Automatic Synchronization for GPU Kernels

Sourav Anand
UC San Diego

Abstract—We present a technique for automatic synthesis of
efficient and provably correct synchronization in GPU kernels.
Our technique relies on an off-the-shelf correctness oracle and
achieves efficient synthesis by leveraging the race location in-
formation provided by the oracle in order to encode optimal
synchronization synthesis as a MaxSAT problem. We have
implemented our technique in a tool called AUTOSYNC that
works on kernels written in CUDA and uses a static verifier
GPUVERIFY as the correctness oracle. An evaluation on 18
realistic kernels from the GPUVERIFY benchmark suite shows
that AUTOSYNC is able to synthesize optimal synchronization
placements, and synthesis times are reasonable (20 seconds for
our largest benchmark).

I. INTRODUCTION

Recent years have seen increasing use of graphics pro-
cessing units (GPUs) for speeding up general-purpose com-
putations. GPU computations are highly parallel—with thou-
sands of threads running concurrently—which creates ample
opportunity for data races. To prevent races, programmers
add barrier synchronization statements to their GPU code.
Because synchronization incurs a performance penalty, a GPU
programmer is faced with a challenging task of finding a
placement of barrier statements that is both correct (eliminates
all data races) and optimal (incurs the least overhead).

In response to this challenge, several verification techniques
have been proposed [, [2l], [3], [4], [S], [6] for detecting data
races in GPU code or proving their absence. These techniques
would alert the programmer that a barrier statement is missing,
but they neither suggest where to place the barrier, nor check
whether the current placement is optimal. In this work we
propose a computer-aided approach to GPU programming,
where the programmer omits barrier statements from their
code altogether, and our technique automatically synthesizes
a correct and optimal barrier placement.

Barrier Synthesis. One approach to barrier synthesis is
to search the space of all possible barrier placements, using
an existing GPU verification tool [6], [4] as a black-box
correctness oracle; among all correct placements, we can
then select an optimal one according to some cost model.
The benefit of such a black-box approach is that it automat-
ically takes advantage of any current and future advances in
GPU verification. Brute-force enumeration, however, would be
prohibitively expensive for most programs, since the number
of possible placements grows exponentially with the size of
the program, and verifying each candidate placement is an
expensive operation on its own.

In this paper we show how to leverage the race location
provided by the oracle and the conservative operational se-

Nadia Polikarpova
UC San Diego

Program
without
Barriers

Candidate program with barriers

Errors

GPUVerify

AutoSync

Candidate
Barrier
Placement

Placement
Constraints

No Errors

Program with
Barriers

No Solution

Fig. 1: The AUTOSYNC workflow

mantics used in verification in order to avoid considering most
invalid placements and thereby make the synthesis practical.
Moreover, we demonstrate how to encode this information
together with the cost model as a system of soft Boolean
constraints, which allows our technique to delegate the bulk
of the search to MaxSAT solvers. Our technique is sound and
complete relative to the correctness oracle.

AUTOSYNC. We have implemented this constraint-based
approach to barrier synthesis in a tool called AUTOSYNC
(Fig. T)). The tool takes as input GPU programs—or kernels—
written in the popular CUDA programming model, and uses
the sound static verifier GPUVERIFY [6] as the correctness
oracle. For constraint-based search, the tool relies on the vZ
MaxSAT solver [7], which is part of Z3 [8].

Evaluation. We have evaluated AUTOSYNC on a series
of small but challenging micro-benchmarks, as well as 18
realistic CUDA kernels from the GPUVERIFY benchmark
suite. Our evaluation shows that in all these benchmarks,
AUTOSYNC is able to recover a barrier placement that is
at least as optimal as the one originally provided by the
developer. Surprisingly, in 5 cases the automatically gener-
ated placement is strictly better than the original. Moreover,
synthesis times are moderate and range from 1 to under 30
seconds. AUTOSYNC and all our benchmarks are available at
www.souravanand.com/autosync.html.

II. MOTIVATING EXAMPLES

This section goes through a series of examples of data races
in GPU programs, showcases the challenges of finding correct
and optimal barrier placements, and provides the intuition for
how AUTOSYNC addresses these challenges.

www.souravanand.com/autosync.html

. x = A[tid + 1];

| x = A[tid+1]; ' []
X = xt1l: 2 X = x+11;

: - ! 3 __syncthreads();

Altid = X; g
} [tid] += X 4+ Altid] += x;

Fig. 2: (left) A kernel with a race, and (right) the correctly
synchronized version of the kernel.

Tid=0 Tid=1 Tid=0 Tid=1
1. Read A[1] 1. Read A[2] 1. Read A[1] 1. Read A[2]
3. Write A[0] 3. Write A[1] 3. Write A[0] 3. Write A[1]

Fig. 3: Execution traces of kernels in (left) and (right);
the arrow depicts a data race; the dotted line depicts a barrier.

A. Straight-line Code

In the CUDA programming model, programmers describe
a GPU computation as a kernel: a template to be executed by
each GPU thread, implicitly parametrized by a unique thread
id. For example, a simple kernel in [Fig. 2] (left) instructs each
thread to read from a shared array A at a distinct index, which
depends on the thread’s id tid, and then write into the array
at the preceding index.

