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Abstract—This paper reports progress in verification tool engi-
neering for weak memory models. We present two bounded model
checking tools for concurrent programs. Their distinguishing
feature is modularity: Besides a program, they expect as input a
module describing the hardware architecture for which the pro-
gram should be verified. DARTAGNAN verifies state reachability
under the given memory model using a novel SMT encoding.
PORTHOS checks state equivalence under two given memory
models using a guided search strategy. We have performed
experiments to compare our tools against other memory model-
aware verifiers and find them very competitive, despite the
modularity offered by our approach.

Keywords: Memory models, CAT, concurrent programs,
bounded model checking, SMT encodings.

I. INTRODUCTION

The semantics of concurrent programs depends on the
memory model of the underlying hardware architecture. This
has recently seen considerable interest [2], [6], [11], [15],
[16], [21], [23], [27], [28], [46], [48]. A key insight is that,
for verification purposes, the semantics is best formulated in
an axiomatic style. The memory model is given in terms
of assertions that constrain a set of candidate executions.
A considerable achievement in this line of research is a
specification language, CAT [7], [9], [15], in which basically
all memory models of interest can be expressed. CAT is made
for rapid prototyping. New models are easy to write so that the
developer is able to quickly, yet precisely, assess the behavior
of the program of interest on the corresponding hardware.

While CAT is successful as a modeling language, the tool
support is lagging behind. Memory model-aware verification
tools are still being developed for specific memory models.
NIDHUGG [2], [6] implements stateless model checking for
TSO, POWER, and a version of ARM. CBMC [11] is a
bounded model checker for TSO. The RCMC tool [32] targets
the C11 programming language. Other verification problems
(e.g. fence insertion to restore sequential consistency) are tack-
led by MEMORAX [3], [4], [5], OFFENCE [13], FENDER [33],
and DFENCE [35]. These tools support TSO and similar
models, such as PSO or RMO, but cannot handle POWER
or ARM.

What is missing are verification tools that are modular in
the following sense: Besides the program, they should take
a memory model as an input and then perform the analysis
relative to that model. The HERD tool [15] accompanying
CAT satisfies this requirement. Unfortunately, it is designed
for litmus tests and limited to small programs.

thread t0 thread t1
x.store(rx, 1) y.store(rx, 1)

thread t2 thread t3
r1 = x.load(rx); r3 = y.load(rx);
r2 = y.load(rx) r4 = x.load(rx)

Fig. 1: Program IRIW.

We set out to address the need for modular verification
and developed two tools. DARTAGNAN is a safety verification
engine that checks reachability of a (bad) state. It is modular
and can handle memory models written in the core subset of
the CAT language (see Fig. 4). PORTHOS employs this engine
as a back-end and checks equivalence of the reachable states
under two given memory models.

The following example illustrates how the hardware archi-
tecture influences the semantics of a concurrent program in
subtle ways and motivates the verification problems. Consider
the program IRIW given in Fig. 1 which is written in C11.
Variables are initially set to 0. The memory order tag rx
(for relaxed) indicates that an operation provides minimal
guarantees w.r.t. the ordering of memory accesses. On X86-
TSO [42], each thread has a store buffer of pending stores.
When a store is propagated from a buffer to the memory, it
becomes visible to all threads simultaneously. POWER, on the
other hand, does not guarantee that stores become visible to
all threads at the same point in time. With these architectures
in mind, consider the following execution: Thread t2 reads
x = 1, y = 0 and t3 reads x = 0, y = 1. Since under
TSO every execution has a unique global view of all store
operations, this execution is impossible and a state with
r1 = 1, r2 = 0 and r3 = 1, r4 = 0 is not reachable. Under
POWER, this is possible. The program thus behaves differently
under the two memory models.

DARTAGNAN helps programmers find bugs due to unexpected
executions. It checks whether a specified (undesirable) state
can be reached in the program — relative to a given mem-
ory model. Reachability is analyzed with an efficient SMT-
based bounded model checking algorithm [17], [24]. The tool
computes an acyclic unwinding of the program and translates
it, together with the module of the memory model and the
specification of the state, into an SMT query. If the query is



satisfiable, the state is reachable. Otherwise it is not.
The challenge is to deal with modularity. It requires us to

give an efficient encoding of all operations defined by CAT.
Notably, we have to compute — in SMT — least fixpoints.
They are used in prominent memory models like POWER and
ARM [15]. A naive approach would implement the Kleene
iteration in SAT by introducing copies of the variables for
each iteration step. In [40], we showed that such an explicit
iteration can be avoided by moving to an encoding based on
SAT + integer difference logic.

In this paper, we present another improvement to the
fixpoint encoding. For reachability, we show it is sound to
encode any fixpoint, not necessarily the least one. This is the
first technical contribution and implies the encoding from [40]
can be simplified. DARTAGNAN implements the idea.

