate correctness results
of DRAT checkers through certified means have been pro-
posed [2], [7], [12], although none of them covers incor-
rectness results. The incompleteness of state-of-the-art DRAT
checkers and its relation with unit clause deletion has been
observed and acknowledged [4], [10], [15].

II. PRELIMINARIES

Given a variable x, we denote its complement by x. A literal
is a variable or its complement. A clause is a disjunction of
literals; we denote clauses by juxtaposition, i.e. x ∨ y ∨ z
is denoted by xyz. We assume that clauses do not contain
complementary literals. The unsatisfiable or empty clause is
denoted by 2. A CNF formula is a conjunction of clauses. We
follow the usual definitions of satisfiability and entailment. We
construe CNF formulas as clause sets and clauses as literal
sets. For a clause C, we denote by C the set of clauses
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containing the size-one clause l for each literal l ∈ C. A
partial assignment is a finite, complement-free set of literals
I . For any literal l, we define I(l) as follows: I(l) = 1 if
l ∈ I; I(l) = 0 if l ∈ I; and I(l) = ? otherwise.

A clause C is called unit w.r.t. a partial assignment I
whenever there is a literal l ∈ C with I(l) = 1, and for
any other literal k ∈ C \ {l} we have I(k) = 0. We say
that a CNF formula F implies a literal l by unit propagation
whenever there is a finite sequence l1, . . . , ln of literals such
that ln = l, and we can find a clause Ci ∈ F with li ∈ Ci
and Ci \ {li} ⊆ {l1, . . . , li−1} for 1 ≤ i ≤ n. Furthermore,
we say that F implies a conflict by unit propagation whenever
there are two complementary literals l and l implied by unit
propagation over F . A clause C is a reverse unit propagation
(RUP) clause in F whenever F ∪C implies a conflict by unit
propagation. Moreover, C is called a resolution asymmetric
tautology (RAT) in F upon a literal l ∈ C whenever the clause
C ∨ (D \ {l}) is a RUP in F , for all clauses D ∈ F with
l ∈ D. We assume that clauses contain at least two literals.
In practice, the empty clause is never introduced in the data
structures, but size-one clauses are. For simplicity, we assume
that a new literal > is made true by all partial assignments.
Then, we replace size-one clauses l by the size-two clause l>.

Modern SAT solvers are able to generate unsatisfiability
certificates called DRAT proofs. A DRAT proof is a string
of instructions i1, . . . , in; every instruction is either a clause
introduction i:C or a clause deletion d:C, for a clause C.
Given a DRAT proof π and a CNF formula F , the accumulated
formula F [π] by F through π is recursively defined as follows:

F [ε] = F

F [i:C, π] = (F ∪ {C})[π]

F [d:C, π] = (F \ {C})[π]

The set of literals implied by unit propagation from the
formula accumulated by F through π is called the accumulated
partial assignment. In [15], the accumulated partial assignment
was characterized as the minimal UP-model of F [π].

Given a CNF formula F , a DRAT proof i1, . . . , in is called
a correct DRAT proof of F if 2 = im for some 1 ≤ m ≤ n,
and for every 1 ≤ j ≤ n either of the following holds:
• ij is a deletion instruction d:C.
• ij is an introduction instruction i:C, and C is a either a

RUP or a RAT in F [i1, . . . , ij−1].

Example 1. Throughout this paper we use the following
running example. We consider a CNF formula F containing
the following clauses:

x1

x1x2

x1x2x3

x1x3x4

x5x6

x2x5x7

x1x5x6

x5x6x4

x3x6x8

x6x4x3

x8x5

x3x9x10

x4x9x10

x10x9

x9x7

x7x8x9x10

Furthermore, we consider the following two DRAT proofs:

π = i:x5, d:x1x2, i:x9, i:2 π′ = i:x5, i:x9, i:2

Both π and π′ are correct DRAT proofs. Let us check that the
instruction i:x9 in π is correct. The accumulated formula at
that point is F ′ = (F \ {x1x2}) ∪ {x5}. F ′ ∪ {x9} implies
both x9 and x9 by unit propagation, so x9 is a RUP in F ′.

The proofs π and π′ do not contain any RAT introduction
instruction. As an example, clause x5 is not a RUP in F ,
but it is a RAT in F . The formula F ∪ {x5} implies by unit
propagation exactly the literals x1, x2, x3, x4, x5, x6, x7, x8, so
x5 is not a RUP in F . To show that it is a RAT in F upon
x5, we check that x5x6 = x5 ∨ (x5x6 \ {x5}) and x5x8 =
x5∨(x5x8 \{x5}) are RUPs in F . This holds, for F ∪{x5x8}
(resp. F ∪ {x5x6}) implies by unit propagation x8 and x8
(resp. x6 and x6). �

Our definition of a DRAT proof, reflecting the original
from [9], [10], is central to this paper. DRAT checkers are
programs that determine whether a DRAT proof is correct or
not. DRAT checking is computationally challenging, due to the
sheer size of proofs and the need for unit propagation to check
introduction instructions. Several DRAT checkers are avail-
able. DRAT-trim1 is the de facto standard checker, and is
used in SAT Competitions to certify unsatisfiability results [1],
[10]. Some data structure improvements have been shown to
induce notable improvements over DRAT-trim [12].

However, recent work exposed critical differences between
the way DRAT proofs are defined and the way DRAT proofs
are checked [15]. DRAT checkers ignore deletion instructions
removing clauses that are unit w.r.t. the accumulated assign-
ment. Hence, whereas the notion of correctness stays the same,
DRAT checkers compute the accumulated formula differently:
F [d:C, π] is defined as F [π] if C is a unit clause w.r.t. the
acumulated assignment for F ; and (F \ {C})[π] as usual oth-
erwise. Proofs that are correct but rejected by DRAT checkers
exist, and vice versa. We refer to the original definition as the
specified flavor of DRAT, whereas the operational flavor uses
the modified definition for accumulated formula.

A. Data structures for DRAT checking

Modern DRAT checkers are relatively complex programs.
Efficient unit propagation is required to check the correctness
of RUP and RAT introductions. This is achieved through the
same two-watched literal schema CDCL SAT solvers are based
upon, where each clause is watched on two distinct literals,
and the clauses watched on literal l are stored in the watchlist
for l [13]. Also as in SAT solvers, a trace of the assigned
literals is kept as a stack. The trace stores the accumulated
assignment (i.e. the literals implied by unit propagation by
the accumulated formula), together with information about the
order on which they were assigned and the reason clause that
triggered that propagation. Moreover, watchlists keep track of
clauses that are candidate to trigger future unit propagations.
Both data structures maintain invariants throughout the exe-
cution of the DRAT checker, which are required so that all
available unit propagations are appropriately detected.

1https://github.com/marijnheule/drat-trim
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At a given stage during checking, the j-th instruction is
considered. The trace then contains the accumulated assign-
ment Ij for the accumulated formula Fj . Remarkably, literals
in the trace occur in the same order as they were assigned.
In fact, they are staged: the trace behaves like a stack that
grows monotonically throughout the proof, so it can be divided
in sections such that the first j′ sections correspond to the
accumulated assignment Ij′ . Furthermore, every clause is
watched in such a way that that the following invariant holds:

Invariant 1. If a clause is watched on literals l and k, and
the current trace Ij falsifies l, then Ij satisfies k.

A DRAT checker can decide whether a CNF formula
together with some assumed literals implies a conflict by
unit propagation using a well-known procedure [13]. After
assigning each assumed literal l, the watchlist for l̄ is traversed.
By Invariant 1, clauses that trigger new propagations must
be watched on l̄, so they are all eventually encountered. The
checker tries to relocate the watches in each clause so that
Invariant 1 is satisfied. Two conditions may prevent this. In
one case, the trace falsifies all literals, hence a conflict is
reported. In the other case, all literals are falsified but for
one unassigned literal k. In this case, k is implied by unit
propagation, so it can be assigned to true. In turn, this triggers
new propagations, which are detected when the watchlist for
k̄ is traversed. If no further watchlists for previously assigned
literals remain to be processed, and a conflict has not been
reached, the checker can conclude there is no conflict by unit
propagation. Preparing the data structures to check if a new
set of assumed literals implies a conflict by unit propagation
only requires to unassign the literals in the trace: any watch
choice satisfies Invariant 1 correct afterwards.

B. Double-sweep DRAT checking

The described procedure can already check DRAT proofs: to
check if C is a RUP in F , it suffices to assume C̄ and perform
unit propagation, and RAT checking can be done via several
RUP checks. There is however much room for improvement.
DRAT checkers implement a number of techniques to speed
checking up, e.g. resolution candidate caching [12] and core-
first propagation [8]. Two techniques are especially relevant
to our work: an undocumented technique we call incremental
prepropagation, and backwards checking [8]. DRAT checkers
perform two sweeps through the proof. In the first sweep, in-
cremental prepropagation traverses the proof forwards, caching
propagation information that will be used in the second sweep.
Incremental prepropagation performs no proper checking. In-
stead, the second sweep called backwards checking performs
RUP or RAT checks for introduction instructions, traversing
the proof backwards. Backwards checking allows to skip
irrelevant parts of the proof by performing conflict analysis.

Incremental prepropagation: The description of the unit
propagation algorithm above implicitly assumes that the trace
starts empty. This is unnecessary: as long as the watches satisfy
Invariant 1, the initial trace may contain literals. Invariant 1
also implies that the trace contains all literals implied by unit

propagation. DRAT checkers exploit this by preserving the
anterior part of the trace stack between instructions during the
first sweep, in such a way that the trace grows monotonically.

Incremental prepropagation traverses the CNF instance and
the DRAT proof forwards. Every premise or introduction
instruction adds a clause C to the clause database; deletion
instructions are discussed later in this section. After a clause is
introduced, the trace and watchlists are updated. New literals
implied by unit propagation are incrementally added to the
trace stack. Hence, the trace has the form I0I1 . . . Im, and the
substack I0 . . . Ij is the accumulated assignment after the j-th
instruction. The data structures can be updated in three ways:
• If watches for C respecting Invariant 1 exist, no further

literals are propagated. C is added to the relevant watch-
lists, and the checker moves on to the next instruction.

• If C is falsified by the trace, then C is a RUP in F , and
moreover 2 is a RUP in F ∪{C}. This can be treated as
the end of the proof, and backwards checking starts.

• Otherwise, C only contains falsified literals except for
one unassigned literal l. In this case, C is watched
in l and in some other literal, and l follows by unit
propagation. Hence, l is pushed into the trace stack, and
the propagation procedure is called to derive new literals.

As observed above, the stack structure of the trace is mono-
tonic with respect to the proof: to recover the trace computed
before introducing C, if C was the reason to propagate l, it
suffices to drop the latter part of the stack starting with l. When
doing so, watches need not be modified, although this is not
so obvious; again, we defer this discussion to Section III-C,
when we will have the tools to explain the reason for this.

Example 2. Let us reconsider the proofs from Example 1:

π = i:>x5, d:x1x2, i:>x9, i:2 π′ = i:>x5, i:>x9, i:2
where we have introduced the literal > to prevent size-one
clauses. Figure 1 shows the evolution of the trace throughout
incremental prepropagation. Observe that the trace evolution
for π is non-monotonic, since some literals are removed from
the trace, whereas the one for π′ is monotonic. The reason
for this difference is the deletion of reason clause x1x2 in π.
State-of-the-art checkers would ignore this deletion instruction
in π because x1x2 is a unit clause w.r.t. the trace before
the deletion, thus implicitly checking proof π′. Therefore,
checking π and π′ is equivalent under the operational flavor.
Observe that the procedure described above to restore previous
traces works well in all cases except for recovering the trace
“after i:>x5” from “d:x1x2” in π. As we will see later, this
is the reason why unit clause deletions are ignored. �

Backwards checking: Once a conflict in the accumulated
assignment is reached, the second sweep starts. Backwards
checking traverses the proof from the conflict point towards the
beginning of the proof. Introduction instructions are checked
for RUP or RAT by restoring the trace to its state before that
instruction during incremental inprocessing. RUP checks for
a clause C are performed by assumming C and propagating;
RAT checks can be reduced to a number of RUP checks.
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trace preprocessing for π = i:>x5, d:x1x2, i:>x9, i:2 trace preprocessing for π′ = i:>x5, i:>x9, i:2
start after i:>x5 after d:x1x2 after i:>x9 start after i:>x5 after i:>x9

x1: >x1 x1: >x1 x1: >x1 x1: >x1 x1: >x1 x1: >x1 x1: >x1
x2: x1x2 x2: x1x2 x5: >x5 x5: >x5 x2: x1x2 x2: x1x2 x2: x1x2
x3: x1x2x3 x3: x1x2x3 x6: x1x5x6 x6: x1x5x6 x3: x1x2x3 x3: x1x2x3 x3: x1x2x3
x4: x1x3x4 x4: x1x3x4 x4: x5x6x4 x4: x5x6x4 x4: x1x3x4 x4: x1x3x4 x4: x1x3x4

x5: >x5 x3: x6x4x3 x3: x6x4x3 x5: >x5 x5: >x5
x6: x1x5x6 x8: x3x6x8 x8: x3x6x8 x6: x1x5x6 x6: x1x5x6
x7: x2x5x7 x9: >x9 x7: x2x5x7 x7: x2x5x7
x8: x3x6x8 x7: x9x7 x8: x3x6x8 x8: x3x6x8

x10: x4x9x10 x9: >x9
x10: x7x8x9x10 x10: x4x9x10

x10: x7x8x9x10

Fig. 1. Trace evolution throughout incremental prepropagation for proofs π and π′ from Example 1. Reason clauses for each propagated literal are indicated.

Done naı̈vely, restoring the trace would mean storing the
trace for each instruction in the proof, and then retrieving the
appropriate trace for every instruction. Watches would then
need to be relocated too, incurring in large costs. Fortunately,
as explained above, the checker can restore a previous trace
can be recovered by simply removing the latter part of the
trace stack. Also, this makes watch relocation unnecessary.

This does not justify checking the proof backwards: the
same effect can be obtained by checking introductions during
the first sweep. However, by performing conflict analysis
on each conflict similarly to CDCL [13], the checker can
determine which clauses were involved in the conflict. These
clauses get marked; unmarked clauses are skipped during
backwards checking, since they are unnecessary to derive 2.

Ignoring unit clause deletions: We had let aside the issue
of deletion instructions in incremental prepropagation. Clauses
that were not involved in trace propagation can be safely
removed from the clause database and watchlists. Otherwise,
C triggered the propagation of a literal l in the trace; we refer
to C as a reason clause for l. Removing a reason clauses is
cumbersome. For one, the propagated literal l may be used to
propagate later literals in the trace. For another, l (or any of the
subsequently propagated literals) may still be implied by unit
propagation, just through a different propagation sequence.

The solution adopted by state-of-the-art checkers is rather
pragmatic: ignore such deletions. If the checker only ignored
reason clauses, the results would be unpredictable, for reason
clauses depend on arbitrarities like the order of clauses in
the formula or the order of literals within clauses. Instead,
a more semantic criterion is used: a deletion instruction for
C is ignored whenever C is a unit w.r.t. the accumulated
assignment, which is stored in the trace. This is a necessary
condition for being a reason clause, albeit not a sufficient one.

Example 3. Consider the instruction d:x1x2 in proof π in
our running example. At this point, the trace is storing the
accumulated assignment {x1, x2, x3, x4, x5, x7, x6, x8}, and
the clause x1x2 is a unit w.r.t. this assignment. Therefore this
deletion instruction is simply ignored by DRAT checkers. �

This criterion makes the results of DRAT checkers stable,

i.e. equivalent representations of proofs yield the same correct-
ness result. However, ignoring unit clause deletions changes
the class of accepted proofs: DRAT checkers are checking
something else instead. The implicitly defined proof system is
sound, i.e. it can only prove unsatisfiable formulas. However,
its class of correct proofs is incomparable to that of correct
DRAT proofs. The implicit proof system has been formalized
and named operational-DRAT, in contrast to the originally
defined specified-DRAT proof system. A comparison between
the two flavors and a discussion on the need for specified-
DRAT checkers can be found in [15].

III. (NAÏVELY) CHECKING SPECIFIED-DRAT PROOFS

Due to the problems discussed in Section II-B, no DRAT
checkers for the specified flavor are available: the invariants
broken by unit clause deletion are precisely those that make
DRAT checking efficient. In this section, we describe how
to restore broken invariants after unit clause deletion. The
operations described in this section are expensive, but the
optimizations in Section IV vastly curb this overhead.

Our first goal is to construct the trace after a reason clause
deletion during incremental propagation, such as the trace
“after d:x1x2” in Example 2. A very inefficient way to do
that would be simply to discard the trace and the watches and
reconstruct them from scratch. We aim to improve over this
by reusing the trace before the deletion as much as possible.

We construct the trace after deleting the reason clause C
for literal l in two stages. First, we identify which literals in
the trace used l to be derived by unit propagation; we call
these literals the propagation cone of l. After removing the
propagation cone from the trace, the second stage restores into
the trace the removed literals that are still implied by unit
propagation. These two stages are illustrated in Example 4.

A. Computing the propagation cone
Intuitively, the propagation cone P (l) for literal l with

respect to a trace is determined inductively by two rules:
• The literal l is in the propagation cone.
• A literal k from the trace with reason clause D is in the

propagation cone if D contains a (necessarily falsified)
literal m 6= k where m is in the propagation cone.
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after i:>x5 after cone after after
removal reinsertion propagation

x1: >x1 x1: >x1 x1: >x1 x1: >x1
x2: x1x2 x5: >x5 x5: >x5 x5: >x5
x3: x1x2x3 x6: x1x5x6 x6: x1x5x6 x6: x1x5x6
x4: x1x3x4 x4: x5x6x4 x4: x5x6x4
x5: >x5 x3: x6x4x3
x6: x1x5x6 x8: x3x6x8
x7: x2x5x7
x8: x3x6x8

Fig. 2. Constructing the trace “after d:x1x2” from π in Example 2.

To compute the propagation cone P (l) w.r.t. a trace inducing
the partial interpretation I , let P0(l) = {l}, and

Pn+1(l) = Pn(l) ∪ {k ∈ I | ∃m ∈ Rk \ {k}, m ∈ Pn(l)}

for each n ≥ 0, where we denote by Rk the reason clause for
literal k in the trace. The propagation cone is then the fixpoint
P (l) =

⋃
n≥0 Pn(l), which exists and is reachable because the

sequence (Pn(l))n∈N is increasing and P (l) is finite. Because
the reason clauses for trace literals are stored for conflict
analysis purposes, all information needed for computing the
propagation cone is available. The cone P (l) is then removed
from the trace, keeping the order of remaining literals.

B. Reintroducing literals implied by unit propagation

The fact that a literal k is in the propagation cone of l only
means that l was used to derive k by unit propagation in the
original trace; but k might still be implied through a different
propagation sequence. Such literals must be restored into the
trace; to find them, we exploit that unit propagation only
requires Invariant 1 to discover all propagations. To satisfy it,
we can relocate the watches; calling unit propagation would
then do the heavy work. Again, the simple way is to relocate
watches for each clause; again, we can outperform this.

Let I and J be the partial assignments defined by the
traces before and after the removal of the propagation cone.
Invariant 1 is satisfied by I , but possibly violated by J . This
only happens for clauses D with watched literals k and m such
that J(k) = 0 and J(m) 6= 1. Removing literals from I can
only unassign literals; in particular, we infer that I(k) = 0.
By Invariant 1 we conclude that I(m) = 1, and so m got
unassigned by the removal of the propagation cone. Hence, m
was in the propagation cone.

