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Abstract—Being able to soundly estimate roundoff errors of
finite-precision computations is important for many applications
in embedded systems and scientific computing. Due to the
discrepancy between continuous reals and discrete finite-precision
values, automated static analysis tools are highly valuable to
estimate roundoff errors. The results, however, are only as correct
as the implementations of the static analysis tools. This paper
presents a formally verified and modular tool which fully auto-
matically checks the correctness of finite-precision roundoff error
bounds encoded in a certificate. We present implementations of
certificate generation and checking for both Coq and HOL4 and
evaluate it on a number of examples from the literature. The
experiments use both in-logic evaluation of Coq and HOL4, and
execution of extracted code outside of the logics: we benchmark
Coq extracted unverified OCaml code and a CakeML-generated
verified binary.

I. INTRODUCTION

Numerical programs, common in scientific computing or
embedded systems, are often implemented in finite-precision
arithmetic. This approximation of real numbers inevitably
introduces roundoff errors, potentially making the computed
results unacceptably inaccurate. The discrepancy between dis-
crete finite-precision arithmetic and continuous real arithmetic
make accurate and sound error estimation challenging. Auto-
mated tool support is thus highly valuable.

This fact was already recognized previously and resulted in
a number of static analysis techniques and tools [18 138} [11}
14] for computing sound worst-case absolute error bounds on
numerical errors. The results of such static analysis tools are,
however, only as correct as the tools’ implementation.

Some of these tools provide independently checkable formal
proofs, however we found that none of the current certificate
producing tools, FPTaylor [38]], PRECiSa [32] and Gappa [14]
go far enough. FPTaylor produces a proof certificate in HOL-
Light, relying on an in-logic decision procedure [37]. Its
analysis is specific to floating-point arithmetic and does not
support other finite precisions. PRECiSa and Gappa generate
a proof certificate by instantiating library theorems, explicitly
encoding verification steps. Any tool that explicitly encodes
verification steps, or is to be used interactively [15, |35]]
requires expert knowledge in IEEE754 floating-point seman-
tics [21] or formal verification; in contrast our goal is to make
our tool usable by non-experts. Finally, in-logic verification of
certificates can often become unreasonably slow.

This paper describes a new fully automated tool, called
FloVer, which checks proof certificates of finite-precision

roundoff error bounds generated by static analysis tools.
Certificates checked by FloVer encode only the minimal static
analysis result, and thus using FloVer does not require formal
verification expertise. Separately from FloVer, we implement
fully automated certificate generation in the static analysis tool
Daisy [13], demonstrating our envisioned tool-chain.

FloVer supports straight-line arithmetic kernels, floating-
point as well as fixed-point arithmetic, mixed-precision eval-
uation (including floating-point type inference), and local
variable declarations. For floating-point expressions, FloVer
proves correctness of each analyzed expression with respect to
the concrete bit-level IEEE754 floating-point semantics [21].
Our tool is formally verified in both Coq and HOL4. A
succesful run of FloVer shows that the encoded roundoff error
is a valid upper bound and that the analyzed function can be
run without any errors (e.g. division-by-zero).

In order to handle both floating-point and fixed-point arith-
metic, FloVer supports a forward dataflow static analysis.
FloVer is furthermore built modularly to allow reusability
and easy extensions, and supports dataflow analysis with both
interval and affine arithmetic abstract domains.

We have implemented and verified FloVer in two theorem
provers to be able to connect to projects in both provers and
thereby make FloVer widely applicable. In Coq, we hope to
link to the CompCert compiler [27] and CertiCoq [2]; and in
HOL4 we already link to CakeML [39].

The connection to CakeML allows us to provide efficient
certificate checking: using the CakeML toolchain [39, [34] we
produce a verified binary of our certificate checker. At the time
of writing, CertiCoq was not capable of extracting our checker
functions, thus we extract an unverified binary from Coq and
compare its perfomance with the verified CakeML binary.

Our evaluation on standard benchmarks from embedded
systems and scientific computing shows that roundoff errors
verified by FloVer are competitive with the state of the art, and
extracted certificate checking times are significantly faster than
in-logic verification.

Contributions

e We explain our modular, fully automated and self-
contained approach to certification of absolute finite-
precision roundoff error bounds (Section [[V] and [V).

« We implement and prove FloVer correct in both Coq
and HOL4. The sources are available at https://gitlab.
mpi-sws.org/AVA/Flo Ver,


https://gitlab.mpi-sws.org/AVA/FloVer
https://gitlab.mpi-sws.org/AVA/FloVer

« We are the first to provide an efficient and verified way of
checking finite-precision error certificates by extracting
a verified binary version of FloVer from HOL4
fon V1)

o We experimentally evaluate (in implemen-

tations of FloVer on examples from the literature. The
results are competitive and show that our approach to
certificate checking is feasible. During our experiments,
we found a subtle bug in the Daisy static analyzer.

II. OVERVIEW

In this section, we give a high-level overview of our
certificate generation and checking approach. The next sec-
tion provides the necessary background on finite precision
arithmetic and static dataflow analysis for roundoff errors.
describes the technical details of FloVer.

