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Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made — there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. [T] shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are
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Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
o Low-level running time analysis — verify the time re-
quired for getting from point A to point B.



« Low-level schedulability analysis — verify frequency of
trains arriving at a station, and simultaneous opportunities
for crossing, parking, loading, etc.

« Combinations — verify running time requirements on
schedulable operations.

Our approach: In this paper we suggest a formalization
of capacity requirements as a set of operational scenarios
involving a set of trains, a set of locations to visit, and a
set of timing constraints.

Verification in this domain can in principle be encoded into
the SMT [1l], [2]], [3] or PDDL+ [4] languages, essentially
resulting in a SAT modulo non-linear real arithmetic problem
[Sl], [6]. Many solvers can handle such problems [7], [8],
[9], but we found that the problem size of our test cases,
in terms of the number of planned actions and in terms of
number of interacting Boolean and non-linear real logic terms,
were out of reach for agile verification. Also, train dynamics
using only constant acceleration 2" = ¢ is in some cases t00
simplistic for engineering. We would like to be able to extend
the dynamics equations using e.g. polynomials of higher order
or even numerical integration.

Therefore, we have developed a verification tool chain that
uses a simple CEGAR-loop between a SAT-based planning
tool that works on a discrete abstraction of control system
commands, and a discrete event simulation engine (DES) [10]]
that calculates detailed continuous results for a specific plan,
taking the physics of moving trains into account.

The SAT-based planner uses bounded model checking
(BMC) [IL1] where time is reduced to a series of partially
ordered actions with unknown durations, and the choice of
actions are the available commands in the control system.
The DES component verifies the continuous time/space results
given the Boolean decisions of control system commands, and
adds new SAT constraints excluding unsatisfactory solutions.

The separation of discrete and continuous domains also has
the advantage that the simulation component can be extended
to handle more complex models, such as engine power curves,
tunnel air resistance, curve rolling resistance, train weight
distribution, etc., without affecting the planning logic or its
computational complexity.

We have tested our method and tool on practical examples
from existing infrastructure and ongoing construction projects
in collaboration with railway engineers in Railcomplete AS.

The rest of the paper is organized as follows: Sec.
contains an overview of the railway design process and the
principles for analysis of these designs. We present a structure
for capacity specifications, together with examples of how
they can be used in construction projects. Sec. describes
the tool chain and the solver architecture that we propose to
verify performance properties and integrate agile verification
in the construction project workflow, and how each of the
components of our solver are implemented. Sec. contains
performance evaluations in a set of relevant case studies.
Sec. [V| gives pointers to related work, and Sec. presents
our conclusions.

II. DOMAIN BACKGROUND AND PROBLEM DESCRIPTION

Railway capacity is hard to define precisely (see [12],
[13] for a discussion). Any capacity measure will necessarily
make assumptions about the operation of the railway. One can
say that the railway infrastructure does not have an inherent
capacity, only capacity for specific use cases. As such, a fully
accurate assessment of capacity can only be made under a
fully specified timetable, meaning that every train’s arrival and
departure times at all stations in the network must be known.
This makes for a highly coupled analysis, as constructing
an actual timetable requires bringing together details about
infrastructure, rolling stock, transportation demands, and crew
schedules. Such work can be done using commercial tools like
RailSys [14], OpenTrack [135]], or LUKS [[16]. Good overviews
of methods are presented in [17] and [18]].

The so-called analytical approaches to capacity analysis
using networked queuing theory [19]], maximum flow (orig-
inally posed as a railway capacity problem [20]), or max-plus
algebra [21]], can give preliminary or low-precision network-
wide results, but fail to account for the critical low-level factors
which are relevant for verification in construction projects,
specifically discrete control system logic, communication, and
train acceleration and braking dynamics.

Because the verification feedback loop between design and
capacity analysis is either very time-consuming or too coarse-
grained, railway engineers end up re-using proven design
concepts or allowing sizable margins, e.g., in track lengths.