This means that the only clauses whose watches may need to
be relocated are watched in a literal from the propagation cone.
In order to enforce Invariant 1, one can traverse the watchlist
for every literal m in the propagation cone P (l) and relocate
watches. When this cannot be done, then Invariant 1 is en-
forced by assigning literal m back into the trace. Furthermore,
in the latter case, all subsequent clauses watched in m have
correct watches, so we can move on to the next propagation
cone literal. This procedure may reassign some literals, which
may in turn lead to new propagations. Since Invariant 1 is
satisfied afterwards, we can simply perform unit propagation to

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l1

l2

l3

l6

l7

l10

l12

l8

l11

l5

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

before d:C after d:C

Fig. 3. Stack structure of trace reconstruction after a unit deletion. In this
case, the deleted clause C is the reason clause for l4. The propagation cone
P (l4) is shaded on the left; as explained in Section III-A these literals are
removed, and the unshaded part in the stack on the right is obtained. Some
literals from P (l4) may be reinserted as presented in Section III-B; these are
the shaded literals on the right, which need not preserve the order on the left.

find them out. Our procedure always reintroduces these literals
in the latter part of the stack; this will become very relevant
in Section III-C. An overview of the procedure is depicted in
Figure 3.

Example 4. Let us consider the traces for π from Example 2.
Starting from the trace “after i:>x5”, we construct the trace
“after d:x1x2”. Let us assume the following watch choices
(shown as dots and only for clauses of size larger than 2):

x1ẋ2ẋ3

x1ẋ3ẋ4

x2ẋ5ẋ7

x1ẋ5ẋ6

x5ẋ6ẋ4

x3ẋ6ẋ8

ẋ6x4ẋ3

x3ẋ9 ˙x10

x4ẋ9 ˙x10

x7x8ẋ9 ˙x10

Clause x1x2 is the reason for literal x2 in the trace “after
i:>x5”. The propagation cone P (x2) contains the literals x2,
x3, x4, x7, x8. By removing those literals from the trace,
we obtain the trace “after cone removal” in Figure 2. The
procedure above can be applied to the watchlists for literals
in P (x2). We perform the following changes:
• Watchlist for literal x3: clause ẋ6x4ẋ3 becomes x6ẋ4ẋ3.
• Watchlist for literal x4: clause x5ẋ6ẋ4 causes literal x4

to be reinserted in the trace.
• Watchlist for literal x7: clause x2ẋ5ẋ7 becomes ẋ2x5ẋ7.
• Watchlist for literal x8: clause x3ẋ6ẋ8 becomes ẋ3x6ẋ8.

This yields the trace “after reinsertion”. Unit propagation then
finds clause x6ẋ4ẋ3 in the watchlist for x4, propagating x3,
and clause ẋ3x6ẋ8 in the watchlist of x3, propagating x8. We
obtain the trace “after propagation”, which corresponds to the
trace “after d:x1x2”. �

C. Restoring trace and watches in backwards checking

The methods explained above apply to the incremental
prepropagation sweep. It nevertheless remains unclear how
would this work during backwards checking. One problem is
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recovering the trace before the deletion: removing the latter
part of the trace as in Section II-B does not work anymore:
fter reverting a clause deletion, some unassigned literals may
become assigned. In terms of Example 2, what we need to do
is to recover the trace “after i:>x5” from “d:x1x2” for π.

For the time being, our solution is simple: store the trace
every time a unit clause deletion is processed during incremen-
tal propagation, and then restore it back when the deletion is
reverted during backwards checking. This does not solve all
the problems, though. In Section II-B, the trace is restored by
removing its latter part. As we mentioned there, Invariant 1 is
satisfied after doing so; let us inspect the reasons for this.

Removing arbitrary literals from the trace can violate
Invariant 1, which is required for exhaustive unit propagation.
For example, a clause x1x2 satisfies the Invariant 1 for a
trace containing x1 and x2, but violates it after x1 is dropped
from the trace. Operational-DRAT checkers must be somehow
preventing this situation. It is apparent from Invariant 1 and
from the monotonic growth of the trace stack in operational-
DRAT checking that, once a watched literal is satisfied by the
trace during stack prepropagation, further watch relocation is
unnecessary. This is not a only an efficiency hack, but also
needed to maintain Invariant 1 during backwards checking too:
this ensures that, in the conditions above, if x1 (resp. x2) was
added to the trace in the j1-th (resp. j2-th) instruction during
trace preprocessing, then j2 ≥ j1. Hence, during backwards
checking, x2 is dropped from the trace before or at the same
time as x1, and so the problematic situation above never arises.

Invariant 2. Consider a clause F in the current accumulated
formula for the c-th instruction Fc that is watched on a literal
l satisfied by the current trace Ic. Let p < c the largest index
such that Ip does not satisfy l, and k be the other watched
literal in D. Then either of the following holds:

a) D /∈ Fr for some index p ≤ r < c
b) Ir(k) 6= 0 for some index p ≤ r ≤ c
This invariant is preserved by operational-DRAT checkers,

and forces Invariant 1 to hold after the removal of the latter
part of the trace stack when reverting a clause introduction dur-
ing backwards checking. Unfortunately, reverting a unit clause
deletion by restoring the stored trace violates Invariant 2, and
this eventually causes Invariant 1 to be violated.

Example 5. Consider now the clause x2ẋ5ẋ7 during back-
wards checking in proof π from Example 1. After instruction
d:x1x2, literals x2 and x7 are unassigned, so Invariant 1 holds.
However, Invariant 2 is violated with this watch choice: the
literal x7 is last not satisfied in the “start” trace, but this trace
falsifies x2. Invariant 1 is eventually violated too. In “after
i:>x5”, literal x2 becomes falsified and x7 becomes satisfied,
and so Invariant 1 is still satisfied. Once backwards checking
moves on to “start”, x7 is unassigned while x2 is still falsified,
and this violates Invariant 1. RUP checks may then report false
negatives: if literal x5 is added to the trace, then literal x7 must
be propagated, but since the clause is not watched on literal
x5 the checker will not inspect this clause. �

The reason why Invariant 2 is broken in Example 5 lies on
the non-monotonic changes that reverting the reason clause
deletion d:x1x2 causes in the trace. Restoring Invariant 2 is
difficult, since this requires storing the traces after instructions.
Instead, we establish an invariant that is strong enough to force
Invariant 1 and weak enough to be simple to maintain.

Invariant 3. Consider a clause D in the current accumulated
formula Fc for the c-th instruction that is watched on a literal
l satisfied by the current trace Ic. Let p < c the largest index
such that Ip does not satisfy l, and k be the other watched
literal in D. Then either of the following holds:

a) D /∈ Fr for some index p ≤ r < c
b) Ir(k) 6= 0 for some index p ≤ r ≤ c
c) k is in the propagation cone from Section III-A at a

deletion in some index p < r ≤ c.
Together, Invariants 1 and 3 are preserved when reverting

an introduction instruction i:C during backwards checking at
index c. Assume that they both hold at the c-th instruction.
If Invariant 1 was violated at index c − 1 by some clause
D ∈ Fc−1, then the value of p would necessarily be c−1, and
Ic(k) = Ic−1(k) = 0. Since i:C is an introduction instruction,
Invariant 3 would be violated at index c − 1, which is a
contradiction. On the other hand, if Invariant 3 was violated at
index c−1, then we have Ic−1(l) = Ic(l) = 1, and furthermore
D ∈ Fr for all p ≤ r < c − 1; Ir(k) = 0 for all p ≤ r ≤ c;
and k is never removed as a part of a propagation cone at an
index p < r ≤ c−1. Because i:C is an introduction instruction
Ic(k) = Ic−1(k) = 0 holds, and k is also not removed as a
part of a propagation cone at index c. But then Invariant 3
would be violated at index c, which is again a contradiction.

The previous paragraph shows that Invariant 3 is strong
enough to guarantee the same good behavior as Invariant 2.
However, in the specified-DRAT case we also need to consider
reverting deletion instructions d:C during backwards checking
at index c, and in general Invariant 3 is not preserved by
this operation (although it almost is, as we will see in
Section IV-C). Instead, we explicitly reestablish the invariant
by relocating the watches in every clause D in the accumulated
formula Fc−1 before the deletion. If D is not a unit clause
w.r.t. Ic−1, we choose as watches any two non-falsified literals.
Otherwise, it contains one satisfied literal l, which is chosen
as one of the watches. All other literals k ∈ D \ {l} are
falsified by Ic−1. We choose as the second watch the k such
that k occurs the latest in the trace stack Ic−1. Finding k is
computationally simple, since the trace is stored as an array
in memory, and so it boils down to pointer comparison.

This watch choice trivially satisfies Invariant 1; we show
that Invariant 3 is attained too. The former case is straight-
forward; we explain the case when D is a unit w.r.t. Ic−1.
Assume D violates Invariant 3. Then we have Ic−1(l) = 1,
and furthermore D ∈ Fr for all p ≤ r < c − 1; Ir(k) = 0
for all p ≤ r ≤ c; and k is never removed as a part of a
propagation cone at an index p < r ≤ c − 1; where p is
defined as in Invariant 3. The trace Ip at the p-th instruction
is saturated under unit propagation, so Ip(l) 6= 1 implies that
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there is some m ∈ D \ {l} such that Ip(m) 6= 0. Our choice
of watch k implies that m occurs strictly earlier in Ic−1 than
k. Now consider the instruction at the (c− 1)-th index.
• If it is an introduction, then Ic−1 is obtained from Ic−2 by

appending literals in the later part of the stack. Because
Ic−2(k) = 0, k is not one of the appended literals; and
m occurs strictly earlier than k in Ic−1, so neither is m .
We conclude that m occurs strictly earlier than k in Ic−2.

• If it is a deletion, Ic−1 is obtained from Ic−2 by removing
a propagation cone P , and reinserting some literals from
P into the result. We know that k /∈ P ; in particular k is
not reintroduced. As observed at the end of Section III-B,
literals are reintroduced at the later part of the stack; so
if m ∈ P held true, m would occur later than k in Ic−2,
but we have the opposite case. Thus, m /∈ P , and so m
occurs strictly earlier than k also in Ic−2.

Iterating this argument shows that m occurs strictly earlier
than k in Ip+1. Now, Ip(l) 6= 1 = Ip+1(l), so the instruction
at index p must be an introduction. Then, Ip is obtained from
Ip+1 by removing literals in the later part of the stack. Now,
Ip(k) = Ip+1(k) = 0, so k is not removed; and m occurs
earlier than k, so neither is m. But then Ip(m) = Ip+1(m) = 0
contradicts our choice of m. Therefore, Invariant 3 is fulfilled.

This completes our method for checking specified-DRAT
proofs with incremental preprocessing and backwards check-
ing. To summarize, we give a method that behaves essentially
like operational-DRAT checkers, the only difference being the
treatment of unit clause deletion instructions. During incre-
mental preprocessing, our method is able to construct a trace
reflecting the accumulated assignment after the deletion, and
relocate watches in a suitable way. By storing this assignment
to memory, we are able to restore it when the same unit clause
deletion is encountered during backwards checking; at that
point, watches for all clauses must be relocated.

IV. OPTIMIZING UNIT CLAUSE DELETION

The methods from Section III are computationally expen-
sive, and in practice they make specified-DRAT checking
much less efficient than operational-DRAT checking. This
overhead is mainly due to three causes. First, the fixpoint
computation for the propagation cone involves traversing the
trace quadratically many times. Second, storing each trace
before a deletion instruction may have a notable impact in
memory even if the changes in the trace are minimal. Last, the
watch relocation method in Section III-C involves relocating
the watches for every clause in the formula. We now explain
optimizations that greatly reduce the clause deletion-induced
overhead in specified-DRAT checking.

A. Linearly computing propagation cones

In order to efficiently compute propagation cones, yet
another invariant maintained by traces can be exploited:

Invariant 4. Let l be a literal in the trace with reason clause
Rl. Then, every literal k ∈ Rl \ {l} is falsified by the trace,
and k either is >, or occurs earlier than l in the trace stack.

P (l) := {l}
for k, trace literal after l do

if there is a literal m ∈ Rk with m ∈ P (l) then
P (l) := P (l) ∪ {k}

end if
end for

Fig. 4. Algorithm to linearly compute the implication cone

literal position index reason

x2 3rd x1x2
x3 4th x1x2x3
x4 5th x1x3x4
x7 8th x2x5x7
x8 9th x3x6x8

Fig. 5. Information stored to reconstruct trace “after i:>x5” from trace “after
d:x1x2” in Example 1.

The algorithm in Figure 4 exploits Invariant 4 to compute
the implication cone in a single pass through the trace2.

B. Storing deleted traces as permutations

Rather than storing each trace before a reason clause dele-
tion during incremental prepropagation and restoring it during
backwards checking, we can store the permutation that the
trace undergoes. By deleting a clause, no literal is derived:
some literals are removed from the trace, and some others are
moved to the latter part of the trace stack. From Figure 3 it is
apparent that storing the original reasons and positions within
the trace for propagation cone literals is enough to restore the
trace before deletion from the trace after deletion. Following
Example 1, we store the information in Figure 5 to reconstruct
the trace “after i:>x5” from the trace “after d:x1x2”.

C. On-demand watch relocation

Our previous analysis required the relocation of watches
during backwards checking for all clauses in the accumulated
formula. This is immensely wasteful: our preliminary experi-
ments showed that doing so takes up to 85% of the checking
runtime. This can however be vastly improved, reducing the
runtime share spent on this sort of watch relocation negligible.

Consider a clause deletion d:C at the c-th index, which
removed the propagation cone P from the trace Ic−1, reintro-
ducing afterwards a set R ⊆ P of literals to obtain Ic. Let D
be a clause in Fc watched on l and k, and assume it satisfies
Invariants 1 and 3 at the c-th instruction. If k and l do not
occur in P , it is easy to check that both invariants also hold at
the (c−1)-th instruction. In other words: the watch relocation
explained in Section III-C is only needed for clauses in the
watchlist of l for every literal l in the propagation cone.

2An anonymous reviewer pointed out that MiniSAT contains a similar
algorithm in its analyzeFinal function [3].
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V. EXPERIMENTAL EVALUATION

The ideas described in this paper were implemented in a
proof-of-concept DRAT checker rupee. Our DRAT checker
can be run in operational or specified modes; the operational
mode is designed to be as close as possible to a standard
DRAT checker, whereas the specified mode includes the unit
deletion processing methods described in this paper. Being a
proof-of-concept implementation, this checker lacks of many
optimizations, including efficient proof parsing, exploitation
of CPU cache, core-first propagation, and resolution candidate
caching. We thus expect worse performance than state-of-the-
art checkers. However, our goal is to measure the overhead in-
duced by specified-DRAT checking compared to operational-
DRAT checking, and for this we needed a system that we
completely understood to minimally change the behavior be-
tween the two modes. To the best of our knowledge, there is
no reason to think that the aforementioned optimizations are
incompatible with our methods for specified-DRAT checking.

An LRAT certificate [2] can be generated for instances that
rupee reports as correct. For instances reported as incorrect,
rupee reports information on the state of the trace at the end
of RUP and RAT checks on failing instructions. To the best of
our knowledge, rupee reports the right result in both modes.

We selected 11 benchmarks which were solved fast
by solvers in the SAT Competition 2017. DRAT proofs
for these benchmarks were generated by 4 participant
solvers: COMiniSatPS_Pulsar_drup, glucose-4.1,
Maple_LCM_Dist, and cadical-sc17-proof. The 44
resulting proofs were checked with rupee in both modes, as
well as with the state-of-the-art DRAT-trim as a baseline3.
DRAT-trim and rupee in operational mode agree on all

instances, as expected; rupee in specified mode only agrees
on 18 instances, rejecting all remaining instances. Hence,
discrepancies between specified-DRAT and operational-DRAT
occur rather frequently. Despite the semantic complexity of
the interaction between RAT introduction and clause dele-
tion [14], [15], this is not the cause of discrepancies: none
of the discrepant proofs contains RAT clauses. The distribu-
tion of the discrepancies gives some insight in this regard:
cadical-sc17-proof produced no discrepancies; for the
other three solvers 8 out of 11 proofs were discrepant. We con-
jecture that the cause of discrepancies may be in the MiniSAT
patch which most checkers use for proof generation in the
CDCL loop, since cadical-sc17-proof implements its
own method.

Figure 6 shows runtime results. We only compared results
on instances where all three checkers accepted the proof;
comparing discrepant instances would be meaningless, since
execution stops as soon as an instruction is declared incorrect.
DRAT-trim performs about one order of magnitude better
than rupee; this is expectable due to the lack of optimizations
in our tool. However, the runtimes of rupee in both its modes
are comparable, with the specified mode outperforming the
operational mode in hard instances. We conclude that the

3https://github.com/arpj-rebola/fmcad2018
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Fig. 6. Performance of DRAT-trim compared to both versions of rupee.

overhead of checking specified-DRAT proofs as compared
to operational-DRAT proofs can be made negligible. Further
research is required to verify the observed speed-up; one
possible explanation would be that, by deleting more clauses
in the specified mode, less resolution candidates are available
for RAT checks, and so less RUP check calls need to be made.

VI. CONCLUSION

The notion of a correct DRAT proof in the specification
differs from the used in the implementation of DRAT checkers.
We discussed the practical reasons for this, which lie on data
structure invariants that are broken if the original definition
of DRAT were to be respected. We proposed several changes
in DRAT checkers’ data structures and algorithms to check
DRAT proofs according to the specification in an efficient
way. In particular, we explained how to maintain slightly more
intricate invariants so that unit clause deletions can be applied,
and explored ways to vastly reduce the induced overhead.

We implemented these enhanced algorithms in a tool
rupee, and used it to verify DRAT proofs produced by
modern SAT solvers. Our results show that the discrepancy
between the DRAT definition and the operational notion of
correctness arises relatively often in practice. Our tool has a
negligible overhead over checking with respect to the opera-
tional semantics, although further efforts in optimization must
be done in order to attain similar performance to state-of-the-
art DRAT checkers. Our data also suggests that discrepancies
might have their root cause in an anomalous behavior of the
CDCL proof logging method underlying many solvers. This
suggests that future work should be directed towards efficient,
specification-complying proof generation.
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Abstract—Cloud computing provides on-demand access to IT
resources via the Internet. Permissions for these resources are
defined by expressive access control policies. This paper presents
a formalization of the Amazon Web Services (AWS) policy
language and a corresponding analysis tool, called ZELKOVA,
for verifying policy properties. ZELKOVA encodes the semantics
of policies into SMT, compares behaviors, and verifies properties.
It provides users a sound mechanism to detect misconfigurations
of their policies. ZELKOVA solves a PSPACE-complete problem
and is invoked many millions of times daily.

I. INTRODUCTION

Cloud computing provides on-demand access to IT re-
sources via the Internet. The convenience of accessing re-
sources in the cloud is made secure by user-specified access
control policies. An access control policy is an expressive
specification of what resources can be accessed, by whom,
and under what conditions. Properly configured policies are
an important part of an organization’s security posture. The
scale and diversity of cloud-based services is constantly grow-
ing (e.g., serverless computing, streaming analytics, edge-
computing devices), and each new offering used by an orga-
nization may require a different access policy configuration.
Moreover, customers are combining these services, which
means that the complexity is increasingly moving into policies.
Thus the security challenge for many customers is becoming
one of reasoning about static policies for their dynamic sys-
tems. Cloud customers want a tool that allows them to check
policy configurations based on their security requirements.

Amazon Web Services (AWS) defines a policy language that
lets users govern access to AWS resources. The permissions
granted by a policy rely on the interactions of different state-
ments and conditions. The policy language supports the inter-
play of statements that either grant access (allow statements)
or revoke access (deny statements). Furthermore, conditions
within statements can be based on access details such as the
source address, encryption, and other configuration options.