A certificate (in Coq or HOL4) checked by FloVer encodes
the result of a forward dataflow static analysis of roundoff er-
rors, but not the analysis or correctness proofs themselves. For
each analyzed arithmetic expression (consisting of +, —, %, /,
FMA, and local variables), the certificate contains:

« the expression f, as an abstract syntax tree (AST)

« a precondition P, specifying the domain (interval) of all
input variables

e a (possibly mixed-precision) type assignment I' for all
input variables and optionally let-bound variables,

« the analysis result which consists of a range $ and an
error bound ®¢ for each intermediate subexpression

FloVer then checks the analysis result recursively, by veri-
fying for each AST node that the error bound is a sound upper
bound on the worst-case absolute roundoff error:

max - |f(z) — f(7)]

z€la,b]
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where f and x are the real-valued expression and variable,
respectively, and f and Z their finite-precision counterparts.
The interval [a,b] is the domain of 2 given by precondition
P. Ranges for input variables as well as the analysis result are
necessary as (absolute) finite-precision roundoff errors depend
on the magnitude of the computed values. In the absence of
input ranges, roundoff errors are unbounded in general.
FloVer splits the certification into several subtasks and runs

separate validator functions (see also [Figure T)):

o validRealRange validates the range result ®,

e validTypes infers and checks types (given in I') of all
subexpressions

e validErrors validates the error results ®¢,

e validMachineRanges validates that no overflow and NaN’s
(not-a-number special values) occur.

We have implemented the validators in both Coq and
HOL4 and proven an overall soundness theorem: when all
validators return successfully, then the computed error bounds
(for each subexpression) are soundly overapproximating the
finite-precision roundoff errors.

f:R >R
P: Precondition :> Static Analyzer :> @, (f): roundoff error
I': type assignment =

[ Certificate (f, P, T, ®p, @) ]
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Fig. 1. Overview of the FloVer framework

To verify a certificate, one can run the validator functions
in Coq or HOL4 directly. However, while both provers na-
tively support evaluation of functions, this is not particularly
efficient. To speed up the certificate checkers, we have used
the CakeML in-logic compilation toolchain [34]], to extract
a verified binary from our HOL4 checker definitions. Since
the CakeML compiler is fully verified, the binary enjoys the
very same correctness guarantees as the certificate checkers
implemented in HOL4. Similarly, we have used the extraction
mechanism [28]] in Coq to extract an, albeit unverified, binary.
The binary implementations of the checkers run natively
and are thus significantly more efficient, as our experiments

in demonstrate.

III. BACKGROUND
A. Finite-Precision Arithmetic

FloVer uses a general abstraction for finite-precision arith-
metic relating it to operations on real numbers:

2

where o € {+,—,%,/} and of, denotes the corresponding
finite-precision operation at type fp. Function error(e, fp)
computes the error from representing the real value e in the
finite-precision type fp. An input  may not be representable in
finite-precision arithmetic, and thus FloVer considers an initial
error on the input: |z — Z| < error(z, fp).

For floating-point arithmetic, we assume IEEE754 [21]]
semantics with rounding-to-nearest rounding mode and the
standard abstraction of arithmetic operations:

zopy = (zoy)+error(zoy, fp)

error(e, fp) =exd [0] <eypp 3)

Constant € ¢, is the so-called machine epsilon for precision fp
(fp = 16, 32 or 64 bits) and represents the maximum relative
error for a single arithmetic operation. In addition to binary
operations, FloVer also supports unary negation, which does
not incur a roundoff error, and fused-multiply-add instructions,
where FMA(z,y, 2) 5 = (z * y + 2) + error(z * y + z, fp).



holds under IEEE754 floating-point semantics
only for normal floating-point values, and thus FloVer reports

ranges containing only subnormals, infinity or not a number
(NaN) special values as errors. We discuss the proof of
correctness wrt. to IEEE754 semantics in

Fixed-point arithmetic is an alternative to floating-points
which does not require dedicated hardware and is thus a
common choice in embedded systems. No standard exists, but
we follow the common representation [3] of fixed-point values
as bit vectors with an integer and a fractional part, separated
by an implicit radix point, which has to be precomputed at
compile-time. We assume truncation as the rounding mode
for arithmetic operations. The absolute roundoff error at each
operation is determined by the fixed-point format, i.e. the
(implicit) number of fractional bits available, which in turn
can be computed from the range of possible values at that
operation. Since this information must be computed by any
static analysis on fixed-point programs, we encode fractional
bits as part of our fixed-point type and rely on the certificate
containing a full (unverified) map I' from expressions to types
for fixed-point kernels.

B. Static Dataflow Roundoff Error Analysis

FloVer’s range and error validators perform dataflow round-
off error analysis and for this follow the same approach for
computing absolute error bounds as Rosa [11]], Fluctuat [18]],
Gappa [14] and Daisy [13]].

The magnitude of absolute finite-precision roundoff errors
depends on the magnitude of values of all intermediate subex-
pressions (this can be seen e.g. from [Equation 3). Thus, in
order to accurately bound roundoff errors, the analysis first
needs to be able to bound the ranges of all (intermediate)
expressions.