However, modern construction practice expects and de-
mands optimization. When space requirements, performance
requirements and costs are squeezed to the limit, the tradition-
based railway engineering approach lacks the methods to
accurately reason about the expectations of the finished system
from partially finished design plans.

Using agile verification of high-level properties from the
beginning of a design project, and in every step of the
process, allows engineers to better see the consequence of each
decision, and immediately uncover errors and shortcomings
that would otherwise be discovered only months or years later.

Railway design

The railway design activity produces the following artifacts:

e Track and trackside component layout, describing the
locations of tracks, switches, signals and detectors (see
Fig. 2h).

« Interlocking specifications, describing the requirements
for the logic of the control system (see Fig. [Zb).

These design artifacts are the subject of verification, i.e. the
model. Ensuring performance in the context of a construction
project consists of verifying properties describing a set of
trains moving on the tracks and the goals which need to be
accomplished by these movements.

To verify performance properties, we need to find a se-
quence of trains and elementary routes for the train dispatcher,
i.e., a dispatch plan, which when executed under safety and
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Fig. 2: Railway design artifacts: (a) Cut-out from 2D geo-
graphical CAD model (construction drawing) of preliminary
design of the Arna station signalling. (b) Simplified example
of tabular interlocking (control system) specifications.

correctness constraints (described in Sec. below), demon-
strate the properties described in the performance requirements
(detailed in Sec. below).

A. Safety and correctness of train movements

Low-level analysis of train movements covers a wide range
of constraints given by the track layout, the control system, and
operational procedures, to be certain that the analysis produces
detailed, realistic results. The following subsections give an
overview of these constraints, divided into four classes.

1) Physical infrastructure: Trains travel on a network of
railway tracks which have physical properties such as length,
gradient, curvature, etc. Tracks branch off using switches,
whose setting determines where the train goes. Detectors on
the track are used by the control system to determine whether
track segments are occupied. The physical infrastructure also
determines the sight areas: the set of locations where a train
receives information from a given signal.

2) Allocation of resources: Avoiding collisions by exclu-
sive use of resources is the responsibility of the interlocking,
which takes requests from the dispatcher for activating ele-
mentary routes. An elementary route is the smallest unit of
resources that can be allocated to a train, see Fig. [3] Route
activation is a process which proceeds as follows:

1) Wait for all required resources, such as track segments
and switches, to be free. Resources required by a route
are typically any resource in the train path (or sometimes
outside of it), which ensure that all movements are
performed at a safe distance from each other.

2) Movable elements (e.g. switches) must be set to correct
positions. If they are not, start a sub-process which moves
the element into place, and wait for this process to finish
before proceeding.

3) Signals are then set to show the 'proceed’ aspect to the
train when the above steps are finished. When the front
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Fig. 3: Elementary route AC from signal A to the adjacent
signal C. The thick line indicates track segments on the train’s
path which are reserved for this movement, and the dashed
lines indicate reserved track segments outside the path.

of the train has passed the signal, it is immediately reset
to show the ’stop’ aspect.

4) A release process is started, which waits for the train
to finish using the allocated resources (i.e. to travel over
them) and frees them when this has happened.

3) Communication constraints: After movement has been
allowed by the control system, the driver must be informed
of this fact. When a route is activated, a train inside the sight
area of the route’s entry signal reads the signal’s message that
movement authority is given. The train driver may then drive
the train forward until the next signal. The following types of
signalling systems are common in railways:

o Traditional signaling with trackside lamps. Communica-
tion is limited by how many different aspects the lamps
can show. To avoid high-speed trains slowing down at
every signal, several consecutive elementary routes can
be signaled in advance using so-called distant signals.

o Automatic train protection systems (ATP) work similarly
to signals, but may give more information. Many ATP
systems communicate information through magnets or
short-range radio at specific locations on the track, cor-
responding to a signal sight area of zero length.

e The European Rail Traffic Management System
(ERTMS) currently being implemented in many European
countries replaces lamp signals with trackside marker
boards, and uses long-range radio for communication.
This effectively removes the communication constraint,
as the radio can be used to update any train’s movement
authority at any time.