Users want assurances that their policies grant the right
permissions. To validate that policies express what is intended,
some AWS users have implemented heuristic-based syntactic
checks that detect certain patterns in policies, e.g., the use of
a wildcard that makes resources publicly accessible. Although
helpful, heuristic-based syntactic checks are unsound, since
they do not fully take into account the semantics of the policy
language. Others attempt to explicitly enumerate all possible
requests to a policy but quickly find this intractable.

In this paper, we present the development and application of
ZELKOVA, a policy analysis tool designed to reason about the
semantics of AWS access control policies. ZELKOVA translates
policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to check the validity
of the properties. We use off-the-shelf solvers and an in-house
extension of Z3 called Z3AUTOMATA.

ZELKOVA reasons about all possible permissions allowed by
a policy in order to verify properties. For example, ZELKOVA
can answer the questions “Is this resource accessible by a
particular user?” and “Can an arbitrary user write to this re-
source?”. The property to be verified is specified in the policy
language itself, eliminating the need for a different speci-
fication or formalism for properties. In addition, ZELKOVA
provides many built-in checks for common properties.

The SMT encoding uses the theory of strings, regular
expressions, bit vectors, and integer comparisons. The use of
the wildcards ∗ (any number of characters) and ? (exactly one
character) in the string constraints makes the decision problem
PSPACE-complete. However, our experience with real-world
policies is that 99% of policy questions can be answered in
less than 160 milliseconds.

ZELKOVA is the underlying policy analysis engine for
a growing number of AWS services. Used many millions
of times every day, ZELKOVA analyzes policies attached to
resources with compute, storage, messaging, search, analyt-
ics, and other capabilities. A sample of AWS services that
integrate ZELKOVA includes Amazon S3 (object storage),
AWS Config (change-based resource auditor), Amazon Macie
(security service), AWS Trusted Advisor (compliance to AWS
best practices), and Amazon GuardDuty (intelligent threat
detection). Also, ZELKOVA is used by internal AWS Security
auditing tools to enforce security best-practices for policy con-
figurations, e.g., public access to the resources is prohibited.

A. Related work

Policy languages have been used in a variety of domains,
e.g., trust management, distributed authorization, role-based
access, access control of resources [1]–[6]. Several policy
languages are defined as Datalog programs since it enables
efficient verification of properties [2], [6]–[10]. The AWS
policy language is defined with respect to a JSON serialization,
and is designed to be used across various cloud services
and scenarios of access control. ZELKOVA combines all the
components of the policy language in a single analysis tool.
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Fisler et al. define a policy formalism that consists of
transitions between different states of the environment that
determine access control in policies [2]. The access control
model in AWS also uses a policy and a dynamic environment
request context to determine permissions, but the environment
does not evolve during a single access request. Other policy
frameworks, e.g., XACML, allow policies across different ap-
plications to be combined [11], [12]. In a closely related work,
Hughes and Bultan transform XACML policies into Boolean
satisfiability problems and use a SAT solver to check partial or-
ders between policies using a bounded analysis. Bounding the
analyses, however, makes it unsound. In contrast, the encoding
to SMT in ZELKOVA is sound. The TRBAC policy model uses
concrete units of time to grant or revoke access [13]. This
is accomplished in the AWS policy language with conditions
on date and time. Finally, the SecGuru tool [14] compares
network connectivity policies using the SMT theory of bit
vectors.

Our present work stands out most along three dimensions.
First, we use an existing industrial policy language, which has
evolved to suit the needs of millions users and use cases. The
language is robust and flexible, with features that have arisen
from practical needs. Second, we work closely with service
teams to integrate our tool and to develop custom pre-built
properties that are relevant to each service’s users. Finally, we
have reached an audience of many millions with our tool.

II. APPROACH

When an access request is made to an AWS service, a
request context is generated which includes the principal
making the request, the resource being requested, and the
specific action being requested. A policy evaluation engine
compares this request context against the policies for the user
and the resource to determine if access is granted or denied.

ZELKOVA verifies AWS policies by reasoning over all
possible request contexts. The fundamental mechanism of
ZELKOVA is the ability to say if one policy is less-or-equally-
permissive than another. Properties can be specified as bound-
ary policies that represent either upper or lower bounds on
desired behavior. ZELKOVA’s less-or-equally-permissive check
then establishes the correctness of these bounds or finds a
counterexample.

A. Policy language overview

The AWS policy language is defined as serialized JSON1,
however, in this paper we describe the core constructs of the
policy language in a simplified abstract syntax. The examples
in this paper are also presented using this abstract syntax.

Fig. 1 shows the abstract syntax for the policy
language. In this syntax, ? denotes optional elements
and ∗ denotes list valued elements. A policy is a
list of statements. Each Statement consists of a tuple
(Principal,Effect,Action,Resource,Condition?). The
Condition is an optional element in the policy while

1https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_
elements.html

Policy→ Statement∗

Statement→ (Effect,Principal,Action,Resource,Condition?)

Effect→ allow | deny
Principal→ principal : string∗

Action→ action : string∗

Resource→ resource : string∗

Condition→ condition : Operator∗

Operator→ (OpName,KeyName,Value∗)

OpName→ StringEquals | StringEqualsIfExists | StringLike |
StringNotEquals | IpAddress | . . .

KeyName→ aws:sourceVpc | aws:sourceIp | s3:prefix | . . .
Value→ string | num | bool

Fig. 1. Simplified abstract syntax for the AWS policy language

the others are required. The Effect construct states whether
the statement allows or denies access. By default, access to
a resource is denied. Allow statements override the default
permissions, and deny statements override the permissions
granted by allow statements. In other words, to get access to
a resource, there must be some allow statement that grants
access and no deny statement that revokes that access. There
is no ordering constraints on statements in a policy.

The Principal construct is used in policies to specify which
users, accounts, services, or entities are granted or denied
access to resources. The principals are identified uniquely
by string values. The Action construct specifies the list of
actions that are either allowed or denied on the corresponding
resource. Various AWS services publish the set of actions that
can be performed by the user for the resources specific to those
services. The Resource construct specifies the list of service
specific resources to which access is either granted or denied.
Every AWS service has its own set of resources and each AWS
resource is uniquely identified by a string value. String values
for Action and Resource can contain the wildcard ∗ which
matches any number of characters and the wildcard ? which
matches exactly one character.

The Condition construct specifies conditions under which
access is granted or denied. In the Condition construct ex-
pressions are constructed using Operators on condition key
value pairs. The condition operators are grouped by their
types: String, Numeric, Date and Time, Boolean, Binary, IP
address, and others. The operator name (OpName) indicates
the type and the comparator. String condition operators provide
comparison on string conditions, e.g., StringEquals checks
string equality, StringLike checks a string against a pattern.
The complete list of operators is defined in the IAM documen-
tation2 and is supported in our implementation. The operators
are applied to condition keys (ConditionKey). Each condition
key is mapped to a corresponding value. Certain condition keys
are defined globally across all services, e.g., aws:sourceIp,
while other condition keys are service specific, s3:prefix.

2https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_
elements_condition_operators.html
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(( allow,
principal : students,
action : getObject,
resource : cs240/Exam.pdf),

( allow,
principal : tas,
action : getObject,
resource : (cs240/Exam.pdf,

cs240/Answer.pdf)))
(a) Policy X

(( allow,
principal : ∗,
action : getObject,
resource : cs240/*),

( deny,
principal : students,
action : getObject,
resource : cs240/Answer.pdf))

(b) Policy Y

Fig. 2. Example policies for students and TAs access to exams and answers.

X0 : a = “getObject” ∧ p = “students” ∧ r = “cs240/Exam.pdf”

X1 : a = “getObject” ∧ p = “tas” ∧
(r = “cs240/Exam.pdf” ∨ r = “cs240/Answer.pdf”)

X : X0 ∨X1

Y0 : a = “getObject” ∧ r = “cs240/*”

Y1 : a = “getObject” ∧ p = “students” ∧ r = “cs240/Answer.pdf”

Y : Y0 ∧ ¬Y1

Fig. 3. SMT encoding of policies X and Y from Fig. 2.

B. Example

A policy in the simplified abstract syntax for the Amazon
Simple Storage Service (S3) is shown in Fig. 2. Amazon
S3 is an object store where a logical unit of storage is
called a bucket. S3 stores data as objects in these buckets.
Each resource, e.g., the bucket and the objects in the bucket,
is uniquely identified through an Amazon Resource Name
(ARN). The policy attached to the bucket controls access to
the bucket and the objects in the bucket. The policy in Fig. 2(a)
states that students can read the exam and teaching assistants
can read both the exam and its answers. The other policy,
shown in Fig. 2(b), says that everybody can access all the
contents of cs240/ except that students cannot access the
answers.

Fig. 3 shows the encoding of the policies from Fig. 2. The
encoding for each policy is a formula over three variables p,
a, and r that correspond to the principal, action, and resource
in the resource request context. The formula evaluates to true
whenever the policy grants access. Since policy X has two
allow statements that can grant access, it is represented by
their disjunction. On the other hand, policy Y has one allow
statement Y0 and one deny statement Y1. Thus policy Y only
grants access if Y0 allows access and Y1 does not deny it:
Y0 ∧ ¬Y1. Note that we are abusing notation in Y0 to say
r = “cs240/*” since this, in fact, will correspond to a form
of string matching rather than equality. We discuss the details
of string matching in Section III-A.

To determine if policy X is less-or-equally-permissive than
policy Y , ZELKOVA uses SMT solvers to check if

(X0 ∨X1) =⇒ (Y0 ∧ ¬Y1)
is valid, which is true. The result of this check states that all
requests allowed by policy X are allowed by policy Y .

However, policy Y allows additional permissions. The re-
source “cs240/*” in the allow statement in policy Y allows
the “students” and “tas” principals access to objects (files)
other than “Exam.pdf” and “Answer.pdf”, such as “Class-
Roster.pdf”. Policy Y additionally grants principals other than
“students” and “tas” access to the resources in the bucket
“cs240”, since the deny statement only denies “students”
access to the “Answer.pdf”. This leads to a publicly readable
bucket since any other principal can perform the getObject
action on the contents of the bucket. Thus this policy does
not represent the user’s intentions, and it violates security best
practices. This shows the need for sound analysis of policies.
ZELKOVA provides this by reducing policies to mathematical
formulas and verifying their properties using SMT solvers.

III. SMT ENCODING

In this section, we describe ZELKOVA’s SMT encoding.
The encoding uses the theory of strings, regular expressions,
bit vectors, and integer comparisons. The policy language is
declarative, with no programming constructs such as loops
or dynamically allocated arrays. The semantics of the policy
language are encoded as an SMT formula. The permissions
granted by the policy are encoded as all the permissions
granted by allow statements and not revoked by deny state-
ments:


 ∨

S∈Allow

[[S]]


 ∧ ¬


 ∨

S∈Deny

[[S]]


 (1)

Here Allow and Deny are the set of allow and deny statements
in a policy. The semantic meaning of each statement, [[S]], is
the set of permissions granted by an allow statement or the
set of permissions revoked by a deny statement.

Each statement in a policy encodes the constraints over the
principal, action, resource, and conditions:

[[S]] :=


 ∨

v∈P (S)

p = v


 ∧


 ∨

v∈A(S)

a = v


 ∧


 ∨

v∈R(S)

r = v


 ∧


 ∧

O∈C(S)

[[O]]




(2)

The function P (S) returns all the string values specified
for a principal. Similarly, A(S) and R(S) return the string
values for the actions and resources in the statement. The
function C(S) returns the set of condition operators for a given
statement. The variables p, a, and r map respectively to the
principal, action, and resource values. The permissions in a
statement are granted as a disjunction over string values of the
principal, action, and resource values as well as a conjunction
over the conditions as shown in Eq. (2).
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( allow,
principal : ∗,
action : getObject,
resource : cs240,
condition : (StringEquals, aws:sourceVpc, vpc-111bbb222),

(StringLike, s3:prefix, cs240/Exam∗))
Fig. 4. Example policy with two conditions.

Each condition in a policy encodes a constraint over the
corresponding condition key:

[[O]] :=
∧

〈op,k,V 〉∈CO(O)


condExistsk ∧


 ∨

v∈V
op(k, v)




 (3)

Each condition maps to an operator name, a key name, and
a list of values via the function CO(O). The meaning of a
condition is encoded by a disjunction over all the listed values.
The Boolean variable condExistsk states that condition key, k,
must exist in the request context. The variable k represents the
value of the condition key when it exists. The operator (op)
defines the operations on the key and value pair (k, v), e.g.,
equality or inequality.

Next, we present the encoding of a few important classes
of condition operators.

A. String constraints

The encoding of policies in ZELKOVA is largely through
the use of string constraints. This includes both string equality
and inequality constraints, as well as pattern matching against
regular expressions. The principal, action, and resources con-
structs in the policy are encoded as string constraints. String
operators and their corresponding condition keys are also
encoded as string constraints. An example policy with con-
ditions is shown in Fig. 4. The operator StringEquals is
applied to the condition key aws:sourceVpc with a value of
“vpc-111bbb222”, which restricts access to a specific virtual
private network (VPC) in the AWS cloud3. The string operator
StringLike is applied to the condition key s3:prefix with a
value of “grades/∗”, which limits access so that only objects
under the “grades/” directory may be listed.

Fig. 5 shows the SMT encoding for this example. The
Boolean variables vpcExists and s3PrefixExists encode
whether the conditions aws:sourceVpc and s3:prefix

are present in the request context. The constraint
“grades/” prefixOf s3Prefix encodes that “grades/” is a
prefix of the variable s3Prefix. The following request context
corresponds to a satisfying assignment to the set of constraints
in Fig. 5:

{principal: bob,
action : listBucket,
resource : cs240,
condition: {aws:sourceVpc: vpc-111bbb222,

s3:prefix: grades/2018/final/}}

In order to encode ∗ wildcards in strings we use the prefixOf,
suffixOf, and contains string operators. With this encoding we

3https://aws.amazon.com/vpc/

a = “listBucket” ∧ r = “cs240” ∧
vpcExists ∧ vpc = “vpc-111bbb222” ∧
s3PrefixExists ∧ “grades/” prefixOf s3Prefix

Fig. 5. SMT encoding of policy in Fig. 4

( allow,
principal : ∗,
action : listBucket,
resource : ∗,
condition : (StringEquals, s3:prefix,UpLoads),

(StringEqualsIgnoreCase, s3:prefix,Uploads))

Fig. 6. Example policy with mixed case conditions.

can support up to two ∗ wildcards. Later we will see a different
encoding for additional wildcards. Examples of the current
encoding are given in (4).

“cs2∗/Exam∗” 7→ “cs2” prefixOf Var ∧ Var contains “/Exam”

“cs2∗/∗Exam” 7→
“cs2” prefixOf Var ∧ Var contains “/” ∧ “Exam” suffixOf Var

“∗240/∗Exam” 7→ Var contains “240/” ∧ “Exam” suffixOf Var

(4)

When different parts of a pattern can overlap, we disallow
the possible overlaps. For example, “ab∗bc” translates to
“ab” prefixOf Var ∧ “bc” suffixOf Var ∧ Var 6= “abc”.
Note that “abc” would otherwise satisfy the prefix and suffix
constraints, yet it does not match the pattern “ab∗bc”.

B. Regular expression constraints

More complicated string constraints require a more powerful
encoding. In particular, the encoding described above is unable
to represent constraints with the ? wildcard or more than two ∗
wildcards. For example, the following encoding fails because
it does not restrict “b” to appear before “c”.

“a*b*c*d” 7→ “a” prefixOf Var ∧ Var contains “b” ∧
Var contains “c” ∧ “d” suffixOf Var

(5)

In such cases, we use regular expressions to encode these
constraints. For example, (6) shows two encodings based on
the traditional regular expression pattern format where “.”
stands for any single character and “*” is the Kleene star
operator representing zero or more occurrences of the previous
character.

“cs???/Exam∗” 7→ Var matches “cs.../Exam.*”

“cs2∗/Exam/∗/Results/∗” 7→
Var matches “cs2.*/Exam/.*/Results/.*”

(6)

Some condition operators are case sensitive (StringEquals,
StringLike) while others are case insensitive (StringEqualsIg-
noreCase, Bool). Which type of operators are used on the
same condition key determines the exact encoding for case
sensitivity. When a condition key is constrained with only
case sensitive operators, nothing special needs to be done.
When a condition key is constrained with only case insensitive
operators, the targets of all those comparisons are converted
to lowercase which solves the problem. The difficult case is
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a = “listBucket” ∧ s3PrefixExists ∧
s3Prefix matches “UpLoads” ∧
s3Prefix matches “[uU][pP][lL][oO][aA][dD][sS]”

Fig. 7. SMT encoding of policy in Fig. 6

when a condition key is constrained with both case sensitive
and case insensitive operators. The previous method of con-
verting to lowercase all targets of case insensitive operators
would interfere with the case sensitive operators. Instead, case
sensitive comparisons are treated normally while the targets
of case insensitive comparisons are encoded into a regular
expression that represents all possible case combinations. For
example, consider the contrived combinations of conditions
in shown in Fig. 6. Here there is both a case sensitive and
a case insensitive constraint on the s3:prefix condition key.
The ZELKOVA encoding of these constraints is shown in Fig. 7
where we use character classes of the form [xX] to represent
a regular expression which matches a single character, either
“x” or “X”.

C. Bit vector constraints

The IpAddress condition operator allows users to restrict
access based on IP addresses. The IpAddress operator is
used in combination with the aws:SourceIp condition. The
values of aws:SourceIp have to be in the Classless Inter-
Domain Routing (CIDR) format. The CIDR format associates
net masks as part of the IP address specification. For example,
the IPv4 in CIDR notation 11.22.33.0/24 means that the first
24 bits of the IP address are considered significant. Consider
the translation of two conditions, one where aws:SourceIp is
set to 11.22.33.0/24 and the other set to 11.22.0.0/16:

C0 : (IpAddress, aws:SourceIp, 11.22.33.0/24) 7→
ipV4Exists ∧ (0x0B162100 = (ipV4 & 0xFFFFFF00))

C1 : (IpAddress, aws:SourceIp, 11.22.0.0/16) 7→
ipV4Exists ∧ (0x0B160000 = (ipV4 & 0xFFFF0000))

(7)

The Boolean variable ipV4Exists encodes the existence of
condition aws:SourceIp, and the bit vector variable ipV4
encodes the actual value. A bitwise AND operation is used to
mask the insignificant bits of the IP address in the constraint.

With this encoding we have [[C0]] =⇒ [[C1]] is valid. There
are 24 significant bits in the IP address in constraint C0 and
only 16 significant bits in the IP address in the constraint C1.
The common routing prefix is the same. Thus, request contexts
that are allowed by C0 are also allowed by C1.

D. Other operators

The conditions on numeric operators only perform integer
comparisons. There are no arithmetic operations in the policy
language and no interactions between numeric values and
string values, e.g., you cannot take the length of a string.
The conditions applicable to the Boolean operators are simply
encoded as Boolean constraints. Conditions with the IfExists

suffix check existence of the condition key in the request

Z3 CVC4 Z3AUTOMATA

UNSAT 965,092 34,908 0
SAT 959,543 39,932 525

Fig. 8. Number of times each solver was the fastest for one million UNSAT
and one million SAT property checks.

context. This suffix can be added to other condition opera-
tors such as StringEquals which results in a new operator
StringEqualsIfExists. The resulting operator can be applied
to the aws:sourceVpc condition key. For example:

(StringEqualsIfExists, aws:sourceVpc, “vpc-111bbb222”) 7→
awsSourceVpcExists =⇒ awsSourceVpc = “vpc-111bbb222”

(8)

IV. Z3AUTOMATA

Z3AUTOMATA is an in-house extension of Z3 designed to
provide a complete decision procedure for the theory of regular
expressions. As described in Section III, ZELKOVA uses the
regular expressions for problems that involve more than two
∗ wildcards, any ? wildcards, or tricky combinations such as
mixing case-sensitive and case-insensitive string comparisons.
Such cases are rare in general, but common at our scale where
we receive many millions of queries every day.