At a conceptual level, dataflow analysis computes roundoff
error bounds in two steps:

range analysis computes sound range bounds for all interme-
diate expressions,

error analysis propagates errors from subexpressions and
computes the new worst-case roundoffs using the pre-
viously computed ranges.

Both steps are performed recursively on the AST of the

arithmetic expressions. A side effect of this separation is

that it provides us with a modular approach: we can choose

different range arithmetics with different accuracy-efficiency

tradeoffs for ranges and errors. Common choices for range

arithmetics are interval arithmetic (IA) [31] and affine arith-

metic(AA) [16].

IV. CERTIFICATION OF ERROR ANALYSIS RESULTS

Next, we focus on the technical details of our certificate
checking. The certificates in Coq, HOL4 and for the extracted
binaries are structurally the same and only differ in syntax.
shows a sample structure of a certificate in Coq and
HOL4, including the types of encoded results. I" represents a
type assignment to all free variables in the analyzed function.
Expressions (of type expr) are parametric in the type of

constants. &g and ¢ map each AST node of the analyzed
function to an interval and a positive (absolute) error bound
represented by a single fraction, respectively. We discuss the
differing types of ®» and P¢ in

The validator functions, which check the certificate, also
have the same structure in both Coq and HOL4 and we
describe them here independently of the particular prover.

A. Checking Range Analysis Results

The range validator is implemented in the function
validRealRange(e, P, @) which takes as input an expression
e, the precondition P, which captures the constraints on the
input variables, and the real-valued ranges which are to be
checked in 5. validRealRange verifies by structural recursion
on the AST that for each subexpression ¢’ of e, P (¢’) returns
a sound enclosure of the true range, which is computed inside
the theorem prover with interval or affine arithmetic. That is,
we check the ranges in @ by effectively recomputing them
inside the prover.

Since FloVer supports let-bindings in the input program to
reuse evaluation results, both at runtime as well as in the
certificate validator, we extend validRealRange to handle let-
bound variables without recomputing results.

B. Mixed-precision Support

Mixed-precision evaluation allows different arithmetic oper-
ations to be executed in different precisions. This often allows
to speed up computations as evaluation in lower precisions is
usually faster. Instead of requiring e.g. uniform 64-bit preci-
sion, each subexpression in FloVer can be evaluated in 16, 32
or 64 bit floating-point precisions (each with the corresponding
machine epsilon ¢,). FloVer supports the same semantics as
C and Scala: for two operands with different precisions, the
lower one is implicitly cast to the higher precision, but an
explicit cast is required when decreasing precision (e.g. when
assigning a 64 bit value to a 32 bit variable).

The typing environment I' assigns a machine precision to
every free variable of the analyzed expression. We further
require any constant in the AST, as well as casts to be
annotated with its (resulting) precision.

For floating-point precisions, FloVer infers the remaining
types automatically, i.e. the user only has to provide this
necessary minimal information, and in particular does not need
to annotate all intermediate operations.

We can reuse the existing infrastructure to support fixed-
point arithmetic. A fixed-point type in FloVer is then repre-
sented as a pair of word length w and number of fractional
bits f. For fixed-point precisions, FloVer avoids recomputing
the fractional bits and thus relies on the information being
encoded in I'.

When checking a certificate, FloVer computes a full type-
map $5 from the (partial) type map I' to avoid recom-
puting results. To this end we implement the function
validTypes(I', e). The function returns ®; if and only if
all types encoded in I' are valid types for their respective
subexpressions. We reuse @4 in both the error validator and
the machine range validator.



Definition f:cmd Q := <AST f>.
(* Type assignment for free variables x)

Definition Gamma: expr Q — option mType := <I'>.
(* range constraints on free variables of f x)
Definition Precondition: nat — (Q * Q) := <P>.

(* map from sub-expressions to ranges and errors x*)
Definition AbsEnv: expr Q — option ((Q * Q) * Q) :=
<<I:‘717 ‘I>g>.

Theorem CertificateCheckingSucceds =
CertificateChecker f Gamma Precond AbsEnv = true.
Proof.

vm_compute; auto.
Qed.

val f_def = Define ‘f: real cmd = <AST f>‘;
(* Type assignment for free variables x)
val Gamma_def = Define
‘Gamma: real expr — mType option = <I'>*;
(* range constraints on free variables of f x)
val Precondition_def = Define ’
P: num — (real *x real) = <P>‘;
(*» map from sub-expressions to ranges and errors x)
val AbsEnv_def = Define ’
AbsEnv: real expr — ((real *x real) * real) option =
<Pr,Pe>';
val CertificateCheckingSucceeds = prove (
‘‘CertificateChecker f Gamma Precond AbsEnv‘‘,
daisy_eval_tac);

Fig. 2. Certificate structure with corresponding types in Coq (left) and HOL4 (right)

C. Checking Error Analysis Results

The error validator validErrors(e, @7, P, Pg) takes as
input the expression e, a type assignment to subexpressions
®, the range analysis result ®z and the error analysis result
®¢, which is to be checked.That is, validErrors assumes that
the ranges and types have been verified independently. As for
the range validator, we extend validErrors to reuse results of
let-bound variables. The validator function checks by structural
recursion on the AST of e that for each subexpression ¢’ of e,
®¢(e') is a sound upper bound on the absolute roundoff error.