(left) depicts an execution of this kernel by two
threads with ids 0 and 1. This execution exhibits a read-write
race: since the two threads are not synchronized, the read from
A[1] by thread O is racing with the write to A[1] by thread
1. Eliminating this race requires adding a barrier statement
__syncthreads() between the two racing instructions, as
shown in (right). A barrier requires all the threads to
reach it before any thread can continue execution. When thread
1 encounters the barrier, it is forced to wait until thread O
encounters the same barrier; hence the read from A[1] is now
guaranteed to happen before the write to the same location.

Barrier synthesis. Given the kernel in (left), Au-
TOSYNC first checks its correctness using GPUVERIFY (see
[Fig. 1), which reports a possible data race between lines 1
and 3. Based on this race location information, AUTOSYNC
generates a placement constraint:

L1V Ly

Here each L; is a propositional variable that indicates whether
a barrier should be inserted after line ¢. Although any so-
lIution to this constraint would eliminate the race, setting
more than one L; to 1 is suboptimal, since every barrier
incurs a performance overhead. To avoid suboptimal solutions,
AUTOSYNC adds a soft constraint —L; for each line ¢ in
the program, which penalizes the solver for setting any L;
to 1. The resulting system of constraints is discharged by
Z3’s MaxSAT solver, producing the solution {Lg The
corresponding barrier placement, shown in (right), is
proven correct by GPUVERIFY, and the synthesis succeeds.

I'We write a solution as a set of all variables set to 1.

1 for(i=0; i<n; i++) {

for(i=0; i<n; i++){ 2 __syncthreads();
x = A[tid+1]; 3 x = A[tid+1];
X = X+1; 4 X = X+1;
Altid] += x; 5 __syncthreads();
} 6 Altid] += x;
7}

Fig. 4: (left) A kernel with a race inside a loop, and (right)
the correctly synchronized version of the kernel.

Tid=0 Tid=1 Tid=0 Tid=1
2. Read A[1] 2. Read A[2] 2. Read A[1] 2. Read A[2]
4. Wite A[0] 4 Wite ALl 4 Wiite AlD] R 4. Write A[1]
2. Read A[1] 2.Read A2l 2 Read Al & - 2. Read A2]
4. Wite A[0] 4.Write AH] 4. Write AlD] ™ 4. Write A[1]

Fig. 5: Execution traces of kernels in (left) and (right);
each gray box corresponds to one loop iteration.

B. Loops

Given our first example, the reader might be wondering
if all data races can be eliminated by simply inserting a
barrier right before the second racing line. In the presence of
loops, however, barrier placement becomes more challenging.
Consider the kernel in [Fig. 4] (left), which preforms a similar
computation, but inside a loop. GPUVERIFY again reports a
race between the two accesses to A (lines 2 and 4), however,
adding a barrier between these two lines turns out to be
insufficient to make the kernel race-free.

To see why, consider the execution trace of this kernel
depicted in a write to A[1] by thread 1 can race with
a read executed by thread O either in the same loop iteration
(intra-iteration race) or in a different one (inter-iteration race).
Adding the “red” barrier between lines 2 and 4 forces the write
to happen after the read in the same iteration, but imposes no
order with the read from the next iteration. To synchronize
this kernel correctly, a second barrier must be added within
the loop body but outside the two racing lines (“green” barrier
after line 1 in and [Fig. 5).

Barrier synthesis. Since the racing lines reported by GPU-
VERIFY are inside a loop, AUTOSYNC generates the following
system of placement constraints:

Py p!
P° = (Ly V L3)
P! = (L, V Ly)

Intuitively, the verification error does not contain enough infor-
mation to determine the type of the race—intra-iteration, inter-
iteration, or both—hence we encode the possibility of each
race type using a fresh propositional variable (P° for intra-
iteration and P! for inter-iteration). As before, AUTOSYNC
generates soft constraints —L; for all lines ¢, however, the

X =0 1 X =0;

if(tids2==0) { : 1fitfd:f:;giz§.
x = A[tid+2]; ’ - '

} <

if (tid%6==0) { 5 _._syrllcthreads();
Altid] += x; ¢ if(tid%6==0){

) - 7 Altid] += x;

s}

Fig. 6: (left) A kernel with a race between two different
basic blocks, and (right) the correctly synchronized version
of kernel.

lines inside the loop are given a higher weight. This forces
the solver to prefer placing barriers outside the loop, whereby
minimizing performance overhead.

Given these constraints, Z3 might return a solution
{P° L3}, which violates only one soft constraint and cor-
responds to adding the “red” barrier after line 3 alone. An
attempt to verify this solution reveals that the race is still
present. Hence, in a second iteration of barrier synthesis,
AUTOSYNC asks Z3 for a different assignment to the P
variables, by adding a constraint —=(P° A =P1). The second
solution, { P!, L} (the “green” barrier alone) does not solve
the race either. In the third iteration, AUTOSYNC further adds
a constraint ~(—P°% A P1), which forces the solver to set both
PJ to 1 and results in the final solution {P°, P!, Ly, L3}.

Nested loops. In general, if both racing statements are
inside a loop nest of depth d, we have to consider d + 1
possibilities: one intra-iteration and d inter-iteration races as
different depths. If the race is inter-iteration, placing a barrier
at depth d is always sufficient, but “shallower” barriers incur
less overhead.