Z3 and CVC4 aim to efficiently solve problems over
word equations, a strictly more general problem than regu-
lar expression matching. This sometimes results in degraded
performance for pure regular expression problems. For ex-
ample, both fail to answer the query “Does there exist a
string that matches ‘ab∗b∗b∗b’ but not ‘a∗b∗b∗b’?”. More
generally, both solvers seem very sensitive to small changes
in the input encoding, where a quickly solved problem in our
domain becomes non-terminating. Yet, the theory of regular
expressions is decidable, and our problems stay within that
theory. Thus Z3AUTOMATA fills an important niche for our
domain.

Fig. 8 shows which solver was the fastest for one mil-
lion UNSAT and one million SAT Zelkova property checks,
both randomly selected. Note that for UNSAT problems,
Z3AUTOMATA is never the fastest solver. The SMT problems
that ZELKOVA generates contain a mix of both simple and
complex string constraints. For the properties that ZELKOVA
checks, an UNSAT result is, in our experience, always due
to the simple string constraints being unsatisfiable. Z3 and
CVC4 can easily and efficiently handle that case, thus
Z3AUTOMATA never wins. In the case where the constraints
are satisfiable, all the constraints must be considered including
the complex ones. Here, Z3AUTOMATA is able to win, often
in cases where Z3 and CVC4 are non-terminating.

Z3AUTOMATA solves regular expression problems using the
standard translation to deterministic finite automata (DFAs) via
non-deterministic finite automata (NFAs). It uses Hopcroft’s
algorithm for DFA minimization [15]. Z3AUTOMATA is para-
metric with respect to the character set and strives to produce
strings using only the printable subsets of a character set. The
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( allow,
principal : ∗,
action : getObject,
resource : ∗,
condition : (StringEquals, aws:sourceVpc, vpc-111bbb222)))

( allow,
principal : ∗,
action : putObject, listBucket, . . . ,
resource : ∗)

Fig. 9. A policy check that allows getObject requests only from
vpc-111bbb222.

full range of regular expression (and automata) features are
supported including intersection, union, and complement.

Z3AUTOMATA currently integrates with Z3 only on the SAT
level and treats each regular expression match as an atom. A
good future challenge for the SMT community to solve is how
to integrate this into the traditional Nelson-Oppen framework.

V. ZELKOVA PROPERTIES

Organizations using cloud services want assurances that
policies being authored or modified by users do not violate
general security best-practices, adhere to the security guide-
lines defined by the organization, and do not deny access
to the intended users. Examples of these properties are as
follows: “Ensure that unrestricted public write is not allowed
to a particular resource.” (security best-practice), “Ensure
access to a resource is only allowed from a certain range of
IP addresses.” (organizational security check), and “Ensure
a particular user is allowed to perform a specific action on
a resource” (availability property). These properties can be
specified in the policy language and checked by ZELKOVA.
Verification of properties by ZELKOVA provides assurance that
there are no inappropriately configured resources within an
organization.

A. Organizational security checks

We use the example in Section II to describe how an organi-
zation can specify a property in the policy language such that it
can be checked by ZELKOVA. The example in Fig. 2(b) allows
principal “∗” access to the cs240 resource and denies students
access to Answer.pdf. The principal being set to a wildcard
can lead to unauthorized access of objects by users who are
not members of the University as described in Section II. As
a safeguard measure, suppose, the University administrator
wants to ensure that there is no unauthorized access to data
in the buckets. The administrator and the security lead of the
University decide that an appropriate property to check would
be “the getObject action on the CS department S3 buckets is
only allowed on requests from vpc-111bbb222.” The VPC is
owned by the University, and so access requests from within
the VPC are trusted.

A policy that specifies the property, “getObject actions
are only allowed from vpc-111bbb222” is shown in Fig. 9.
The first allow statement in Fig. 9 permits getObject only
when the request comes from vpc-111bbb222. The second
allow statement permits all other unrelated actions that are not
relevant to the comparison. The policy in Fig. 9 represents

(( allow,
principal : ∗,
action : sendMessage,
resource : ∗,
condition : (ArnEquals, aws:sourceArn,mytopic)))

(a)
(( allow,

principal : ∗,
action : sendMessage,
resource : ∗,
condition : (ForAllValues:ArnEquals, aws:sourceArn,mytopic)))

(b)

Fig. 10. Policies constrained by aws:sourceArn. (a) Policy does not allow
world writability. (b) ForAllValues semantics allow world writability.

a desired upper bound on the set of request contexts that
should be allowed. This bound will only be violated if the
input policy allows a request which Fig. 9 does not allow. In
such a case, the request must be a getObject request (since
all other requests are allowed by the second allow statement
in Fig. 9) and it must come from outside of vpc-111bbb222
(since all putObject requests inside the VPC are allowed by
the first allow statement). Such a request would indeed violate
the proposed property. On the other hand, if ZELKOVA shows
that the input policy implies the policy in Fig. 9 then the upper
bound is establish and the proposed property holds true.

B. Security best-practices

ZELKOVA supports several built-in checks that can be
leveraged to check a variety of security best-practices. Ex-
amples of these include checking whether a policy allows
world accessibility for services such as Amazon S3, Amazon
SQS, Amazon SNS, Amazon Glacier, Amazon Elasticsearch,
and AWS Lambda. These AWS services provide compute,
storage, messaging, and search capabilities. These checks are
used internally by AWS to check adherence to security best
practices and also available to external customers through
services such as Amazon Macie, AWS Config, AWS Trusted
Advisor, and the Amazon S3 console. The built-in checks
provide greater security assurances without requiring the users
to define the properties.

Consider the case of Amazon SQS, a fully managed mes-
sage queueing service. ZELKOVA provides a built-in check
for whether an Amazon SQS policy is world accessible.
Fig. 10(a) shows an example SQS policy which which al-
lows sendMessage to any resource by any principal, pred-
icated on a condition. The condition restricts the source
(aws:sourceArn) of the message to be a specific source
(mytopic). A similar policy is shown in Fig. 10(b). Here, the
operator ForAllValues:ArnEquals is applied to the condition
aws:sourceArn whose value is restricted to mytopic. The
semantics for the operator prefix ForAllValues states that if
the condition aws:sourceArn exists, then its value is mytopic.
The SMT formula for that is as follows:

awsSourceArnExists =⇒ (awsSourceArn = mytopic)

When a request context does not have the condition key
aws:sourceArn set, the above formula is true. Thus any
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Fig. 11. S3 Console: Buckets marked Public or Not Public using ZELKOVA
checks.

Fig. 12. Rules in AWS Config that check public read is prohibited (s3-bucket-
public-read-prohibited) and public write is prohibited (s3-bucket-public-write-
prohibited) for an S3 bucket using ZELKOVA.

principal can send a message to the SQS queue. The ZELKOVA
built-in check for SQS world accessibility correctly marks
Fig. 10(a) as not world accessible and Fig. 10(b) as world
accessible.

VI. INDUSTRIAL EXPERIENCE

ZELKOVA is integrated in many AWS services including
Amazon S3, AWS Config, Amazon Macie, AWS Trusted
Advisor, and Amazon GuardDuty. In addition, ZELKOVA is
used by an internal security auditor by the AWS Security team.

The Amazon S3 Console is a web-based interface where
users can provision buckets; manage buckets, objects, and
folders; and set permissions to buckets and objects. A recent
release of the console added a view showing whether a bucket
is publicly accessible (Public) or not (Not Public). The
underlying check is performed by ZELKOVA. Fig. 11 shows
an example of this view.

AWS Config currently supports several managed rules based
on ZELKOVA4, such as a check for AWS Lambda Functions
granting unrestricted access, a check for S3 buckets granting
unrestricted read access, a check for S3 buckets granting
unrestricted write access, deny putObject requests that do not
have server side encryption, and deny actions that do not allow
https traffic. Config will trigger a new ZELKOVA-based check
whenever a new resource is created or the policy attached to it
is changed. Using the Config console, customers can determine
compliance of their S3 buckets against these rules, as shown
in Fig. 12, and receive notifications when permissions change
or view the permissions history in the console. The checks

4https://docs.aws.amazon.com/config/latest/developerguide/
managed-rules-by-aws-config.html
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Fig. 13. Performance of ZELKOVA on one million random policy questions

available in the Amazon Macie and AWS Trusted Advisor
services are similar to those in AWS Config.

ZELKOVA is used by internal security auditing tools, owned
by the AWS Security team, that scan all internal AWS
accounts to check for unintended configurations of resources.
Internal accounts are all AWS accounts owned by the AWS
development teams and personnel. These include policies
attached to various resources such as S3 buckets, SQS queues,
SNS topics, Glacier Vaults, KMS Keys, ElasticSearch Do-
mains, and AWS Lambda Functions. The security auditing
tools periodically scan all the resources and check compli-
ance of the resources policies according to the security best
practices. Violations of checks are automatically ticketed as
discovered, assigned to the owners, and automatically resolved
when policies are fixed. The auditing tools require no manual
intervention by the security engineering team.

While the checks available in Amazon Macie, AWS Config,
Amazon S3 Console, and AWS Trusted Advisor check safety
properties, the ZELKOVA integration in Amazon GuardDuty
checks for an availability property. ZELKOVA ensures that the
requisite permissions are enabled in a user’s policy when they
are on-boarding onto the service.

A. Implementation

ZELKOVA runs on AWS Lambda, a serverless computing
platform that runs applications without users needing to pro-
vision or manage servers. The input to ZELKOVA is a JSON
structure that consists of the policies that are being compared,
or a policy and the name of a built-in ZELKOVA check. The
response from ZELKOVA is also a JSON structure with the
answer to the query. For a comparison of policies, it returns
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whether the first policy in the payload is less permissive, more
permissive, equivalent, or incomparable with respect to the
second policy in the payload. For each of the built-in checks,
ZELKOVA takes a policy and returns true or false based on
whether the check is satisfied. If ZELKOVA is unable to handle
any construct in the policy or the solver times out, it returns
unknown.

ZELKOVA uses the solvers Z3, Z3AUTOMATA, and CVC4
in the backend to solve queries [16], [17]. The solvers provide
a combination of string, regular expression, bit vector, and
integer comparison theories. ZELKOVA invokes the solvers in
parallel and returns the results as soon as one of the solvers
provides the answer. We use the Z3 solver with its traditional
sequence string solver. Experiments with other solvers such as
Z3Str3 [18] and other automata-based solvers [19] is part of
our future work.

B. Usage statistics

The total number of invocations of ZELKOVA ranges from a
few million to tens of millions in a single day. The number of
invocations varies based on the services invoking ZELKOVA.
Certain services invoke ZELKOVA at some regular cadence,
e.g., the internal security auditing tools, while other services,
e.g., AWS Config, invokes ZELKOVA when a change is de-
tected in the policies.

Fig. 13 shows the performance of ZELKOVA on one million
randomly selected policy questions. These contain both policy
comparisons and built-in checks. The total time includes time
to parse the input JSON, encode the policies into SMT,
perform the check, and construct the resulting JSON that
is returned. The y-axis represent the count, i.e., number of
policies solved within the time. The graph shows that 99% of
policies are solved within 160 milliseconds.

VII. CONCLUSION

In this paper, we have presented a formalization of the
AWS policy language that controls access to resources. This
is the first instance of formalizing the AWS policy language
as SMT formulas. The advantage of this approach is that it
allows us to use off-the-shelf SMT solvers to verify safety
and availability properties. Given the distributed nature of the
policy language where different services establish their own
list of condition keys, this work provides a single consolidated
service to reason about the semantics of policies applicable
across different services in AWS. The previous state of the art
in policy checks for AWS services used syntactic checks for
policies. Alternatively, given a concrete request context, the
policy evaluation engine allows users to test access control.
In contrast, our formalization into SMT provides the ability
to soundly reason about properties of a policy for all valid
request contexts.

For customers of AWS services, ZELKOVA provides deeper
insights into the policy language, its semantics, and its impli-
cations. The tool enables customers to automatically maintain
their security posture. For people in the SMT and verification
community, this work shows how SMT can verify properties of

a complex industrial policy language that is used by millions
on a daily basis. Moreover, this work is one of the largest and
most widespread uses of formal methods in industry.

There are two avenues of future work. One avenue is to
improve the existing functionality provided in ZELKOVA. This
includes further work on Z3AUTOMATA to make it more
competitive. The second avenue is to enhance the functionality
of the ZELKOVA engine itself. For example, we want to
add support in ZELKOVA to return to the user a concrete
request context using the model generated by the SMT solver
when performing the check. The concrete request context will
provide information to the user on why a certain check passed
or failed. We also want to add support for recommending
policy repairs in cases when the policy fails a certain check.
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Abstract—Being able to soundly estimate roundoff errors of
finite-precision computations is important for many applications
in embedded systems and scientific computing. Due to the
discrepancy between continuous reals and discrete finite-precision
values, automated static analysis tools are highly valuable to
estimate roundoff errors. The results, however, are only as correct
as the implementations of the static analysis tools. This paper
presents a formally verified and modular tool which fully auto-
matically checks the correctness of finite-precision roundoff error
bounds encoded in a certificate. We present implementations of
certificate generation and checking for both Coq and HOL4 and
evaluate it on a number of examples from the literature. The
experiments use both in-logic evaluation of Coq and HOL4, and
execution of extracted code outside of the logics: we benchmark
Coq extracted unverified OCaml code and a CakeML-generated
verified binary.

I. INTRODUCTION

Numerical programs, common in scientific computing or
embedded systems, are often implemented in finite-precision
arithmetic. This approximation of real numbers inevitably
introduces roundoff errors, potentially making the computed
results unacceptably inaccurate. The discrepancy between dis-
crete finite-precision arithmetic and continuous real arithmetic
make accurate and sound error estimation challenging. Auto-
mated tool support is thus highly valuable.

This fact was already recognized previously and resulted in
a number of static analysis techniques and tools [18, 38, 11,
14] for computing sound worst-case absolute error bounds on
numerical errors. The results of such static analysis tools are,
however, only as correct as the tools’ implementation.

Some of these tools provide independently checkable formal
proofs, however we found that none of the current certificate
producing tools, FPTaylor [38], PRECiSa [32] and Gappa [14]
go far enough. FPTaylor produces a proof certificate in HOL-
Light, relying on an in-logic decision procedure [37]. Its
analysis is specific to floating-point arithmetic and does not
support other finite precisions. PRECiSa and Gappa generate
a proof certificate by instantiating library theorems, explicitly
encoding verification steps. Any tool that explicitly encodes
verification steps, or is to be used interactively [15, 35]
requires expert knowledge in IEEE754 floating-point seman-
tics [21] or formal verification; in contrast our goal is to make
our tool usable by non-experts. Finally, in-logic verification of
certificates can often become unreasonably slow.

This paper describes a new fully automated tool, called
FloVer, which checks proof certificates of finite-precision

roundoff error bounds generated by static analysis tools.
Certificates checked by FloVer encode only the minimal static
analysis result, and thus using FloVer does not require formal
verification expertise. Separately from FloVer, we implement
fully automated certificate generation in the static analysis tool
Daisy [13], demonstrating our envisioned tool-chain.

FloVer supports straight-line arithmetic kernels, floating-
point as well as fixed-point arithmetic, mixed-precision eval-
uation (including floating-point type inference), and local
variable declarations. For floating-point expressions, FloVer
proves correctness of each analyzed expression with respect to
the concrete bit-level IEEE754 floating-point semantics [21].
Our tool is formally verified in both Coq and HOL4. A
succesful run of FloVer shows that the encoded roundoff error
is a valid upper bound and that the analyzed function can be
run without any errors (e.g. division-by-zero).

In order to handle both floating-point and fixed-point arith-
metic, FloVer supports a forward dataflow static analysis.
FloVer is furthermore built modularly to allow reusability
and easy extensions, and supports dataflow analysis with both
interval and affine arithmetic abstract domains.

We have implemented and verified FloVer in two theorem
provers to be able to connect to projects in both provers and
thereby make FloVer widely applicable. In Coq, we hope to
link to the CompCert compiler [27] and CertiCoq [2]; and in
HOL4 we already link to CakeML [39].

The connection to CakeML allows us to provide efficient
certificate checking: using the CakeML toolchain [39, 34] we
produce a verified binary of our certificate checker. At the time
of writing, CertiCoq was not capable of extracting our checker
functions, thus we extract an unverified binary from Coq and
compare its perfomance with the verified CakeML binary.

Our evaluation on standard benchmarks from embedded
systems and scientific computing shows that roundoff errors
verified by FloVer are competitive with the state of the art, and
extracted certificate checking times are significantly faster than
in-logic verification.

Contributions

• We explain our modular, fully automated and self-
contained approach to certification of absolute finite-
precision roundoff error bounds (Section IV and V).

• We implement and prove FloVer correct in both Coq
and HOL4. The sources are available at https://gitlab.
mpi-sws.org/AVA/FloVer.

215

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



• We are the first to provide an efficient and verified way of
checking finite-precision error certificates by extracting
a verified binary version of FloVer from HOL4 (Sec-
tion VI).

• We experimentally evaluate (in Section VII) implemen-
tations of FloVer on examples from the literature. The
results are competitive and show that our approach to
certificate checking is feasible. During our experiments,
we found a subtle bug in the Daisy static analyzer.

II. OVERVIEW

In this section, we give a high-level overview of our
certificate generation and checking approach. The next sec-
tion provides the necessary background on finite precision
arithmetic and static dataflow analysis for roundoff errors.
Section IV describes the technical details of FloVer.

A certificate (in Coq or HOL4) checked by FloVer encodes
the result of a forward dataflow static analysis of roundoff er-
rors, but not the analysis or correctness proofs themselves. For
each analyzed arithmetic expression (consisting of +,−, ∗, /,
FMA, and local variables), the certificate contains:

• the expression f , as an abstract syntax tree (AST)
• a precondition P , specifying the domain (interval) of all

input variables
• a (possibly mixed-precision) type assignment Γ for all

input variables and optionally let-bound variables,
• the analysis result which consists of a range ΦR and an

error bound ΦE for each intermediate subexpression

FloVer then checks the analysis result recursively, by veri-
fying for each AST node that the error bound is a sound upper
bound on the worst-case absolute roundoff error:

max
x∈[a,b]

|f(x)− f̃(x̃)| (1)

where f and x are the real-valued expression and variable,
respectively, and f̃ and x̃ their finite-precision counterparts.
The interval [a, b] is the domain of x given by precondition
P . Ranges for input variables as well as the analysis result are
necessary as (absolute) finite-precision roundoff errors depend
on the magnitude of the computed values. In the absence of
input ranges, roundoff errors are unbounded in general.

FloVer splits the certification into several subtasks and runs
separate validator functions (see also Figure 1):

• validRealRange validates the range result ΦR,
• validTypes infers and checks types (given in Γ) of all

subexpressions
• validErrors validates the error results ΦE ,
• validMachineRanges validates that no overflow and NaN’s

(not-a-number special values) occur.

We have implemented the validators in both Coq and
HOL4 and proven an overall soundness theorem: when all
validators return successfully, then the computed error bounds
(for each subexpression) are soundly overapproximating the
finite-precision roundoff errors.