4) Laws of motion: Trains move within the limits of given
maximum acceleration and braking power. Train drivers need
to plan ahead for braking so that the train respects its given
movement authority and speed restrictions at all times.

The speed increase from vy to v over a time interval At is
limited by the train’s maximum acceleration a:

v — vy < aAt.

However, when there is a more restrictive speed restriction
ahead, the driver must start braking in time to meet the
restriction. A signal showing the ’stop’ aspect can be treated
as a speed restriction of zero. Since speed restrictions change



with time, the driver must re-evaluate their actions whenever
new information is received.

A train has the following constraint on its velocity v for
each restriction,

v? — vf < 2bs;,

where v; is the maximum allowed speed, s; is the distance to
the location where the restriction starts, and b is the maximum
retardation achieved by braking.

See [22] for a more in-depth description of railway opera-
tion principles.

B. Station performance requirements

To capture typical performance and capacity requirements
in construction projects, we define an operational scenario
S =(V,M,C) as follows:

1) A set of vehicle types V, each defined by a length /, a

maximum velocity vmax, @ maximum acceleration a, and
a maximum braking retardation b.

2) A set of movements ), each defined by a vehicle type
and an ordered sequence of visits. Each visit ¢ is a set
of alternative locations {l;} and an optional minimum
dwelling time %4.

3) A set of timing constraints C, which are two visits
da,qy, and an optional numerical constraint ¢, on the
minimum time between visit g, and ¢;. The two visits can
come from different movements. If the time constraint ¢,
is omitted, the visits are only required to be ordered, so
that t,, <tg,.

To demonstrate how this structure captures requirements of
railway construction projects, we give some examples using
the syntax of the file format used in our too First, we define
the following vehicle types:
vehicle

accel

vehicle
accel

passengertrain length 220.0
1.0 brake 0.9 maxspeed 55.0
goodstrain length 850.0

0.5 brake 0.5 maxspeed 20.0

The following set of performance specifications are se-
lected prototypical versions of specifications that railway en-
gineers have suggested as useful for automated verification:

« Running time: expresses an expectation of how long it

should take for a train to travel between two locations.
To specify this, we simply require that a train visits some
location b1l and later visits some other location b2. A
timing constraint of 90.0s between these visits sets the
running time requirement.
movement passengertrain {

visit #a [bl]; visit #b
timing a <90.0 b

[b2] }

o Train frequency: a train station processes a set of trains
arriving and departing with a fixed frequency. On a two-
track station, we exemplify a sequence of four trains and
their relative departure times.

'For details of the input file formats, see https:/luteberget.github.io/
rollingdocs/usage.html

movement passengertrain {

visit [bl]
visit [platforml,platform2] wait 60.0
visit #el [b2] }

// ...3 more trains with visits e2, e3, ed.

timing el <90.0 e2
timing e2 <90.0 e3
timing e3 <90.0 e4

« Overtaking: trains traveling in the same direction can
be reordered. For example, we specify a passenger train
traveling from b1 to b2, and a goods train with the same
visits. Timing constraints ensure that the passenger train
enters first while the goods train exits first.

movement passengertrain {

visit #p_in [bl]; wvisit #p_out [b2] }
movement goodstrain {
visit #g_in [bl]; wvisit #g_out [b2] }

timing p_in < g_in
timing g_out < p_out

o Crossing: trains traveling in opposite directions can visit
this station simultaneously. This example is similar to
the previous one, but the goods train now travels in the
opposite direction, and the timing constraints require that
the trains are inside the model simultaneously.

movement passengertrain {

visit #p_in [bl]; visit #p_out [b2] }
movement goodstrain {
visit #g_in [b2]; visit #g_out [bl] }

timing p_in < g_out
timing g_in < p_out

Similar specifications, and combinations of such specifica-
tions, are relevant in most railway construction projects. Since
we typically only need to refer to locations such as model
boundaries and loading/unloading locations, these specifica-
tions are not tied to a specific design, and can often be re-used
even when the design of the station changes drastically.

