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Abstract—Black-box components conceal parts of software ex-
ecution paths, which makes systematic testing, e. g., via symbolic
execution, difficult. In this paper, we use automata learning
to facilitate symbolic execution in the presence of black-box
components. We substitute black-boxes in a software system with
learned automata that model them, enabling us to symbolically
execute program paths that run through black-boxes. We show
that applying the approach on real-world software systems in-
corporating black-boxes increases code coverage when compared
to standard techniques.

I. INTRODUCTION

Symbolic execution is a method to analyze software sys-
tems. It has gained attention since its introduction in the 1970s
[1, 2] and is used in testing, invariant detection, model check-
ing, and proving software correctness [3, 4, 5, 6]. Symbolic
execution achieves high test coverage in a setting where the
source code is completely available.

In practice, many software systems incorporate black-box
components for which the source code is not available (e. g.,
third-party software units, hardware peripherals). A thorough
behavioral analysis in the presence of black-box components
is challenging using methods like symbolic execution, because
black-box components conceal parts of software execution. To
symbolically execute such software systems, Cadar et al. [7]
proposed to replace the calls to a black-box component with
calls to manually written stubs that model the component’s
behavior. This is a very challenging and error-prone task
because either one does not have access to documentations
of black-box components or this labor-intensive effort is not
worth it since the resulting model will only be used once.
Consequently, we often use methods that are applicable in
the presence of black-boxes; e. g., random testing, or model-
based testing, which requires behavioral models. Alternatively,
symbolic execution may be combined with concrete execution
of black-box paths, such an approach is for instance used by
concolic execution [4, 8, 9].

In this paper, we use automata learning to enable symbolic
execution in the presence of black-box components. Figure 1
depicts the overall execution flow for our proposed setting.
Given a System Under Test (SUT), divided into a white-box
and a black-box component, we learn a finite-state machine
(FSM) model of the black-box component, and compose
it with the white-box to generate system-level test cases
via symbolic execution; i. e., we replace the black-box with
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Fig. 1: System-level testing in the presence of a black-box. The
system under test (SUT) comprises a white-box and a black-
box component that is the system under learning (SUL).

its model for test-case generation. Finally, we execute the
generated test cases on the original system incorporating the
black-box component itself to obtain high coverage on the
white-box. Testing software units in isolation often results in
a broad set of test cases that are not worth the effort of manual
inspection. On the other hand, systematic testing of interactive
software units results in a reduced number of system-level test
cases. An advantage of the proposed approach is that it enables
systematic testing in the presence of black-boxes.

Our approach is currently applicable to black-boxes that we
can model as FSMs, and not applicable to other types of black-
boxes like arithmetic functions. Moreover, there are concerns
about the practicality of automata learning mostly due to the
abstraction layer to counter state space explosion. Meanwhile,
automata learning is successfully applied for systems with
thousands of states [10] and there are techniques to support up
to a million states [11]. Finally, learned FSMs of small abstract
state space are shown to be sufficient for many interesting
scenarios [12, 13] and this paper elaborates on one.

We built our method on top of KLEE [4], and LearnLib [14].
Applying our approach to a variety of real-world scenarios
showed not only the test coverage increases, but the testing
time also decreases, both compared to concolic execution.
Results show coverage increase for units of interest in three
real-world software systems that are dependent on an SPI
controller (52.94%), an MQTT Broker (5.9% & 8.36%), and
an SD-Card controller (75.36%).
Outline. This paper has the following structure. Section II
summarizes automata learning and symbolic execution. Sec-
tion III explains how to learn an automaton from a black-
box and use it to execute the software system incorporating
that black-box symbolically. Sections IV to VI provide case
studies demonstrating the applicability of our approach in real-
world scenarios. Section VII covers related work. Section VIII
concludes and discusses future research directions.



II. PRELIMINARIES

A. Symbolic Execution

To infer what inputs cause which parts of a program to
execute, symbolic execution assigns symbolic values to input
variables and then explores the control-flow of the program
[1, 2, 3, 4]. By keeping track of the program counter and
constraints on symbolic input values, an execution engine
discovers how inputs influence the execution path. Along each
execution path, symbolic execution collects constraints from
branch conditions and forms a conjunction of these constraints,
called path condition. An execution path is feasible if its path
condition is satisfiable; thus, a constraint solver can reveal
with which input values an execution path is feasible and
with which input values it is not. A feasible execution path
represents multiple program runs whose concrete values satisfy
the path condition; i. e., solutions to the path condition are
concrete test cases.