PORTHOS supports programmers in porting code from one
architecture (for which it has been thoroughly validated) to
another. The portability problem asks whether no new (poten-
tially unsafe) states are introduced and whether all reachable
states can still be reached (no functionality has been lost).
PORTHOS checks this equivalence for two memory models
that are given as modules. If equivalence does not hold, it
reports a counterexample execution leading to a reachable state
allowed by only one architecture. Equivalence checking is use-
ful when programming performance-critical code for different
architectures. Operating System kernel developers and library
designers can use equivalence checks to understand whether
a programming idiom, an algorithm, or a data structure that
is known to work under one memory model can also be used
under another.

Note that the assembly versions of the program will be
different for the two architectures of interest. We address this
by incorporating compiler mappings into our analysis. We
return to this when we have our assembly language at hand.

State equivalence is checked in the form of inclusions in
both directions. Due to the alternation of quantifiers, inclusion
is notoriously difficult to check [49]: For every state reachable
in one architecture we have to find an execution in the
other that leads to the same state. In [40], we solved the
trace inclusion problem and showed that it is easier to solve
(in terms of complexity) than state inclusion. Despite that
theoretical result, this paper shows that state inclusion can be
solved practically using a guided search strategy.

The idea is to be pessimistic and try to disprove the
inclusion. The analysis looks for a state that is reachable in
one but not in the other model (like the one in the IRIW
example above). To find states that may disprove the inclusion,
PORTHOS invokes an oracle function. This oracle proposes
a series of candidate states for which it gives the following
guarantees.

(Progress) The series does not contain the same state twice.
(Soundness) If the oracle has no more states to propose,

then the inclusion indeed holds.
Progress is certainly desirable and soundness is indispensable
for verification. The interesting thing to note is that soundness

leaves it to the oracle to terminate early if it finds out, by
whatever reasoning, that the inclusion holds.

Our second technical contribution is the implementation
of an oracle in SMT which makes progress, is sound, and
may terminate early. The idea is to look for so-called delta
executions: Executions that are inconsistent with one memory
model but consistent with the other. Finding a delta execution
corresponds to solving the trace inclusion problem. As we
showed in [40], this does not require a quantifier alternation
and can be done by suitably extending the reachability proce-
dure of DARTAGNAN. A state resulting from a delta execution
is clearly a candidate to violate the inclusion. Moreover, if
there are no more states resulting from delta executions, the
oracle can conclude that the inclusion holds — even if not all
reachable states have been considered.

We evaluated the performance of both DARTAGNAN and
PORTHOS on a benchmark suite of mutual exclusion algo-
rithms and compared it against several other memory model-
aware verification tools. Experiments show that our tools scale
significantly better for larger programs.

Contributions: We report progress in memory modular ver-
ification in the form of new encoding techniques and oracle
heuristics with SMT queries. In particular:
• We present two bounded model checkers for concurrent

programs. Both tools are modular: They expect memory
models as inputs rather than implementing the analysis
for a fixed memory model.

• DARTAGNAN is a reachability checker. It simplifies our
previous encoding by admitting arbitrary fixpoints. Its
current implementation is an order of magnitude faster
than the earlier prototype from [40]. It can be used as a
back-end engine for other memory model-aware tools.

• PORTHOS is a portability checker. It implements a new
method for checking state inclusion. The algorithm is
an oracle-guided search that employs DARTAGNAN as a
back-end. The oracle is driven by delta executions. In our
experiments it requires only few iterations.

• We perform an exhaustive evaluation of DARTAGNAN and
PORTHOS w.r.t. other memory model-aware tools, often
observing significant speed ups. This shows the benefits
of an SMT-based approach.

Outline: The remainder of the paper is structured as follows.
In Section II we describe the user interface of the tools.
Section III discusses the BMC for reachability. The guided
search for inclusion is described in Section IV. Section V
gives the experimental results. The related work is discussed
in Section VI.

II. USER INTERFACE

We present our tools from a user’s perspective. We examine
the verification problems they solve together with the required
inputs and their formats. Two verification tasks are supported:
Reachability and state equivalence. The solid lines in Fig. 2



USER

thread t0 thread t1
y.store(rx, 1) x.store(rx, 1)
a = x.load(rx); b = y.load(rx);

exists a = 0 ∧ b = 0

P

S

T0 T1
MOV [y], $1 MOV [x], $1
MOV EAX, [x] MOV EBX, [y]

exists EAX = 0 ∧ EBX = 0

T0 T1
li r0, 1 li r0, 1
stw r0, y stw r0, x
lwz r1, x lwz r1, y

exists 0:r1 = 0 ∧ 1:r1 = 0

P k
TSO

let com = (rf | fr | co)
acyclic (poloc | com)
let com-tso = (rfe | co | fr)
let po-tso = ((po \ W*M) | mfence)
let ghb-tso = (po-tso | com-tso)
acyclic ghb-tso