C. Barrier Divergence

Conditionals also complicate barrier placement. Consider
the kernel in (left), where lines 3 and 6 are racing.
Placing a barrier right after line 3 or right before line 6 (i.e.
inside a conditional) would make that barrier unreachable
for some of the threads executing the kernel, leading to
undefined behavior due to so called barrier divergence [1l].
The only correct solution is to insert the barrier between the
two conditionals, as shown in (right).

Luckily, GPUVERIFY detects and reports if a candidate
barrier placement might cause barrier divergence. In response
to this error, AUTOSYNC adds a hard constraint that excludes
all lines within the problematic if-block from consideration.

D. Multiple Races

When a kernel contains multiple data races, analyzing and
eliminating each race independently might lead to a subopti-
mal barrier placement. Consider the kernel in (left) with
two pairs of racing lines: (1,3) and (2,4). Considering the
two races independently might result in inserting two barrier

i 1 x=A[tid+1];
X=A[t%d+l]i > y=B[tid+1];
ZTil[-:;:]lh.d:l)]ul-y 3 __syncthreads();
Bltid] = x-y: . ALtid] = x+y;

s B[tid] = x-y;

Fig. 7: (left) A kernel with two data races, and (right) the
correctly synchronized version that requires just one barrier.

kernel ::=blk

blk = {(f: stmt)*}

stmt ::= local name | name := expr | barrier
| name := rd(expr) | wr(expr, expr)
| if expr blk | while expr blk

expr = name | tid | n | expr op expr

Fig. 8: The syntax of KPL

statements, whereas in fact, a single barrier after line 2 elim-
inates both races. Such interactions between different races
are difficult for programmers to reason about. AUTOSYNC,
on the other hand, generates the optimal placement in the first
iteration, since { Lo} is the least-cost solution to the placement
constraints [Ly V Lo, Lo V L3].

III. SYNTHESIS ALGORITHM

This section formalizes our synchronization synthesis al-
gorithm for KPL (Kernel Programming Language), a core
language we borrow from the work on GPUVERIFY [].

A. Kernel Programming Language

Syntax. The syntax of KPL is presented in Expres-
sions expr are thread-local (do not access shared memory).
Reading and writing from/to shared memory is accomplished
via the statements rd and wr, respectively. A reserved variable
tid gives the execution thread access to its unique id, which
enables different threads to execute different behavior. Com-
pared to the presentation in [[1]], we omit jump statements and
else branches of conditionals (both can be desugared into our
language in a standard way), and procedures, which—while
not technically challenging—are currently not supported.

Each statement in a kernel is labeled with a unique label
¢; stmt(¢) denotes the statement with label ¢. Labels of
compound statements—if and while—double as labels of
their enclosed blocks; the top-level block of the kernel has
a reserved label main. A kernel’s label tree is a tree whose
nodes are statement labels, and a node’s parent is the label
of its enclosing block; in addition, we add a special start
node {5 as the leftmost child of each blockﬂ We use blks(¢)
to denote the set of enclosing blocks of ¢ (its ancestors
in the label tree); among those, loops(¢) are the enclosing
while blocks and conds(¢) are the enclosing if blocks.

2Thus, to place a barrier at the beginning of the block, we place it after £.

Sometimes we interpret these sets of blocks as sequences,
ordered from the root downward. We define the program
text order < on labels as the post-order of the label tree.
A label interval [¢1,05) denotes the set of labels ¢ that lie
between ¢; and /5 in the program text (¢; < ¢ < {3) and
share all enclosing blocks with at least one of the interval
bounds (blks(¢) C (blks(¢1) U blks(¢s))). For example, on
(lef)f)] blks(3) = {main, 2:4}; blks(5:7) = {main};
[3,6) = {3,2:4,5:7s}, while [3,5:7) = {3,2:4} (5:75 and 6
are excluded, since they do not share their enclosing block 5:7
with any of the two bounds). Note that the set of all children
of a block ¢ can be expressed as the interval [{g, £).

Semantics. Prior work [1]] defined the semantics of KPL
dubbed synchronous, delayed visibility (SDV). According to
this semantics, all threads execute the kernel instructions syn-
chronously (in lock step) but the effect of a wr statement may
be delayed, i.e. not immediately visible to other threads. Im-
portantly, the semantics of control structures models so-called
predicated execution, illustrated informally in Under
predicated execution, the body of an if statement is always
executed by all threads, but each statement in the body can be
enabled or disabled for a given thread, depending on the value
of a predicate—a thread-local Boolean variable initialized with
the if guard; when a statement is disabled, it has no effect.
Similarly, a while loop is executed the same number of times
by all threads: it iterates as long as the loop guard holds for
at least one thread. Due to synchronous predicated execution,
at any point at run time all threads are always executing the
same statement (which, however, might be disabled for some
threads). More formally, we can define an execution trace as
a sequence of instructions (¢1,p1),..., (s, Dn), where each
¢; is the label of the statement being executed and each
7 = [p},...,pl]is a Boolean vector of predicate values (here
T is the total number of threads). A kernel’s set of feasible
traces can be derived from the SDV operational semantics.

