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Abstract—The inference of program invariants over machine
arithmetic, commonly called bit-vector arithmetic, is an impor-
tant problem in verification. Techniques that have been successful
for unbounded arithmetic, in particular Craig interpolation, have
turned out to be difficult to generalise to machine arithmetic:
existing bit-vector interpolation approaches are based either
on eager translation from bit-vectors to unbounded arithmetic,
resulting in complicated constraints that are hard to solve and
interpolate, or on bit-blasting to propositional logic, in the process
losing all arithmetic structure. We present a new approach to bit-
vector interpolation, as well as bit-vector quantifier elimination
(QE), that works by lazy translation of bit-vector constraints
to unbounded arithmetic. Laziness enables us to fully utilise
the information available during proof search (implied by de-
cisions and propagation) in the encoding, and this way produce
constraints that can be handled relatively easily by existing
interpolation and QE procedures for Presburger arithmetic. The
lazy encoding is complemented with a set of native proof rules
for bit-vector equations and non-linear (polynomial) constraints,
this way minimising the number of cases a solver has to consider.

I. INTRODUCTION

Craig interpolation is a commonly used technique to infer
invariants or contracts in verification. Over the last 15 years,
efficient interpolation techniques have been developed for a
variety of logics and theories, including propositional logic [1],
[2], uninterpreted functions [1], [3], [4], first-order logic [5],
[6], [7], algebraic data-types [8], linear real arithmetic [1],
non-linear real arithmetic [9], Presburger arithmetic [10], [4],
[11], and arrays [12], [13], [14].

A theory that has turned out notoriously difficult to handle
in Craig interpolation is bounded machine arithmetic, com-
monly called bit-vector arithmetic. Decision procedures for
bit-vectors are predominantly based on bit-blasting, in com-
bination with sophisticated preprocessing and simplification
methods, which implies that also extracted interpolants stay
on the level of propositional logic and are difficult to map
back to compact high-level bit-vector constraints. An alter-
native interpolation approach translates bit-vector constraints
to unbounded integer arithmetic formulas [15], but is limited
to linear constraints and tends to produce integer formulas
that are hard to solve and interpolate, due to the necessary
introduction of additional variables and large coefficients to
model wrap-around semantics correctly.

In this paper, we introduce a new Craig interpolation method
for bit-vector arithmetic, focusing on arithmetic bit-vector
operations including addition, multiplication, and division.
Like [15], we compute interpolants by reducing bit-vectors to

unbounded integers; unlike in earlier approaches, we define a
calculus that carries out this reduction lazily, and can therefore
dynamically choose between multiple possible encodings of
the bit-vector operations. This is done by initially representing
bit-vector operations as uninterpreted predicates, which are
expanded and replaced by Presburger arithmetic expressions
on demand. The calculus also includes native rules for non-
linear constraints and bit-vector equations, so that formulas
can often be proven without having to resort to a full encoding
as integer constraints. Our approach gives rise to both Craig
interpolation and quantifier elimination (QE) methods for bit-
vector constraints, with both procedures displaying competi-
tive performance in our experiments.

Reduction of bit-vectors to unbounded integers has the ad-
ditional advantage that integer and bit-vector formulas can be
combined efficiently, including the use of conversion functions
between both theories, which are difficult to support using
bit-blasting. This combination is of practical importance in
software verification, since programs and specifications of-
ten mix machine arithmetic with arbitrary-precision numbers;
tools might also want to switch between integer semantics
(if it is known that no overflows can happen) and bit-vector
semantics for each individual program instruction.

The contributions of the paper are: 1) a new calculus for
non-linear integer arithmetic, which can eliminate quantifiers
(in certain cases) and extract Craig interpolants (Section III);
2) a corresponding calculus for arithmetic bit-vector con-
straints (Section IV); 3) an experimental evaluation using
SMT-LIB and model checking benchmarks (Section V).

A. Related Work

Most SMT solvers handle bit-vectors using bit-blasting
and SAT solving, and usually cannot extract interpolants
for bit-vector problems. The exception is MATHSAT [16],
which uses a layered approach [15] to compute interpolants:
MATHSAT first tries to compute interpolants by keeping bit-
vector operations uninterpreted; then using a restricted form
of quantifier elimination; then by eager encoding into linear
integer arithmetic (LIA); and finally through bit-blasting. Our
approach has some similarities to the LIA encoding, but can
choose simpler encodings thanks to laziness, and also covers
non-linear arithmetic constraints.

Other related work has focused on fragments of bit-vector
logic. In [17], an algorithm is given for reconstructing bit-
vector interpolants from bit-level interpolants, however re-
stricted to the case of bit-vector equalities. An interpolation



procedure based on a set of tailor-made (but incomplete)
rewriting rules for bit-vectors is given in [18].

II. PRELIMINARIES: THE BASE LOGIC

We formulate our approach on top of a simple logic of
Presburger arithmetic constraints combined with uninterpreted
predicates, introduced in [19] and extended in [4], [10] to
support Craig interpolation. Let x range over an infinite set X
of variables, c over an infinite set C of constants, p over a set
P of uninterpreted predicates with fixed arity, and α over the
set Z of integers. The syntax of terms and formulae is defined
by the following grammar:

φ ::= t = 0 || t ≤ 0 || p(t, . . . , t) ||φ ∧ φ ||φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α || c ||x ||αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. Substitution
of a term t for a variable x in φ is denoted by [x/t]φ;
we assume that variable capture is avoided by renaming
bound variables as necessary. For simplicity, we sometimes
write s = t as a shorthand of s− t = 0, inequality s ≤ t for
s− t ≤ 0, and ∀c.φ as a shorthand of ∀x.[c/x]φ if c is a
constant. The abbreviation true (false) stands for the equal-
ity 0 = 0 (1 = 0), and the formula φ→ ψ abbreviates ¬φ∨ψ.
Semantic notions such as structures, models, satisfiability, and
validity are defined as is common (e.g., [20]), but we assume
that evaluation always happens over the universe Z of integers;
bit-vectors will later be defined as a subset of the integers.

A. A Sequent Calculus for the Base Logic

For checking whether a formula in the base logic is satisfi-
able or valid, we work with the calculus presented in [19], a
part of which is shown in Fig. 1. If Γ, ∆ are sets of formulae,
then Γ ` ∆ is a sequent. A sequent is valid if the for-
mula

∧
Γ→

∨
∆ is valid. Positions in ∆ that are underneath

an even/odd number of negations are called positive/negative;
and vice versa for Γ. Proofs are trees growing upward, in
which each node is labelled with a sequent, and each non-
leaf node is related to the node(s) directly above it through an
application of a calculus rule. A proof is closed if it is finite
and all leaves are justified by an instance of a rule without
premises. Soundness of the calculus implies that the root of a
closed proof is a valid sequent.