MTSO

P k
POWER

let com = rf | fr | co
acyclic (poloc | com)
let dp = addr | data
let rdw = poloc & (fre;rfe)
let detour = poloc & (coe;rfe)
let ii0 = dp | rfi | rdw
let ic0 = 0
let ci0 = ctrlisync | detour
let cc0 = dp | poloc | ctrl | (addr;po)
let rec ii = ii0 | ci | (ic;ci) | (ii;ii)
and ic = ic0 | ii | cc | (ic;cc) | (ii;ic)
and ci = ci0 | (ci;ii) | (cc;ci)
and cc = cc0 | ci | (ci;ic) | (cc;cc)

let ppo = (R*W & ic) | (R*R & ii)
let fence = (R*M & lwsync) | (W*W & lwsync) | sync
let hb = ppo | fence | rfe
acyclic hb
let propbase = (fence | (rfe;fence));hb*
let prop = (W*W & propbase)| (com*;propbase*;sync;hb*)
acyclic co | prop
irreflexive fre;prop;hb*

MPOWER

Unroll

COMPILER MAPPING

bound k

VERIFIER

4 8

Fig. 2: DARTAGNAN (full arrows) and PORTHOS (full and dotted arrows) from the user’s perspective.

illustrate the artifacts that are required for or produced by
DARTAGNAN for checking reachability. The complete figure
refers to testing for state equivalence with PORTHOS.

Verification Tasks: DARTAGNAN expects a program P
annotated with a reachability condition S, a memory model
M of the target architecture, and an unrolling bound k for
the bounded model checking. It recursively unwinds all loops
in P up to the bound k. The unwound program and the
reachability condition are then mapped to the assembly dialect
of the target architecture (we elaborate on compiler mappings
below). The resulting acyclic and annotated assembly program
is handed over to the analysis. In Fig. 2, program P is a
simplified mutex algorithm which is mapped to X86 (P k

TSO)
using the compiler mapping in Table I. DARTAGNAN then
verifies whether EAX = 0 ∧ EBX = 0 is reachable when
running P k

TSO under TSO. The definition of reachability will
be given when we define memory models. In Fig. 2, we verify
the mutex algorithm by checking whether both threads can
read value 0 and thus enter their critical sections. Under TSO,
this is possible.

For checking equivalence, PORTHOS expects as input the
program P , two memory models MS and MT , and an
unrolling bound k. The tool checks whether the reachable
states under MT are the same as under MS . This analysis is
performed on the unrolled and mapped programs. In Fig. 2,
we check if the states reachable by P k

POWER under POWER are
the same as the ones reachable by P k

TSO under TSO (which
is the case). We process state equivalence queries with two
inclusion checks. These queries compare the reachable states
of two assembly versions of the same program running under
different memory models.

Programs: Both DARTAGNAN and PORTHOS take as input
programs written in a C11-like language with support for
C11-atomics. Its grammar is given in Fig. 3. Programs consist
of a finite number of threads. Each thread contains a sequence
of operations such as while and if statements, computations
on local variables, and accesses to the shared memory. We
currently support Boolean and integer variables in the guards
and expressions.

〈prog〉 ::= program 〈thrd〉∗

〈thrd〉 ::= thread 〈tid〉 〈inst〉+

〈inst〉 ::= 〈var〉 ← 〈exp〉 | 〈inst〉; 〈inst〉
| 〈var〉 = load(〈mem〉, 〈atom〉)
| 〈mem〉 = store(〈var〉, 〈atom〉)
| while 〈pred〉 〈inst〉
| if 〈pred〉 then 〈inst〉 else 〈inst〉

〈atom〉 ::= sc | rel | acq | con | rx

Fig. 3: Programming language.

Load and store operations are annotated by memory or-
der tags that define their ordering guarantees. The sc tag
guarantees a sequentially consistent semantics for the access;
rel/acq and rel/con implement the message-passing id-
iom; the rx (relaxed) tag maps directly to hardware accesses
giving minimal guarantees on how those accesses are per-
formed. Weaker guarantees yield higher performance but they
usually allow additional program behavior that is hard to
predict.

Although the input program is written in a C11-like lan-
guage, the analysis is performed at the assembly level. The



C11 X86 POWER ARMv7

Load rx MOV lwz ldr
Load con MOV lwz; lwsync ldr; dmb ish
Load acq MOV lwz; lwsync ldr; dmb ish
Load sc MOV sync; lwz; lwsync ldr; dmb ish
Store rx MOV stw str
Store rel MOV lwsync; stw dmb ish; str
Store sc MOV; mfence sync; stw dmb ish; str; dmb ish

TABLE I. Compiler mappings for X86, POWER and ARMv7.

program is converted to hardware specific assembly code
according to a given compiler mapping. The compiler mapping
replaces load and store operations with their corresponding
assembly memory accesses and adds fences to enforce the
ordering guarantees provided by the memory model tag. Each
compiler uses its own mapping. Our tools currently implement
the mappings given in Table I, which are the ones used by
the LLVM 4.0 compiler [38]. Other mappings, like the one
from [1], can be easily added. For the method presented in
Section IV to work, the only requirement is that the mapping
of each atomic operation contains a single memory access.

It is worth noting that we assume the compiler does not
perform any optimization; the program to be verified has
already been optimized. Compiler optimizations under weak
memory models are an active topic of research [34], [37], [47],
[49], but they are out of the scope of this paper.