Definition 1 (Execution State): An execution state is a
triple S = 〈PC, σ, π〉, where PC is the program counter, σ is
a function from program variables to terms over concrete and
symbolic values, and π is the path condition; i. e., a formula
that imposes a set of constraints on the symbolic values.

To symbolically execute a program, symbolic execution
evolves the execution state as soon as (1) an assignment is
evaluated, (2) a conditional branch is evaluated, and (3) the
program counter changes. Executing an assignment statement
will update σ. Executing a conditional branch with the con-
dition c duplicates the current execution state S into Strue
and Sfalse and forks execution. Subsequently, the execution
engine computes a symbolic formula ϑc from c by replacing
program variables with the corresponding terms as determined
by σ; next, it duplicates the path condition π for different
branches and sets πtrue = π ∧ ϑc and πfalse = π ∧ ¬ϑc.
Finally, sometimes the program execution evolves through
unconditional branches like goto statements, which affects the
program counter PC of the execution state.

To tackle the problem of symbolic execution in the presence
of black-box components, one can combine symbolic and
concrete execution such that whenever the program counter is
leaving the program’s scope symbolic values that flow through
the black-box component are concretized and upon returning
to the program’s scope symbolic execution continues with con-
crete values. The approach is often called concolic execution,
dynamic symbolic execution, or directed automated random
testing [4, 8, 9]. In this paper, we propose an alternative
approach via automata learning. For a thorough survey on
symbolic execution please refer to [15].

B. Automata

Definition 2 (Finite-State Transducer): A finite-state trans-
ducer over input alphabet I and output alphabet O is a tuple
M = 〈I,O,Q, q0, δ, λ〉, where Q is a nonempty set of states,
q0 is the initial state, δ ⊆ Q× I ×Q is the transition relation,
and λ ⊆ Q× I ×O is the output relation.

Definition 3 (Mealy Machine): A Mealy machine is a finite-
state transducer M = 〈I,O,Q, q0, δ, λ〉 where its δ and λ are
functions δ : Q× I → Q and λ : Q× I → O.

From this point forward, we write q
i/o−−→ q′ if q′ = δ(q, i)

and o = λ(q, i) for Mealy machines, and if (q, i, q′) ∈ δ and
(q, i, o) ∈ λ for finite-state transducers.

Definition 4 (Observation): An observation over input/out-
put alphabet I and O is a pair 〈ı, o〉 ∈ I∗ × O∗ such that
|ı| = |o|. Given a Mealy machine M, the set of observations
of M from state q denoted by obsM(q) are:

obsM(q) = {〈ı, o〉 ∈ I∗ ×O∗ | ∃q′ : q
ı/o−−→∗q′},

where
ı/o−−→ ∗ is the transitive and reflexive closure of the

combined transition-and-output function to sequences which
implies |ı| = |o|. From this point forward, obsM = obsM(q0).

Definition 5 (Observation Equivalence): Given states
q, q′ ∈ Q, we define q ≈ q′, that is q and q′ are observa-
tion equivalent, only if obsM(q) = obsM(q′). Given Mealy
machinesM1 andM2 over the same alphabet,M1 ≈M2 if
obsM1

= obsM2
.

C. Learning and Abstraction

Angluin [16] proposed an active automata learning algo-
rithm called L∗. This algorithm learns a deterministic finite au-
tomaton accepting an unknown regular language L. It requires
a minimally adequate teacher that needs to be able to answer
two types of queries, membership and equivalence queries.
First, the learner asks membership queries, checking inclusion
of words in the language L. Once the learner has gained
enough information to build a hypothesis automaton, it asks an
equivalence query, checking whether the hypothesis accepts L.
The teacher either responds with yes, signaling that learning
was successful, or with a counterexample to equivalence. If
provided with a counterexample, the learner integrates it into
its knowledge and starts a new round of learning by issuing
membership queries, which is concluded by an equivalence
query. L∗ was adapted to learn various forms of automata,
including Mealy machines [17]. The basic principle remains
the same, but output queries replace membership queries,
which ask for outputs produced in response to input sequences.