In addition to propositional and quantifier rules in Fig. 1,
the calculus in [19] also includes rules for equations and
inequalities in Presburger arithmetic; the details of those rules
are not relevant for this paper. The calculus is complete for
quantifier-free formulas in the base logic, i.e., for every valid
quantifier-free sequent a closed proof can be found. It is well-
known that the base logic including quantifiers does not admit
complete calculi [21], but as discussed in [19] the calculus
can be made complete (by adding slightly more sophisticated
quantifier handling) for interesting undecidable fragments, for
instance for sequents ` φ with only existential quantifiers.

For quantifier-free input formulas, proof search can be
implemented in depth-first style following the core concepts

Γ, φ ` ∆
Γ, ψ ` ∆

Γ, φ ∨ ψ ` ∆
∨-LEFT

Γ, φ ` ∆
Γ, ψ ` ∆

Γ ` φ ∧ ψ,∆ ∧-RIGHT

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧-LEFT

Γ ` φ, ψ,∆

Γ ` φ ∨ ψ,∆ ∨-RIGHT

Γ ` φ,∆

Γ,¬φ ` ∆
¬-LEFT

Γ, φ ` ∆

Γ ` ¬φ,∆ ¬-RIGHT

∗
Γ, φ ` φ,∆

CLOSE

Γ, [x/t]φ, ∀x.φ ` ∆

Γ,∀x.φ ` ∆
∀-LEFT

Γ, [x/c]φ ` ∆

Γ,∃x.φ ` ∆
∃-LEFT

Γ ` [x/t]φ, ∃x.φ,∆
Γ ` ∃x.φ,∆ ∃-RIGHT

Γ ` [x/c]φ,∆

Γ ` ∀x.φ,∆ ∀-RIGHT

Fig. 1. A selection of the basic calculus rules for propositional logic (upper
box) and quantifier rules (lower box). In the rules ∃-LEFT and ∀-RIGHT, c is
a constant that does not occur in the conclusion.

of DPLL(T) [22]: rules with multiple premises correspond to
decisions and explore the branches one by one; rules with a
single premise represent propagation or rewriting; and logging
of rule applications is used in order to implement conflict-
driven learning and proof extraction. For experiments, we use
the implementation of the calculus in PRINCESS.1

B. Quantifier Elimination in the Base Logic

The sequent calculus can eliminate quantifiers in Pres-
burger arithmetic, i.e., in the base logic without uninterpreted
predicates, since the arithmetic calculus rules are designed
to systematically eliminate constants. To illustrate this use
case, suppose φ is a formula without uninterpreted predicates
and without constants c, but possibly containing variables x.
Formula φ furthermore only contains ∀/∃ under an even/odd
number of negations, i.e., all quantifiers are effectively univer-
sal. To compute a quantifier-free formula ψ that is equivalent
to φ, we can construct a proof with root sequent ` φ, and
keep applying rules until no further applications are possible
in any of the remaining open goals {Γi ` ∆i | i = 1, . . . , n}.
In this process, rules ∃-LEFT and ∀-RIGHT can introduce fresh
constants, which are subsequently isolated and eliminated by
the arithmetic rules. To find ψ, it is essentially enough to
extract the constant-free formulas Γvi ⊆ Γi, ∆v

i ⊆ ∆i in the
open goals, and construct ψ =

∧n
i=1(

∧
Γvi →

∨
∆v
i ).

The full calculus [19] is moreover able to eliminate arbi-
trarily nested quantifiers, and can be used similarly to prove
validity of sequents with quantifiers. A recent independent
evaluation [23] showed that the resulting proof procedure is
competitive with state-of-the-art SMT solvers and theorem
provers on a wide range of quantified integer problems.



Γ, bφcL ` ∆ I I Γ, bψcL ` ∆ I J

Γ, bφ ∨ ψcL ` ∆ I I ∨ J
∨-LEFTL

Γ, bφcR ` ∆ I I Γ, bψcR ` ∆ I J

Γ, bφ ∨ ψcR ` ∆ I I ∧ J
∨-LEFTR

Γ, bφcD, bψcD ` ∆ I I

Γ, bφ ∧ ψcD ` ∆ I I
∧-LEFTD

Γ ` bφcD,∆ I I

Γ, b¬φcD ` ∆ I I
¬-LEFTD

∗
Γ, bφcL ` bφcL,∆ I false

CLOSELL

∗
Γ, bφcL ` bφcR,∆ I φ

CLOSELR

∗
Γ, bφcR ` bφcL,∆ I ¬φ

CLOSERL

Γ, b[x/t]φcL, b∀x.φcL ` ∆ I I

Γ, b∀x.φcL ` ∆ I ∀Rt I
∀-LEFTL

Γ, b[x/t]φcR, b∀x.φcR ` ∆ I I

Γ, b∀x.φcR ` ∆ I ∃Lt I
∀-LEFTR

Γ, b[x/c]φcD ` ∆ I I

Γ, b∃x.φcD ` ∆ I I
∃-LEFTD

Fig. 2. The upper box presents a selection of interpolating rules for propo-
sitional logic, while the lower box shows rules for quantifiers. Parameter D
stands for either L or R. The quantifier ∀Rt denotes universal quantification
over all constants occurring in t but not in ΓL ∪∆L; likewise, ∃Lt denotes
existential quantification over all constants occurring in t but not in ΓR∪∆R.
In ∃-LEFTD , c is a constant that does not occur in the conclusion.

C. Craig Interpolation in the Base Logic

Given formulas A and B such that A ∧ B is unsatisfiable,
Craig interpolation can determine a formula I such that the
implications A⇒ I and B ⇒ ¬I hold, and non-logical sym-
bols in I occur in both A and B [24]. An interpolating version
of our sequent calculus has been presented in [4], [10], and
is summarised in Fig. 2. To keep track of the partitions A,B,
the calculus operates on labelled formulas bφcL (with L for
“left”) to indicate that φ is derived from A, and similarly
formulas bφcR for φ derived from B. If Γ, ∆ are finite sets of
L/R-labelled formulas, and I is an unlabelled formula, then
Γ ` ∆ I I is an interpolating sequent.

Semantics of interpolating sequents is defined using projec-
tions ΓL =def {φ | bφcL ∈ Γ} and ΓR =def {φ | bφcR ∈ Γ},
which extract the L/R-parts of a set Γ of labelled formulae. A
sequent Γ ` ∆ I I is valid if 1) the sequent ΓL ` I,∆L

is valid, 2) the sequent ΓR, I ` ∆R is valid, and 3) the
constants and uninterpreted predicates/functions in I occur in
both ΓL ∪∆L and ΓR ∪∆R. As a special case, note that the
sequent bAcL, bBcR ` ∅ I I is valid iff I is an interpolant
of A ∧ B. Soundness of the calculus guarantees that the root
of a closed interpolating proof is a valid interpolating sequent.