Memory Models: Informally, a memory model defines when
store operations executed by one thread become visible to
other threads. This means a memory model determines the
semantics of a program on a hardware architecture. The se-
mantics is defined in terms of so-called executions. It contains
those executions that are (in a precise sense) consistent with
the memory model [7], [36]. We elaborate on the notion of
executions and how they define reachability. Afterwards we
introduce memory models and consistency.

An execution (X, rf , co) consists of memory events exe-
cuted by the program of interest and relations between these
events [7], [49]. Set X states which events have been executed
in each thread. This forms the control flow of the program.
The reads-from relation rf specifies from which store each
load gets its value. The coherence order co is the order in
which stores to a variable take effect.

A state consists of the values of local and global variables.
A state reached by a given execution is defined as follows. The
value of a global variable is given by the last store operation
according to the co relation. The value of a local variable
depends on the last executed event (according to the control
flow) loading to the local variable.

Memory models define a consistency predicate on execu-
tions. The semantics of a program on that memory model is
then given by the executions of the program that satisfy the
predicate [7], [11], [36]. We use the language CAT [9] to
define memory models, the core of which is shown in Fig. 4.
There are functional programming features in CAT that we do
not support since they are not needed to define the hardware

〈MCM 〉 ::= 〈assert〉 | 〈rel〉 | 〈MCM 〉 ∧ 〈MCM 〉
〈assert〉 ::= acyclic(〈r〉) | irreflexive(〈r〉) | empty(〈r〉)

〈r〉 ::= 〈b〉 | 〈r〉 ∪ 〈r〉 | 〈r〉 ∩ 〈r〉 | 〈r〉 \ 〈r〉
| 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉; 〈r〉

〈b〉 ::= po | rf | co | ad | dd | cd | sthd | sloc

| mfence | sync | lwsync | isync | isb | ish

| id(〈set〉) | 〈set〉 × 〈set〉 | 〈name〉
〈set〉 ::= E |W | R
〈rel〉 ::= 〈name〉 := 〈r〉

Fig. 4: The CAT language [9].

architectures of interest. In CAT, memory models define
relations over the events in executions. The program order
po and relations rf and co from above are common to all
memory models, and typically referred to as base relations.
Base relations also include, e.g., address, data and control
dependences. Further so-called derived relations are defined
using operations on relations such as transitive closure, union,
intersection, and composition.

Importantly, CAT allows to define derived relations as
least solutions to a system of equations. The semantics of
such recursive definitions is well defined only if they behave
monotonously [9]. Almost all of CAT is already monotonous,
the only non-monotonous construct is the right hand side of the
“\”-operator. We disallow recursive definitions in the right side
of it to ensure well defined semantics in a syntactic manner.

To define the notion of consistency for executions, a mem-
ory model requires a number of assertions to hold over
its relations. These assertions are acyclicity, irreflexivity and
emptiness guarantees. An execution is defined to be consistent
with the memory model if it satisfies all assertions.

III. CHECKING REACHABILITY

DARTAGNAN encodes the reachability problem into an SMT
formula which is constructed as follows. Formulas φCF and
φDF encode the control flow and data flow of the program.
The memory model dependent condition φM ensures that the
executions are consistent with the given model. Finally, φS is
satisfied only if the final state reached by the program satisfies
the predicate S. The overall BMC encoding is:

φCF ∧ φDF ∧ φM ∧ φS .

Each loop in the program is unrolled up to a user defined
depth k. The program is compiled using a given mapping and
then converted into its single static assignment (SSA) form.
This results in a directed acyclic graph presenting all possible
control flows of the program up to the unrolling depth. As the
program is now acyclic and in the SSA form, each statement
and variable assignment can be executed at most once.

The main idea of the BMC encoding is to guess an
execution, which consists of executed events and the rf and



co relations. Guessing the executed events fully specifies the
control flow of the candidate execution, while guessing rf
and co specifies the data-flow of the candidate execution. It is
easy to see that this is basically the encoding of the weakest
possible memory model expressible in CAT. All widely used
models are additional restrictions of this.

The part of the encoding that is not dependent on the
memory model is very similar to established BMC encodings
of concurrent programs [25]. We recently introduced in [40]
the encodings for the memory model specific parts, especially
the ones for recursively defined relations with least fixpoint
semantics (needed for POWER and ARM).

Encoding Control and Data Flow: Recall that the basic idea
for the control flow is to guess the set of executed events. We
encode this with a Boolean variable for each event, which is
satisfied if the event is executed. We ensure that every load
gets its value from one store on the same variable and that
the stores to a variable form a total order in co. Relations
are encoded as follows. For any pair of events e1, e2 ∈ E
and relation r ⊆ E × E we use a Boolean variable r(e1, e2)
representing the fact that e1

r→ e2 holds.
The rest of the encoding ensures that the guessed executed

events are a valid control flow path through each one of
the threads, and that data-flow follows the reads-from and
coherence order relations in the shared variables. The encoding
also checks that all executed guards are satisfied, and that all
executed data manipulation statements are correctly evaluated.
The data flow encoding additionally relates the final state
of the unrolled compiled program to the original program,
allowing the state predicate formula φS to be expressed in
terms of the variables of the original unrolled program before
the SSA conversion. Thus, we ensure candidate executions that
obey both the control flow and the data flow of the programs.
The details of the encodings can be found in [39].