To learn models of software systems, teachers are usually
implemented via testing, as shown in Fig. 2 [18]. Output
queries typically reset the System Under Learning (SUL),
execute a sequence of inputs and collect the produced outputs.
Equivalence queries can be approximated with model-based
testing [19]. For that, a Conformance Testing (CT) component
derives test queries from the hypothesis, which are executed
to find discrepancies between SUL and hypothesis, i. e., coun-
terexamples to observation equivalence (see Def. 4 and 5).

L∗ is only affordable for small alphabets I∪O; hence, Aarts
et al. [20] suggested that we abstract away the concrete domain
of the data, by forming equivalence classes in I ∪ O. This is
usually done by a mapper placed in between the learner and
the SUL. For abstraction, the mapper maps concrete inputs I
and outputs O to abstract inputs X and outputs Y .
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Fig. 2: Abstract automata learning through a mapper using L∗

(adapted from a figure in [18]).

Definition 6 (Mapper): A mapper for concrete inputs I , and
concrete outputs O is a tuple A = 〈I,O,R, r0,∆, X, Y,∇〉,
where R is the set of mapper states, r0 is the initial state,
∆ : R × (I ∪ O) → R is a transition function, X is a set
of abstract inputs and Y is a set of abstract outputs, and ∇ :
(R×I → X)∪(R×O → Y ) is an abstraction function. From
this point forward, we write r a−→ r′ if ∆(r, a) = r′.

The mapper communicates with the SUL via the concrete
alphabet, and with the teacher and learner via the abstract
alphabet. In the setting shown in Fig. 2, the learner behaves the
same as the original L∗ algorithm, but the teacher answers to
the queries by indirectly interacting with the SUL through the
mapper. Consequently, whenever the teacher receives a reset
signal from the learner it resets the mapper along with the SUL
to their initial states. Moreover, an individual step executing a
single input and observing the output is performed as follows:

1) Given mapper’s current state r, upon receiving abstract
input x ∈ X , the mapper non-deterministically picks
a concrete input symbol i ∈ I such that ∇(r, i) = x.
If such i ∈ I exists, then the mapper jumps to state
r′ = ∆(r, i) and forwards i to the SUL, otherwise it
returns the output ⊥ to the learner.

2) If the mapper has selected and forwarded an i ∈ I , then
upon receiving a concrete output o ∈ O from the SUL,
the mapper forwards an abstract version y = ∇(r′, o) to
the learner and jumps to state r′′ = ∆(r′, o).

Learning an abstract Mealy machine is a slight generaliza-
tion of L∗ [20]. From the learner’s point of view nothing has
changed; it learns a hypothesis H from observations; but it
actually queries an abstraction αA(M) of a Mealy machine
M induced by a mapper A as described by Def. 7. Meanwhile,
the concretization of αA(M) induced by a mapper A is a
finite-state transducer γA(αA(M)) defined by Def. 8.

Definition 7 (Abstraction): Let M = 〈I,O,Q, q0, δ, λ〉 be
a Mealy machine, and let A = 〈I,O,R, r0,∆, X, Y,∇〉 be a
mapper. The abstraction ofM via A is a finite-state transducer
denoted as αA(M) = 〈X,Y ∪ {⊥}, Q × R, 〈q0, r0〉, δ′, λ′〉,
where δ′ and λ′ are given by the following rules:

q
i/o−−→ q′, r

i−→ r′
o−→ r′′, ∇(r, i) = x, ∇(r′, o) = y

(〈q, r〉, x, 〈q′, r′′〉) ∈ δ′ ∧ (〈q, r〉, x, y) ∈ λ′
@i ∈ I : ∇(r, i) = x

(〈q, r〉, x, 〈q, r〉) ∈ δ′ ∧ (〈q, r〉, x,⊥) ∈ λ′

Note that two issues may arise from abstraction. The
abstraction function ∇ may be undefined for some inputs
(second rule of Def. 7) and non-deterministic behavior may
be introduced by the mapper. This non-determinism might
occur if we have two pairs of concrete input/outputs pairs
(i1, o1) and (i2, o2), observable in the same state, such that
∇(r, i1) = ∇(r, i2) but ∇(r′, o1) 6= ∇(r′, o2); i. e., the inputs
map to the same abstract symbol, but the outputs map to
different ones. While Aarts et al. [20] described a method
to automatically refine the mapper, we manually refine it if
we encounter such issues to ensure the learned model is an
abstract Mealy machine.