III. TOOL CHAIN AND SOLVER ARCHITECTURE

We have investigated several logic-based approaches for the
domain and problem described above. The PDDL+ language
has been designed to express planning problems in mixed
discrete/continuous domains. As each discrete change is rep-
resented by a planning step, our test case problem instances
would need at least 50-100 steps to be solvable. We were only
able to solve the most trivial test cases in less than one second
using the SMTPlan+ solver.

Encoding into SMT can be done by expressing planning as
BMC. This approach suffers from the same problem of having
a high number of planning steps (some improvements can be
made, s.a. making train driver choices implicit in constraints
on the relation between velocity, distance and time).

In response to all these, we developed a CEGAR-style
tool which exploits the limited number of control system
commands to make an abstraction of the planning problem,
see Fig.

A verification tool chain which solves the low-level railway
infrastructure capacity verification problem and supports agile
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Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. The manual, source code and test cases are available
onling-} The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23]], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [[17].

The following input documents are used:

« Operational scenarios defining the performance proper-
ties to verify. Examples are given in Sec.

o Infrastructure given in the railML format [28]], [29]. In
our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

« Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

« Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.
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Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required — interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:

1) Elementary route activation (corr. Sec. [[I-A2)): waits for
resources, allocates them, sets switches to given positions and
starts the following sub-processes:

« Release trigger: listens to a frigger detection section
which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

« Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. and Sec. [[I-A4)): evaluates move-

ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. [6):
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Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

train arrives at a new node

« train reaches maximum velocity

train enters the area of a new velocity restriction
acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound £ is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k — 1
steps and then adding the k™ step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State ¢ of the system in the
planner component is represented as:

o Each route r; has an occupancy status oij: it can be
free (olrj = Free) or it can be occupied by a specific
train g (o], = tx). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with of,]_ as a variable from the set of trains.

e Each train f; has a Boolean representing appearance
status b?, used to propagate to future states that a train
has started (used in constraint C2).

« Each visit [ has a Boolean representing required visits v;,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

o Each combination of route r; and train ¢;, has a Boolean
representing deferred progress pé-’k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oi.j of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:

o The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.

(C2) Each train can only take one continuous path.

(C3) An elementary route must be allocated as a unit,
but its parts may be deallocated separately.

(C4) (Partial) routes are deallocated only after a train has
fully passed over them.

« The plan fulfills performance specifications:

(CS5) Trains perform their specified visits.
(C6) Visits happen in specified order.
« Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train
has fully passed over them.
(C8) A train’s path is extended as far as possible in the
current time step, unless hindered by a conflicting train.

Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is



demonstrated in the crossing example in Fig. [T} where the two
plans shown are the only alternatives given by the planner.

The simulator component, which evaluates the time con-
sumption of plans, reports which parts of the plan fail the
timing constraints, and the negation of this partial plan is
added to the SAT instance. Since the timing calculations are
path dependent, we use the part of the plan starting from the
beginning and going up to the step where the timing specifica-
tion violation occurs. This way of refining the abstraction can
cause performance problems when many different choices are
possible early in the plan, and the timing violation can only
be found near the end of the plan, as demonstrated in Sec.
Finding a way to make more precise refinements could be
necessary for larger problem instances.

The implementation of each of these constraints as propo-
sitional logic statements is described below. Constraints apply
separately to all states ¢ unless noted otherwise.

1) Resource conflicts (C1): Any two routes which require
the same resources cannot both be allocated in the same state.

T

Vr, € Routes : Vry, € conflict(r,) : oia = Free V oib = Free.

2) Train path (C2): At most one alternative route is taken
by a train in a single state. First, ensure that only one route
from a given start signal may be taken at any time.

Vt € Trains : Vs € Signal :

atMostOne({o.. = ¢ | entry(r) = s})
We use a standard sequential encoding to encode atMostOne
and other similar constraints, as explained in e.g. [30]. Note
that entry signals for all routes entering from a model boundary
share the same null value, so that this constraint also excludes
plans where a single train appears in several positions at once.
Each train should only enter the plan once, thus the appearance
Boolean changes to true in exactly one transition.