Encoding Memory Models: A memory model defined in
the CAT language (see Fig. 4) is a constraint system over
so-called derived relations together with some assertions. The
language defines a number of base relations. Their encodings
can be obtained directly from the source code of the program
(e.g., the program order po), from statements corresponding to
the synchronization primitives of the used architecture (e.g.,
memory fences mfence on TSO) or they are part of the
execution (the rf and co relations). Derived relations are built
from relations using operators such as union, intersection,
difference, composition, transitive closure, etc. We similarly
use new Boolean variables to represent the derived relations.
Most of the operators can be encoded in SMT in a fairly
straightforward manner.

An execution is consistent with a memory model if all its
assertions are satisfied. We encode acyclicity of a relation in
a compact way using IDL by ensuring that a relation implies
a partial ordering. We assign each event a numerical variable
and require that if an event e is related to e′ then the numerical
value assigned to e is less than the value assigned to e′.

Encoding Recursive Relations: CAT additionally supports
recursive definitions. The semantics of such recursively de-
fined relations are the least fixpoint solution to this system of
monotone equations on relations. We argue that for reachabil-
ity, it is sufficient to encode any fixpoint, not necessarily the
least one. The assertions of the memory model (acyclicity,
irreflexivity and emptiness) are monotone in the following
sense: If a relation fulfills an assertion, all of its subsets will
also fulfill the assertion. The CAT operators on relations are
also monotone (except set difference which is not applied
to recursive relations): Consider r := (r; r) ∪ r0, where the
operator ";" represents relation composition. If relation r0 is
enlarged or reduced, then so is r.

These observations allow us to apply the Knaster-Tarski
Theorem [44]. This is a key contribution of the paper; we
use it to simplify the SMT encoding of CAT models. We can
freely pick any fixpoint that satisfies all the assertions, as it
always contains the least fixpoint, which also satisfies all the
assertions. It removes the need to encode the least fixpoints of
the CAT language exactly. We call this the relaxed encoding.
The encoding of r is simply:

r(e1, e2)⇔ r;r(e1, e2) ∨ r0(e1, e2).

We argue that for reachability queries, this encoding is still
correct. Assume a least fixpoint encoding of a reachability
query has a satisfying assignment. Naturally, the least fixpoint
also satisfies the relaxed encoding as it is a fixpoint. If the least
fixpoint encoding is unsatisfiable, every execution violates
some assertion. Any violated acyclicity assertion implies a
cycle. Since larger fixpoints only add dependencies to rela-
tions, the cycle remains for all larger fixpoints. The assertion
remains violated with the relaxed encoding. Hence, the relaxed
encoding is also unsatisfiable. Similar reasoning also holds for
irreflexivity and emptiness violations.

IV. CHECKING INCLUSION

We show how to efficiently check state inclusion. The
inclusion requires that for all states reachable in the target
memory modelMT there has to be an execution in the source
memory model MS reaching the same state. Such a ∀∃-
alternation of quantifiers is notoriously difficult to handle for
verification tools [49]. A naive approach would iterate over
all reachable states. We propose to use an oracle guiding the
search by providing relevant candidate states. We present an
implementation of the oracle that iterates over far fewer states
but preserves completeness. The key observation is that new
states always correspond to new executions. Therefore we only
need to consider states coming from executions consistent with
the target but inconsistent with the source memory model.

The main procedure is described by Algorithm 1. It takes
as input a program, two memory models MS ,MT

1, and a
bound k. The program is first unrolled up to the bound k and
converted to to the acyclic assembly programs P k

S and P k
T

1The latter is needed to implement a concrete oracle. However in Algo-
rithm 1 we consider the oracle a black box object.



Algorithm 1 Incremental SMT Solving for State Inclusion

1: procedure PORTHOS(Program P , MCMMS ,MT , Int k)
2: φRCH ← φCF (P k

S ) ∧ φDF (P k
S ) ∧ φMS

(P k
S )

3: while ORACLE().hasState() do
4: s← ORACLE().getState()
5: if φRCH ∧ φs is UNSAT then
6: return false
7: return true

using the mappings from Table I. The procedure might perform
several reachability queries for MS . Therefore, we construct
a formula defining its consistent executions in Line 2. The
formulas φCF , φDF and φMS

are the ones from Section III.
The algorithm then enters a loop iterating over a sequence

of states which can be thought of as candidates for violating
inclusion. These candidate states are provided by an oracle, a
black box providing two functions. Function hasState() returns
a Boolean judging whether there is still a candidate state to
consider. If so, function getState() provides the candidate. The
oracle has to meet the following specification.

(O1) If hasState() returns false, then state inclusion holds.
(O2) If hasState() returns true, an invocation of getState()

returns a state.
(O3) Function getState() never returns the same state twice.
(O4) Every state returned by getState() is reachable in MT .
When the oracle provides a new candidate, the algorithm
checks whether it is reachable in MS . If the state is not
reachable, state inclusion does not hold and the procedure
returns false at Line 6. If it is reachable, the check is repeated
with a different state. If every state provided by the oracle is
reachable under MS , state inclusion holds by (O1) and the
procedure returns true at Line 7.