𝑓 ∶ ℝ → ℝ
𝑃: Precondition

Γ: type assignment

Φ (𝑓): roundoff error

Certificate (𝑓, P, Γ, Φ , Φ )

Static Analyzer

Machine Range Valid

Theorem: 𝑓 −  𝑓 ≤ Φ (𝑓)

Type Inference

Roundoff Error Valid

Real Range Valid








Fig. 1. Overview of the FloVer framework

To verify a certificate, one can run the validator functions
in Coq or HOL4 directly. However, while both provers na-
tively support evaluation of functions, this is not particularly
efficient. To speed up the certificate checkers, we have used
the CakeML in-logic compilation toolchain [34], to extract
a verified binary from our HOL4 checker definitions. Since
the CakeML compiler is fully verified, the binary enjoys the
very same correctness guarantees as the certificate checkers
implemented in HOL4. Similarly, we have used the extraction
mechanism [28] in Coq to extract an, albeit unverified, binary.
The binary implementations of the checkers run natively
and are thus significantly more efficient, as our experiments
in Section VII demonstrate.

III. BACKGROUND

A. Finite-Precision Arithmetic

FloVer uses a general abstraction for finite-precision arith-
metic relating it to operations on real numbers:

x ◦fp y = (x ◦ y) + error(x ◦ y, fp) (2)

where ◦ ∈ {+,−, ∗, /} and ◦fp denotes the corresponding
finite-precision operation at type fp. Function error(e, fp)
computes the error from representing the real value e in the
finite-precision type fp. An input x may not be representable in
finite-precision arithmetic, and thus FloVer considers an initial
error on the input: |x− x̃| ≤ error(x, fp).

For floating-point arithmetic, we assume IEEE754 [21]
semantics with rounding-to-nearest rounding mode and the
standard abstraction of arithmetic operations:

error(e, fp) = e ∗ δ |δ| ≤ εfp (3)

Constant εfp is the so-called machine epsilon for precision fp
(fp = 16, 32 or 64 bits) and represents the maximum relative
error for a single arithmetic operation. In addition to binary
operations, FloVer also supports unary negation, which does
not incur a roundoff error, and fused-multiply-add instructions,
where FMA(x, y, z)fp = (x ∗ y + z) + error(x ∗ y + z, fp).

216

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.



Equation 3 holds under IEEE754 floating-point semantics
only for normal floating-point values, and thus FloVer reports
ranges containing only subnormals, infinity or not a number
(NaN) special values as errors. We discuss the proof of
correctness wrt. to IEEE754 semantics in Section V-A.

Fixed-point arithmetic is an alternative to floating-points
which does not require dedicated hardware and is thus a
common choice in embedded systems. No standard exists, but
we follow the common representation [3] of fixed-point values
as bit vectors with an integer and a fractional part, separated
by an implicit radix point, which has to be precomputed at
compile-time. We assume truncation as the rounding mode
for arithmetic operations. The absolute roundoff error at each
operation is determined by the fixed-point format, i.e. the
(implicit) number of fractional bits available, which in turn
can be computed from the range of possible values at that
operation. Since this information must be computed by any
static analysis on fixed-point programs, we encode fractional
bits as part of our fixed-point type and rely on the certificate
containing a full (unverified) map Γ from expressions to types
for fixed-point kernels.

B. Static Dataflow Roundoff Error Analysis

FloVer’s range and error validators perform dataflow round-
off error analysis and for this follow the same approach for
computing absolute error bounds as Rosa [11], Fluctuat [18],
Gappa [14] and Daisy [13].

The magnitude of absolute finite-precision roundoff errors
depends on the magnitude of values of all intermediate subex-
pressions (this can be seen e.g. from Equation 3). Thus, in
order to accurately bound roundoff errors, the analysis first
needs to be able to bound the ranges of all (intermediate)
expressions.

At a conceptual level, dataflow analysis computes roundoff
error bounds in two steps:
range analysis computes sound range bounds for all interme-

diate expressions,
error analysis propagates errors from subexpressions and

computes the new worst-case roundoffs using the pre-
viously computed ranges.

Both steps are performed recursively on the AST of the
arithmetic expressions. A side effect of this separation is
that it provides us with a modular approach: we can choose
different range arithmetics with different accuracy-efficiency
tradeoffs for ranges and errors. Common choices for range
arithmetics are interval arithmetic (IA) [31] and affine arith-
metic(AA) [16].

IV. CERTIFICATION OF ERROR ANALYSIS RESULTS

Next, we focus on the technical details of our certificate
checking. The certificates in Coq, HOL4 and for the extracted
binaries are structurally the same and only differ in syntax.
Figure 2 shows a sample structure of a certificate in Coq and
HOL4, including the types of encoded results. Γ represents a
type assignment to all free variables in the analyzed function.
Expressions (of type expr) are parametric in the type of

constants. ΦR and ΦE map each AST node of the analyzed
function to an interval and a positive (absolute) error bound
represented by a single fraction, respectively. We discuss the
differing types of ΦR and ΦE in Section V-C.

The validator functions, which check the certificate, also
have the same structure in both Coq and HOL4 and we
describe them here independently of the particular prover.

A. Checking Range Analysis Results
The range validator is implemented in the function

validRealRange(e, P,ΦR) which takes as input an expression
e, the precondition P , which captures the constraints on the
input variables, and the real-valued ranges which are to be
checked in ΦR. validRealRange verifies by structural recursion
on the AST that for each subexpression e′ of e, ΦR(e′) returns
a sound enclosure of the true range, which is computed inside
the theorem prover with interval or affine arithmetic. That is,
we check the ranges in ΦR by effectively recomputing them
inside the prover.

Since FloVer supports let-bindings in the input program to
reuse evaluation results, both at runtime as well as in the
certificate validator, we extend validRealRange to handle let-
bound variables without recomputing results.

B. Mixed-precision Support
Mixed-precision evaluation allows different arithmetic oper-

ations to be executed in different precisions. This often allows
to speed up computations as evaluation in lower precisions is
usually faster. Instead of requiring e.g. uniform 64-bit preci-
sion, each subexpression in FloVer can be evaluated in 16, 32
or 64 bit floating-point precisions (each with the corresponding
machine epsilon εp). FloVer supports the same semantics as
C and Scala: for two operands with different precisions, the
lower one is implicitly cast to the higher precision, but an
explicit cast is required when decreasing precision (e.g. when
assigning a 64 bit value to a 32 bit variable).

The typing environment Γ assigns a machine precision to
every free variable of the analyzed expression. We further
require any constant in the AST, as well as casts to be
annotated with its (resulting) precision.

For floating-point precisions, FloVer infers the remaining
types automatically, i.e. the user only has to provide this
necessary minimal information, and in particular does not need
to annotate all intermediate operations.

We can reuse the existing infrastructure to support fixed-
point arithmetic. A fixed-point type in FloVer is then repre-
sented as a pair of word length w and number of fractional
bits f . For fixed-point precisions, FloVer avoids recomputing
the fractional bits and thus relies on the information being
encoded in Γ.

When checking a certificate, FloVer computes a full type-
map ΦT from the (partial) type map Γ to avoid recom-
puting results. To this end we implement the function
validTypes(Γ, e). The function returns ΦT if and only if
all types encoded in Γ are valid types for their respective
subexpressions. We reuse ΦT in both the error validator and
the machine range validator.
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Definition f:cmd Q := <AST f>.
(* Type assignment for free variables *)
Definition Gamma: expr Q → option mType := <Γ>.
(* range constraints on free variables of f *)
Definition Precondition: nat → (Q ∗ Q) := <P>.
(* map from sub-expressions to ranges and errors *)
Definition AbsEnv: expr Q → option ((Q ∗ Q) ∗ Q) :=
<ΦR,ΦE>.

Theorem CertificateCheckingSucceds =
CertificateChecker f Gamma Precond AbsEnv = true.
Proof.
vm_compute; auto.

Qed.

val f_def = Define ‘f: real cmd = <AST f>‘;
(* Type assignment for free variables *)
val Gamma_def = Define
‘Gamma: real expr → mType option = <Γ>‘;

(* range constraints on free variables of f *)
val Precondition_def = Define ‘
P: num → (real ∗ real) = <P>‘;

(* map from sub-expressions to ranges and errors *)
val AbsEnv_def = Define ‘
AbsEnv: real expr → ((real ∗ real) ∗ real) option =
<ΦR,ΦE>‘;

val CertificateCheckingSucceeds = prove (
‘‘CertificateChecker f Gamma Precond AbsEnv‘‘,
daisy_eval_tac);

Fig. 2. Certificate structure with corresponding types in Coq (left) and HOL4 (right)

C. Checking Error Analysis Results

The error validator validErrors(e,ΦT ,ΦR,ΦE) takes as
input the expression e, a type assignment to subexpressions
ΦT , the range analysis result ΦR and the error analysis result
ΦE , which is to be checked.That is, validErrors assumes that
the ranges and types have been verified independently. As for
the range validator, we extend validErrors to reuse results of
let-bound variables. The validator function checks by structural
recursion on the AST of e that for each subexpression e′ of e,
ΦE(e′) is a sound upper bound on the absolute roundoff error.

For constants and variables, the error bounds are straight-
forwardly derived using Equation 2 and the range analysis
result. For arithmetic operations, the error check is more
involved. Using Equation 2, Equation 1 and the triangle
inequality, we obtain for an addition:

|(e1 + e2)−(ẽ1 +fp ẽ2)| ≤
|e1 − ẽ1|+ |e2 − ẽ2|+ error((ẽ1 + ẽ2), fp)

(4)

|e1− ẽ1| and |e2− ẽ2| are the roundoff errors of the operands,
which are propagated simply by addition. error((ẽ1 + ẽ2), fp)
is the new roundoff error commited by the addition at precision
fp. The new roundoff error depends on the magnitude of the
operands and thus on the ranges of ẽ1 and ẽ2.

The computation of an upper bound to Equation 4 then
uses the range analysis result from ΦR, the already verified
error bounds on the subexpressions e1 and e2 in ΦE , and basic
properties of range arithmetic.

Similar bounds can be derived for the other arithmetic
operations. However, for multiplication and division, the prop-
agation of errors is more involved. For e1 ∗ e2 we obtain
|(e1 ∗e2)− (ẽ1 ∗fp ẽ2)| ≤ |e1 ∗e2− ẽ1 ∗ ẽ2|+error(ẽ1 ∗ ẽ2, fp)
and similarly for division:

|(e1/e2)− (ẽ1/fp ẽ2)|≤
|e1 ∗ (1/e2)− ẽ1 ∗ (1/ẽ2)|+ error(ẽ1 ∗ 1/ẽ2, fp)

FloVer checks whether a division by zero may occur during
the execution of the analyzed function under the real-valued
as well as the finite-precision semantics. If it detects that a
division by zero can occur in any of the executions, certificate
checking fails.

D. Supported Range Arithmetics

FloVer currently supports interval arithmetic (IA) [31] in
both provers and affine arithmetic (AA) [16] in Coq to check
real-valued ranges. The support for AA in the error validator in
Coq as well as the HOL4 development in general is currently
work in progress. Arithmetic operations in IA are efficiently
computed as: x ◦# y = [min(x ◦ y),max(x ◦ y)], ◦ ∈
{+,−, ∗, /}. IA cannot track correlations between variables
(e.g. it cannot show that e1 − e1 ∈ [0, 0]). Affine arithmetic
is a simple relational analysis which tracks linear correlations
and thus computes ranges for linear operations exactly (like
the e1 − e1); for nonlinear operations it nonetheless has to
compute an over-approximation.

V. SOUNDNESS

We have proven in both Coq and HOL4 that it suffices to run
the validator functions on a certificate to show a) that the static
analysis result is correct, and b) that the analyzed function
will always evaluate to a finite value. The overall soundness
proof relates a succeeding run of the validators validTypes,
validRealRange, validMachineRanges and validErrors to the
semantics of the analyzed function.

We have formalized the semantics of functions according to
Equation 2. The rule for binary addition, for instance, is

m+ = m1 tm2

ΦT (e1) = m1 ΦT (e2) = m2 ΦT (e1 + e2) = m+

(e1, E,ΦT ) ⇓ (v1,m1) (e2, E,ΦT ) ⇓ (v2,m2)

(e1 + e2, E,ΦT ) ⇓ ((v1 + v2) + error(v1 + v2, m+))

E is the environment tracking values of bound variables,
and Γ tracks precisions of variables. (e1, E,ΦT ) ⇓ (v1,m1)
means that expression e1 big-step evaluates for the variable
environment E and the type assignment ΦT to value v1

in precision m1. m1 t m2 is an upper bound operator on
precisions, returning the most precise of m1 and m2.

Real-valued executions map every variable, constant and
cast operation to infinite (real-valued) precision, which we
denote by m = ∞. The rules for subtraction, multiplication,
division, casts, and FMA’s are defined analogously. Unary
negation does not introduce a new roundoff error and keeps
the precision of the operand.
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Analogously to expressions, we will use E to refer to
the idealized real-valued environment and Ẽ for the finite-
precision environment. The overall soundness theorem is then

Theorem 1. Let f be a real-valued function, E a real-
valued environment, Ẽ its finite-precision counterpart, P a
precondition constraining the free variables of f , Γ a map
from all free variables of f to a precision, ΦR a range analysis
result, ΦT a type-map and ΦE an error analysis result. Then

E ∼(ΦE ,V,D,ΦT ) Ẽ ∧
validTypes(Γ, f) = ΦT ∧ validRealRange(f, P,ΦR) ∧

validMachineRanges(f,ΦT ,ΦR,ΦE) ∧
validErrors(f,ΦT ,ΦR,ΦE) =⇒

∃ v ṽ1m1. (f,E,ΦT ) ⇓ (v,∞) ∧ (f̃ , Ẽ,ΦT ) ⇓ (ṽ1,m1) ∧
(∀ṽ2m2. (f̃ , Ẽ,ΦT ) ⇓ (v2,m2)⇒ |v − ṽ2| ≤ ΦE(f))

The assumption E ∼(ΦE ,V,D,ΦT ) Ẽ states that the real-valued
environment E and the finite-precision environment Ẽ agree
up to a fixed δ on the values of the variables in the sets V and
D. We give the full explanation when explaining soundness
of the error validator. To prove the theorem, we have split
the proof into separate soundness proofs for each validator
function. Each theorem is shown by structural induction on e.

a) Type Validator: Giving the full type map ΦT is
tedious to do for a user. FloVer thus requires only annotations
for casts, constants and (let-bound) variables, and infers the
remaining types (ΦT ) fully automatically for floating-point
expressions. For fixed-point types only, we require Γ to be
a complete map since we rely on the fractional bits to be
inferred externally.

Soundness of the type inference validTypes means that when
ΦT (e) = mt and evaluation of e gives value v and precision
mv , then mt = mv . Thus, we need not recompute type
information once the type map has been computed and reuse
it in the other validators.

b) Real Range Validator: For validRealRange, the sound-
ness theorem proves that if E binds variables in e to values
that are within the range given by the precondition P , then e
evaluates for environment E to v under a real-valued semantics
and v is contained in ΦR(e).

c) Machine Range Validator: We prove that whenever
validMachineRanges succeeds on expression e, valid type-map
ΦT and valid error map ΦE , then any evaluation of e results
in a finite, representable value for the type of e in ΦT .

For floating-point precisions this means that v is a finite
value according to IEEE754 (i.e. either 0, subnormal or
normal). For fixed-point precisions with word size w and
f fractional bits, this means that v is within the range of
representable values (|v| ≤ 2w−1−1

2f ) and no overflow occurs
(i.e. the fractional bits were correctly inferred).

FloVer uses Equation 3 to compute an error for floating-
point precisions which is only valid in the presence of
IEEE754 normal numbers or 0. We note that the roundoff
error of the biggest representable subnormal number is smaller
than the roundoff error of normal numbers in general. We add

this condition as a check to function validMachineRanges by
checking that the floating-point range contains at least one
normal number.

d) Error Validator: If validErrors(e,ΦT ,ΦR,ΦE) suc-
ceeds, and e evaluates to v, then we want to show that ẽ
evaluates to ṽ, and that |v − ṽ| ≤ ΦE(e). The challenge in
this proof lies in the fact that we reason about two different
executions of similar expressions, e and ẽ.

Given a free variable x in the analyzed expression e, the
value E(x) may not be representable as a finite-precision
value. Thus the values for the related variables x and x̃ will
not in general agree. This is the case for every free variable
occurring in e. Additionally, the roundoff error of any variable
depends on its precision. As a consequence we introduce
an inductive approximation relation ∼(V,ΦT ) between values
provided by E and Ẽ for variables in V so that we can prove
the error bound. Given E ∼(V,ΦT ) Ẽ, both environments are
defined for every variable v ∈ V . In addition, the difference
between E(v) and Ẽ(ṽ) at precision p is upper bounded by
error(v, p), where p is ΦT (v). In the proofs we instantiate
V by the free variables of the analyzed expression. Two
empty environments are trivially related under the empty set
((_ 7→ ⊥) ∼(∅,ΦT ) (_ 7→ ⊥)) and for free variables we have:

E ∼(V,ΦT ) Ẽ x 6∈ V
ΦT (x) = m | v − ṽ | ≤ error(v,m)

FreeVar
(E [x 7→ v]) ∼({x}∪V,ΦT ) (Ẽ [x̃ 7→ ṽ])

To prove soundness for let-bindings, we will extend the
relation with a rule for defined variables later.

ΦE maps expressions to rationals, representing absolute
error bounds. FloVer computes error bounds from intervals
from ΦR and the error bounds on subterms. The propagation
errors for multiplication and division depend on both the real-
valued and the float-valued ranges. Therefore the soundness
proof requires solving 16 and 32 sub-cases for multiplication
and division, respectively.

e) Let-Bindings: To extend the soundness proofs to let-
bindings, we have to check that the analyzed function f is
in SSA form (since ΦT , ΦR and ΦE are maps, variables
cannot be redefined). For this we use the formalization of SSA
defined in the LVC framework [36]. Furthermore, we adapt the
approximation relation ∼ to include let-bound variables:

E ∼(ΦE ,V,D,ΦT ) Ẽ x 6∈ V ∪ D
ΦT (x) = m | v − ṽ | ≤ ΦE (x)

DefinedVar
(E [x 7→ v]) ∼(ΦE ,V,{x}∪D,ΦT ) (Ẽ [x̃ 7→ ṽ])

Set D, tracks variables added to both environments using let-
bindings and ΦE is the error analysis result. The sets D and
V are used to distinguish whether a variable x is free or let-
bound.

f) Using Flover: We obtain the overall soundness of
FloVer (Theorem 1) as the conjunction of the results of the
functions validTypes, validRealRange, validMachineRanges and
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validErrors. Theorem 1 holds only if checking of the certifi-
cate succeeds. If the static analysis result in a certificate is
incorrect, e.g. a computed range or roundoff error is incorrect,
FloVer fails checking the certificate. Our tool can be used
by any other roundoff error analysis tool that computes real-
valued ranges, roundoff error bounds and knows about variable
types. Using FloVer is then as easy as implementing a pretty-
printer for this information.

FloVer performs sound dataflow analysis, which necessarily
computes an overapproximation of the true roundoff errors.
It is thus possible that FloVer cannot verify a certificate
even though the error bounds are indeed correct. Different
range arithmetics, which influence the accuracy of FloVer’s
analysis, commit different overapproximations. Thus we use
our implementations of IA and AA in Coq in a portfolio
approach and run both when checking range analysis results.

A. Connecting FloVer to IEEE754

We connect our formalization to formalizations of IEEE754
floating-point arithmetic in HOL4 [17] and the Flocq library in
Coq [6] by proving that if checking the certificate succeeds, we
can evaluate the analyzed function using IEEE754 semantics
and the roundoff error bound is valid for this execution.