Vt € Trains : b} = bi ™.
Vt € Trains : exactlyOne ({—'b{ AbIT |G e States}) ,

A train appears when an entry boundary route is allocated:
Vt € Trains : Vr € {r € Routes | entry(r) = null} :
(ofa #AtAott = t) = bitt,

Routes which are not entry routes can only be allocated to

a train when they extend some other route which was already

allocated to the same train, i.e. consecutive routes must match
so that the exit signal of one is the entry signal of the next:

V¢ € Trains : Vr € {r € Routes | entry(r) # null} :
(oi #tAott =t) =
\/ {0t =t | r, € Routes, entry(r) = exit(r,) }
3) Partial release (C3): Partial release is represented by
splitting each elementary route into separate routes for each

component which is released separately. The set Partial con-
tains such sets of routes. Partial routes are allocated together:

Vt € Trains : Vq € Partial :
allEqual({ol. #t Aol =t |r € q})

4) Deallocation (C4, C7): Routes are freed when sufficient
length has been allocated ahead to fully contain the train.

Vt € Trains : Vr € Routes :
ol =t = (olt! = t) = freeable,;({o'}),

Note that the equality sign on the right hand side implies
that deallocation is both allowed (C4), and required (C7). The
freeable predicate is a disjunction of paths (conjunction of
routes) ahead which are long enough to contain the train.

5) Visits (C5, C6): Visits and their order are given by the
set VisitOrder, which contains pairs of (¢, v), where ¢ is a train
and v is a set of alternative routes. Visits must happen using
any of the alternative routes, and must be in an order such that
the visit (¢1,v1) comes before (t2,v2):

V((t1,v1), (t2,v2)) € VisitOrder :
VAo, =tinol, =tani<j
| 7o € (v1),75 € (v2),1,] € States}

6) Forced progress (C8): In addition to the constraints on
allocation and freeing that are required to produce a valid plan,
we also add constraints which force each train to get allocated
routes further along a path forward unless there is a conflict.
Routes ahead are either allocated, or the train is deferred p:

Vt € Trains : Vr € Routes :
ol = pi)r \Y \/ {o. | r, € Routes, entry(r,) = exit(r)}

Deferred progress must be resolved by freeing a conflicting
route, and then allocating it to the train in the following step:
Vt € Trains : Vr € Routes :
piw = pij;l Y \/ {o. #FreeNo. #tNott=t

| 7e, 72 € Routes, exit(r) = entry(r,), 7. € conflict(r)}

When ¢ is the last state, pij;.l is considered to be false, which
forces the deferred progress to be resolved eventually. Note
that it is not required that the conflicting trains are distinct.

IV. CASE STUDIES AND PERFORMANCE

This section presents running times for different typical
performance specifications on different types of railway infras-
tructure where the size and complexity of the model is typical
for the scope of railway construction projects. Verification
performance on various test examples as well as real stations
is presented in Table [I} The table shows the time spent in each
solver component, and also shows the number of invocations
npgs Of the simulator, which is very low in most of the
practical cases. This supports our hypothesis that the chosen
abstraction and CEGAR loop is efficient. The two-track station
used in Fig. [T] is not too complex, having only 6 elementary
routes. Even so, this scale is still interesting for verification in
practice, since there are many possible mistakes to uncover.

The Norwegian railway infrastructure manager Bane NOR
has supplied a railML infrastructure model of the whole
national railway network [31]] from which we have extracted
some more complex examples. Fig. 8| shows cut-outs from the
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Fig. 8: Stations Kolbotn, Eidsvoll, and Asker from Bane
NOR’s model of the Norwegian national network [31].