1http://www.philipp.ruemmer.org/princess.shtml

To solve an interpolation problem A ∧B, a prover typically
first constructs a proof of A,B ` ∅ using the ordinary calcu-
lus from Section II-A. Once a closed proof has been found, it
can be lifted to an interpolating proof: this is done by replacing
the root formulas A,B with bAcL, bBcR, respectively, and
recursively assigning labels to all other formulas as defined by
the rules from Fig. 2. Then, starting from the leaves, intermedi-
ate interpolants are computed and propagated back to the root,
leading to an interpolating sequent bAcL, bBcR ` ∅ I I .

III. SOLVING NON-LINEAR CONSTRAINTS

We extend the base logic in two steps: in this section,
symbols and rules are added to solve non-linear diophantine
problems; a second extension is then done in Section IV to
handle arithmetic bit-vector constraints. Both constructions
preserve the ability of the calculus to eliminate quantifiers
(under certain assumptions) and derive Craig interpolants.

For non-linear constraints, we assume that the set P of
uninterpreted predicates contains a distinguish ternary pred-
icate ×, with the intended semantics that the third argument
represents the result of multiplying the first two arguments,
i.e., ×(s, t, r) ⇔ s · t = r. The predicate × is clearly
sufficient to express arbitrary polynomial constraints by in-
troducing a ×-literal for each product in a formula, at the
cost of introducing a linear number of additional constants
or existentially quantified variables. We make the simplifying
assumption that × only occurs in negative positions; that
means, top-level occurrences will be on the left-hand side of
sequents. Positive occurrences can be eliminated thanks to the
equivalence ¬×(s, t, r)⇔ ∃x.(×(s, t, x) ∧ x 6= r).

A. Calculus Rules for Non-Linear Constraints

We now introduce different classes of calculus rules to
reason about the ×-predicate. The rules are necessarily incom-
plete for proving that a sequent is valid, but they are complete
for finding counterexamples: if φ is a satisfiable quantifier-
free formula with × as the only uninterpreted predicate, then
it is possible to construct a proof for φ ` ∅ that has an
open and unprovable goal in pure Presburger arithmetic (by
systematically splitting variable domains, Section III-A4).

1) Deriving Implied Equalities with Gröbner Bases: The
first rule applies standard algebra methods to infer new equal-
ities from multiplication literals. To avoid the computation of
more and more complex terms in this process, we restrict
the calculus to the inference of linear equations that can be
derived through computation of a Gröbner basis.2 Given a set
{×(si, ti, ri)}ni=1 of ×-literals and a set {ej = 0}mj=1 of linear
equations, the generated ideal I = ({si ·ti−ri}ni=1∪{ej}mj=1)
over rational numbers is the smallest set of rational poly-
nomials that contains {si · ti − ri}ni=1 ∪ {ej}mj=1, is closed
under addition, and closed under multiplication with arbitrary
rational polynomials [25]. Any f ∈ I corresponds to an

2The set of all linear equations implied by a set of ×-literals over integers
is clearly not computable, by reduction of Hilbert’s 10th problem.

http://www.philipp.ruemmer.org/princess.shtml


equation f = 0 that logically follows from the literals, and
can therefore be added to a proof goal:

Γ, {×(si, ti, ri)}ni=1, {ej = 0}mj=1, f = 0 ` ∆

Γ, {×(si, ti, ri)}ni=1, {ej = 0}mj=1 ` ∆
×-EQ

if f is linear, has integer coefficients, and f ∈ I

To see how this rule can be applied practically, note that
the subset of linear polynomials in I forms a rational vector
space, and therefore has a finite basis. It is enough to apply
×-EQ for terms f1, . . . , fk corresponding to any such basis,
since linear arithmetic reasoning (in the base logic) will then
be able to derive all other linear polynomials in I . To compute
a basis f1, . . . , fk, we can transform {si ·ti−ri}ni=1∪{ej}mj=1

to a Gröbner basis using Buchberger’s algorithm [26], and then
apply Gaussian elimination to find linear basis polynomials (or
directly by choosing a suitable monomial order).

Example 1: Consider the square of a sum: (x + y)2 =
x2 + 2xy + y2. This can be proven in the following way.
We begin by rewriting the equation to normal form, let
Π = {×(x, x, c1),×(x, y, c2),×(y, y, c3),×(x+y, x+y, c4)}:

∗....
Π, c1 + 2c2 + c3 − c4 = 0 ` c4 = c1 + 2c2 + c3

Π ` c4 = c1 + 2c2 + c3
×-EQ

Here, the ×-EQ-step is motivated by the fact that the Gröbner
basis derived from Π contains the linear polynomial c1+2c2+
c3− c4, from which the desired equation can be derived using
linear reasoning.

2) Interval Constraint Propagation (ICP): Our main tech-
nique for inequality reasoning in the presence of ×-predicates
is interval constraint propagation (ICP) [27], which com-
putes greatest fixed-points over-approximating the ranges
of constants or free variables. Due to lack of space we
do not introduce ICP in full detail, but only assume that
Prop{φ1,...,φn} is a monotonic function describing the propa-
gation of bounds information implied by equalities, inequal-
ities, and ×-literals φ1, . . . , φn, and gfpProp{φ1,...,φn} is its
greatest fixed-point. The ICP rule adds resulting bounds for a
constant or variable c ∈ C ∪X:

Γ, φ1, . . . , φn, l ≤ c, c ≤ u ` ∆

Γ, φ1, . . . , φn ` ∆
×-ICP

if (gfpProp{φ1,...,φn})(c) = [l, u]

Example 2: From two inequalities x ≥ 5 and y ≥ 5, the
rule ×-ICP can derive (x+ y)2 ≥ 100:

×(x+ y, x+ y, c4), x ≥ 5, y ≥ 5, 100 ≤ c4 `
×(x+ y, x+ y, c4), x ≥ 5, y ≥ 5 `

×-EQ

The slightly different problem x+ y ≥ 10→ (x+ y)2 ≥ 100
cannot be proven in the same way, since ICP will not be able
to deduce bounds for x or y from x+ y ≥ 10.

3) Cross-Multiplication of Inequalities: While ICP is
highly effective for approximating the range of constants,
and quickly detecting inconsistencies, it is less useful for
inferring relationships between multiple constants that follow
from multiplication literals. We cover such inferences using
a cross-multiplication rule that resembles procedures used in
ACL2 [28]. The rule captures the fact that if s, t are both
non-negative, then also the product s · t is non-negative.