Races and synchronization. Delayed visibility leads to a
potential data race when two distinct threads access the same
shared memory location, and at least one of the accesses
is a write. Executing a barrier statement makes the effect
of all previous writes visible to all threads, eliminating a
potential data race with any following reads or writes. More
formally, we say that a trace ..., {¢;,Di),...,(¢;,D5),. .-
exhibits a race between {; and {;, if stmt(¢;) and stmt(¢;)
are potentially conflicting shared memory accesses and Vk €
(i,7) : stmt(¢) # barrier. We say that a trace exhibits
barrier divergence at ¢ if it contains a barrier instruction (¢, p)
that is not uniformly enabled, i.e. if stmt(¢) = barrier and
Jt,u : pt # p“. A kernel is correctly synchronized if none
of its feasible traces exhibit races or barrier divergence. We
define the kernel synchronization problem as follows: given a
KPL kernel without barriers, find a subset £ of its labels, such
that inserting a barrier statement as the right sibling of every
¢ € L yields a correctly synchronized kernel.

3Here each statement is labeled with its line number or line span.

local p
if e { local p while e { p := e
sl p :=e sl while 3 t : t.p {
s2 p => sl s2 p => sl
} p =>s2 } p => s2

p=>p:=e}

Fig. 9: Predicated form of conditionals (left) and loops (right)

B. Placement Constraints

Our approach to solving the kernel synchronization problem
is to encode the set £ as a solution to a system of Boolean
placement constraints over the propositional variables Ly, for
each label ¢ in the kernel. Placement constraints are derived
from race locations provided by the verification oracle. A race
location is a pair of leaf labels (¢, ¢'), such that ¢ < ¢ and
there exists a feasible trace ¢r that exhibits a race between
¢ and ¢’ or between £’ and ¢. By definition, to eliminate the
race in tr, it is sufficient to add a barrier instruction between
the two racing instructions. Our key insight is that, thanks to
SDV’s synchronous predicated execution, this constraint on
the barrier position in the trace translates into a constraint on
its placement in the program text.

Consider a data race at location (£, ¢'). As we demonstrated
in barrier placement depends on whether both racing
statements are inside the same loop body. More precisely, we
identify two types of data races: a simple race and a loop race.

Simple races arise when loops(¢) Nloops(¢’) = 0. In this
case, all occurrences of ¢ in any feasible trace ¢r precede all
occurrences of ¢, as illustrated in (with ¢ = 1,0/ =
3). Hence, a simple race can always be fixed by placing a
single barrier anywhere in the interval between the two racing
statements, giving rise to the following placement constraint:

\{Li i€ [6.0))

Loop races arise when both racing statements are inside
a nest of loops of depth d > 1: loops(¢) N loops(¢’) =
{¢,...,¢4}. In this case, the occurrences of ¢ and ¢ in tr
are interspersed, as illustrated in (with £ = 2,0 = 4).
Not all pairs of occurrences are necessarily conflicting, but
the race location alone has insufficient information to discern
which ones are. For barrier placement, we have d 4 1 options
that separate distinct subsets of conflicting instructions in 7.

The first option is to insert an intra-iteration barrier: a
barrier inside the interval [/, ¢'). This barrier will separate
every occurrence of £ in ¢r from the occurrence of ¢ within
the same iteration of the innermost loop ¢¢, as illustrated by
the red barrier in Alternatively, we can insert an infer-
iteration barrier: outside the two racing statements, but directly
inside the body of one of their shared loops £/, j € [1,d]. This
barrier will separate every occurrence of ¢ from the occurrence
of ¢ in the previous iteration of £/, as illustrated by the green
barrier in A combination of an inter-iteration barrier
at d and an intra-iteration barrier will separate every pair of

occurrences of £ and ¢’ in ¢r, and hence is guaranteed to fix the
race, but this is also the solution with most run-time overhead.
In the interest of optimality, our algorithm explores all non-
redundant combinations of intra- and inter-iteration barriers.

To this end, for a loop race (¢, ¢’), we introduce additional
propositional variables that encode the choice of placement
options: P} ¢+ for the intra-iteration barrier and Pe o Wwith j €
[1,d] for each inter-iteration barrier. The system of placement
constraints for a loop race then includes a guarded constraint
for each placement option:

Py = \/{Li i€ [t,0)}
Pl = \/{Lilie [t oul t)}

Since only some placement options actually fix the race, the
synthesis engine iterates through all possible P-assignments,
calling the oracle to validate the corresponding candidate
solution. In each iteration, the placement constraints also
contain the negation of each previously encountered invalid P-
assignment, including the initial assignment Py = 0, which
corresponds to the input program without barriers. Finally, to
avoid exploring redundant placement combinations, we add a
constraint ﬂ(Pg,Z, A Pek,z/) for all j,k > 1,5 # k, since an
inter-iteration barrier in an inner loop always subsumes one in
an outer loop.

Divergence. Given a candidate solution with a barrier at
¢, where blks(¢) = {main, (!, ... (%}, the oracle reports
barrier divergence at /, if at least one of ¢',...,¢% has a
thread-dependent guard (in which case the block might not
be uniformly enabled for all threads). The synthesis engine
responds by extending the placement constraints to disallow
barriers inside the innermost block ¢¢:

NLi i€ (e, ety

In the next iteration, the barrier will be placed outside of
¢%; iteration will continue as long as any of the remaining
enclosing blocks have thread-dependent guards.