A correct but naive implementation of an oracle would list
all states reachable under MT . A more efficient exploration
is guaranteed by the following idea.

An Oracle for Efficient Exploration: We present an oracle
that lists good candidates likely to violate state inclusion.
Moreover, the oracle may be able to guarantee state inclusion
early. Finally, the computation of candidate states itself is
based on SMT-solving and quite efficient. The idea is to find
all executions consistent with MT but not MS , and extract
their reachable states. This guarantees (O1) and (O4): When
hasState() returns false, all states that may violate inclusion
have been considered and thus state inclusion holds. Our
implementation encodes the oracle as follows:

φORA = φEQ(P k
S , P

k
T ) ∧ φCF (P k

T ) ∧ φDF (P k
T ) ∧ φMT

(P k
T )

∧ φCF (P k
S ) ∧ φDF (P k

S ) ∧ φ¬MS
(P k

S ).

Function hasState() denotes whether the formula φORA is
satisfiable. In this case, getState() extracts a state s from a
satisfying assignment and returns it. This guarantees (O2). To
ensure (O3), the same state is not returned twice, the formula
is iteratively updated to φORA := φORA ∧ ¬φs.

The formula φEQ relates the executions of both assembly
programs by ensuring that they represent the same execution
of P k. This formula will be explained below. The next three
formulas encode consistent executions in MT as defined
in Section III. The remaining formulas encode executions
inconsistent with MS .

We encode acyclicity violations by guessing a cycle. For
every event e, a Boolean variable Cr(e) represents its presence
in the cycle. We ensure that every event in the cycle has an
incoming and an outgoing edge in the cycle. A more detailed
description of the cycle encoding is given in [40].

Encoding Least Fixpoints: When using the relaxed encod-
ing in the oracle, a larger fixpoint could be chosen with more
dependencies between events and thus new cycles could be
created. This implies that the oracle could propose additional
candidate states and more iterations might be required. For
this reason, we encode exact least fixpoints for PORTHOS.

Least fixpoints of recursively defined relations can be com-
puted with the standard Kleene iteration [43], which starts
from the empty relation and iterates until the least fixpoint
is reached. A naive encoding approach would implement the
Kleene iteration in SAT by introducing a Boolean variable
for each pair of events and each iteration step. This naive
encoding is too inefficient, as the number of iterations needed
is basically the joint size of the involved relations.

We recently proposed in [40] a much more efficient SMT-
encoding that uses Integer Difference Logic [26]. Instead of
having a Boolean variable for each iteration step, it only uses
one Boolean variable r(e1, e2) (representing if the relation
holds) and one numerical variable Φr

e1,e2 representing the
iteration in which the pair was added to the relation. Given
a relation r := (r; r) ∪ r0, for events e1, e2 we construct the
formula:

r(e1, e2) ⇔ (r;r(e1, e2) ∧ (Φr
e1,e2 > Φr;r

e1,e2))
∨ (r0(e1, e2) ∧ (Φr

e1,e2 > Φr0
e1,e2)).

The first part of the disjunction specifies that (e1, e2) can be
added to r if the pair belongs to r; r (i.e. variable r;r(e1, e2)
is true) and it was added to r; r at some previous iteration step
(i.e. Φr

e1,e2 > Φr;r
e1,e2 ). The second part is analogous.

Note that this only encodes at most the least fixpoint: A
satisfying assignment could also set a value for Φr

e1,e2 that
is too small and thus not add the pair. We combine the
formula above with the relaxed encoding to get exactly the
least fixpoint.

Encoding Common Executions: We look for an execution
consistent with MT and inconsistent with MS . However,
we execute two different assembly programs P k

S and P k
T .

This means we need a way to compare their executions.
Intuitively, two executions are equivalent if they represent the
same execution of the program P k. Since the compilation
scheme of Table I implements each atomic memory operation
using a single low-level memory access, a one-to-one mapping
π : ET → ES between the events of P k

S and P k
T can be



Benchmark #Executions TSO C11 #Executions POWER ARM
TSO/C11 HERD NIDHUGG CBMC DARTAGNAN RCMC POWER/ARM HERD NIDHUGG DARTAGNAN HERD NIDHUGG DARTAGNAN

PARKER 11 0.08 0.01 0.29 0.76 0.08 14 0.07 0.01 1.32 0.08 0.02 1.29
DEKKER 24 T/O 0.02 0.48 4.29 0.05 24 T/O 0.05 34.86 T/O 0.04 36.88
PETERSON 24 4.98 0.03 0.32 0.94 0.07 24 4.89 0.04 4.29 4.85 0.03 4.13
BURNS 47 284.90 0.02 0.29 1.10 0.04 47 316.33 0.03 4.10 289.66 0.04 4.05
BAKERY 12492 T/O 2.60 0.41 4.64 0.07 84760 T/O 141.56 40.06 T/O 140.25 41.83
LAMPORT - T/O T/O 0.38 4.56 T/O - T/O T/O 72.03 T/O T/O 70.64
SZYMANSKI 4227148 T/O 966.71 0.84 18.98 409.79 - T/O T/O 259.56 T/O T/O 241.34