Like in Section III-A1, we prefer to avoid the introduction
of new multiplication literals during proof search, and only
add s · t ≥ 0 if the term s · t can be expressed linearly. For
this, we again write I = ({si · ti − ri}ni=1 ∪ {ej}mj=1) for the
ideal induced by equations and ×-literals:

Γ, s ≤ 0, t ≤ 0, −f ≤ 0 ` ∆

Γ, s ≤ 0, t ≤ 0 ` ∆
×-CROSS

if f is linear, has integer coefficients, and s · t− f ∈ I

The term f can practically be found by computing a Gröbner
basis of I , and reducing the product s · t to check whether an
equivalent linear term exists.

4) Interval Splitting: If everything else fails, as last resort it
can become necessary to systematically split over the possible
values of a variable or constant c ∈ C ∪X:

Γ, c ≤ α− 1 ` ∆ Γ, c ≥ α ` ∆

Γ ` ∆
×-SPLIT

The α ∈ Z can in principle be chosen arbitrarily in the
rule, but in practice a useful strategy is to make use of the
range information derived for ×-ICP: when no ranges can be
tightened any further using ×-ICP, instead ×-SPLIT can be
applied to split one of the intervals in half.

5) ×-Elimination: Finally, occurrences of × can be elim-
inated whenever a formula is subsumed by other literals in a
goal, again writing I = ({si · ti − ri}ni=1 ∪ {ej}mj=1):

Γ ` ∆
Γ,×(s, t, r) ` ∆

×-ELIM

if s · t− r ∈ I

Note that ×-ELIM only eliminates non-linear ×-literals,
whereas ×-EQ only introduces linear equations, so that the
application of the two rules cannot induce cycles.

B. Quantifier Elimination for Non-Linear Constraints

Due to necessary incompleteness of calculi for Peano arith-
metic, quantifiers can in general not be eliminated in the
presence of the × predicate, even when considering formulas
that do not contain other uninterpreted predicates. By com-
bining the QE approach in Section II-B with the rules for ×
that we have introduced, it is nevertheless possible to reason
about quantified non-linear constraints in many practical cases,
and sometimes even get rid of quantifiers. This is possible
because the rules in Section III-A are not only sound, but even
equivalence transformations: in any application of the rules,
the conjunction of the premises is equivalent to the conclusion.



Similarly as in [29], QE is always possible if sufficiently
many constants or variables in a formula φ range over bounded
domains: if there is a set B ⊆ C ∪ X of symbols with
bounded domain such that in each literal ×(s, t, r) either
s or t contain only symbols from B. In this case, proof
construction will terminate when applying the rule ×-SPLIT
only to variables or constants with bounded domain. This
guarantees that eventually every literal ×(s, t, r) can be turned
into a linear equation using ×-EQ, and then be eliminated
using ×-ELIM, only leaving proof goals with pure Presburger
arithmetic constraints. The boundedness condition is naturally
satisfied for bit-vector formulas.

C. Craig Interpolation for Non-Linear Constraints

To carry over the Craig interpolation approach from Sec-
tion II-C to non-linear formulas, interpolating versions of the
calculus rules for the ×-predicate are needed. For this, we
follow the approach used in [4] (which in turn resembles the
use of theory lemmas in SMT in general): when translating a
proof to an interpolating proof, we replace applications of the
×-rules with instantiation of an equivalent theory axiom QAx .
Suppose a non-interpolating proof contains a rule application

....
Γ,Γ′,Γ1 ` ∆1,∆

′,∆ · · ·

....
Γ,Γ′,Γn ` ∆n,∆

′,∆

Γ,Γ′ ` ∆′,∆
R

....

in which Γ′,∆′ are the formulas assumed by the rule ap-
plication, Γ,∆ are side formulas not required or affected by
the application, and Γ1,∆1, . . . , Γn,∆n are newly introduced
formulas in the individual branches.

The (unquantified) theory axiom Ax corresponding to
the rule application expresses that the conjunction of the
premises has to imply the conclusion; the quantified theory
axiom QAx =def ∀S.Ax in addition contains universal quan-
tifiers for all constants S ⊆ C occurring in Ax .

Ax =def

n∧
i=1

(∧
Γi →

∨
∆i

)
→

(∧
Γ′ →

∨
∆′
)

Ax and QAx are specific to the application of R: the
axioms for two distinct applications of R will in general
be different formulas. QAx is defined in such a way that
the effect of R can be simulated by introducing QAx in
the antecedent, instantiating it with the right constants, and
applying propositional rules:

∗....
Γ,Γ′,

∧
Γ′ →

∨
∆′ ` ∆′,∆

Γ,Γ′,Γ1 ` ∆1,∆
′,∆ · · ·

...
Γ,Γ′,Ax ` ∆′,∆

Γ,Γ′,∀S .Ax ` ∆′,∆
∀-LEFT∗

This construction leads to a proof using only the standard
rules from Section II-A, which can be interpolated as discussed
earlier. Since QAx is a valid formula not containing any

constants, it can be introduced in a proof at any point, and
labelled bQAxcL or bQAxcR on demand.

The obvious downside of this approach is the possibility of
quantifiers occurring in interpolants. The interpolating rules
∀-LEFTL/R (Fig. 2) have to introduce quantifiers ∀Rt /∃Lt for
local symbols occurring in the substituted term t; whether such
quantifiers actually occur in the final interpolant depends on
the applied ×-rules, and on the order of rule application. For
instance, with ×-SPLIT it is always possible to choose the
label of QAx so that no quantifiers are needed, whereas ×-EQ
might mix symbols from left and right partitions in such a way
that quantifiers become unavoidable. In our implementation
we approach this issue pragmatically. We leave proof search
unrestricted, and might thus sometimes get proofs that do not
give rise to quantifier-free interpolants; when that happens, we
afterwards apply QE to get rid of the quantifiers. QE is always
possible for bit-vector constraints, see Section IV-D.3

IV. SOLVING BIT-VECTOR CONSTRAINTS

We now define the extension of the base logic to bit-vector
constraints. The main idea of the extension is to represent bit-
vectors of width w as integers in the interval {0, . . . , 2w−1},
and to translate bit-vector operations to the corresponding
operation in Presburger arithmetic (or possible the ×-predicate
for non-linear formulas), followed by an integer remainder
operation to map the result back to the correct bit-vector
domain. Since the remainder operation tends to be a bottleneck
for interpolation, we keep the operation symbolic and initially
consider it as an uninterpreted predicate bmodb

a . The predicate
is only gradually reduced to Presburger arithmetic by applying
the calculus rules introduced later in this section.