Infrastructure |Property Result npgs tsat  tDES tiotal
Simple Run.time Sat. 1 0.00  0.00 0.00
(3 elem.) Crossing Unsat. 0 0.00  0.00 0.00

Run.time Sat. 1 0.01  0.00 0.01

Two track Frequen'cy Sat. 1 0.01  0.00 0.01

(14 elem.) Overtak}ng 2|Sat. 1 0.00  0.00 0.01

’ Overtaking 3 |Unsat. 0 0.01  0.00 0.01
Crossing 3 |Unsat. 0 0.01  0.00 0.01

Run. time  |Sat. 2 0.01  0.00 0.02

g‘g"e‘f;‘n(?m Overtake 4 |Sat. I 005 000 006
) Overtake 3 |Unsat. 0 0.05 0.00 0.06

Run. time  |Sat. 2 0.0  0.00 0.02

Eidsvoll (BN) [Overtake 2 |Sat. 1 0.08  0.00 0.08

(64 elem.) Crossing 3 |Sat. 1 0.04 0.00 0.04
Crossing 4 |Unsat. 0 0.21  0.00 0.21

Overtaking 2 |Sat. 1 0.20  0.00 0.21

ﬁ;lgerel(fnlf)) Overtaking 3[Unsat. 1 073 000  0.74
’ Crossing 4 | Sat. 0 0.75  0.00 0.77

Run. time  |Sat. 1 0.02  0.00 0.04

Arna (CAD) |Overtaking 2|Sat. 1 0.50  0.00 0.51
(258 elem.) Overtaking 3 |Sat. 1 143 0.00 1.45

Crossing 4 | Sat. 1 1.73  0.00 1.74

Gen. 3x3 High time |Sat. 1 0.0  0.00 0.01
(74 elem.) Low time Unsat. 27 0.18 0.01 0.19
Gen. 4x4 High time |Sat. 1 0.01  0.00 0.03
(196 elem.) Low time Unsat. 256 2.08 0.26 2.34
Gen. 5x5 High time |Sat. 1 0.06  0.00 0.09
(437 elem.) Low time Unsat. 3125 38.89 435 4324

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) is shown
for each infrastructure to indicate the model’s size. npgs is
the number simulator runs, tsar the time in seconds spent in
SAT solver, tpgs the time in seconds spent in DES, and #,
the total calculation time in seconds.

visual representation of these models, i.e., the stations Kolbotn,
Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructure model from the
Arna construction project that uses the RailCOMPLETE CAD
design software, a realistic use case for agile verification.

Finally, to test the limitations of scalability in our method,
we construct a set of examples where m stations each with n
parallel tracks each are serially connected by a single track.
In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with n™ plans
for timing evaluation. This scenario is outside the intended use
case for our method: path selection can on this scale instead
be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the
PDDL+ solver SMTPlan+, but found that even for greatly
simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second
verification times.

V. RELATED WORK

Railway timetabling and capacity analysis has often been
posed as a planning problem and solved using mixed integer
programming and similar approaches. Zwaneveld et al. [32]
use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem.
Isobe et al. [33]] formulate a similar model in timed CSP,
representing train locations, velocities, and control logic. Our
definition of the problem in this paper includes non-linear
constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have
not been informed of movement authority), which are relevant
in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in
railway dynamic analysis, see e.g. [34], [33], [36].

In the planning literature, the PDDL+ language [4] has
been introduced to capture mixed discrete/continuous planning
problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time
domain discretization (DiNo [37]) or the SMT theory of non-
linear real arithmetic (SMTPlan+ [38]]).

VI. CONCLUSIONS AND FURTHER WORK

The goal of our suggested tool chain for railway engineering
is (1) to allow fully automated performance verification and (2)
use minimal input documentation for the verification. Both of
these aspects encourage bringing in performance verification
into frequently changing early-stage design projects, avoiding
the costly and time-consuming backtracking required when
later-stage analysis reveals unacceptable performance.

As future work we plan to integrate the current prototype
in the RailCOMPLETE tool and test the usability with the
engineers using this tool in their design work.

Acknowledgments: We thank the engineers at Railcomplete
AS, especially senior engineer Claus Feyling, for guidance on
railway operations and design methodology.
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