TABLE II. Reachability of mutual exclusion algorithm under TSO, C11, POWER, and ARM.

defined. Given two events eS and eT representing instructions
accessing memory in the assembly programs, π(eT ) = eS
holds if they both represent the same high-level instruction.
Note that such a mapping π can always be defined as long
as the compiler implements atomic memory operations with
a single memory access. The following encoding relates the
executions of both assembly programs:

φEQ =
∧

e∈ET

e ∈ XT ⇔ π(e) ∈ XS

∧
∧

e1,e2∈ET

rf(e1, e2)⇔ rf(π(e1), π(e2))

∧
∧

e1,e2∈ET

co(e1, e2)⇔ co(π(e1), π(e2)).

V. EXPERIMENTAL EVALUATION

We implemented the algorithms from Sections III and IV
in the DARTAGNAN and PORTHOS tools which use Z3 [29]
as the backend SMT solver. Both tools are available from:

https://github.com/hernanponcedeleon/Dat3M.

The tools include the following memory models: SC, TSO,
PSO, RMO, ALPHA, POWER, and ARM (v7). Others can be
defined in the CAT language.

We compare their performance against several memory
model-aware tools. HERD [12] is a tool designed for litmus
tests (small programs). It takes CAT files as an input (and
thus supports all memory models used in this section). It
enumerates all candidate executions and then filters those
accepted by the memory model. NIDHUGG [2], [6] performs
stateless model checking. It supports TSO, POWER and a
simplified version of ARM. CBMC [11] is a Bounded Model
Checker with an encoding similar to ours, but it cannot handle
recursive definitions efficiently and only supports TSO. For
the sake of completeness, we also report results on reachability
for C11 using the RCMC tool [32]. This is the memory model
of a programming language instead of a hardware architecture
and introduces new types of events. Therefore we cannot
directly apply our approach to C11. However, the number of
executions on C11 coincides with TSO for all programs and
we expect our encoding to perform similar to the TSO case.

The tools listed above are designed to test reachability.
They allow to reason about one memory model at a time
and therefore cannot directly be used to test state inclusion.
However, HERD returns information about all final states. We
check state inclusion with HERD by computing the reachable

states separately for both models (i.e. we run the tool twice)
and comparing them afterwards.

Our benchmark suite consists of mutual exclusion algo-
rithms. We unrolled loops twice (k = 2) which is sufficient
to show that our approach scales better than the other tools
for programs with several executions. Programs contains either
two or three threads. However their size is reported in terms
of the number of consistent executions since the performance
of the tools strongly depends on this. The execution times are
given in seconds. We set a timeout of 1800 secs for each call
to the tools (3600 secs for HERD in the case of inclusion since
the tool is run twice). For entries marked as T/O, the timeout
was reached.

We performed two sets of experiments: (i) Reachability
under TSO, C11, POWER and ARM; and (ii) the inclusions
TSO ⊆ SC, POWER ⊆ TSO, and ARM ⊆ TSO. Inclusion
in the other direction (necessary for equivalence) holds by the
definition of the memory models. E.g., every state reachable
under TSO is also reachable under the weaker models POWER
and ARM.

The results on reachability are given in Table II. We present
the analysis for unreachable states since it forces all tools
to perform a complete exploration and provides the worst
case scenario. For TSO, the best results are obtained by
NIDHUGG in benchmarks with small number of executions and
by CBMC as soon as this number grows. Even though CBMC
outperforms DARTAGNAN for TSO, our tool can be at least
two orders of magnitude faster than stateless model checking
techniques when the number of executions is in the order of
millions. See, e.g., LAMPORT which DARTAGNAN solves in
less than 5 secs while NIDHUGG and RCMC timeout. For
both POWER and ARM, NIDHUGG again outperforms all
tools when the number of executions is small. However for
benchmarks with a big number of executions (above 80K),
DARTAGNAN performs better. For the LAMPORT and SZY-
MANSKI benchmarks, our tool outperforms NIDHUGG by at
least one order of magnitude. Table II suggests that approaches
based on SAT/SMT encodings have a lot of potential for large
programs. DARTAGNAN can currently handle four million
executions in less than 20 secs while NIDHUGG and RCMC
need 15 and 6 minutes respectively.

The results on state inclusion are given in Table III. The
SAT column reports whether a counterexample to inclusion
was found (4) or not (8). When HERD returns a result, we
report on the number of delta executions (∆). This corresponds
to an upper bound on the maximal number of iterations

https://github.com/hernanponcedeleon/Dat3M


Benchmark TSO ⊆ SC
SAT HERD PORTHOS ∆ IT S.U.