Formally, we introduce a set Pbv = {bmodb
a | a, b ∈ Z,

a < b} of binary predicates. The semantics of bmodb
a is to

relate any whole number x ∈ Z to its remainder modulo b−a
in the interval {a, . . . , b− 1}:

bmodb
a (s, r) ⇔ a ≤ r < b ∧ ∃z. r = s+ (b− a) · z

⇔ a ≤ r < b ∧ r ≡ s (mod b− a)

We also introduce short-hand notations for the casts to the
unsigned and signed bit-vector domains:

ubmodw =def bmod2w

0 , sbmodw =def bmod2w−1

−2w−1 .

A. Translating Bit-Vector Constraints to the Core Language

For the rest of the section, we use the base logic aug-
mented with × and bmodb

a -predicates as the core language to
which bit-vector constraints are translated. For presentation,
the translation focuses on a subset of the arithmetic bit-vector
operations, BVOP = {bvaddw, bvmulw, bvudivw, bvnegw,
zew+w′ , bvulew, bvslew}. All operations are sub-scripted with
the bit-width of the operands; the zero-extend function zew+w′

maps bit-vectors of width w to width w + w′. Semantics

3Non-linear integer arithmetic in general does not admit quantifier-free
interpolants. For instance, (x > 1 ∧ x = y2) ∧ x = z2 + 1 is unsatisfiable,
but no quantifier-free interpolants exist, regardless of whether divisibility
predicates α | t are allowed or not.



bvaddw(s, t) = r _ ubmodw (s+ t, r) bvnegw(s) = r _ ubmodw (−s, r)
bvmulw(s, t) = r _ ∃x.

(
×(s, t, x) ∧ ubmodw (x, r)

)
zew+w′(s) = r _ s = r

bvslew(s, t) _ ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x ≤ y) bvulew(s, t) _ s ≤ t
¬bvslew(s, t) _ ∃x, y. (sbmodw (s, x) ∧ sbmodw (t, y) ∧ x > y) ¬bvulew(s, t) _ s > t

bvudivw(s, t) = r _
(
t = 0 ∧ r = 2w − 1

)
∨
(
t ≥ 1 ∧ ∃x. (×(t, r, x) ∧ s− t < x ≤ s)

)
Fig. 3. Rules translating bit-vector operations into the core language. The rules only apply in negative positions.

follows the FixedSizeBitVectors4 theory of the SMT-LIB [30].
Other arithmetic operations, for instance bvsdivw or bvsmodw,
can be handled in the same way as shown here, though
sometimes the number of cases to be considered is larger.

The translation from bit-vector constraints φ to core formu-
las φcore has two parts: first, BVOP occurrences in a formula φ
have to be replaced with equivalent expressions in the core
language; second, since the core language only knows the
sort of unbounded integers, type information has to be made
explicit by adding domain constraints.

a) BVOP elimination: Like in Section III, we assume
that the bit-vector formula φ has already been brought into
a flat form by introducing additional constants or quantified
variables: the operations in BVOP must not occur nested,
and functions only occur in equations of the form f(s̄) = t
in negative positions. The translation from φ to φ′ is then
defined by the rewriting rules in Fig. 3. Since the rules for
the predicate bvslew distinguish between positive and negative
occurrences, we assume that rules are only applied to formulas
in negation normal-form, and only in negative positions.

The rules for bvaddw, bvnegw, zew+w′ , and bvulew simply
translate to the corresponding Presburger term, if necessary
followed by remainder ubmodw . Multiplication bvmulw is
mapped similarly to the ×-predicate defined in Section III,
adding an existential quantifier to store the intermediate
product. Since rules are only applied in negative positions,
the quantified variable can later be replaced with a Skolem
constant. An optimised rule could be defined for the case
that one of the factors is constant, avoiding the use of the
×-predicate. Translation of bvslew simply maps the operands
to a signed bit-vector domain {−2w−1, . . . , 2w−1 − 1}. The
rule for unsigned division bvudivw distinguishes the cases that
the divisor t is zero or positive (as required by SMT-LIB), and
maps the latter case to standard integer division.

b) Domain constraints: Bit-vector variables/constants x
of width w occurring in φ are interpreted as unbounded integer
variables in φcore , which therefore has to contain explicit
assumptions about the ranges of bit-vector variables. We use
the abbreviation inw(x) =def (0 ≤ x < 2w) and define

φcore =
( ∧
x∈S

inwx
(x)
)
→ φ′

where S ⊆ C ∪ X is the set of free variables and constants
occurring in φ, wx is the bit-width of x ∈ S, and φ′ is the
result of applying rules from Fig. 3 to φ. Similar constraints

4http://www.smtlib.org/theories-FixedSizeBitVectors.shtml

are used to express quantification over bit-vectors, for instance
∃x. (inw(x) ∧ . . .) and ∀x. (inw(x)→ . . .).

Example 3: We consider the SMT-LIB QF BV problem
challenge/multiplyOverflow.smt2, a bit-vector
formula that is known to be hard for most SMT solvers since
it contains both multiplication and division. In experiments,
neither Z3 nor CVC4 could prove the formula within 10min.
In our notation, the problem amounts to showing validity of
the following implication, with a, b ranging over bit-vectors
of width 32:

bvule32(b, bvudiv32(232 − 1, a))→
bvule64(bvmul64(ze32+32(a), ze32+32(b)), 232 − 1)

As a flat formula, with additional constants c1 of width 32 and
c2, c3, c4 of width 64, the implication takes the form:(

bvudiv32(232 − 1, a) = c1 ∧ bvmul64(c3, c4) = c2 ∧
ze32+32(a) = c3 ∧ ze32+32(b) = c4 ∧ bvule32(b, c1)

)
→

bvule64(c2, 2
32 − 1)

The final formula φcore is obtained by application of the rules
in Fig. 3, and adding domain constraints:(
in32(a) ∧ in32(b) ∧ in32(c1) ∧ in64(c2) ∧ in64(c3) ∧ in64(c4)) ∧((
a = 0 ∧ c1 = 232 − 1

)
∨(

a ≥ 1 ∧ ∃x.(×(a, c1, x) ∧ 232 − 1− a < x ≤ 232 − 1)
)) ∧

∃z. (×(c3, c4, z) ∧ ubmod64 (z, c2)) ∧ a = c3 ∧ b = c4 ∧ b ≤ c1
)

→ c2 ≤ 232 − 1

B. Preprocessing and Simplification

An encoded formula φcore tends to contain a lot of re-
dundancy, in particular nested or unnecessary occurrences of
the bmodb

a predicates. As an important component of our
calculus, and in line with the approach in other bit-vector
solvers, we therefore apply simplification rules both during
preprocessing and during the solving phase (“inprocessing”).
The most important simplification rules are shown in Fig. 4.
Our implementation in addition applies rules for Boolean and
Presburger connectives.