Theorem 2. Let f̃ be a function on 64-bit floating-points and
f its real-valued counterpart, E a real-valued environment,
Ẽ its 64-bit floating-point counterpart, P a precondition
constraining the free variables of f̃ , Γ a map from all free
variables of f̃ to 64-bit precision, ΦR a range analysis result,
and ΦE an error analysis result, Then

E ∼(ΦE ,V,D,Γ) Ẽ ∧
CertificateChecker (f, P,Γ,ΦR,ΦE) ∧

IEEEevalAvoidsSubnormals f̃ =⇒
∃ v ṽ. (f,E) ⇓ v ∧ (f̃ , Ẽ) ⇓IEEE ṽ ∧ |v − ṽ| ≤ ΦE(f)

The proof of Theorem 2 is an extension of FloVer’s soundness
theorem (Theorem 1). To show that the roundoff error bounds
are valid for the IEEE754 operations, we use the soundness
theorem of validMachineRanges to establish that all values
obtained form an evaluation are finite.

The formalization in HOL4 (currently) does support nei-
ther cast operations nor reasoning about roundoff errors for
subnormal values. Until these are supported, we assume Γ to
map every variable to 64-bit double precision and disallow
subnormal values to occur during evaluation. To this end,
we define the function IEEEevalAvoidsSubnormals(e, E), as a
temporary workaround. The function returns true only if every
subexpression of e evaluates to a normal value or 0.

B. Division Bug Found

We use Daisy [13] to generate certificates for our evaluation.
During this, we found a subtle bug in the tool’s static analysis
of the division operator. The error bounds are only sound in
the absence of division-by-zero errors, but only the real-valued
range of the denominator was checked for whether it contains
zero. It is possible, however, that the real-valued range does

not contain zero, while the corresponding floating-point range
does, essentially due to large enough roundoff errors.

C. Formalization Details

Executions inside FloVer are represented in both Coq and
HOL4 as big-step relations using Equation 2. These formaliza-
tions do not depend on external libraries. Only the connection
to IEEE754 semantics uses external libraries.

Roundoff errors and our theorems relate real-valued exe-
cutions to finite-precision ones and we thus need a way to
represent the numbers and also compute on them. However,
the latter is problematic for infinite-precision reals. We use
rationals to represent the values in the certificates. To relate
these values to the real-valued (R) executions in the theorem
statement, we use the fact that rationals are a subset of the real

type in HOL4, and in Coq we use the translation Q2R:Q→ R
and exploit that our AST is parametric in the constant type by
instantiating it with Q for computations and R for theorems.

VI. EXTRACTING A VERIFIED BINARY WITH CAKEML

Running the range and error checker functions in Coq and
HOL4 directly is quite inefficient (see our experiments in Sec-
tion VII). We have thus extracted a verified binary from our
HOL4 checker function definitions, and an unverified binary
for Coq. We are aware of the work on certified extraction from
Coq in the CertiCoq [2] project, but at the time of writing, the
tool could not handle our checker definitions.

We have implemented in HOL4 and Coq an unverified
lexer and parser for the encoding of the certificates, which
are included in the extracted binaries in both Coq and HOL4.

a) Extracting from HOL4: For extracting a binary
from HOL4, we use the CakeML proof-producing synthesis
tool [34] which translates ML-like HOL4 functions into deeply
embedded CakeML programs that exhibit the same behaviour.
In HOL4 we use the real type to store the rational bounds
in ΦR and ΦE . For each of the arithmetic operations over the
real type that we used in the HOL4 development, we define
a translation into a representation of the arbitrary-precision
rationals in CakeML.

CakeML and HOL4 have different notions of equality. Since
we perform equality tests in the certificate checkers, we had
to prove that our newly defined representation of real numbers
respects CakeML’s semantics for structural equality. For this
purpose, we had to require and prove that our representation
of rationals maintains a gcd of one between nominator and
denominator.

When translating a HOL4 function into CakeML code,
the CakeML toolchain generates preconditions that exclude
runtime exceptions, e.g. divisions by zero. We have shown
that all generated preconditions are always satisfied, hence the
specification theorem for the generated ML code does not have
any unproved preconditions left.

Having compiled the CakeML libraries beforehand, we
can compile the checking functions into a verified binary in
around 90 minutes on the same machine as we used for the
experiments in Section VII. Checking the certificate with the
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Benchmark FloVer FPTaylor
interval affine

ballbeam 2.141e-12 2.141e-12 1.746e-12
bspline1 1.517e-15 1.601e-15 5.149e-16
bspline2 1.406e-15 1.448e-15 5.431e-16
bspline3 1.295e-16 1.295e-16 8.327e-17
doppler (m) 9.766e-05 7.445e-04 3.111e-05
floudas1 1.052e-12 1.074e-12 5.755e-13
floudas26 7.292e-13 7.292e-13 7.740e-13
floudas33 3.109e-15 3.109e-15 6.199e-13
himmilbeau (m) 4.876e-04 4.876e-04 3.641e-04
invertedPendulum 5.369e-14 5.369e-14 3.843e-14
kepler0 (m) 2.948e-05 2.948e-05 1.758e-05
kepler1 (m) 9.948e-05 9.948e-05 5.902e-05
kepler2 (m) 3.732e-04 3.732e-04 1.433e-04
rigidBody1 (m) 4.023e-05 4.023e-05 2.146e-05
rigidBody2 (m) 6.438e-03 6.438e-03 9.871e-03
traincar1-out1 5.406e-12 5.406e-12 4.601e-12
traincar1-state1 5.421e-15 5.421e-15 4.753e-15
traincar1-state2 8.862e-15 8.862e-15 8.099e-15
traincar1-state3 7.784e-15 7.784e-15 7.013e-15
turbine1 (m) 1.356e-05 1.356e-05 3.192e-06
turbine2 (m) 2.034e-05 2.034e-05 4.970e-06
turbine3 (m) 9.038e-06 9.038e-06 1.671e-06

TABLE I
ROUNDOFF ERRORS VERIFIED BY FLOVER AND FPTAYLOR.

binary is then extremely fast, since no theorem prover logic
is loaded.

b) Extracting from Coq: Coq natively supports unverified
extraction into OCaml code [28]. We used the existing libraries
for translating Coq numbers into OCaml’s Big_int type from
the base library. The extracted code is compiled using the
OCaml native-code compiler (“ocamlopt”) in our experiments.

VII. EVALUATION

To evaluate the performance of FloVer, we have extended
the static analyzer Daisy to generate certificates of its analysis.
As Daisy already computes all the information that needs to
be encoded in a certificate, implementing the certificate gener-
ation was similar to implementing a pretty-printer for analysis
results (we have switched off a few optimizations, which
however do not affect the error bounds significantly). Using the
certificate generation, we have evaluated Daisy and FloVer on
examples taken from the Rosa [10] and real2float [30] projects.
Each benchmark consists of one or more separate functions.
Daisy analyzes all functions of one benchmark together and
produces one certificate containing a call to the certificate
checker for each separate function.

We compare error bounds verified by FloVer with those
verified by FPTaylor, as FPTaylor generally computes the
most accurate bounds [38, 12]. Furthermore, Rosa [10], Fluc-
tuat [19] and Gappa [14] use the same technique to com-
pute roundoff errors as Daisy and FloVer. We also compare
FloVer’s certificate checking times with FPTaylor’s, as the tool
also provides a proof certificate.We note that FPTaylor can

Benchmark # Daisy Coq HOL4 CakeML OCaml
ops Interval Affine

ballBeam 7 4.62 3.50 3.26 89.04 <0.01 0.02
invertedPendulum 7 3.62 3.59 3.27 112.61 0.01 0.02
bicycle 13 4.31 4.01 4.08 156.76 0.01 0.04
doppler (m) 17 4.86 5.28 12.21 610.67 0.05 0.02
dcMotor 26 5.19 4.97 4.50 316.75 0.02 0.08
himmilbeau (m) 26 3.52 4.11 4.40 65.48 0.02 0.03
bspline 28 4.21 4.61 4.07 298.44 0.03 0.08
rigidbody (m) 33 5.04 7.14 4.52 88.92 0.03 0.06
science 35 5.64 11.69 567.36 1471.96 0.07 0.07
traincar1 36 4.85 10.87 9.84 932.93 0.07 0.11
batchProcessor 56 6.46 8.49 7.43 997.77 0.06 0.16
batchReactor 58 6.84 11.45 9.53 1117.48 0.07 0.17
turbine (m) 82 5.99 18.69 24.90 4095.56 0.25 0.11
traincar2 89 7.90 29.79 28.58 3967.88 0.23 0.27
floudas 99 7.76 13.99 12.76 565.68 0.14 0.27
kepler (m) 158 4.89 21.56 22.70 3848.75 0.21 0.21
traincar3 168 9.14 68.53 68.14 9594.07 0.58 0.49
traincar4 269 10.6 116.94 115.38 17429.3 1.10 0.77

TABLE II
RUNNING TIMES OF DAISY AND FLOVER IN SECONDS.

compute less precise error bounds with shorter running times,
here we opt for the off-the-shelve solution without additional
parameters.

a) Accuracy: Table I gives a subset of the roundoff errors
certified by FloVer as well as roundoff errors computed by FP-
Taylor for comparison (we give the full table in our technical
report [4]). PRECiSa and Gappa compute similar results; we
provide them here for two benchmarks for reference. For the
ballBeam benchmark, Precisa and Gappa show an error of
1.085e-07 and 1.240e-12 resp., and for the invertedPendulum
benchmark, the errors are 3.531e-12 and 3.217e-14. The focus
of FloVer is not to compute the most precise bounds possible,
but rather to develop the necessary infrastructure for future
extensions. Nevertheless, the roundoff errors verified by it
are usually close to those proven by FPTaylor. Benchmarks
marked with ‘(m)’ are in mixed-precision, otherwise the
roundoff errors are evaluated under uniform double (64 bit)
floating-point precision (FPTaylor does not support fixed-point
precision).

b) Efficiency: In Table II, we compare running times of
in-logic evaluation of FloVer in Coq and HOL4, the verified
binary extracted with the CakeML toolchain and the unverified
binary extracted from Coq. For our experiments we used a
machine with a four core Intel i3 processor with 3.3GHz, 8
GB of RAM, running Debian 9. For the in-logic evaluation in
Coq we show range analysis in interval and affine arithmetic,
for all other runs we use interval arithmetic. As for the
accuracy evaluation, benchmarks marked with ‘(m)’ are in
mixed-precision, double precision otherwise.

In Table II, ‘OCaml’ refers to the Coq binary compiled
with the OCaml native compiler. The ‘# ops’ column gives
the number of arithmetic operations in the whole benchmark
(summed for all functions) and gives an intuition about the
complexity of the benchmark. For all columns, the running
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times are the end-to-end times measured by the UNIX time
command in seconds. This time includes parsing and gener-
ating the certificate for Daisy, checking the proof that FloVer
succeeds for Coq and HOL4 in-logic, and running FloVer in
the binaries. The running times for Daisy, Coq and HOL4 are
the average running times for a single run over three runs. For
the binaries we report the average running time of a single run
from 300 executions (due to the small runtime).

We give the running times for FPTaylor’s certificate check-
ing in our technical report [4] and note that they are larger,
but of the same order of magnitude as our Coq in-logic
evaluation. Note that FPTaylor’s checker requires either a
two hour starting time or external checkpointing. FloVer’s
certificate checking time for fixed-point arithmetic is similar
to floating-point checking; we give the detailed running times
in our technical report [4].

The evaluation of FloVer’s Coq checker is faster than the
evaluation of the HOL4 checker. This is probably because we
benefit from Coq’s vm_compute tactic in the Coq evaluation.
The tactic translates terms to OCaml and evaluates them using
a virtual machine. A Coq term is reconstructed from the result.
HOL4’s EVAL_TAC instead uses a simple call-by-value eval-
uation strategy. We further observe that the evaluation using
affine arithmetic sometimes is as fast as the one using intervals.
We suspect that the reason for this is that the affine arithmetic
checker must memorize polynomials for sub-expressions and
thus does not recompute them. The interval validator, however,
currently does not memorize sub-expressions, but only let-
bound variables.

VIII. RELATED WORK

a) Sound Accuracy Analysis: The tools FPTaylor [38],
Gappa [14], PRECiSa [32], real2float [30] and VCFloat [35]
are most closely related to our work as they formally ver-
ify floating-point roundoff errors. Each tool handles mixed-
precision floating-point arithmetic, but other features differ
slightly between tools. FloVer is the only tool with the
combination of support for both Coq and HOL4, floating-point
as well as fixed-point arithmetic and two abstract domains,
interval and affine arithmetic. FloVer is fully automated and
FloVer and FPTaylor are the only tools that generate cer-
tificates using in-logic decision procedures. While FPTaylor
and PRECiSa handle transcendental functions (which FloVer
does not), both tools do not handle fixed-point arithmetic.
Gappa has some support for fixed-points, but FloVer is the
only tool with formalized affine arithmetic. Finally, FloVer is
the first tool to provide efficient certificate checking with a
verified binary. Fluctuat [18], Gappa++ [29] and Rosa [12]
statically bound finite-precision roundoff errors using affine
arithmetic [16], but do not provide formal guarantees.

FloVer currently does not handle conditionals and loops.
These are—to some extent—supported by Fluctuat [19] and
Rosa [12], however not formally verified. PRECiSa [32]
provides an initial formalization of these approaches, but
scalability is unclear [10, 12]. FloVer furthermore focuses,
like most tools, on certifying absolute error bounds. Bounding

relative errors is challenging due to the increased complexity
as well as due to the issue that often the error is not even
well-defined due to an inherent division by zero [23]. Gappa
does provide verified relative error support by optimizing a
constraint based on Equation 3. This approach has been shown
to not provide tight bounds once input ranges and expressions
become larger [23]. Finally, note that input ranges are also
necessary for computing concrete relative error bounds.

b) Sound Verification of Floating-point Computations:
Absence of runtime errors in floating-point computations can
be shown with abstract interpretation, where different abstract
domains have been developed for this purpose [5, 9, 25],
which are sound w.r.t. floating-point arithmetic. Jourdan et
al. [26] have also formalized some of these abstract domains
in Coq. Note, however, that these domains do not quantify
the difference between a real-valued and the finite-precision
semantics and can only show the absence of runtime errors.

Moscato et al. [33] have built a formalization and imple-
mentation of AA for computation of real-valued ranges in
PVS. This development does not handle division, which we
do. Immler [22] has formalized AA in Isabelle/HOL; our own
formalization shares a similar structure.

Coq has also been used to prove entire programs correct
w.r.t. numerical uncertainties such as roundoff errors [7].
However, in these efforts much of the work is still manual. Our
current development can be seen as complementary as it could
potentially provide automation for the verification of roundoff
error bounds. The CompCert compiler also supports floating-
point computations [8], but only shows semantics preservation
and not roundoff error bounds. Harrison [20] has formally
verified a floating point implementation of the exponential
function inside HOL-Light. The analysis is detailed and spe-
cific to this particular function. In contrast, our work aims to
provide a fully automated verified analysis for arbitrary real-
valued expressions, but at a higher level of abstraction.

c) Real Arithmetic and Finite-precision Formalizations:
Formalizations of floating-point arithmetic exist in HOL-
Light [24], in Coq in the Flocq library [6] as well as in
Isabelle [40] and HOL4 [17]. We found using these formal-
izations in Coq and HOL4 more complex than was necessary
for reasoning inside FloVer, thus we use them only to show
a connection to IEEE754. Fixed-point arithmetic has been
formalized in HOL4 [1], focusing on its hardware implemen-
tation, whereas our focus is on relating their execution to real-
valued semantics.

IX. CONCLUSION

We have presented our modular, reusable and easily extend-
able approach to certificate checking for error bound analysis
in FloVer. Our checker is fully-automated and requires neither
user interaction, nor expert knowledge. All of the theorems
about FloVer have been proven in both Coq and HOL4. We
are the first to extract a verified binary for checking finite-
precision roundoff errors using the CakeML toolchain and
have shown that we achieve significant performance improve-
ments when using the binary.
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Abstract—In the context of formal verification, certifying
proofs are proofs of the correctness of a model in a deduction
system produced automatically as outcome of the verification.
They are quite appealing for high-assurance systems because
they can be verified independently by proof checkers, which are
usually simpler to certify than the proof-generating tools.

Model checking is one of the most prominent approaches to
formal verification of temporal properties and is based on an
algorithmic search of the system state space. Although modern
algorithms integrate deductive methods, the generation of proofs
is typically restricted to invariant properties only.

In this paper, we solve this issue in the context of Linear-
time Temporal Logic. By exploiting the k-liveness algorithm, we
show how to extend proof generation capabilities for invariant
checking to cover full LTL properties, in a simple and efficient
manner, with essentially no overhead for the model checker. We
implemented the technique on top of an IC3 engine, and show
the feasibility of the approach on a variety of benchmarks.

I. INTRODUCTION

The application of formal methods in the certification of
high-assurance systems demands the qualification of the veri-
fication tools to ensure a sufficient level of confidence in their
results. However, verification tools such as model checkers can
be quite complex with numerous heuristics and combinations
of techniques. The idea of certifying model checking [1] to
generate deductive proofs as byproduct of the verification is
therefore quite appealing, because the proof can be verified
by independent proof checkers, which are usually simpler to
certify than the proof-generating tools.

Most modern model checking techniques integrate search-
based and deductive methods such as induction. In particular,
many current model checking algorithms are based on a
sequence of SAT queries to find inductive invariants incremen-
tally (e.g., IC3 [2]). Nevertheless, most works on certifying
model checkers go back a decade, are mainly theoretical and
based on µ-calculus, while practical SAT-based approaches are
currently limited to invariant properties.

In this paper, we address the problem of generating a
proof in the context of Linear Temporal Logic (LTL) [3]
model checking. The main obstacle to proof generation is
due to the various transformations applied to the problem:
model checking is reduced by contradiction to finding a
counterexample; LTL formulae are encoded into symbolically-
represented automata; multiple fairness conditions resulting

This work has received funding from the EU’s H2020 research and innova-
tion programme under the Grant Agreement No. 700665 (project CITADEL)
and from the EU’s ECSEL JU and Italy’s MIUR under the Grant Agreement
No. 692474 (project AMASS).

from such encoding are reduced to one; liveness is reduced
typically to safety.

We propose a sound and complete approach, where the
proof is generated from the inductive invariant obtained with
the k-liveness algorithm [4] by combining standard resolu-
tion with inference rules specific for LTL, and reasoning by
contradiction: by assuming that initially the negation of the
property holds, we prove that a certain fairness condition
can be visited at most k times, in contradiction with the
validity of the fairness condition itself. The resulting approach
is simple and efficient, and it can be implemented on top of any
state-of-the-art LTL model checker based on the combination
of k-liveness with an engine for invariant properties that is
capable of producing inductive invariants (e.g., IC3 [2]). The
proposed approach results in essentially no overhead for the
model checker. We have implemented the technique on top
of the IC3IA [5] engine leveraging on the MATHSAT [6]
SMT solver as backend. Our experimental results show the
feasibility of the approach on a variety of benchmarks taken
from the literature, and confirm the small impact of the proof
construction on the overall verification process. Finally, we
also implemented a prototype proof-checker in Python to
check the correctness of the generated proofs, and we executed
it on each of the generated proofs. The results show that, for
our prototype implementation, the cost of proof checking is
comparable with the cost of verification.

This paper is structured as follows. In Sect. II we analyze the
related works. In Sect. III we provide the needed background.
In Sect. IV we discuss the proposed approach to compute
proofs for LTL model checking, and in Sect. V we show the
results of our experimental evaluation. Finally, in Sect. VI we
draw conclusions and outline future work.