Definition 8 (Concretization): Let αA(M) = 〈X,Y ∪
{⊥}, Q, q0, δ, λ〉 be an abstract Mealy machine, and let A =
〈I,O,R, r0,∆, X, Y,∇〉 be the mapper. The concretization
of αA(M) via A is a finite-state transducer denoted as
γA(αA(M)) = 〈I,O ∪ {⊥}, Q × R, 〈q0, r0〉, δ′′, λ′′〉 where
δ′′ and λ′′ are given by the following rules:

q
x/y−−→ q′, r

i−→ r′
o−→ r′′, ∇(r, i) = x, ∇(r′, o) = y

(〈q, r〉, i, 〈q′, r′′〉) ∈ δ′′ ∧ (〈q, r〉, i, o) ∈ λ′′

q
x/y−−→ q′, r

i−→ r′, ∇(r, i) = x, @o ∈ O : ∇(r′, o) = y

(〈q, r〉, i, 〈q, r〉) ∈ δ′′ ∧ (〈q, r〉, i,⊥) ∈ λ′′

III. METHOD

In this section we describe our method as it is depicted in
Fig. 1. First, we give an overview of the proposed configura-
tion and then discuss the involved steps in detail. We start by
learning an FSM of the black-box component with a manually
defined mapper. Then, we compose this with the white-box.
Finally, we execute the SUT symbolically, to generate test
cases exercising as many execution paths as possible.

A. Model Learning

As described in Sect. II-C, we learn models by interacting
with the SUL via a mapper performing abstraction. The con-
crete alphabet I∪O of the SUL generally contains input/output
actions of the form e(p1, . . . , pn), i. e., we have input/output
events e ∈ E with n parameters. Mappers create equivalence
classes of I ∪O by defining constraints on parameters.

The state of the mapper comprises a fixed number of m
variables recording the occurrence of events and storing action
parameters. We can therefore view the mapper state as a tuple
r ∈ R ⊆ (E ∪ X )m, where E is the set of events and X
is a set of values relevant to the application domain, i. e.,
it includes the domains of the action parameters, as well as
terms formed from parameter values. For the update ∆ of
the mapper state, we have l guarded update rules for each
event e: ∆(〈r1, . . . , rm〉, e(p1, . . . , pn)) = 〈r′1, . . . , r′m〉 if gj ,
where the guard gj is a quantifier-free formula over R and
the parameters of e such that

∨l
j=1 gj = > and i 6= j →

gi ∧ gj = ⊥. Similarly, we have k guarded abstraction rules
∇(r, e(p1, . . . , pn)) = z if gz for each e, where z is a unique
abstract symbol in X ∪ Y .



Input: 1. M = 〈X,Y,Q, q0, δ, λ〉,
Input: 2. A = 〈I,O,R, r0,∆, X, Y,∇〉

1: function i(p1, . . . , pn)
2: switch ∇(r, i(p1, . . . , pn)) do
3: case x1
4: y ← λ(q, x1)
5: q ← δ(q, x1)
6: r ← ∆(r, i(p1, . . . , pn))
7: o(p′1, . . . , p

′
j)← ∇−1(r, y)

8: r ← ∆(r, o(p′1, . . . , p
′
j))

9: return o(p′1, . . . , p
′
j)

10: case x2
11:

...
12: function ∇−1(r, y)
13: o(p′1, . . . , p

′
j)← oc s.t. ∇(r, oc) = y if gy

14: for all p′ ∈ {p′1, . . . , p′j} do
15: MAKESYMBOLIC(p′)
16: ASSUME(gy)

Fig. 3: Composition of learned model and mapper.
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Fig. 4: Mapper in (a) learning vs. (b) symbolic execution

B. Symbolic Execution

Once an abstract model of the black-box component is
learned, we compile it alongside the mapper to symbolically
execute it. For that, we reverse the role of mapper as compared
to learning; see Fig. 4. Therefore, we implement abstraction
and concretization as described in Def. 7 and 8 via translation
to source code. The interface to the translated composition of
mapper and learned model consists of functions i(p1, . . . , pn),
for each input event i, called by the white-box component.
Figure 3 shows abstractly how these functions are imple-
mented. First, we perform abstraction of inputs (Line 2).
Consequently, if such a function is symbolically executed,
execution initially forks to each case-branch and the execution
engine adds the abstraction-rule guard gx of each abstract
input x to the respective path condition, thereby constraining
symbolic parameters of i. After that, we update the model state
(Line 5) and the mapper state (Lines 6 and 8). Finally, we
return concretized outputs o(p′1, . . . , p

′
j) (Line 9). To update

the mapper state, we actually need to check the guards of the
update rules defining ∆. This detail is left implicit in Fig. 3.