C. Cost Model

Our goal is to design a function C: P(£) — QT such
that the cost of a barrier placement £ correlates with its
overhead on the kernel execution time. Precise static analysis
of execution time, however, is a hard problem; hence we
opted for a simple cost model that approximates the number
of barriers the kernel will encounter during its execution (we
evaluate the adequacy of this model empirically in [Sec. IV).
More precisely, the cost of a placement is the sum of costs of
all its barriers, and the cost of an individual barrier depends
on the number of its enclosing loops and conditionals:

L)y=> C()

LeLl

where C(¢) = LCNoPs(l 5 [leonds()]

Here, the constants LC' > 1 and 0 < IC' < 1 conceptually
represent the average number of times each loop is executed
and the average proportion of times each conditional guard
holds. In practice, the algorithm is not very sensitive to the

Algorithm 1 The AUTOSYNC syntheis algorithm

: procedure SYNTHESIZE(kernel)
S = NEWSOLVER
for ¢ € kernel do S.ASSERTSOFT(—Ly, C(¢))

1

2

3

4 races = GETRACES(kernel)

5. for (¢,0') € races do

6 {4, ... 0%} = kernel.loops(¢) N kernel.loops(¢')
7 S.ASSERT(P), = VL; | i € [(,£))

8 for j € [1,d] do

9: S.ASSERT(P},, = VL; |i € [t,0) U
10: for k € [1,d],k # j do

1 S.ASSERT(=(P/ ; A Pfy)))

12: S.ASSERT(VP],, | j € [0,d])

ANZD)

13: return REFINE(kernel, races, S)

14: procedure REFINE(kernel, races, S)
15: kernel’ = kernel
16: while races # () do

17: if S.CHECK = UNSAT then

18: return “No solution”

19: L = S.MODEL

20: kernel’ = INSERTBARRIERS(kernel, L)
21: divs = GETDIVERGENCES(kernel’)
22: if divs # () then

23: for ¢ € divs do

24: 1% = last(kernel’ .blks(¢))

25: S.ASSERT(A—L; | i € [¢2,¢%))
26: else

27: races = GETRACES(kernel’)

28: for (¢,0') € races do ‘

29: S.ASSERT(V(P} ;i # L[P] 1))

30: return kernel’

precise values of these constants, since it rarely has to trade-off
two solutions with different numbers of barriers. For example,
in (left) with LC = 100, C'(1:5) = 1 and C(2) = 100.

D. Algorithm

describes the full barrier synthesis algorithm.
The top-level procedure, SYNTHESIZE, takes as input a KPL
kernel and returns a correctly synchronized version of this
kernel (or fails).

Initialization. We start by creating a fresh instance of a
MaxSAT solver S and asserting soft constraints that penalize
a barrier after any label ¢ proportionally to its cost (line [3).
In lines BHI2] we query the oracle for the initial set of
race locations races, and then generate initial placement
constraints for each race. For a loop race at depth d > 1, we
generate guarded placement constraints for an intra-iteration
barrier (line[7) and all possible inter-iteration barriers (line [9);
additionally, line [TT] disallows redundant placements (multiple
nested inter-iteration barriers), and line [T2] forces the solver
to place at least one barrier for the current loop race, since

the solution with an empty set of barriers is known to be
incorrect. When d = 0, we are dealing with a simple race;
in this case, lines [/| and together generate an appropriate
placement constraint.

Refinement loop. After asserting the initial constraints we
invoke REFINE. This procedure alternates between asking the
solver for a placement £ that satisfies the current constraints
and asking the oracle whether L is valid; if not, the constraints
are refined to exclude £ and equivalent invalid placements.

The refinement loop starts by asking the solver whether the
current set of placement constraints is satisfiable (line [I7). If
not, the algorithm terminates with failure; otherwise the least-
cost placement £ is obtained as the model of the constraints
(line . Next, INSERTBARRIERS builds a candidate solution
kernel’ by inserting a barrier statement as the right sibling
of every £ € L into kernel. We assume that INSERTBARRIERS
leaves the labels of existing statements unmodified and assigns
fresh labels to the barrier statements.

On line 21| we query the oracle for the set divs of barrier
divergence locations in the candidate solution. If the barrier at
label ¢ is diverging, we can safely exclude all statements in
£’s innermost enclosing block from consideration (line [23).

In the absence of divergence, we query the oracle for the
remaining set of races (line 27). Note that each of these
races (£,¢') must be a loop race for which the solver chose
an invalid assignment to P} ,. In response, on line we
add a constraint that disables the current P-assignment, which
prompts the solver to look for the next best combination of
placement options in the next iteration.

The procedure terminates either when it finds a valid
placement (races = () or when the current constraints are
unsatisfiable (line [T8). The latter can happen for two reasons:
(1) a race is of the form (¢,/)—a wr statement racing with
itself—so the disjunction in line[7]is empty, or (2) a race is in-
side a block with a thread-dependent guard, so the divergence
constraint in line [23] is inconsistent with the other placement
constraints for this race. Such races cannot be eliminated by
inserting barriers, and hence are out of scope.

E. Guarantees

Soundness. A synchronization synthesis algorithm is sound
if every solution it returns is correctly synchronized. Since
relies on the oracle to validate candidate place-
ments, we obtain the soundness guarantee for free as long as
the oracle is sound (which is true for GPUVERIFY).