For constants and variables, the error bounds are straight-
forwardly derived using and the range analysis
result. For arithmetic operations, the error check is more
involved. Using [Equation 2| [Equation 1| and the triangle
inequality, we obtain for an addition:

|(e1 +e2)—(&1 +pp E2)] <

v ) L 4)
ler — é1] + |e2 — éa| + error((é1 + é2), fp)

|er —é1] and |eg — 5| are the roundoff errors of the operands,
which are propagated simply by addition. error((é; +¢2), fp)
is the new roundoff error commited by the addition at precision
fp. The new roundoff error depends on the magnitude of the
operands and thus on the ranges of é; and é,.

D. Supported Range Arithmetics

FloVer currently supports interval arithmetic (IA) [31] in
both provers and affine arithmetic (AA) [[16] in Coq to check
real-valued ranges. The support for AA in the error validator in
Coq as well as the HOL4 development in general is currently
work in progress. Arithmetic operations in IA are efficiently
computed as: x o y = [min(z o y),max(x o y)], o €
{+,—,*,/}. IA cannot track correlations between variables
(e.g. it cannot show that e; — ey € [0,0]). Affine arithmetic
is a simple relational analysis which tracks linear correlations
and thus computes ranges for linear operations exactly (like
the e; — e); for nonlinear operations it nonetheless has to
compute an over-approximation.

V. SOUNDNESS

We have proven in both Coq and HOLA4 that it suffices to run
the validator functions on a certificate to show a) that the static
analysis result is correct, and b) that the analyzed function
will always evaluate to a finite value. The overall soundness
proof relates a succeeding run of the validators validTypes,
validRealRange, validMachineRanges and validErrors to the
semantics of the analyzed function.

We have formalized the semantics of functions according to
[Equation 2] The rule for binary addition, for instance, is

The computation of an upper bound to [Equation 4] then
uses the range analysis result from @, the already verified
error bounds on the subexpressions e; and es in ®¢, and basic
properties of range arithmetic.

Similar bounds can be derived for the other arithmetic
operations. However, for multiplication and division, the prop-
agation of errors is more involved. For e; * e; we obtain
|(e1xe2) — (€1 %y €2)| < |e1 keq — €1 x €| +error(€r * €, fp)
and similarly for division:

|(e1/e2) — (é1/ppe2)|<
lex * (1/e2) — €1 % (1/€2)] + error(ér * 1/é3, fp)

FloVer checks whether a division by zero may occur during
the execution of the analyzed function under the real-valued
as well as the finite-precision semantics. If it detects that a
division by zero can occur in any of the executions, certificate
checking fails.

m4 = mq Umo
Or(er) =m1 Pr(e) =ma Py(e; +e2) =my
(e, B, @7) I (v1,m1) (e, B, @7) I (v2,m2)

(e1 + €2, B,@7) I ((vn + vz) + exror(vy + vz, my))
FE is the environment tracking values of bound variables,
and T tracks precisions of variables. (e, E, @) | (vi,mq)
means that expression e; big-step evaluates for the variable
environment E and the type assignment ®7 to value v
in precision m;. mj LI my is an upper bound operator on
precisions, returning the most precise of m; and ms.

Real-valued executions map every variable, constant and

cast operation to infinite (real-valued) precision, which we
denote by m = oco. The rules for subtraction, multiplication,
division, casts, and FMA’s are defined analogously. Unary
negation does not introduce a new roundoff error and keeps
the precision of the operand.




Analogously to expressions, we will use E to refer to
the idealized real-valued environment and E for the finite-
precision environment. The overall soundness theorem is then

Theorem 1. Let f be a real-valued function, E a real-
valued environment, E its finite-precision counterpart, P a
precondition constraining the free variables of f, I' a map
from all free variables of f to a precision, ®r a range analysis
result, @1 a type-map and ®¢ an error analysis result. Then

E ~(®e,V, D, D7) E A
validTypes(T', f) = ®7 AvalidRealRange(f, P, ®xr) A
validMachineRanges(f, 1, P, Pe) A
validerrors(f, o1, Pr, Pe) =

Juoymy. (f, B, ®7)  (v,00) A(f, B, &) | (51,m1) A
(Voo ma. (f, B, ®7) | (v2,m2) = |v — Bo| < De(f))

The assumption £ ~(¢, v Do) F states that the real-valued
environment E and the finite-precision environment E agree
up to a fixed § on the values of the variables in the sets V and
D. We give the full explanation when explaining soundness
of the error validator. To prove the theorem, we have split
the proof into separate soundness proofs for each validator
function. Each theorem is shown by structural induction on e.

a) Type Validator: Giving the full type map P is
tedious to do for a user. FloVer thus requires only annotations
for casts, constants and (let-bound) variables, and infers the
remaining types (®7) fully automatically for floating-point
expressions. For fixed-point types only, we require I' to be
a complete map since we rely on the fractional bits to be
inferred externally.

Soundness of the type inference validTypes means that when
®7(e) = my and evaluation of e gives value v and precision
my, then m; = m,. Thus, we need not recompute type
information once the type map has been computed and reuse
it in the other validators.

b) Real Range Validator: For validRealRange, the sound-
ness theorem proves that if F binds variables in e to values
that are within the range given by the precondition P, then e
evaluates for environment E to v under a real-valued semantics
and v is contained in P (e).