Abstraction and updates of the state work as described by
the ∇, ∆, and δ. For the concretization of an abstract output
y, we need ∇−1, but since ∇ performs abstraction, there is no
immediate definition of ∇−1. Instead, we retrieve the output
event o(p′1, . . . , p

′
j) and the abstraction-rule guard gy for y

from the ∇ definition (Line 13). We declare the parameters of
the output event to be symbolic values via MAKESYMBOLIC
(Line 15) and through ASSUME(gy) we instruct the symbolic
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Fig. 5: Master-mode SPI peripheral in loopback along with
SPI master-slave setup. SCLK is the serial clock, which is an
output line of master, MOSI is the data output line from master
to slave, MISO is the data output line from slave to master, and
SS is the slave select and an output line of master.

1 byte tx_data = 0xdd, rx_data = 0;
2 LPC_SPI->CFG = SPI_CFG_MASTER | SPI_CFG_ENABLE;
3 while(~LPC_SPI->STAT & SPI_STAT_TXRDY);
4 LPC_SPI->TXDATCTL = SPI_TXDATCTL_SSEL_N(0xe)|

SPI_TXDATCTL_FLEN(7)|SPI_TXDATCTL_EOT|tx_data;
5 while(~LPC_SPI->STAT & SPI_STAT_RXRDY);
6 rx_data = LPC_SPI->RXDAT;
7 if(rx_data != tx_data)
8 abort();
9 while(~LPC_SPI->STAT & SPI_STAT_MSTIDLE);

Listing 1: Transmit and receive to/from slave [21, p. 349]

execution engine to add gy to the path condition (Line 16).
Hence, we let the execution engine find an instantiation of the
output-event parameters satisfying gy; i. e., it picks a value in
O that is in the equivalence class corresponding to y.

C. Testing

After translation, we generate system-level test cases via
symbolic execution of the composition of the white-box, the
learned model, and the mapper. We then run these test cases
on the actual SUT, i. e., the white-box interacting with the
black-box component, while profiling the observed behaviour,
outputs, and executed code paths in the white-box. This step
is necessary, because the learned model may not be equivalent
to the black-box under abstraction. This is due to the fact that
learning relies on conformance testing which is incomplete
in general. Hence, running the generated test cases serves as
a spuriousness check, i. e., we ensure that we will not report
spurious errors, or spuriously covered code paths. Our method
is therefore sound, but incomplete as it involves black-box
conformance testing in the learning phase.

IV. SERIAL PERIPHERAL INTERFACE

In this section, we demonstrate how we can symbolically
execute code that depends on a Serial Peripheral Interface
(SPI). First, we study how to learn an SPI controller in its
master-mode with a loopback setup to execute Listing 1 sym-
bolically. Then, we show how we can extend our experiment
to the whole master-slave setup of SPI.

A. Learning Master-Mode Controller of SPI

In this subsection, we symbolically execute Listing 1 that
depends on the SPI bus of the NXP LPC810 micro-controller
(MCU). Listing 1 drives an SPI controller in its master-mode
with the purpose of sending a single byte to a slave-mode SPI
controller and receiving a byte from it. The execution aborts
when the received byte does not conform to the sent byte.



TABLE I: ∆ & ∇ functions of master-mode SPI mapper.