Completeness. A synchronization synthesis algorithm is
complete if it returns a valid placement as long as one exists.

is complete relative to the oracle: it will discover

a placement as long as there is one that the oracle can verify.

Proof. Consider a feasible trace tr that exhibits a race between
its ¢-th and j-th instructions. If this race can be eliminated by
barrier placement, it must be that 3k € [i, §) : tr[k] = (£, 1),
i.e. a uniformly enabled instruction occurs between ¢ and j,
so the barrier can be inserted after ¢;,. Let us define the set
Fy, 0, of feasible labels as follows:

[6276]) U [&,Ed) if gj < fz

where L9 is the set of children of last(blks(¢;) Nblks(¢;)). In
other words, feasible labels are labels in the smallest enclosing
block of the two racing instructions, which occur between i
and 7 in the trace. Note that we can safely pick any label from
ng_’gj as the race solution /i, because (a) thgj is nonempty
according to trace semantics, and (b) its labels are the least
nested in [¢, 7), hence they must be uniformly enabled if any
[, 7) instructions are.

We can now show that if every trace has a verifiable solution
), then the constraints generated by never
become inconsistent. We build a (non-optimal) model £ of the
placement constraints as follows: for every ({1, /2) € races

Fyp, =L1%N {

LIP])= j=0Vvj=d
[,[Lg] —/le Fgl,gQ VYie Fg%gl

This model obviously satisfies line [IZ} it satisfies lines[7]and [9]
by definition of F} ,/; it satisfies linebecause labels in Fp
cannot be divergent if a valid placement exists; finally, because
we include at least one feasible label for both orderings of
labels in every race, £ is guaranteed to eliminate all races,
hence no further constraints will be added in line O]

As explained in [1l], the SDV semantics is conservative;
in particular, it rejects some barrier placements that could
be considered valid if we made more assumptions about the
concrete GPU platform. Our synthesis algorithm benefits from
SDV in two ways: on the one hand, soundness wrt. SDV
guarantees that the resulting kernel will execute correctly on
any GPU platform; on the other hand, SDV’s synchronous
predicated execution helps us prune the search space while
maintaining relative completeness.

Termination Procedure REFINE terminates because every
iteration eliminates at least one assignment to the propositional
variables, and the number of variables is defined by the size
of the original kernel. Moreover, the number of iterations is
upper-bounded by 2 X > ,;. 000 depth(£).

Optimality. A synchronization synthesis algorithm is op-
timal (relative to a given cost metric) if it always finds the
solution with the lowest cost among all valid solutions. Since
relies on a MaxSAT solver to perform the search,
and thanks to the soft constraints in line [3] it always finds the
placement £ with the minimal cost C'(£) among all models of
the placement constraints. Not all valid placements, however,
satisfy the constraints. Consider the following snippet:

for(i=0;1i<20;i++){
if (i<10 && tid%2==0) {

x = rd(tid+i+1) }
if (i<10) {
XxX=x+11}

if (i<10 && tid%6==0) {
wr(tid+i,x) }

Here, the optimal placement—inside the middle if-
statement—will not be discovered because as discussed above,
5 ¢ [3,7). The reason for the exclusion is that without
analyzing the if-guards we cannot be sure that 5 occurs in
every trace between each occurrence of 3 and 7. Hence, we
do not provide a theoretical guarantee of optimality, but we
have not encountered such examples in practice.

IV. IMPLEMENTATION AND EVALUATION

We have implemented the technique from[Sec. IMI)in a proto-
type tool called AUTOSYNC. The implementation comprises
650 lines of Python code, and uses GPUVERIFY (revision
1937) and Z3 (version 4.6.0).

A. Research Questions

Our empirical evaluation aims to answer the following

research questions:

1 Is AUTOSYNC effective at synthesizing correct barrier
placements?

2 Are the placements synthesized by AUTOSYNC optimal?
Does our cost model faithfully estimate execution time?

3 Is AUTOSYNC efficient?

B. Experiment Setup

Benchmark selection. We evaluated AUTOSYNC on the
kernels from NVIDIA GPU Computing SDK v5.0 which is
used by GPUVERIFY. We have selected 18 benchmarks from
this benchmark suite, which (1) contained a barrier in the
original program (2) were verifiable by GPUVERIFY within
the timeout of five minutes, and (3) did not contain procedures,
which are currently not supported by AUTOSYNC.

For each benchmark, we compare the synthesized solution
with a baseline version, which is correctly annotated with
barrier statements by the developer, and can be verified by
GPUVERIFY. In addition to the benchmark suite, we designed
eight micro-benchmarks that exercise various challenging sce-
narios for barrier synthesis.

Running AUTOSYNC. For each benchmark, we first re-
move all barrier statements from the baseline version, pass
the resulting program to AUTOSYNC, and check whether the
barrier synthesis succeeded. If so, we manually compare the
generated output with the baseline in terms of the number of
barriers and their cumulative cost according to our cost model.

We also developed a naive version of barrier synthesis,
which uses brute-force enumerative search. The naive version
first inserts a barrier after each statement in the input kernel,
then removes all barriers that lead to divergence, and finally,
iterates over the remaining barriers, removing each barrier
unless that causes a data race. The naive method is guaranteed
to correctly synchronize the kernel, but it requires many more
calls to the oracle, and serves as a baseline in our evaluation
of the AUTOSYNC’s synthesis times.