¢) Machine Range Validator: We prove that whenever
validMachineRanges succeeds on expression e, valid type-map
@4 and valid error map ®¢, then any evaluation of e results
in a finite, representable value for the type of ¢ in ®.

For floating-point precisions this means that v is a finite
value according to IEEE754 (i.e. either O, subnormal or
normal). For fixed-point precisions with word size w and
f fractional bits, this means that v is within the range of
representable values (Jv| < 2Wl_l) and no overflow occurs

o7
(i.e. the fractional bits were correctly inferred).

FloVer uses to compute an error for floating-
point precisions which is only valid in the presence of
IEEE754 normal numbers or 0. We note that the roundoff
error of the biggest representable subnormal number is smaller
than the roundoff error of normal numbers in general. We add

this condition as a check to function validMachineRanges by
checking that the floating-point range contains at least one
normal number.

d) Error Validator: 1f validerrors(e, &7, P, Pg) suc-
ceeds, and e evaluates to v, then we want to show that e
evaluates to 0, and that |[v — 9| < ®g(e). The challenge in
this proof lies in the fact that we reason about two different
executions of similar expressions, e and €.

Given a free variable x in the analyzed expression e, the
value F(x) may not be representable as a finite-precision
value. Thus the values for the related variables = and & will
not in general agree. This is the case for every free variable
occurring in e. Additionally, the roundoff error of any variable
depends on its precision. As a consequence we introduce
an inductive approximation relation ~y, ¢..) between values
provided by FE and FE for variables in V so that we can prove
the error bound. Given F ~W,dr) E, both environments are
defined for every variable v € V. In addition, the difference
between E(v) and E(%) at precision p is upper bounded by
error(v, p), where p is ®7(v). In the proofs we instantiate
V by the free variables of the analyzed expression. Two
empty environments are trivially related under the empty set
(L= L) ~@, o) (L L)) and for free variables we have:

E ~WV,eT) E X ¢ 4

O (z)=m |v—0| < error(v,m)
FreeVar =
(B [z = v]) ~(ayov,e,r) (BT 7))
To prove soundness for let-bindings, we will extend the
relation with a rule for defined variables later.
®c maps expressions to rationals, representing absolute
error bounds. FloVer computes error bounds from intervals
from ®% and the error bounds on subterms. The propagation
errors for multiplication and division depend on both the real-
valued and the float-valued ranges. Therefore the soundness
proof requires solving 16 and 32 sub-cases for multiplication
and division, respectively.

e) Let-Bindings: To extend the soundness proofs to let-
bindings, we have to check that the analyzed function f is
in SSA form (since 7, ®r and ®¢ are maps, variables
cannot be redefined). For this we use the formalization of SSA
defined in the LVC framework [36]. Furthermore, we adapt the
approximation relation ~ to include let-bound variables:

E N(‘Pg,V,D,@T) E X ¢ V U D

DefinedVar o7(@) =m lv=9l < ?6 (@)
(E[z = v]) ~@e, v, {z}up,ar) (BT — 7))

Set D, tracks variables added to both environments using let-
bindings and ®¢ is the error analysis result. The sets D and
V are used to distinguish whether a variable z is free or let-
bound.

f) Using Flover: We obtain the overall soundness of
FloVer (Theorem 1) as the conjunction of the results of the
functions validTypes, validRealRange, validMachineRanges and




validErrors. holds only if checking of the certifi-
cate succeeds. If the static analysis result in a certificate is

incorrect, e.g. a computed range or roundoff error is incorrect,
FloVer fails checking the certificate. Our tool can be used
by any other roundoff error analysis tool that computes real-
valued ranges, roundoff error bounds and knows about variable
types. Using FloVer is then as easy as implementing a pretty-
printer for this information.

FloVer performs sound dataflow analysis, which necessarily
computes an overapproximation of the true roundoff errors.
It is thus possible that FloVer cannot verify a certificate
even though the error bounds are indeed correct. Different
range arithmetics, which influence the accuracy of FloVer’s
analysis, commit different overapproximations. Thus we use
our implementations of IA and AA in Coq in a portfolio
approach and run both when checking range analysis results.

A. Connecting FloVer to IEEE754

We connect our formalization to formalizations of IEEE754
floating-point arithmetic in HOL4 [17] and the Flocq library in
Coq [6] by proving that if checking the certificate succeeds, we
can evaluate the analyzed function using IEEE754 semantics
and the roundoff error bound is valid for this execution.

Theorem 2. Let f be a function on 64-bit floating-points and
f its real-valued counterpart, E a real-valued environment,
E its 64-bit floating-point counterpart, P a precondition
constraining the free variables of f I' a map from all free
variables of f to 64-bit precision, ®r a range analysis result,

and ®¢ an error analysis result, Then

E ~@evpr) EA
CertificateChecker (f, P,T', &, ®g) A
IEEEevalAvoidsSubnormalsf -

300 (f,E) Vv A (fB) bigee © A |o—3] < @e(f)

The proof of is an extension of FloVer’s soundness
theorem (Theorem If). To show that the roundoff error bounds
are valid for the IEEE754 operations, we use the soundness
theorem of validMachineRanges to establish that all values
obtained form an evaluation are finite.