State (s) Symbol (a) ∆(s, a) ∇(s, a)

r void r ε
r read(STAT) r ST
r read(RXDAT) r RX
r write(TXDATCTL,n) n TX
r STAT(m) r

if m = 0x01 〈0, 0, 1〉
if m = 0x03 〈0, 1, 1〉
if m = 0x102 〈1, 1, 0〉
if m = 0x103 〈1, 1, 1〉

r RXDAT(n) r
if n 6= r 0
if n = r 1

Learning. To simplify the learning, we learn the master-mode
SPI controller in a loopback setup; that is, the same controller
receives the transmitted byte; please see Fig. 5a. Primarily
we need to know how to reset the SPI controller to its master-
mode should the learner ask for a reset. In Line 2, we initialize
the SPI controller to its master-mode by writing bit masks
SPI_CFG_MASTER and SPI_CFG_ENABLE to LPC_SPI->CFG register.
Alphabet. To extract alphabets we ought to know a thing or
two about the NXP LPC810 MCU. In Line 3, we read the
LPC_SPI->STAT register and check if SPI_STAT_TXRDY bit is set
to see if the transmission line is ready or not. The act of
accessing and evaluating the value of LPC_SPI->STAT is an input
symbol in I; accordingly, possible values for SPI_STAT_TXRDY

(bit 0) represent outputs in O. The STAT register provides more
SPI status flags whose possible values represent more outputs
in O. Remaining SPI status flags are SPI_STAT_RXRDY (bit 1)
and SPI_STAT_MSTIDLE (bit 8) [21, p. 239]. We extracted the
following concrete alphabets from Listing 1:

I = {read(STAT), read(RXDAT), write(TXDATCTL, n) | n ∈ N} ,
O = {void, STAT(0x01), STAT(0x03), STAT(0x102), STAT(0x103),

RXDAT(n) | n ∈ N} .

Mapper. We define a mapper over states N∪{⊥} where ⊥ is
the initial state. We define the mapper’s ∆ and ∇ functions by
Table I. The concrete values of the STAT register are mapped
to triples 〈SPI_STAT_MSTIDLE, SPI_STAT_RXRDY, SPI_STAT_TXRDY〉.

Finally, the learning experiment results in the automaton
that is depicted in Fig. 6, with which we were able to execute
Listing 1 symbolically. An interesting observation that we
made is according to the FSM depicted in Fig. 6, a data
transmission in state s0 triggers a state transition to state s1
and an immediate data write to TXDAT, then a move to transmit
holding register, and finally transmit to RXDAT. A subsequent
data transmission results in a data write to TXDAT, then a move
to transmit holding register. Since RXDAT register is occupied in
s1 the transmission to RXDAT never occurs, instead the Master
Idle flag is cleared, indicating the transmit holding register
is not empty, and current state changes to state s2. If we do
another data transmission in this state, current state changes
to state s3; where any data transmission rewrites TXDAT and
clears Transmitter Ready flag.

On the other hand, according to [21], when the transmit
holding register is empty and the transmitter is not send-

s0 s1 s2 s3

RX/0

ST/〈1, 1, 0〉

TX/ε

ST/〈1, 1, 1〉

RX/1

TX/ε

ST/〈0, 1, 1〉

RX/0

TX/ε
TX/ε

ST/〈0, 0, 1〉

RX/0

Fig. 6: Automaton of SPI controller as shown in Fig. 5a.
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Fig. 7: Software units interacting via black-box SPI.

ing data the Master Idle flag (i. e., SPI_STAT_MSTIDLE) is set
otherwise it is cleared. The Transmitter Ready flag (i. e.,
SPI_STAT_TXRDY) indicates whether data may be written to the
transmit buffer or not. It is unset when writing data to TXDAT

and set when the data is moved from the transmit buffer
to the transmit shift register. The Receiver Ready flag (i. e.,
SPI_STAT_RXRDY) indicates if data is available to be read from
the receiver buffer, and it is cleared after reading RXDAT or
RXDATSTAT.

B. Learning Master-Slave Setup of SPI

In this subsection, we demonstrate how to generate system-
level test cases for embedded software systems in the presence
of a black-box communication channel.
Test Setup. Our embedded software system implements a
padlock using two software units S1 and S2 that communicate
through black-box peripherals P1 and P2; see Fig. 7. S1

implements a user interface that unlocks a padlock with a 4-
digit pin p0p1p2p3; see Listing 2. Meanwhile, S2 implements
a variant of a combination lock automaton; see Fig. 8. This
automaton progresses on correct inputs p0p1p2p3 and resets
otherwise. In each step, S2 emits 1 in case of success and 0
otherwise. Finally, to check the pin, S1 sends it to S2.