All experiments were conducted on a machine with Intel
i7-4700MQ CPU @ 2.40GHz and 8 GB RAM. Each timing
presented in the results is the median of three runs. The cost
model is evaluated on a p2.xlarge instance of AWS which runs
the GPU kernels on NVIDIA K80 GPU.

Benchmark LoC | N-V | AS-V | N-B | AS-B | N-Time | AS-Time
1-1-If.cu 11 6 4 1 1 7.1 3.6
1-1-loop:inter.cu 10 10 2 1 1 11.5 1.1
1-1-loop:intra.cu 7 6 3 1 1 9.5 3.1
1-1-main.cu 5 6 2 1 1 6.6 1.1
2-1-main.cu 6 7 2 1 1 8.0 1.1
2-1-loop-d2-intra.cu 9 8 5 1 1 12.8 6.4
2-2-loop-d2-both.cu 18 15 5 2 2 25.2 6.6
2-2-loop:both.cu 7 7 4 2 2 8.9 4.0

Loc: Lines of Code, N-*: Naive Method, AS-*: AutoSync, -
V: Number of calls to GPUVERIFY, -B: Number of Barriers
Inserted, -Time: Synthesis Time (sec)

TABLE I: Evaluation on Micro Benchmarks

C. Results

Micro-benchmarks. present the evaluation result on
the micro-benchmarks written by us. Benchmark names follow
the convention “n-m-description.cu”, where n is the number
of data races present and m is the minimum number of barriers
required to correctly synchronize the kernel. We make the
following observations about the results:

o All micro-benchmarks are correctly synchronized by both
the naive method and AUTOSYNC.

o The number of barriers inserted in the synthesized kernel
is the same as the expected minimum number of barriers.

e AUTOSYNC is significantly more efficient than the naive
method, because it performs fewer expensive calls to
GPUVERIFY.

« AUTOSYNC’s synthesis time increases linearly with the
number of calls to GPUVERIFY, which in practice is
proportional to the maximum nesting depth of loop races
present in the kernel. On the other hand, the synthesis
time of the naive method increases almost linearly with
the size of the input program.

Original Benchmarks. The results of evaluating AU-
TOSYNC on the 18 original benchmarks from NVIDIA SDK

are presented in

e Most of the barriers synthesized by AUTOSYNC were
placed at the same or equal-cost position as compared to
the baseline version of the kernel.

« For five benchmarks AUTOSYNC was able to generate a
more optimal placement (with fewer barriers) than the
baseline version. After a closer inspection, the reason
was that AUTOSYNC treats barrier placement as a global
optimization problem instead of handling each barrier
independently (as the programmer likely would).

o In practice, AUTOSYNC requires very few iterations of
the refinement loop (2—4), since the race locations are
not nested very deeply; consequently the synthesis time
does not necessarily grow with the size of the program.

Cost Model. We performed an experiment to evaluate the
adequacy of the cost model we proposed We wrote
multiple programs which were a combination of loops and
conditionals and added barriers at different locations. We then
measured the time taken by the kernels containing the barrier
at different cost positions and generated the run time vs cost

Benchmark LoC | V | O-B | AS-B | Time
convolutionColumnsKernel.cu 55 | 2 1 1 13.1
convolutionRowsKernel.cu 57 | 2 1 1 8.4
d_transpose.cu 26 | 2 1 1 1.1
imageDenoising nlm2_kernel.cu 88 | 2 1 1 1.9
matrixMul.cu 72| 4 2 2 15.5
mergeHistogram256Kernel.cu 25| 3 1 1 3.2
mergeHistogram64Kernel.cu 26 | 3 1 1 3.3
reduce0.cu 26 | 3 2 1 3.3
reducel.cu 28 | 4 2 2 6.1
reduce2.cu 30 | 4 2 1 5.6
reduce3.cu 32| 3 2 1 3.2
reduceb.cu 94 | 3 4 3 10.1
reduce6.cu 104 | 4 4 3 15.8
sobol.cu 93 | 3 1 1 19.9
sum0.cu 25 | 3 2 2 4.7
suml.cu 22 3 2 2 4.6
uniformUpdate.cu 17| 3 1 1 2.6
uniform_add.cu 17| 3 1 1 2.4

Loc: Lines of Code, V: Number of calls to GPUVERIFY, O-B:
Number of Barriers in the original benchmark, AS-B: Number
of Barriers in the synthesized program, Time: Synthesis Time
(sec)

TABLE II: Evaluation of original Benchmarks

Runtime vs Cost

0.0025

0.0015

Time (s)

0.0005

Cost

Fig. 10: The run-time overhead (sec) of placing barriers at
different costs. The cost of barrier is computed as the cost
model discussed above where LC=100 and IC=0.5 and every
loop performs 100 iterations.

graph (Fig. 10). We can clearly see from the graph that the run
time increases rapidly with the cost of the barrier placement.
This graph suggests that the cost model described in[Sec. TI-C|
correlates well with the actual run-time overhead of barrier
placement.