The formalization in HOL4 (currently) does support nei-
ther cast operations nor reasoning about roundoff errors for
subnormal values. Until these are supported, we assume I' to
map every variable to 64-bit double precision and disallow
subnormal values to occur during evaluation. To this end,
we define the function IEEEevalAvoidsSubnormals(e, E), as a
temporary workaround. The function returns true only if every
subexpression of e evaluates to a normal value or 0.

B. Division Bug Found

We use Daisy [[L3]] to generate certificates for our evaluation.
During this, we found a subtle bug in the tool’s static analysis
of the division operator. The error bounds are only sound in
the absence of division-by-zero errors, but only the real-valued
range of the denominator was checked for whether it contains
zero. It is possible, however, that the real-valued range does

not contain zero, while the corresponding floating-point range
does, essentially due to large enough roundoff errors.

C. Formalization Details

Executions inside FloVer are represented in both Coq and
HOLA4 as big-step relations using[Equation 2] These formaliza-
tions do not depend on external libraries. Only the connection
to IEEE754 semantics uses external libraries.

Roundoff errors and our theorems relate real-valued exe-
cutions to finite-precision ones and we thus need a way to
represent the numbers and also compute on them. However,
the latter is problematic for infinite-precision reals. We use
rationals to represent the values in the certificates. To relate
these values to the real-valued (R) executions in the theorem
statement, we use the fact that rationals are a subset of the real
type in HOL4, and in Coq we use the translation Q2R:QQ — R
and exploit that our AST is parametric in the constant type by
instantiating it with QQ for computations and R for theorems.

VI. EXTRACTING A VERIFIED BINARY WITH CAKEML

Running the range and error checker functions in Coq and
HOLA4 directly is quite inefficient (see our experiments in
[tion VTI). We have thus extracted a verified binary from our
HOL4 checker function definitions, and an unverified binary
for Coq. We are aware of the work on certified extraction from
Coq in the CertiCoq [2]] project, but at the time of writing, the
tool could not handle our checker definitions.

We have implemented in HOL4 and Coq an unverified
lexer and parser for the encoding of the certificates, which
are included in the extracted binaries in both Coq and HOLA4.

a) Extracting from HOLA4: For extracting a binary
from HOL4, we use the CakeML proof-producing synthesis
tool [34] which translates ML-like HOL4 functions into deeply
embedded CakeML programs that exhibit the same behaviour.
In HOL4 we use the real type to store the rational bounds
in & and ®¢. For each of the arithmetic operations over the
real type that we used in the HOL4 development, we define
a translation into a representation of the arbitrary-precision
rationals in CakeML.

CakeML and HOL4 have different notions of equality. Since
we perform equality tests in the certificate checkers, we had
to prove that our newly defined representation of real numbers
respects CakeML’s semantics for structural equality. For this
purpose, we had to require and prove that our representation
of rationals maintains a gcd of one between nominator and
denominator.

When translating a HOL4 function into CakeML code,
the CakeML toolchain generates preconditions that exclude
runtime exceptions, e.g. divisions by zero. We have shown
that all generated preconditions are always satisfied, hence the
specification theorem for the generated ML code does not have
any unproved preconditions left.

Having compiled the CakeML libraries beforehand, we
can compile the checking functions into a verified binary in
around 90 minutes on the same machine as we used for the

experiments in [Section VII} Checking the certificate with the



Benchmark FloVer FPTaylor
interval affine
ballbeam 2.141e-12  2.141e-12  1.746e-12
bsplinel 1.517e-15  1.601le-15  5.149e-16
bspline2 1.406e-15  1.448e-15 5.43le-16
bspline3 1.295e-16  1.295e-16  8.327e-17
doppler (m) 9.766e-05  7.445e-04  3.111e-05
floudas1 1.052e-12  1.074e-12  5.755e-13
floudas26 7.292e-13  7.292e-13  7.740e-13
floudas33 3.109e-15  3.109e-15  6.199e-13
himmilbeau (m) 4.876e-04  4.876e-04  3.641e-04
invertedPendulum  5.369e-14  5.369e-14  3.843e-14
keplerO (m) 2.948e-05  2.948e-05  1.758e-05
keplerl (m) 9.948e-05  9.948e-05  5.902e-05
kepler2 (m) 3.732e-04  3.732e-04  1.433e-04
rigidBody1 (m) 4.023e-05  4.023e-05  2.146e-05
rigidBody2 (m) 6.438e-03  6.438e-03  9.871e-03
traincarl-outl 5.406e-12  5.406e-12  4.601e-12
traincarl-statel 5.421e-15 5421e-15 4.753e-15
traincarl-state2 8.862e-15  8.862¢-15  8.099e-15
traincarl-state3 7.784e-15  7.784e-15  7.013e-15
turbinel (m) 1.356e-05  1.356e-05  3.192e-06
turbine2 (m) 2.034e-05  2.034e-05  4.970e-06
turbine3 (m) 9.038e-06  9.038e-06  1.671e-06
TABLE I

ROUNDOFF ERRORS VERIFIED BY FLOVER AND FPTAYLOR.

binary is then extremely fast, since no theorem prover logic
is loaded.

b) Extracting from Coq: Coq natively supports unverified
extraction into OCaml code [28]. We used the existing libraries
for translating Coq numbers into OCaml’s Big_int type from
the base library. The extracted code is compiled using the
OCaml native-code compiler (“ocamlopt”) in our experiments.