II. RELATED WORK AND CONTRIBUTIONS

Deductive systems for temporal logics have been widely
studied [7]–[11]. The idea of certifying model checking is
to generate deductive proofs automatically as byproduct of
a model checking algorithm.

The closest work to ours is [1], which describes a de-
ductive proof system for verifying properties expressed in
the µ-calculus, and shows how to generate a proof in this
system from a model checking run. The proposed approach
is applicable both for explicit state and symbolic search.
The proof system and the proof generation process draw on
results which relate model checking for the µ-calculus to
winning parity games [12]. The system was implemented (as
a prototype) on top of a BDD-based engine (COSPAN [13]);
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it is however unclear how to adapt it to modern SAT-based
engines. Our approach instead implements proof generation on
top of SAT-based algorithms without any substantial overhead
or modification of the model checking engine. Moreover,
although in terms of expressiveness LTL is more restricted
than µ-calculus, in [1], LTL is assumed to be encoded and it is
not shown how to convert the proof for the resulting µ-calculus
formula to a proof for LTL. Our work instead produces a
proof using inference rules for LTL, automatically reverting
the internal automata construction.

Other approaches targeting model checking of linear-time
properties include [14], [15], [16], [17] and [18]. These
works are however mostly theoretical, and to the best of our
knowledge, with no implementation available.

Related, but slightly-different, problems are addressed in
[19], [20], and [21]. The first work gives a technique to
incrementally build a (partial) deductive proof from the search
performed by a model checker for incomplete (partially spec-
ified) systems while proving a given LTL property holds; the
second focuses on runtime monitoring, proposing a local proof
system for LTL and showing how such a system can be used
for the construction of online runtime monitors; the third work
instead discusses a proof system to provide evidence why a
trace violates an LTL specification, as opposed to certifying
why the property holds on the system under verification.

The work in [22] presents an LTL model checker whose
code has been completely verified using the Isabelle theorem
prover. The proof consists of the formal verification of a
few hundred lines of “formalized pseudocode”, and a verified
refinement step in which mathematical sets and other abstract
structures are replaced by implementations of efficient struc-
tures. The resulting checker is slower than unverified checkers,
but it can be used as a trusted reference implementation.

Finally, some theorem provers for LTL can produce proofs,
such as TRP++ [23] and TeMP [24]. Both systems are based
on the temporal resolution calculus and can produce fine-
grained proofs, which can then be inspected and checked to
certify the correctness. However, no automatic proof checkers
are available.

Overall, to the best of our knowledge, no previous work
provides the following contributions:
• a proof-generation technique extending a SAT-based LTL

model checking algorithm;
• a proof-generation technique for LTL based on symbolic

encoding, reverting the internal automata construction;
• a proof-generation technique for LTL validity based on

model checking;
• an available effective implementation of proof generation

from LTL model checking.

III. BACKGROUND

We work in the setting of Boolean (i.e. propositional)
logic, with the standard notions of satisfiability, validity,
interpretations and models. We denote propositional variables
with v, x, y, and formulae with φ, ψ, f , α, β, I,T , possibly with
subscripts or primes (e.g v1, x ′). If V,V ′ are (disjoint) sets

of variables, we write φ(V,V ′) to stress that all the variables
occurring in φ belong to V ∪ V ′. We use ite(φc, φt, φe) as a
shorthand for (φc → φt ) ∧ (¬φc → φe). Given a variable v, a
formula φ and a formula ψ not containing v, we denote with
φ[v := ψ] the result of substituting v with ψ everywhere in
φ. We extend this to sets of variables in a pointwise manner.
If V and V ′ are two disjoint sets of variables, we might write
φ[V := V ′] as φ′. A counter is an integer-valued variable c that
occurs in two kinds of predicates: comparisons with constants,
such as c = 0 or c ≤ 10; and conditional increments, such as
ite( f , c′ = c + 1, c′ = c). Abusing notation, and for the sake
of readability, in the following we sometimes use counters to
denote their equivalent propositional encoding.1

A. Transition Systems

A transition system M is a tuple M = 〈V, I,T〉 where V is a
set of (propositional) state variables, I(V) is a formula repre-
senting the initial states, and T(V,V ′) is a formula representing
the transitions.

A state of M is an assignment to the variables V . We denote
with ΣV the set of states. We say that a state s ∈ ΣV is a
model for a formula φ(V) (denoted s |= φ(V)) if substituting
in φ the values of the variables in s, the formula φ evaluates
to >. A [finite] path of M is an infinite sequence s0, s1, . . .
[resp., finite sequence s0, s1, . . . , sk] of states such that s0 |= I
and, for all i ≥ 0 [resp., 0 ≤ i < k], si, s′i+1 |= T . Given
σ := s0, s1, . . ., with σ[ j] we denote the state sj , and with
σ j the path sj, sj+1, . . .. Given two transitions systems M1 =
〈V1, I1,T1〉 and M2 = 〈V2, I2,T2〉, we denote with M1 ×M2 the
synchronous product 〈V1 ∪ V2, I1 ∧ I2,T1 ∧ T2〉.
B. Invariant Properties

Given a Boolean combination φ of predicates, the invariant
model checking problem, denoted with M |= f in φ, is the
problem to check if, for all finite paths s0, s1, . . . , sk of M ,
sk |= φ.

Most model checkers prove an invariant property by gener-
ating a stronger invariant formula ψ that is inductive, i.e. such
that: (i) I → ψ; (ii) ψ ∧ T → ψ ′; and (iii) ψ → φ.

C. LTL

Given a set of propositional variables V , LTL formulae are
built using Boolean connectives and the temporal operators X
(“next”) and U (“until”). Formally,
• a variable v ∈ V is an LTL formula,
• if φ1 and φ2 are LTL formulae, then ¬φ1, φ1 ∧ φ2, Xφ1

and φ1Uφ2 are LTL formulae.
We use the standard abbreviations: > := p∨¬p, ⊥ := p∧¬p,

Fφ := >Uφ, and Gφ := ¬F¬φ.
Given an LTL formula φ, a sequence σ of assignments to

V , and an index i, we define σ, i |= φ, i.e., that σ satisfies the
formula φ in i, as follows:
• σ, i |= v iff σ[i] |= v

1This can be done in a standard way, using e.g. a unary or a binary encoding
for integer numbers and the required comparison and increment operations;
we refrain from giving the full details of this in order to save space.
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• σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ
• σ, i |= ¬φ iff σ, i 6 |= φ
• σ, i |= Xφ iff σ, i + 1 |= φ
• σ, i |= φUψ iff for some j ≥ i, σ, j |= ψ and for all

i ≤ k < j, σ, k |= φ.
Finally, σ |= φ iff σ, 0 |= φ.

Given an LTL formula φ, the LTL model checking problem,
denoted with M |= φ, is the problem to check if, for all
(infinite) paths σ of M , σ |= φ.

Given an LTL formula φ, the LTL validity problem, denoted
by |= φ, is the problem of checking if σ |= φ for all (infinite)
paths over ΣV . The validity problem can be reduced to the
model checking problem by considering the universal model
MU = 〈V,>,>〉. It is easy to prove that |= φ iff MU |= φ.

D. Symbolic LTL Model Checking

The automata-based approach [25] to LTL model checking
is to build a transition system M¬φ with a set of fairness con-
ditions F¬φ such that M |= φ iff M × M¬φ |= ¬

∧
f ∈F¬φ GF f .

This reduces to finding a counterexample as a fair path, i.e.,
a path of the system that visits each fairness condition in F¬φ
infinitely many times.

Following [26], the encoding of an LTL formula φ over
variables V into a transition system M¬φ = 〈V¬φ, I¬φ,T¬φ〉
with fairness conditions F¬φ is defined as follows:
• V¬φ = V ∪ {vXβ | Xβ ∈ Sub(φ)} ∪ {vX(β1Uβ2) | β1Uβ2 ∈

Sub(φ)}
• I¬φ = Enc(¬φ)
• T¬φ =

∧
vXβ ∈V¬φ β↔ Enc(β)′

• F¬φ = {Enc(β1Uβ2 → β2) | β1Uβ2 ∈ Sub(φ)}
where Sub is a function that maps a formula φ to the set of
its subformulae, and Enc is defined recursively as:
• Enc(v) = v

• Enc(φ1 ∧ φ2) = Enc(φ1) ∧ Enc(φ2)
• Enc(¬φ1) = ¬Enc(φ1)
• Enc(Xφ1) = vXφ1

• Enc(φ1Uφ2) = Enc(φ2) ∨ (Enc(φ1) ∧ vX(φ1Uφ2))

E. Degeneralization

In explicit-state model checking, the standard way to encode
a Generalized Büchi Automaton with n fairness conditions into
an equivalent “degeneralized” one (i.e., with one fairness), is to
fix an order on the fairness conditions, replicate the automaton
n times, and move from the i-th copy to the next one as soon
as the i-th fairness condition is visited. Symbolically, this can
be achieved as follows.

Given a transition system M = 〈V, I,T〉 with fairness
conditions F = { f1, . . . , fn}, we build an equivalent system
with a single fairness condition f by considering M × Mdeg,
where Mdeg = 〈Vdeg, Ideg,Tdeg〉 is defined as follows:
• Vdeg = V ∪ {s}
• Ideg = s=0
• Tdeg =

∧
0≤i<n−1(s = i → ite( fi+1, s′ = s + 1, s′ = s))∧

(s=n − 1→ ite( fn, s′=0, s′= s))
and f = s=0 ∧ f1.

Most standard symbolic model checkers use a different
encoding, which does not fix an ordering on the fairness
conditions: one propositional variable per fairness condition
is set to true whenever the fairness condition is visited, and
when all the variables are true they are reset to false. The
proof generation described in the next section is based on
the above encoding with fixed ordering (see Section IV-D for
details on the reason). We analyze the impact of this choice
experimentally in Section V.

F. K-Liveness and SAT-based Symbolic Model Checking

SAT-based algorithms take as input a propositional transi-
tion system and a property, and try to solve the verification
problem with a series of satisfiability queries. IC3 [2] is a
symbolic model checking algorithm for the verification of
invariant properties. It builds an over-approximation of the
reachable state space, using clauses obtained by generalization
while disproving candidate counterexamples. In the case of
finite-state systems, the algorithm is implemented on top of
Boolean SAT solvers, fully leveraging their features. IC3 has
demonstrated to be extremely effective, and it is a fundamental
core in all the engines in hardware verification.

K-liveness [4] is an algorithm recently proposed to reduce
liveness checking (and so also LTL verification) to a sequence
of invariant checking problems. K-liveness uses the standard
approach, outlined above, to reduce the LTL verification
problem M |= ϕ to M ×M¬ϕ ×Mdeg |= ¬GF f . Its key insight
is that, for finite-state systems, this is equivalent to find a k
such that f is visited at most k times, which in turn can be
reduced to invariant checking.

In [4], it is proved that, for finite-state systems, M |= ¬GF f
iff there exists k such that f can be visited at most k times
along a path of M . The last check can be reduced to an
invariant checking problem of the form M ×Mc |= f in (c ≤ k),
where Mc := 〈Vc, Ic,Tc〉 is defined as follows: Vc := {c},
Ic := c = 0, Tc := ite( f , c′ = c + 1, c′ = c). K-liveness is
therefore a simple loop that increases k at every iteration and
calls a subroutine SAFE to check the invariant (c ≤ k) on
M × Mc . In particular, the implementation in [4] uses IC3
as SAFE and exploits the incrementality of IC3 to solve the
sequence of invariant problems in an efficient way.

G. Deduction Systems

A deduction system consists of a set of axiom schemes
and inference rules. We use natural deduction [27] notation to
represent proofs. A proof is a tree of formulae where leaves
are axioms or hypothesis, and any other formula is obtained by
the application of an inference rule. Proofs for propositional
formulae can be built using the following resolution rule and
set of axioms (see e.g. [28]):

α1 ∨ ψ ¬ψ ∨ α2
α1 ∨ α2

RES

¬(a ∨ b) ∨ a ∨ b
OR-L ¬a ∨ (a ∨ b) OR-R

¬(a ∧ b) ∨ a
AND-L ¬a ∨ ¬b ∨ (a ∧ b) AND-R
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In order to use resolution proofs inside other proofs, we use
the reductio ad absurdum rule. If a proof of ⊥ can be derived
using ¬α as hypothesis, we can extend it to a proof of α,
removing α from the hypothesis.

[¬α]....⊥
α RAA

As for temporal operators, we use the following generaliza-
tion inference rule: if a proof of α can be derived without any
hypothesis, then we can derive Gα, and thus also Xα:

α
Gα G

α
Xα X

and we use the following axioms:

(aUb) ↔ (b ∨ (a ∧ X(aUb))) UNTIL

(aU(b1 ∨ b2)) ↔ ((aUb1) ∨ (aUb2)) UNTIL-OR

((b1 ∧ b2)Ua) ↔ ((b1Ua) ∧ (b2Ua)) UNTIL-AND

X¬a↔ ¬Xa
NEXT-NOT

X(a ∨ b) ↔ (Xa ∨ Xb) NEXT-OR

X(a ∧ b) ↔ (Xa ∧ Xb) NEXT-AND

The following are abbreviations of multiple applications of the
above rules:
• LTL expansion is obtained by multiple application of

UNTIL, AND-L, AND-R, OR-L, OR-R:

α↔ E xp(α) EXP

where E xp is defined recursively as:
– E xp(v) = v

– E xp(φ1 ∧ φ2) = E xp(φ1) ∧ E xp(φ2)
– E xp(¬φ1) = ¬E xp(φ1)
– E xp(Xφ1) = Xφ1
– E xp(φ1Uφ2) = E xp(φ2) ∨ (E xp(φ1) ∧ X(φ1Uφ2))

• X distribution is obtained by multiple application of
NEXT-NOT, NEXT-AND, NEXT-OR:

Xα
Next(α) XDIS

where Next is defined recursively as:
– Next(v) = Xv

– Next(φ1 ∧ φ2) = Next(φ1) ∧ Next(φ2)
– Next(¬φ1) = ¬Next(φ1)
– Next(Xφ1) = XXφ1
– Next(φ1Uφ2) = Next(φ2) ∨ (Next(φ1) ∧ XX(φ1Uφ2))

• ∧ removal is obtained by combining RES with AND-L:
α1 ∧ α2
α1

ANDL
α1 ∧ α2
α2

ANDR

• U distribution is obtained by combining RES with UNTIL-
AND:

(α1 ∧ α2)Uβ
α1Uβ UAL

(α1 ∧ α2)Uβ
α2Uβ UAR

• G distribution is obtained by combining RES with UNTIL-
OR:

G(α1 ∧ α2)
Gα1

GAL
G(α1 ∧ α2)

Gα2
GAR

• G removal is obtained by combining UNTIL and OR-R:

Gα
α GN

H. Resolution Proofs for Invariant Properties

In case of an invariant property φ, an inductive invariant
ψ can be used to generate a proof of φ. In fact, since the
formulae I → ψ, ψ ∧ T → ψ ′, ψ → φ are valid, we can
obtain a resolution proof for each of them. Using an inductive
inference rule, we can then deduce that φ holds in all reachable
states.

IV. CERTIFYING PROOFS FOR LTL MODEL CHECKING

A. Overview of the Approach

As described in Section III, the standard symbolic LTL
model checking approach proceeds through a sequence of
transformations. Thus, from the original problem M |= φ, we
arrive at the problem M ×M¬φ ×Mdeg ×Mc |= f in c ≤ k from
which we can extract an inductive invariant ψ. In order to
generate the proof for the original problem, we conceptually
reverse this sequence showing how to generate a proof for each
step. In Section IV-C, we show how to generate a proof from ψ
of M×M¬φ×Mdeg |= ¬GF f ; in Section IV-D, we show how to
generate a proof from ψ of M×M¬φ |= ¬(GF f1∧ . . .∧GF fn);
finally, in Section IV-E, we show how to generate a proof from
ψ of M |= φ.

B. LTL Model Checking and LTL Validity

Consider the LTL model checking problem M |= φ, where
M = 〈V, I,T〉. With abuse of notation, we consider T also
as an LTL formula, identifying v′ with Xv for every variable
v ∈ V . In order to prove that M |= φ, we provide a proof of
(I ∧GT) → φ.

Note that, in case the original problem is the validity of an
LTL formula φ, we reduce it to the model checking problem
MU |= φ (as explained in Section III-D) generating a proof of
φ since the initial and transition conditions of MU are true.

C. Certifying Proofs for K-Liveness

We consider first the special case of proving M |= ¬GF f ,
where f is a propositional formula over V . In order to prove
(I ∧ GT) → ¬GF f , we use the following inference rule,
denoted with KL (see Section IV-F for proof of correctness):

(Pi) (Pn0) (Pp0) . . . (Pnk) (Ppk)
(ι ∧Gτ) → ¬GFρ KL
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where the premises of the rule KL are:

ι→ α0 (Pi)
G((α0 ∧ τ ∧ ¬ρ) → Xα0) (Pn0)
G((α0 ∧ τ ∧ ρ) → Xα1) (Pp0)
...

G((αk ∧ τ ∧ ¬ρ) → Xαk) (Pnk)
G((αk ∧ τ ∧ ρ) → ⊥) (Ppk)

Intuitively, this means that if we have conditions
α0, . . . , αk+1 such that α0 is implied by ι, αi is inductive
relative to ¬ρ for 0 ≤ i ≤ k, αi+1 is implied by αi ∧ ρ after a
transition for 0 ≤ i ≤ k, and αk+1 = ⊥, then any path starting
from ι can visit ρ finitely many times only.

When checking M |= ¬GF f , we instantiate the rule using
ι = I, τ = T , ρ = f , and αi are obtained by the inductive
invariant generated with k-liveness.

If c is the counter introduced by k-liveness to count the
occurrences of f and ψ is the inductive invariant over V ∪ {c}
obtained to prove that c ≤ k, then we instantiate the rule KL
using αi = ψ[c := i].

Since ψ is the inductive invariant obtained with k-liveness
we know that the following propositional formulae are valid:

I ∧ c = 0→ ψ

ψ ∧ T ∧ ite( f , c′ = c + 1, c′ = c) → ψ ′

ψ → c ≤ k

Therefore also the following formulae are valid:

I → ψ[c := 0] (p0)
(ψ[c := 0] ∧ T ∧ ¬ f ) → Xψ[c := 0] (p00)
(ψ[c := 0] ∧ T ∧ f ) → Xψ[c := 1] (p01)
...

(ψ[c := k] ∧ T ∧ ¬ f ) → Xψ[c := k] (pkk)
(ψ[c := k] ∧ T ∧ f ) → ⊥ (pk)

Note that, the formulae α0, . . . , αk above are not required
to be in any specific form. In particular, when instantiating
them with the inductive invariant ψ, we can apply standard
equivalence-preserving simplifications (e.g. α ∧ > ≡ α) after
the substitution of counter values.

For each formula p ∈ {p0, p00, p01, ..., pk}, we can obtain
a resolution proof:

p....⊥
Using rules RAA and G, we obtain a proof for each premise

of the rule KL, obtaining a proof of (I ∧GT) → ¬GF f in the
following form:

[¬p0]....⊥
p0 RAA

G(p0) G

[¬p00]....⊥
p00 RAA

G(p00) G

[¬p01]....⊥
p01 RAA

G(p01) G
. . .