We implemented our embedded software system on a pair
of NXP LPC810 MCUs. Our port of S1 to the primary MCU
firmware (i. e., user interface) uses the SPI controller in its
master-mode configuration to communicate with S2 on the
secondary MCU that uses the SPI controller in its slave-mode

1 int main(int argc, char* argv[]) {
2 do {
3 int pin = getchar();
4 } while(!S2.check(pin))
5 grant_user_access();
6 return 0;
7 }

Listing 2: S1 runs user interface and access control.

0 1 2 3

¬p0/0

¬p1/0

¬p2/0

p0/0 p1/0 p2/0

¬p3/0

p3/1

Fig. 8: S2 runs a combination lock automaton for pin checks.



TABLE II: Code coverage in the presence of SPI controllers.

Coverage Metric S1 S2

Concolic Symbolic Concolic Symbolic

Line Coverage 84.78% 86.96% 38.24% 91.18%
Branch Coverage 57.14% 71.43% 25.00% 85.00%

configuration. Finally, due to the master/slave architecture of
the SPI bus, communication is always initiated by S1.
Alphabet. We extracted the learning alphabets as follows:
• Skimming the code from [21, p. 350] to work with an

SPI in slave-mode, we extracted alphabets IS and OS .
• Ensuring IS ∩ IM = OS ∩ OM = ∅ by adding a

distinguishing prefix to symbols, we fixed the alphabets
IM and OM to work with an SPI in master-mode.

• Finally, we defined the concrete alphabets as I = IM∪IS
and O = OM ∪OS along with a mapper.

After roughly three hours, the experiment resulted in an
automaton that models the interactive behaviour of the black-
boxes shown in Fig. 7, with 348 states; i. e., P1 × P2.
Symbolic Execution. The granting execution path in S1 is
unlikely to occur using concolic execution and random testing
because it is very improbable to progress in S2 not knowing
the exact combination. On the other hand, unit-level symbolic
execution of both S1 and S2 might reveal numerous execution
paths; most of which, are not possible through interactive
execution of S1 and S2; therefore, not worth the effort of
manual inspection. Therefore, it is necessary to symbolically
reason about how S1 and S2 restrict one another’s behavior.

We symbolically executed S1 along with S2 interactively
against the learned P1 × P2 automaton. Symbolic execution
resulted in five different execution paths almost immediately,
while concolic execution through SPI communication channel
only revealed one execution path after 22 hours. Table II sum-
marizes the increase in test coverage gained by our proposed
methodology against concolic execution.

V. MESSAGE QUEUING TELEMETRY TRANSPORT

Message Queuing Telemetry Transport (MQTT) is a
publish-subscribe connectivity protocol for the Internet of
Things. Whenever publishers publish a message to a topic, that
message gets posted to a broker server. Subscribers register
with the broker on a topic to receive messages published on
it. Testing and verifying MQTT clients is difficult because they
communicate through a black-box message broker.
Test Setup. Library implementations of the MQTT protocol
specifications exist. We implemented our padlock software
system using two MQTT libraries (i. e., libemqtt [22] and
MQTT-C [23]) in C language. The goal is to execute the pad-
lock software system along with the MQTT libraries against
an MQTT broker symbolically; please see Fig. 9.
Test Driver. In our implementation, S1 and S2 agree on the
MQTT Quality of Service level of 1 for a predefined topic to
interact with each other. S1 is the publisher providing the pin
while S2 is the subscriber implementing the combination lock
automaton. Initially, both clients connect to the MQTT broker.
Next, they exchange the pin and S2 performs the pin check

S1

Pub

S2

Sub

MQTT
Library

MQTT
Broker

Fig. 9: Clients communicating via a broker using MQTT.

TABLE III: ∆ & ∇ functions of MQTT mapper.