VII. EVALUATION

To evaluate the performance of FloVer, we have extended
the static analyzer Daisy to generate certificates of its analysis.
As Daisy already computes all the information that needs to
be encoded in a certificate, implementing the certificate gener-
ation was similar to implementing a pretty-printer for analysis
results (we have switched off a few optimizations, which
however do not affect the error bounds significantly). Using the
certificate generation, we have evaluated Daisy and FloVer on
examples taken from the Rosa [[10] and real2float [30] projects.
Each benchmark consists of one or more separate functions.
Daisy analyzes all functions of one benchmark together and
produces one certificate containing a call to the certificate
checker for each separate function.

We compare error bounds verified by FloVer with those
verified by FPTaylor, as FPTaylor generally computes the
most accurate bounds [38), [12]. Furthermore, Rosa [10]], Fluc-
tuat [19] and Gappa [14] use the same technique to com-
pute roundoff errors as Daisy and FloVer. We also compare
FloVer’s certificate checking times with FPTaylor’s, as the tool
also provides a proof certificate. We note that FPTaylor can

Benchmark # Daisy Coq HOL4 CakeML OCaml
ops Interval Affine
ballBeam 7 4.62 350 326 89.04 <0.01 0.02
invertedPendulum 7  3.62 359 327 11261 0.01  0.02
bicycle 13 431 401 4.08 156.76 0.01 0.04
doppler (m) 17 4.86 528 1221 610.67 0.05 0.02
dcMotor 26 5.19 497 450 316.75 0.02 0.08
himmilbeau (m) 26 3.52 4.11 440 6548 0.02 0.03
bspline 28 4.21 461 4.07 298.44 0.03  0.08
rigidbody (m) 33 5.04 7.14 452  88.92 0.03  0.06
science 35 564 11.69 567.36 1471.96 0.07  0.07
traincarl 36 485 10.87  9.84 93293 0.07  0.11
batchProcessor 56  6.46 8.49 743 9971.77 0.06 0.16
batchReactor 58 6.84 11.45 9.53 1117.48 0.07  0.17
turbine (m) 82 5.99 18.69 24.90 4095.56 025 0.11
traincar2 89 7.90 29.79 28.58 3967.88 023 0.27
floudas 99 17.76 13.99 12.76 565.68 0.14 0.27
kepler (m) 158 4.89 21.56 22.70 3848.75 021 0.21
traincar3 168 9.14 68.53 68.14 9594.07 0.58 049
traincar4 269 10.6 116.94 115.38 17429.3 1.10  0.77

TABLE 11
RUNNING TIMES OF DAISY AND FLOVER IN SECONDS.

compute less precise error bounds with shorter running times,
here we opt for the off-the-shelve solution without additional
parameters.

a) Accuracy: gives a subset of the roundoff errors
certified by FloVer as well as roundoff errors computed by FP-
Taylor for comparison (we give the full table in our technical
report [4]]). PRECiSa and Gappa compute similar results; we
provide them here for two benchmarks for reference. For the
ballBeam benchmark, Precisa and Gappa show an error of
1.085e-07 and 1.240e-12 resp., and for the invertedPendulum
benchmark, the errors are 3.531e-12 and 3.217e-14. The focus
of FloVer is not to compute the most precise bounds possible,
but rather to develop the necessary infrastructure for future
extensions. Nevertheless, the roundoff errors verified by it
are usually close to those proven by FPTaylor. Benchmarks
marked with ‘(m)’ are in mixed-precision, otherwise the
roundoff errors are evaluated under uniform double (64 bit)
floating-point precision (FPTaylor does not support fixed-point
precision).

b) Efficiency: In we compare running times of
in-logic evaluation of FloVer in Coq and HOLA4, the verified
binary extracted with the CakeML toolchain and the unverified
binary extracted from Coq. For our experiments we used a
machine with a four core Intel i3 processor with 3.3GHz, 8
GB of RAM, running Debian 9. For the in-logic evaluation in
Coq we show range analysis in interval and affine arithmetic,
for all other runs we use interval arithmetic. As for the
accuracy evaluation, benchmarks marked with ‘(m)’ are in
mixed-precision, double precision otherwise.

In [Table III ‘OCaml’ refers to the Coq binary compiled
with the OCaml native compiler. The ‘# ops’ column gives
the number of arithmetic operations in the whole benchmark
(summed for all functions) and gives an intuition about the
complexity of the benchmark. For all columns, the running



times are the end-to-end times measured by the UNIX time
command in seconds. This time includes parsing and gener-
ating the certificate for Daisy, checking the proof that FloVer
succeeds for Coq and HOL4 in-logic, and running FloVer in
the binaries. The running times for Daisy, Coq and HOL4 are
the average running times for a single run over three runs. For
the binaries we report the average running time of a single run
from 300 executions (due to the small runtime).