PARKER 4 0.15 0.70 3 1 0.21
DEKKER 4 T/O 12.31 - 1 >292.44
PETERSON 4 9.96 1.31 12 1 7.60
BURNS 4 610.65 2.00 53 1 305.32
BAKERY 4 T/O 10.78 - 2 >333.95
LAMPORT 4 T/O 10.64 - 3 >338.34
SZYMANSKI 4 T/O 101.32 - 1 >35.53

Benchmark POWER ⊆ TSO
SAT HERD PORTHOS ∆ IT S.U.

PARKER 4 0.15 2.46 3 2 0.06
DEKKER 8 T/O 108.89 - 0 >33.06
PETERSON 8 9.94 6.33 0 0 1.57
BURNS 8 578.55 6.12 18 1 94.53
BAKERY 8 T/O 836.44 - 43 >4.30
LAMPORT - T/O T/O - - -
SZYMANSKI 8 T/O 940.75 - 0 >3.82

Benchmark ARM ⊆ TSO
SAT HERD PORTHOS ∆ IT S.U.

PARKER 4 0.15 1.90 3 1 0.07
DEKKER 8 T/O 134.43 - 0 >26.77
PETERSON 8 10.28 6.51 0 0 1.57
BURNS 8 546.90 7.89 18 1 69.31
BAKERY - T/O T/O - - -
LAMPORT - T/O T/O - - -
SZYMANSKI 8 T/O 850.44 - 0 >4.23

TABLE III. State inclusion of mutual exclusion algorithms.

PORTHOS might perform. As it can be seen from Table II,
in general this number is several orders of magnitude smaller
than the total number of executions. The cases reporting zero
iterations correspond to the set of executions coinciding for
both memory models. For most of the cases, PORTHOS is at
least one order of magnitude faster than HERD. For TSO, the
speed-up (S.U. column) can be up-to two orders of magnitude.

VI. RELATED WORK

The influence of memory models on the semantics of con-
current programs has been studied at least since 2007. Initially,
hardware architectures have been addressed [7], [15], [22],
[31], [36], [41], [42], followed by programming languages,
in particular C11 and C++11 [18], [19], [34]. Recently,
an axiomatic memory model for the Linux kernel has been
introduced [14]. These semantic studies form the basis for the
development of verification tools.

As of today, none of the following tools (except HERD) con-
sider the description of the memory model as an input. They
all implement (at best few) concrete models. NITPICK [20],
SATCHECK [30], NEMOSFINDER [50], and MEMSAT [45]
use SMT solvers. CBMC had been extended to support TSO
and POWER [11] but POWER is no longer supported. CPP-
MEM [19] and HERD enumerate all executions, making them
less scalable. More efficient but technically involved and hard
to generalize are Stateless Model Checkers, available for TSO,
PSO, POWER, ARM [2], [6] and C11 [32]. TRENCHER [21]
looks for trace inclusion bugs between SC and TSO; it under-
approximates state inclusion. It can also synthesize fences to
enforce SC behaviors. MEMORAX shares this functionality
and is complete for reachability under TSO [3], [4], [5]. Trace

inclusion can be enforced not only for TSO but also for weaker
memory models. The OFFENCE tool [13] does this, although
it is limited to restoring SC behaviors of litmus tests. Another
fence insertion tool is MUSKETEER [10]. It scales to large
programs, but is also restricted to ensuring SC. The FENDER
and DFENCE tools [33], [35] use fence insertion to guarantee
safety properties. They support TSO, PSO, and RMO.

A modular proof technique has been introduced recently [8].
It uses invariants to verify programs under a model given
in CAT. Another tool based on CAT synthesizes programs
differentiating two memory models [49]. However, this tool
is of interest to memory model designers and not made for
verification.

PORTHOS was originally designed to check trace inclusion.
In [40], we showed that state inclusion has a higher complexity
than trace inclusion. As a consequence, there is no polynomial
encoding that reduces inclusion to a single SAT query. How-
ever, the experiments in Section V show that our oracle-based
heuristic still performs well in programs where an exhaustive
state exploration does not scale.

VII. CONCLUSION AND OUTLOOK

We have presented DARTAGNAN and PORTHOS, two mod-
ular Bounded Model Checkers for concurrent programs. The
tools can check reachability and state equivalence under any
(pair of) memory model(s) defined in the CAT language. Our
method reduces reachability to satisfiability of a SMT formula
using novel encoding techniques. Equivalence is tested using
a guided search. We propose to use an oracle to find relevant
candidate states, and show how to implement an efficient
oracle based on SMT queries. We have performed experiments
to compare our tools to several memory model-aware tools,
and find them at least one order of magnitude faster for large
programs.

We are currently developing methods to synthesize memory
models from reachability results using our encoding tech-
niques. The techniques include compact representations of
relations by predicates as well as approximations of operations
that are not precise but still sound.

Other verification tasks, such as synthesizing programs to
compare memory models, could in principle also be solved by
reducing them to SMT queries. We would like to explore this
in the future.

Modern compilers perform various optimizations when
mapping high-level code to assembly instructions. We plan to
investigate whether such compiler mappings can be extracted
from the compilation process, at least approximately.

Acknowledgements: We thank Natalia Gavrilenko for con-
structive feedback on the manuscript and the tool implemen-
tation.
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