D. Threats to Validity

Out of the 18 benchmarks in our evaluation, 8 contained
some user-provided invariants which were essential for GPU-
VERIFY to successfully verify the kernel. We believe it is fair
to use these annotated programs because our tool is agnostic
to the choice of oracle, and we hope that as invariant inference
improves, our tool will become fully automatic. In addition,
all our benchmarks are obtained by removing barriers from

correctly synchronized kernels; hence a valid barrier placement
always exists. In general, synchronization is not limited to
placing barriers and might require more substantial changes to
the code; such changes are out of the scope for our technique.

V. RELATED WORK

Synchronization synthesis for various concurrency models
is a rich and active area of research. Prior work focused on
traditional shared memory concurrency [9f], [1O], [11]], [12],
[L3], [14] and network programs [15]. To our knowledge, AU-
TOSYNC is the first tool to perform synchronization synthesis
for GPUs. GPUs are an interesting new domain for this line
of work, because of the subtleties of the concurrency model,
such as barrier divergence. Our technique shares similarities
with [13]], which also uses MaxSAT to find an optimal syn-
chronization placement.

An important difference between AUTOSYNC and prior
work in this area, is that we use an off-the-shelf verifier as
a correctness oracle and define the minimal interface between
the search engine and the oracle—data race locations—that
still supports efficient synthesis. This design decision gives us
soundness for free and allows AUTOSYNC to automatically
leverage any future advances in GPU verification technology.

Code generation. A complementary approach to automatic
synchronization is to compile a high-level language into GPU
code [16], [17]. This approach works well when the high-
level language matches the task at hand, but falls short if the
programmer needs to hand-optimize the low-level GPU code.

Race detection for GPU kernels is also an extremely
active research area [1]], [6l, [2], [3], [4], [S]. As mentioned
in the introduction, these techniques can detect a missing
barrier, but do not help the programmer find an optimal
placement for the barrier. In this paper we show how to
leverage these verification techniques as correctness oracles
for synchronization synthesis. Even though our implementa-
tion uses GPUVERIFY [6], it can be adapted to work with
any sound verification engine that uses predicated execution
semantics and reports race locations and divergent barriers.

VI. CONCLUSIONS

We have presented a technique for automatically inserting
barrier synchronization in GPU kernels. Our main contribution
is two-fold. First, we show how to reuse an existing verifier
as a correctness oracle and still achieve efficient synthesis by
leveraging error information from failed verification attempts.
Second, we show how to combine this error information with
information about program structure to encode the search for
an optimal barrier placement as a MaxSAT problem.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful feedback, as well as Jeroen Ketema and Alastair
Donaldson for their help with the GPUVERIFY benchmarks.

[1]

[8]
[9]

REFERENCES

A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “Gpu-
verify: A verifier for gpu kernels,” in OOPSLA, 2012.

G. Li and G. Gopalakrishnan, “Scalable smt-based verification of gpu
kernel functions,” in FSE, 2010.

G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P. Rajan,
“Gklee: Concolic verification and test generation for gpus,” in PPoPP,
2012.

A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner,
“Verifying gpu kernels by test amplification,” in PLDI, 2012.

S. Blom, M. Huisman, and M. Mihel¢i¢, “Specification and verification
of gpgpu programs,” Sci. Comput. Program., vol. 95, no. P3, Dec. 2014.
A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer, P. Thomson,
and J. Wickerson, “The design and implementation of a verification
technique for gpu kernels,” ACM Trans. Program. Lang. Syst., vol. 37,
no. 3, pp. 10:1-10:49, May 2015.

N. Bjgrner, A. Phan, and L. Fleckenstein, “vz - an optimizing SMT
solver,” in TACAS, 2015.

L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in TACAS,
2008.

E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-

(10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

nization skeletons using branching-time temporal logic,” in Logics of
Program, 1981.

M. T. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of
synchronization,” in POPL, 2010.

P. Cerny, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach,
“Efficient synthesis for concurrency by semantics-preserving transfor-
mations,” in CAV, 2013.

P. Cerny, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach,
“Regression-free synthesis for concurrency,” in CAV, 2014.

P. Cerny, E. M. Clarke, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk,
R. Samanta, and T. Tarrach, “From non-preemptive to preemptive
scheduling using synchronization synthesis,” in CAV, 2015.

A. Gupta, T. A. Henzinger, A. Radhakrishna, R. Samanta, and T. Tarrach,
“Succinct representation of concurrent trace sets,” in POPL, 2015.

J. McClurg, H. Hojjat, and P. Cerny, “Synchronization synthesis for
network programs,” in CAV, 2017.

J. Guo, J. Thiyagalingam, and S.-B. Scholz, “Breaking the gpu pro-
gramming barrier with the auto-parallelising sac compiler,” in DAMP,
2011.

“TensorFlow documentation,” https://www.tensorflow.org/programmers_
guide/using_gpul 2018.

https://www.tensorflow.org/programmers_guide/using_gpu
https://www.tensorflow.org/programmers_guide/using_gpu

	Introduction
	Motivating Examples
	Straight-line Code
	Loops
	Barrier Divergence
	Multiple Races

	Synthesis Algorithm
	Kernel Programming Language
	Placement Constraints
	Cost Model
	Algorithm
	Guarantees

	Implementation and Evaluation
	Research Questions
	Experiment Setup
	Results
	Threats to Validity

	Related Work
	Conclusions
	References