We give the running times for FPTaylor’s certificate check-
ing in our technical report [4] and note that they are larger,
but of the same order of magnitude as our Coq in-logic
evaluation. Note that FPTaylor’s checker requires either a
two hour starting time or external checkpointing. FloVer’s
certificate checking time for fixed-point arithmetic is similar
to floating-point checking; we give the detailed running times
in our technical report [4].

The evaluation of FloVer’s Coq checker is faster than the
evaluation of the HOL4 checker. This is probably because we
benefit from Coq’s vm_compute tactic in the Coq evaluation.
The tactic translates terms to OCaml and evaluates them using
a virtual machine. A Coq term is reconstructed from the result.
HOL4’s EVAL_TAC instead uses a simple call-by-value eval-
uation strategy. We further observe that the evaluation using
affine arithmetic sometimes is as fast as the one using intervals.
We suspect that the reason for this is that the affine arithmetic
checker must memorize polynomials for sub-expressions and
thus does not recompute them. The interval validator, however,
currently does not memorize sub-expressions, but only let-
bound variables.

VIII. RELATED WORK

a) Sound Accuracy Analysis: The tools FPTaylor [38]],
Gappa [14], PRECiSa [32], real2float [30] and VCFloat [35]]
are most closely related to our work as they formally ver-
ify floating-point roundoff errors. Each tool handles mixed-
precision floating-point arithmetic, but other features differ
slightly between tools. FloVer is the only tool with the
combination of support for both Coq and HOL4, floating-point
as well as fixed-point arithmetic and two abstract domains,
interval and affine arithmetic. FloVer is fully automated and
FloVer and FPTaylor are the only tools that generate cer-
tificates using in-logic decision procedures. While FPTaylor
and PRECiSa handle transcendental functions (which FloVer
does not), both tools do not handle fixed-point arithmetic.
Gappa has some support for fixed-points, but FloVer is the
only tool with formalized affine arithmetic. Finally, FloVer is
the first tool to provide efficient certificate checking with a
verified binary. Fluctuat [18], Gappa++ [29] and Rosa [12]]
statically bound finite-precision roundoff errors using affine
arithmetic [16]], but do not provide formal guarantees.

FloVer currently does not handle conditionals and loops.
These are—to some extent—supported by Fluctuat [[19] and
Rosa [12], however not formally verified. PRECiSa [32]]
provides an initial formalization of these approaches, but
scalability is unclear [10, [12]. FloVer furthermore focuses,
like most tools, on certifying absolute error bounds. Bounding

relative errors is challenging due to the increased complexity
as well as due to the issue that often the error is not even
well-defined due to an inherent division by zero [23]. Gappa
does provide verified relative error support by optimizing a
constraint based on [Equation 3] This approach has been shown
to not provide tight bounds once input ranges and expressions
become larger [23]]. Finally, note that input ranges are also
necessary for computing concrete relative error bounds.

b) Sound Verification of Floating-point Computations:
Absence of runtime errors in floating-point computations can
be shown with abstract interpretation, where different abstract
domains have been developed for this purpose [, (9, 25],
which are sound w.r.t. floating-point arithmetic. Jourdan et
al. [26] have also formalized some of these abstract domains
in Coq. Note, however, that these domains do not quantify
the difference between a real-valued and the finite-precision
semantics and can only show the absence of runtime errors.

Moscato et al. [33] have built a formalization and imple-
mentation of AA for computation of real-valued ranges in
PVS. This development does not handle division, which we
do. Immler [22] has formalized AA in Isabelle/HOL; our own
formalization shares a similar structure.

Coq has also been used to prove entire programs correct
w.r.t. numerical uncertainties such as roundoff errors [7]].
However, in these efforts much of the work is still manual. Our
current development can be seen as complementary as it could
potentially provide automation for the verification of roundoff
error bounds. The CompCert compiler also supports floating-
point computations [8], but only shows semantics preservation
and not roundoff error bounds. Harrison [20] has formally
verified a floating point implementation of the exponential
function inside HOL-Light. The analysis is detailed and spe-
cific to this particular function. In contrast, our work aims to
provide a fully automated verified analysis for arbitrary real-
valued expressions, but at a higher level of abstraction.

c) Real Arithmetic and Finite-precision Formalizations:
Formalizations of floating-point arithmetic exist in HOL-
Light [24], in Coq in the Flocq library [6] as well as in
Isabelle [40] and HOL4 [17]. We found using these formal-
izations in Coq and HOL4 more complex than was necessary
for reasoning inside FloVer, thus we use them only to show
a connection to IEEE754. Fixed-point arithmetic has been
formalized in HOL4 [1]], focusing on its hardware implemen-
tation, whereas our focus is on relating their execution to real-
valued semantics.

IX. CONCLUSION

We have presented our modular, reusable and easily extend-
able approach to certificate checking for error bound analysis
in FloVer. Our checker is fully-automated and requires neither
user interaction, nor expert knowledge. All of the theorems
about FloVer have been proven in both Coq and HOL4. We
are the first to extract a verified binary for checking finite-
precision roundoff errors using the CakeML toolchain and
have shown that we achieve significant performance improve-
ments when using the binary.
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