The notation Π : φ _ φ′ expresses that formula φ can
be rewritten to φ′, given the set Π of formulas as context.
The structural rules in the upper half of Fig. 4 define how
formulas are traversed, and how the context Π is extended
to Π,Lit ′ when encountering further literals. We apply the
structural rules modulo associativity and commutativity of
∧,∨, and prioritise LIT-∧-RW and LIT-∨-RW over the other

http://www.smtlib.org/theories-FixedSizeBitVectors.shtml


Π : φ _ φ′ Π : ψ _ ψ′

Π : φ ◦ ψ _ φ′ ◦ ψ′
◦-RW

Π : Lit _ Lit ′ Π,Lit ′ : φ _ φ′

Π : Lit ∧ φ _ Lit ′ ∧ φ′
LIT-∧-RW

Π : Lit _ Lit ′ Π,¬Lit ′ : φ _ φ′

Π : Lit ∨ φ _ Lit ′ ∨ φ′
LIT-∨-RW

Π : φ _ φ′

Π : ¬φ _ ¬φ′
¬-RW

Π : φ _ φ′

Π : Qx.φ _ Qx.φ′
Q-RW

⌊
lbound(Π,s)−a

b−a

⌋
= k =

⌊
ubound(Π,s)−a

b−a

⌋
Π : bmodb

a (s, r) _ s = r + k · (b− a)
BOUND-RW

s+ (b− a) · t ≺ s
Π : bmodb

a (s, r) _ bmodb
a (s+ (b− a) · t, r)

COEFF-RW

bmodb′

a′ (s
′, r′) ∈ Π, (b− a) | k · (b′ − a′),
s+ k · (s′ − r′) ≺ s

Π : bmodb
a (s, r) _ bmodb

a (s+ k · (s′ − r′), r)
BMOD-RW

Fig. 4. Simplification rules for bit-vector formulas. In ◦-RW, φ and ψ are
not literals, and ◦ ∈ {∧,∨}. In LIT-∧-RW and LIT-∨-RW, the formula Lit is
a literal. In Q-RW, x must not occur in Π, and Q ∈ {∀, ∃}. In COEFF-RW,
all constants or variables in t also occur in s.

rules. Simplification is iterated until a fixed-point is reached
and no further rewriting is possible. The connection between
rewriting rules and the sequent calculus is established by the
following rules:

Γ, φ′ ` ∆

Γ, φ ` ∆
RW-LEFT

Γ ` φ′,∆

Γ ` φ,∆
RW-RIGHT

if Γ ∪ {¬ψ | ψ ∈ ∆} : φ _ φ′

The lower half of Fig. 4 shows three of the bit-vector-
specific rules. Rule BOUND-RW defines elimination of bmodb

a -
predicates that do not require any case splits; the definition of
the rule assumes functions lbound(Π, s) and ubound(Π, s)
that derive lower and upper bounds of a term s, respec-
tively, given the current context Π. The two functions can
be implemented by collecting inequalities (and possibly type
information available for predicates) in Π to obtain an over-
approximation of the range of s.

Rule COEFF-RW reduces coefficients in bmodb
a (s, r) by

adding a multiple of the modulus b−a to s. The rule assumes
a well-founded order ≺ on terms to prevent cycles during
simplification. One way to define such an order is to choose a
total well-founded order ≺ on the union C∪X of variables and
constants, extend ≺ to expressions α ·x by sorting coefficients
as 0 ≺ 1 ≺ −1 ≺ 2 ≺ · · · , and finally extend ≺ to arbitrary
terms α1t1 + · · ·+ αntn as a multiset order [19].

The same order ≺ is used in BMOD-RW, defining how
bmodb

a (s, r) can be rewritten in the context of a second
literal bmodb′

a′ (s
′, r′). The rule is useful to optimise the transla-

tion of nested bit-vector operations. Assuming bmodb′

a′ (s
′, r′),

∗....
. . . , a ≥ 1, e < 232, b ≤ c1, d ≥ 232, e− d− c1 + b ≥ 0 `
. . . ,×(a, b, d),×(a, c1, e), a ≥ 1, e < 232, b ≤ c1 , d ≥ 232 `

×
-C

R
O

S
S

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, d = c2 `
(b)

. . . , 0 ≤ d, d ≤ 264 − 233 + 1, ubmod64 (d, c2) `
RW-LEFT

. . . , in32(a), in32(b),×(a, b, d), ubmod64 (d, c2) `
×-ICP

` φcore
(a)

Fig. 5. Proof tree for Example 5, with the sequences (a) and (b) of rule
applications not shown in detail.

the value of s′ − r′ is known to be a multiple of b′ − a′, and
therefore k · (s′ − r′) is a multiple of b − a provided that
b− a divides k · (b′ − a′). This implies that the truth value of
bmodb

a (s, r) is not affected by adding k · (s′ − r′) to s.
Our implementation uses various further simplification

rules, for instance to eliminate × or bmodb
a whose result is

never used; we skip those for lack of space.

Example 4: The expression bvadd32(bvadd32(a, b), c) cor-
responds to ubmod32 (a+ b, r1) ∧ ubmod32 (r1 + c, r2) in the
core language. Using BMOD-RW, the formula can be rewritten
to ubmod32 (a+ b, r1)∧ubmod32 (a+ b+ c, r2), provided that
a+ b+ c ≺ r1 + c.

Example 5: We continue Ex. 3 and show that φcore is
valid, focusing on the a ≥ 1 case of bvudiv32. The proof
(Fig. 5) consists of three core steps: 1) using ×-ICP, from the
constraints in32(a), in32(b), ×(a, b, d) the inequalities 0 ≤ d
and d ≤ 264 − 233 + 1 can be derived; 2) therefore, using
RW-LEFT and BOUND-RW, the literal ubmod64 (d, c2) can be
rewritten to d = c2, capturing the fact that 64-bit multiplication
cannot overflow for unsigned 32-bit operands; 3) using ×-
CROSS, from the inequalities a ≥ 1 and b ≤ c1 and the
products ×(a, b, d), ×(a, c1, e) we can derive e−d−c1+b ≥ 0.
The proof branch can then be closed using standard arithmetic
reasoning. The implementation of our procedure can easily
find the outlined proof automatically.

C. Splitting Rules for bmodb
a

In general, formulas will of course also contain occurrences
of bmodb

a that cannot be eliminated just by simplification. We
introduce two calculus rules for reasoning about such general
literals bmodb

a (s, r). The first rule makes the assumption that
lower and upper bounds of s are available, and are reasonably
tight, so that an explicit case analysis can be carried out;
the rule generalises BOUND-RW to the situation in which the
factors l, u do not coincide:{

Γ, a ≤ r < b, s = r + i · (b− a) ` ∆
}u
i=l

Γ, bmodb
a (s, r) ` ∆

BMOD-SPLIT

assuming
⌊ lbound(Π,s)−a

b−a
⌋

= l and
⌊ubound(Π,s)−a

b−a
⌋

= u with
Π = Γ ∪ {¬ψ | ψ ∈ ∆}.