[¬pk]....⊥
pk

RAA

G(pk) G

(I ∧GT) → ¬GF f
KL

D. Generalization to Multiple Fairness Conditions

We now consider the case M |= ¬(GF f1 ∧ . . . ∧ GF fn),
where f1, . . . , fn are propositional formulae over V . In order
to prove (I ∧ GT) → ¬(GF f1 ∧ . . . ∧ GF fn), we generalize
the rule KL into rule GKL. Rule GKL derives (ι ∧ Gτ) →
¬(GFρ1 ∧ . . . ∧GFρn) from the following premises:

ι→ α01 (P01)
for 0 ≤ i ≤ k, 1 ≤ j ≤ n

G((αi j ∧ τ ∧ ¬ρj) → Xαi j) (Pni j)
for 0 ≤ i ≤ k, 1 ≤ j < n

G((αi j ∧ τ ∧ ρj) → Xαi j′) (Ppi j)
for 0 ≤ i < k

G((αin ∧ τ ∧ ρn) → Xαi′1) (Pin)
G((αkn ∧ τ ∧ ρn) → ⊥) (Pkn)

where j ′ = j + 1 and i′ = i + 1.
Again, this rule can be instantiated from the inductive

invariant generated by k-liveness when using the degeneral-
ization described in Section III-E. More concretely, if c is
the counter used to count the occurrences of the fairness
conditions, s is the counter used to track if the i-th fairness
has been visited, and ψ is the inductive invariant, we set
αi j = ψ[c := i, s := j − 1] and generate a resolution proof
for the following valid formulae (as in the previous case, we
can simplify the formulae after substituting counter values,
before generating the proofs):

I → ψ[c := 0, s := 0] (p01)
for 0 ≤ i ≤ k, 1 ≤ j ≤ n
(ψ[c := i, s := j − 1] ∧ T ∧ ¬ fj ) → Xψ[c := i, s := j − 1] (pni j )

for 0 ≤ i ≤ k, 1 ≤ j < n
(ψ[c := i, s := j − 1] ∧ T ∧ fj ) → Xψ[c := i, s := j] (ppi j )

for 0 ≤ i < k
(ψ[c := i, s := n−1] ∧ T ∧ fn) → Xψ[c := i+1, s := 0] (pin)
(ψ[c := k, s := n − 1] ∧ T ∧ fn) → ⊥ (pkn)

Similarly to the previous case, we can transform the res-
olution proofs for these lemmas in temporal proofs for the
premises of the rule GKL.

E. Certifying Proofs for LTL

We consider here the general case of M |= φ. The procedure
described in Section III-F reduces the problem to M ×M¬φ |=
¬(GF f1∧ . . .∧GF fn), where M×M¬φ = 〈V ∪V¬φ, I∧ I¬φ,T ∧
T¬φ〉. Applying the procedure described above, we obtain a
temporal proof of (I ∧ I¬φ ∧ G(T ∧ T¬φ)) → ¬(GF f1 ∧ . . . ∧
GF fn).

Every variable vXβ ∈ V¬φ is associated with a temporal
formula Xβ. We denote by Enc−1(α) the formula obtained
from α by substituting every vXβ with Xβ. By applying this
substitution in the mentioned proof, we obtain a proof of (I ∧
Enc−1(I¬φ) ∧G(T ∧ Enc−1(T¬φ))) → ¬(GFEnc−1( f1) ∧ . . . ∧
GFEnc−1( fn)).
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From this, as shown in Figure 1, we derive a proof of (I ∧
GT) → φ with three resolution steps, using GFEnc−1( fi),
GEnc−1(T¬φ), and ¬Enc−1(I¬φ) → φ as lemmas.

Finally, we provide a proof for each lemma. Note that,
given the specific construction of M¬φ , Enc−1(T¬φ) and
GFEnc−1( fi) are always valid formulae. Moreover, note that
Enc−1(I¬φ) = E xp(¬φ) and that Enc−1(T¬φ) is in the form∧
β Xβ↔ Next(E xp(β)).
The following are therefore proofs for the above lemmas:

¬φ↔ E xp(φ) EXP

¬Enc−1(I¬φ) → φ
ANDL

β↔ E xp(β) EXP

X(β↔ E xp(β)) X

Xβ↔ Next(E xp(β)) XDIS

[G(β1Uβ2 ∧ ¬β2)]
Gβ1Uβ2

GAL

β1Uβ2
GN

Fβ2
UAR

[G(β1Uβ2 ∧ ¬β2)]
G¬β2

GAR

⊥ RES

F(β1Uβ2 → β2)
RAA

GF(β1Uβ2 → β2)
G

Example 1: We work out a full example showing the
different steps from model checking to proof generation.

Le us consider the transition system M = 〈V, I,T〉 where:

V := {x, y, z} I := > T := (x → y′) ∧ (y → z′)
and let us consider the property φ = G(x → Fz).
φ contains two U-formulae: F(¬(x → Fz)), which we

abbreviate by F1, and Fz.
The transition system for the negation ¬φ is M¬φ =
〈V, I¬φ,T¬φ〉 where:
• V¬φ = {x, z, vXF1, vXFz}
• I¬φ = Enc(¬φ) = (x ∧ ¬(z ∨ vXFz)) ∨ vXF1

• T¬φ = (vXF1 ↔ ((x ′ ∧ ¬(z′ ∨ v′XFz)) ∨ v′XF1
)) ∧ (vXFz ↔

(z′ ∨ v′XFz))
with fairness conditions Enc( f1) and Enc( f2) where:

f1 = ¬F1 ∨ ¬(x → Fz) f2 = ¬Fz ∨ z

Mdeg and Mc are defined as in Sections III-E and III-F.
Let us suppose that k-liveness produces the following in-

ductive invariant:

ψ =(Enc(¬φ) ∧ (¬x ∨ z ∨ vXFz) ∧ s = 0)∨
(y ∧ ¬z ∧ vXG¬z ∧ s = 1)

After substituting and simplifying, we obtain:
α01 = Enc(¬φ) ∧ (¬x ∨ z ∨ vXFz)
α02 = y ∧ ¬(z ∨ vXFz)
α11 = α12 = ⊥

Let us consider only a non-trivial case and produce a proof
for T L := (Enc(¬φ) ∧ (¬x ∨ z ∨ XFz) ∧ T ∧ T¬φ ∧ f1) →
(Xy ∧ X¬z ∧ ¬XFz).

From the SAT solver we can obtain the following resolution
proof for L = Enc(¬φ)∧(¬x∨Enc(Fz))∧T ∧T¬φ∧Enc( f1)∧
(¬y′ ∨ Enc(Fz)′):

L

x → y′

L

Enc(¬φ)
L

Enc( f1)
x ∧ ¬Enc(Fz)

x

y′

L

T¬φ

L

Enc(¬φ)
L

Enc( f1)
x ∧ ¬Enc(Fz)
¬Enc(Fz)

¬Enc(Fz)′
L

¬y′ ∨ Enc(Fz)′
¬y′

⊥

In order to obtain a proof of T L it is sufficient to substitute
in the above proof the variables vXF1 and vXFz with respec-
tively XF1 and XFz.

Finally, to obtain a proof of (I ∧ GT) → φ we instantiate
the lemmas to remove I¬φ , T¬φ , and the fairness conditions.

For example, the proof for the lemma GF f1 is obtained by
substituting β1 with F1 and β2 with ¬(x → Fz) as follows:

[G¬ f1]
GF1

GAL

F1
GN

F(¬(x → Fz)) UAR
[G¬ f1]

G¬(¬(x → Fz)) GAR

⊥ RES

F f1
RAA

GF f1
G

F. Correctness

In the above proofs, we only used the rules defined in
Section III-G and the new rule GKL (rule KL is a special case
of GKL where n = 1).

Let us denote deducibility with this set of rules by `GKL. In
the following, we prove soundness and completeness of the
proofs.

Theorem 1: If `GKL α then |= α.
Proof. All rules and axioms described above are trivial apart
from rule GKL. So, we prove that if σ satisfies (P01), (Pni j) for
0 ≤ i ≤ k, 1 ≤ j ≤ n, (Ppi j) for 0 ≤ i ≤ k, 1 ≤ j < n, and (Pin)
for 0 ≤ i ≤ k, then σ |= (ι ∧ Gτ) → ¬(GFρ1 ∧ . . . ∧ GFρn)
holds. By contradiction, suppose σ |= (ι ∧ Gτ) ∧ (GFρ1 ∧
. . . ∧ GFρn), then σ satisfies each ρj infinitely many times.
So, let us define (k+1) × n points ti j such that t00 = 0 and
for all i, j, 0 ≤ i ≤ k, 1 ≤ j ≤ n, ti, j is such that for all
h, ti, j−1 ≤ h < ti, j σ, h 6 |= ρj and σ, ti j |= ρj and, for all i,
0 ≤ i < k, ti+1,0 = ti,n + 1. Due to (P01), σ, t00 |= α01. Due to
(Pni j), for all i, j, 0 ≤ i ≤ k, 1 ≤ j ≤ n, σ, ti j |= αi, j . Due
to (Ppi j), for all i, j, 0 ≤ i ≤ k, 1 ≤ j < n, σ, ti j + 1 |= αi j′ .
Due to (Pin), for all i, 1 ≤ i ≤ k, σ, ti0 |= αi1. Due to (Pkn),
σ, tk,n |= ⊥, which is a contradiction. Therefore σ |= (ι ∧
Gτ) → ¬(GFρ1 ∧ . . . ∧GFρn). �

Corollary 1: If `GKL (I ∧GT) → φ then M |= φ.
Theorem 2: If M |= φ then `GKL (I ∧GT) → φ.

Proof. Let S := M×M¬φ×Mdeg×Mc , where M¬φ has fairness
conditions f1, . . . , fn and accepts the language of ¬φ, Mdeg has
a fairness condition f and accepts the language of GF f1∧. . .∧
GF fn, and Mc has a counter that counts the occurrence of f .
Since M has finitely many states, if M |= φ, then there exists
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(I ∧ I¬φ ∧G(T ∧ T¬φ)) → ¬(
∧

1≤i≤n GF fi)
∧

1≤i≤n GF fi
(I ∧ Enc−1(I¬φ) ∧GT ∧GEnc−1(T¬φ)) → ⊥

RES
GEnc−1(T¬φ)

(I ∧GT) → ¬Enc−1(I¬φ)
RES ¬Enc−1(I¬φ) → φ

(I ∧GT) → φ
RES

Fig. 1. Overall proof structure for M |= φ

k such that S |= f in c ≤ k, and thus there exists an inductive
invariant ψ such that IS → ψ, ψ ∧ TS → ψ ′, and ψ → c ≤ k.
Then, formulae (p01), (pni j) for 0 ≤ i ≤ k, 1 ≤ j ≤ n, (ppi j)
for 0 ≤ i ≤ k, 1 ≤ j < n, and (pin) for 0 ≤ i ≤ k are all valid.
Following the construction shown in Sections IV-D and IV-E,
we can generate a proof of (I ∧GT) → φ. �

Corollary 2: If |= α then `GKL α.

V. EXPERIMENTAL EVALUATION

We have implemented our proof generation procedure on
top of IC3IA, a simple, open-source implementation of IC3
that uses the MATHSAT [6] SMT solver as backend. The tool
supports LTL model checking of both finite and infinite-state
systems (using a combination of implicit abstraction and well-
founded relations, as described in [5]), but currently proof
generation is only available for finite-state systems. Upon
successful verification, IC3IA generates a proof certificate
which can be checked by a simple companion proof checker,
using purely-syntactic operations. The resolution proofs for
the individual proof obligations, as described in the pre-
vious sections, are generated using the off-the-shelf proof-
production capabilities provided by MATHSAT. The core of
the (prototype) proof checker consists of about 500 lines of
Python code. The source code of both IC3IA and the proof
checker is available at http://es.fbk.eu/people/griggio/papers/
fmcad2018-ltlproofs.tar.bz2, together with the benchmark in-
stances used in our experimental evaluation, the log files of
our results and the scripts to reproduce them.

For our evaluation, we have collected a total of 1150
instances from three different sources:
• the 63 safe LTL model checking problems from the

2015 hardware model checking competition (denoted
HWMCC in the following); all the instances in this set
are non-trivial for the model checker, with several that
are very challenging also for state-of-the-art tools; all the
properties in this family are of the form ¬∧i(GF fi);2

• 519 unsatisfiable LTL formulae from a benchmark set
used in previous work on LTL satisfiability checking [29]
(denoted Schuppan in the following); this set contains
instances of varying difficulty, ranging from trivial to
moderately-challenging; several instances are randomly-
generated;

• 568 LTL model checking problems resulting from the
verification of contracts of a component-based model of

2The benchmarks are in the Aiger format, which doesn’t support arbitrary
LTL properties, but only liveness properties of the above form. For most of
the benchmarks, the input system therefore already corresponds to M ×M¬φ
for some LTL property φ.

an aircraft wheel braking system [30] (denoted WBS in
the following); the instances are typically easy, and many
are in fact trivial. 3

The main objective of our experimental analysis is to
demonstrate the feasibility of proof generation in practice. For
this, we performed three sets of experiments. In all cases, we
used a timeout of 1200 seconds and a memory limit of 7Gb;
all experiments were run on a cluster of Linux machines with
2.10GHz Intel Xeon E5-2620 CPUs and 128Gb of RAM.

A. Performance impact at model-checking time

In the first experiment, we evaluated the performance im-
pact of the modified monitor for handling multiple fairness
constraints with k-liveness, which is the only modification
required at model checking time for being able to produce
proofs. The results are shown in the scatter plot of Fig. 2,
in which we compare the results of running IC3IA with the
modified monitor that records the fairness conditions in a
fixed order (x-axis) against the results when running using the
standard monitor that doesn’t impose any order for recording
the fairness conditions (y-axis). The plot shows no clear trend
for the vast majority of the instances, suggesting that the two
encodings are essentially equivalent in terms of performance
on average.
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Fig. 2. Performance impact of the
modified encoding for handling mul-
tiple fairness constraints.

A notable exception is
the subset of problems in
the TRP/N12y group of the
Schuppan set: for these in-
stances, the modified mon-
itor results in a significant
slowdown (up to two or-
ders of magnitude on some
instances), leading to 13
more timeouts. For these in-
stances, it seems that the
initial ordering of fairness
conditions used by IC3IA,
which is based on the
unique internal IDs of expressions, is particularly problematic.
Randomly shuffling the initial list of fairness conditions greatly
mitigates the problem in this case. Although further more
in-depth analyses of the correlation between the introduced
overhead and the structure of the LTL properties under con-
sideration are out of the scope of the present paper, and
therefore left for future work, we can however observe that

3This is the case e.g. for some proof obligations generated for components
with a trivial assumption.
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the choice of which encoding to use for handling multiple
fairness conditions can have an impact on performance for
two different, and at least partially conflicting, reasons. On one
hand, forcing to record fairness conditions in a fixed order and
one at a time has the effect of making model checker consider
longer sequences of transitions before it can converge to an
inductive invariant (e.g. for IC3 this causes the exploration of a
longer sequence of relatively-inductive frames before reaching
the fixpoint); on the other hand, however, using the modified
monitor allows k-liveness to prove properties with smaller
values of k, which in turn might allow the model checker
to converge faster. We illustrate both situations with a simple
example.

Example 2: Consider the following system M := 〈V, I,T〉:
V := {c, f1, . . . , fn+1} I := c = 0 ∧∧n+1

i=1 ¬ fi
T := ite(c < n, c′ = c + 1, c′ = c) ∧∧n+1

i=1 ( f ′i ↔ (c < n))
and suppose that n ≥ 1. M clearly satisfies the property ϕ :=
¬(∧n+1

i=1 GF fi), since all the f ′i s will stabilize to false after
n + 1 transition steps. When using the monitor that doesn’t
force an ordering for recording the fairness conditions, the
k value needed for a k-liveness proof is n, since all fairness
conditions are true for the first n steps. However, when using
the modified monitor, M |= ϕ can be proved with k = 1.

Consider instead the following variant of M , in which T is
modified as follows:

T := ite(c < 1, c′ = c + 1, c′ = c) ∧∧n+1
i=1 ( f ′i ↔ (c < 1)).

In this case, k = 1 is enough in both cases. However, the
modified monitor will cause IC3 to explore a much deeper
sequence of frames before finding an inductive invariant.

B. Overhead of proof generation
In our second experiment, we evaluated the impact of proof

generation on the total execution time. Fig.3 shows a plot
comparing the total time taken by IC3IA (x-axis) against the
time required to model-check the instances, without generating
a proof certificate (y-axis).
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Fig. 3. Performance impact of proof
generation.

As we can see, the
overhead of generating a
proof gets progressively
smaller as the instances
become harder for the
model checker. Overall,
enabling proof generation
results in only one lost
instance compared to model
checking only when using
the same encoding for
handling multiple fairness
conditions; compared to the original encoding, 14 instances
are lost.4 A summary of the performance of the different
configurations of IC3IA is reported in Table I, where the
number of successfully solved instances for each benchmark
family is shown.

4See the discussion above about this.

TABLE I
SUCCESSFULLY SOLVED INSTANCES BY BENCHMARK FAMILY.

HWMCC Schuppan WBS All
Model Checking only
(original monitor for
multi fairness)

31 / 63 495 / 519 568 / 568 1094 / 1150

Model Checking only
(modified monitor for
multi fairness)

31 / 63 482 / 519 568 / 568 1081 / 1150

MC + Proof Generation 31 / 63 481 / 519 568 / 568 1080 / 1150

TABLE II
STATISTICS ON THE SIZE OF GENERATED PROOFS.

HWMCC Schuppan WBS All
Proof size
Median 31 151 11 31
9th percentile 64 363 31 307
Min 4 4 4 4
Max 78 723 51 723
Proof steps
Median 125858 9601 1215 1590
9th percentile 524519 169854 17054 128901
Min 46 5 5 5
Max 6377311 1025799 1674373 6377311
Temporal steps
Median 0 1031 9 17
9th percentile 0 15073 1 8705
Min 0 0 111 0
Max 0 128921 355 128921
Fairness conditions
Median 4 37 2 5
9th percentile 8 90 7 76
Min 1 1 1 1
Max 10 180 12 180
Memory used (MB)
Median 56.2 19.7 15.5 16.1
9th percentile 1163.8 31.7 29.3 31.3
Min 13.7 12.7 12.8 12.7
Max 1620.0 191.1 793.1 1620.0

Proof size: number of resolution proofs (generated by the SMT solver)
for proving I ∧GT → ¬(∧i GF fi ).
Proof steps: total number of inference rules applied.
Temporal steps: total number of inference rules involving temporal axioms (from M¬φ ).

C. Cost of proof checking

We conclude the section presenting some data about the
performance of the proof checker.
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Fig. 4. Performance of proof checking
(y-axis) vs verification time (x-axis).

Fig. 4 shows a scatter
plot comparing, for each
instance, verification (x-
axis) and proof checking
(y-axis) times, whereas
Table II presents some
statistics about the size of
the generated proofs. We
remark though that while
IC3IA is written in C++,
the current implementation
of the proof checker is a
prototype written in Python.
We expect that reimplementing the checker in C++ would
lead to very significant performance improvements.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a sound and complete
approach for generating proofs for LTL model checking prob-
lems using the k-liveness algorithm. The technique can be
easily and efficiently implemented on top of modern SAT-
based model checkers, as demonstrated by our experimental
evaluation, and results in proofs that can be efficiently checked
(by independent tools) using purely-syntactic rules.

We see several directions for future work. First, we would
like to extend the technique to be applicable also to other SAT-
based LTL model checking algorithms, such as the liveness-to-
safety transformation of [31] and the FAIR algorithm of [32].
We would also like to investigate generalizations of the ap-
proach to infinite-state systems, using model checking algo-
rithms that combine liveness-to-safety, k-liveness and ranking
function synthesis [5]. Finally, from the practical perspective,
we will enhance our implementation and extend it from the
current prototype to a state-of-the art tool like NUXMV [33].
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