If the bounds l, u are too far apart, the number of cases
created by BMOD-SPLIT would become unmanageable, and it



TABLE I
COMPARISON OF ELDARICA CONFIGURATIONS AND CPACHECKER. FOR EACH FAMILY, THE TABLE SHOWS THE NUMBER OF SAFE/UNSAFE RESULTS,

THE AVERAGE TIME, THE REQUIRED NUMBER OF CEGAR ITERATIONS, AND THE AVERAGE SIZE OF COMPUTED INTERPOLANTS FOR ELDARICA.

Categories Total ELDARICA math ELDARICA ilp32 CPACHECKER -32
Solved Time Iter. P. Size Solved Time Iter. P. Size Solved Time Iter.

All 551 293 21.0 11.1 1.0 217 28.0 13.6 1.4 180 30.6 28.5
101 73.4 31.8 1.0 117 49.7 21.7 1.2 168 48.6 3.9

HOLA 46 44 11.4 8.9 1.1 21 11.0 5.8 2.0 12 84.1 87.4
0 4 6.0 0.0 1.3 4 11.4 0.0

llreve 21 16 13.1 16.1 1.1 8 17.4 27.3 1.6 7 26.5 75.7
5 7.4 7.6 1.1 4 8.5 5.8 1.1 5 37.3 7.0

VeriMAP 155 132 5.8 2.3 1.0 100 5.9 3.6 1.1 87 12.2 18.5
21 8.4 4.4 1.0 41 11.6 2.4 1.5 33 24.8 1.3

SVCOMP 329 101 46.1 22.9 1.0 88 58.1 25.7 1.3 74 44.0 26.3
75 96.0 41.1 1.0 68 77.7 35.5 1.1 126 56.5 4.5

is better to choose a direct encoding of the remainder operation
in Presburger arithmetic:

Γ, a ≤ r < b, s = r + (b− a) · c ` ∆

Γ, bmodb
a (s, r) ` ∆

BMOD-CONST

where c is assumed to be a fresh constant. Rule BMOD-CONST
corresponds to the encoding chosen in [15].

In practice, it turns out to be advantageous to prioritise
rule BMOD-SPLIT over BMOD-CONST, as long as the number
of cases does not become too big. This is because each
of the premises of BMOD-SPLIT tends to be significantly
simpler to solve (and interpolate) than the conclusion; in
addition, splitting one bmodb

a literal often allows subsequent
simplifications that eliminate other bmodb

a occurrences.

Example 6: We consider one of the examples from [15], the
interpolation problem A ∧B defined by

A = ¬bvule8(bvadd8(y4, 1), y3) ∧ y2 = bvadd8(y4, 1)

B = bvule8(bvadd8(y2, 1), y3) ∧ y7 = 3 ∧ y7 = bvadd8(y2, 1)

where all variables range over unsigned 8-bit bit-vectors. An
eager encoding into LIA would typically add variables to han-
dle wrap-around semantics, e.g., mapping y′4 = bvadd8(y4, 1)
to y′4 = y4 + b1 − 28σ1 ∧ 0 ≤ y′4 < 28 ∧ 0 ≤ σ1 ≤ 1.
Additional variables tend to be hard for interpolation, and
the LIA interpolant presented in [15] is the formula ILIA =
−255 ≤ y2 − y3 + 256b−1 y2

256c; the formula can be mapped
back to a pure bit-vector formula if needed.

We outline how our calculus proves the unsatisfiability of
A∧B. Translation of the formulas to the core language gives:

Acore =
ψA ∧ ubmodw (y4 + 1, c1) ∧
c1 > y3 ∧ y2 = c1

Bcore =
ψB ∧ ubmodw (y2 + 1, c2) ∧
c2 ≤ y3 ∧ y7 = 3 ∧ y7 = c2

where ψA = in8(y2)∧ in8(y3)∧ in8(y4)∧ in8(c1) and ψB =
in8(y2) ∧ in8(y3) ∧ in8(y7) ∧ in8(c2) are the domains. The
main reasoning step is application of the rule BMOD-SPLIT to

ubmodw (y2 + 1, c2), using the bounds lbound(Π, y2 + 1) = 4
and ubound(Π, y2 + 1) = 256 that follow from Acore, Bcore:

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 `

. . . , 0 ≤ c2 < 256, y2 + 1 = c2 + 256 `
. . . , ubmodw (y2 + 1, c2) `

BMOD-SPLIT

Due to y7 = 3 ∧ y7 = c2, the cases reduce to y2 = 2 and
y2 = 258, and immediately contradict Acore, Bcore.

D. Quantifier Elimination and Craig Interpolation

Since the bit-vector rules in this section are all equivalence
transformations, QE for bit-vectors can be done exactly as
described in Section III-B. As the ranges of all symbols
are now bounded, it is guaranteed that any formula will
eventually be reduced to Presburger arithmetic, so that we
obtain complete QE for (arithmetic) bit-vector constraints.

Similarly, the interpolation approach from Section III-C
carries over to bit-vectors, with theorem axioms being gen-
erated for each of the rules defined in this section. Since the
translation of bit-vector formulas to the core language happens
upfront, also interpolants are guaranteed to be in the core
language, and can be mapped back to bit-vector formulas
if necessary (e.g., as in [15]). Interpolants might contain
quantifiers, in which case QE can be applied (as described
in the first paragraph), so that we altogether obtain a complete
procedure for quantifier-free interpolation of arithmetic bit-
vector formulas. For interpolation problems from software
verification, it happens rarely, however, that QE is needed.

In our implementation, we restrict the use of the sim-
plification rules RW-LEFT and RW-RIGHT when computing
proofs for the purpose of interpolation. Unrestricted use could
quickly mix up the vocabularies of the individual partitions
in an interpolation problem A ∧ B, and thus increase the
likelihood of quantifiers in interpolants. Instead we simplify
A,B separately upfront using rules in Fig. 4, and apply RW-
LEFT, RW-RIGHT only when the modified formula φ is a literal.

Example 7: We continue Example 6, and show how our
calculus finds the simpler interpolant I ′LIA = y3 < y2 for
the interpolation problem A ∧B. The core step is to turn the



TABLE II
PERFORMANCE ON SMT-LIB BV AND QF BV PROBLEMS. FOR EACH

FAMILY, THE FIRST/SECOND ROW GIVES SAT/UNSAT PROBLEMS.

Category PRINCESS Z3 CVC4
Total Time Total Time Total Time

Automizer 16 158.2 16 0.1 14 0.1
127 215.1 137 0.0 137 0.3

keymaera 5 268.6 108 6.9 34 1.0
3771 2.5 3923 0.3 3921 0.1

psyco 2 2.5 132 0.1 132 1.5
3 141.6 62 0.2 62 0.5

tptp 15 2.3 17 0.0 17 0.0
54 1.7 56 0.0 56 0.0

RND 2 40.8 40 6.9 25 40.7
5 188.5 28 6.7 22 13.2

RNDPRE 2 7.4 20 19.0 22 26.9
14 53.9 36 14.1 26 29.3

model 16 1.9 144 0.0 73 10.8
0 0 0

Heizmann 13 49.8 15 37.8 18 18.1
27 155.5 17 50.7 108 8.3

ranking 0 34 4.4 32 1.5
5 12.0 19 19.5 13 0.4

fixpoint 25 94.9 36 0.5 54 14.2
26 85.0 73 0.6 75 2.3

QFBV 334 2.3 2701 11.6 2632 17.4
164 16.4 1967 29.7 1919 19.3

application of BMOD-SPLIT into an explicit axiom; after slight
simplifications, this axiom is:

Ax =

(
ubmodw (y2 + 1, c2) ∧ 3 ≤ y2 < 256 ∧ in8(c2)

)
→(

y2 + 1 = c2 ∨ y2 + 1 = c2 + 256
)

The axiom mentions all assumptions made by the rule, in-
cluding the bounds 3 ≤ y2 < 256 that determine the
number of resulting cases (or, alternatively, the formulas
c1 > y3, y2 = c1, c2 ≤ y3, y7 = 3, y7 = c2 from which the
bounds derive). The axiom also includes domain constraints
like in8(c2) for occurring symbols, which later ensures that
possible quantifiers in interpolants range over bounded do-
mains. The quantified axiom is QAx = ∀y2, c2.Ax , and can
be used to construct an interpolating proof:

∗....
bc1 > y3cL, by2 = c1cL, bc2 ≤ y3cR,
by7 = 3cR, by7 = c2cR, by2 + 1 = c2cR

` ∅ I y3 < y2

P

· · · P · · ·
bAcorecL, bBcorecR, bAxcR ` ∅ I y3 < y2

∨-LEFTR

bAcorecL, bBcorecR, bQAxcR ` ∅ I y3 < y2
∀-LEFTR

We only show one of the cases, P , resulting from splitting the
axiom bAxcR using the rules from Fig. 2. The final interpolant
y3 < y2 records the information needed from Acore to derive
a contradiction in the presence of y2 + 1 = c2; the branch is
closed using standard arithmetic reasoning [10].

V. EXPERIMENTS

We have implemented the procedures in the PRINCESS
theorem prover. PRINCESS also partly supports operators like
shift and bit-wise and/or. All experiments were done using
PRINCESS version 2018-05-25 on an AMD Opteron 2220 SE
machine, running 64-bit Linux and Java 1.8. Runtime was
limited to 10min wall clock time, and heap space 2GB.

a) SAT Checking on BV and QF BV Problems: Results
on SMT-LIB benchmarks are given in Table II. We compare
our implementation with Z3 4.8.0 and CVC4 1.6. Our pro-
cedure can solve a similar number of problems as Z3 and
CVC4 on many of the BV families. Although our procedure
is not specifically designed for QF BV, we include overall
numbers for completeness (excluding the families ASP and
Sage). However, the overwhelming majority of the QF BV
benchmarks contains bit-wise operations not fully supported
by PRINCESS yet. QF BV families on which our procedure
does well include Example 3 and the PSPACE family.

b) Verification of C Programs: Since it is difficult to
compare interpolation procedures outside of an application,
we present results of running the ELDARICA version 2.0-
alpha3 model checker5 on a benchmark set of 551 C programs,
using the implementation of our calculus in PRINCESS as
interpolation procedure (Table I). The benchmarks are the pro-
grams used in [31] for evaluating different predicate generation
strategies. The programs use only arithmetic operations, no
arrays or heap data structures. For this paper, we interpret
the programs as operating either on the mathematical integers
(math), or on signed 32-bit bit-vectors (ilp32) with wrap-
around semantics. Both configurations were running a parallel
portfolio of two interpolation strategies (ELDARICA option
-abstractPO): straightforward interpolation to compute
predicates, and the interpolation abstraction technique [32].
The experiments show that our interpolation approach for bit-
vectors can solve almost as many programs as the existing
interpolation methods for mathematical integers, with a sim-
ilar number of CEGAR iterations, and with interpolants of
comparable size. The scatter plot in Fig. 6 indeed shows very
similar runtimes for the two configurations.

As comparison, we also ran CPACHECKER 1.7 [33] on the
benchmarks, using options -predicateAnalysis -32
and MATHSAT as solver; MATHSAT uses the interpolation
method from [15]. As can be seen in Table I, our method is
competitive with CPACHECKER on all considered families,
in particular for the safe programs. We remark, however,
that we are comparing different verification systems here.
Although both ELDARICA and CPACHECKER apply CEGAR
and interpolation, there are many factors affecting the results.

VI. CONCLUSIONS

We have presented a new calculus for Craig interpolation
and quantifier elimination in bit-vector arithmetic. While the
experimental results in model checking are already promising,
we believe that there is still a lot of room for extension and

5https://github.com/uuverifiers/eldarica

https://github.com/uuverifiers/eldarica


Fig. 6. Scatter plot comparing runtime of math and ilp32 semantics on the
C benchmarks.

improvement of the approach. This includes more powerful
propagation and simplification rules, and more sophisticated
strategies to apply the splitting rules ×-SPLIT and BMOD-
SPLIT. Future work also includes the extension of our calculus
to bit-wise operations like bvand, bvor, or bvxor, for which
we plan to add further uninterpreted predicates to our setting
to preserve laziness as far as possible.
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[6] L. Kovács and A. Voronkov, “Interpolation and symbol elimination,” in
CADE, 2009, pp. 199–213.

[7] M. P. Bonacina and M. Johansson, “On interpolation in automated
theorem proving,” J. Autom. Reasoning, vol. 54, no. 1, pp. 69–97, 2015.

[8] D. Kapur, R. Majumdar, and C. G. Zarba, “Interpolation for data
structures,” in SIGSOFT’06/FSE-14. New York, NY, USA: ACM, 2006,
pp. 105–116.

[9] L. Dai, B. Xia, and N. Zhan, “Generating non-linear interpolants
by semidefinite programming,” in Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds., vol. 8044. Springer, 2013, pp. 364–
380.

[10] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl, “An interpolating
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