Source (s) Symbol (a) ∆(s, a) ∇(s, a)

〈l, t,m〉 Publish(S1, t′,m′) 〈l, t′,m′〉 PUB
〈l, t,m〉 Subscribe(S2, t′, QoS1) 〈l ∪ {t′}, t,m〉 SUBQ1
〈l, t,m〉 UnSubscribe(S2, t′) 〈l \ {t′}, t,m〉 UNSUB
〈l, t,m〉 Receive(S2, t′,m′) 〈l, t,m〉

if (t′ ∈ l ∧m = m′ ∧ t = t′) RECV
if (t′ 6∈ l ∨m 6= m′ ∨ t 6= t′) ε

〈l, t,m〉 everything else 〈l, t,m〉 a

granting access to the user should the pin be correct. Finally,
both disconnect from the MQTT broker.
Learning. We used the learning setup configured by Tappler
et al. [24] to learn the automaton of an MQTT broker.
We extracted the concrete input alphabet for the learning
experiment from the test driver as follows:

I = {Connect(c), Disconnect(c), Publish(S1, t,m),

Subscribe(S2, t, QoS1), UnSubscribe(S2, t)} .

where c ∈ {S1, S2} is the client, t ∈ S is a topic, m ∈ S is
a message and S is the set of character strings. Moreover, in
response to above input events, we observe following concrete
output events; set OS1

in S1, and set OS2
in S2.

OS1
= {ConnClosed(S1), ConnAck(S1), PubAck(S1), void} ,

OS2
= {ConnClosed(S2), ConnAck(S2), SubAck(S2),

UnSubAck(S2), Receive(S2,Topic,Msg), void} .

Finally, since the broker triggers outputs in both clients, we
define the concrete output alphabet for this experiment as

O = OS1
×OS2

.

Mapper. The state space R of the mapper is (2S × S × S ∪
{〈∅,⊥,⊥〉}) where 〈∅,⊥,⊥〉 is the initial state. Each state is
a triple 〈l, t,m〉 where l is the set of topics to which S2 is
subscribed, and m is the last message published to the last
topic t. We define the mapper according to Table III. We
learned an automaton of 10 states and 100 transitions from
the EMQ broker (v. 2.3.6).
Symbolic Execution. Since KLEE does not support software
sockets, we compare the coverage obtained by symbolically
executing S1 and S2 against the learned broker automaton with
that of random testing. For random testing, we generated the
test data for the pin randomly and executed n3 times as many
tests as generated by symbolic execution. Table IV summarises
the increase in test coverage for MQTT libraries and dismisses
the coverage of S1 and S2 since their coverage were similar
to that of the previous case study. The gap between coverage
of libemqtt and MQTT-C is due to the fact that MQTT-C
implements more of MQTT protocol.



TABLE IV: Code coverage in the presence of a MQTT broker.

Coverage Metric libemqtt MQTT-C
Random
Testing

Symbolic
Execution

Random
Testing

Symbolic
Execution

Line Coverage 85.00% 90.90% 47.47% 55.83%
Branch Coverage 47.62% 57.44% 30.11% 33.96%

main.c pff.c diskio.c

Fig. 10: Petit FAT File System.

VI. PETIT FAT FILE SYSTEM

The barrier in symbolic execution of software systems
that are built on top of file systems is already addressed in
KLEE [4]. KLEE models a basic file system that consists of
a directory with n user-specified symbolic files. However,
symbolic execution of file system implementations still re-
mains an issue, because they are usually built using library
level functionalities of disk controllers. In this section, we
enable the symbolic execution of a file system that depends
on a Secure Digital Card (SD-Card) controller. This helps to
generate interesting test cases, which increase test coverage
not only for the file system implementation, but also for the
software system that is built on top of it.
Test Setup. Petit FAT File System (PFF) is an implementation
of the FAT file system for 8-bit micro-controllers [25]. At
the moment of writing this paper, the PFF consists of two
main source files. The first source file, i. e., “diskio.c”, contains
SD-Card specific code that is to be implemented based on the
target MCU’s interface. The second, i. e., “pff.c”, is built on
top of the first source file and implements the file system.
Test Driver. For learning and testing PFF, we used the setup
shown in Fig. 10, i. e., we have diskio.c and pff.c communicat-
ing with an SD card. On top of that, we implemented a driver,
i. e., “main.c”, that (1) mounts a partition, then (2) opens an
arbitrary file, and eventually (3) reads 10 bytes of the file’s
content and tests them against a predetermined value. Once we
learned the SD-Card controller, we are able to symbolically
execute not only our simple software, but also the PFF itself.
Learning. PFF uses the SD Memory Card protocol in SPI
mode. The Physical Layer Simplified Specification [26] con-
tains functional description of SD-Cards and the SD Memory
Card protocol in SPI mode. By inspecting the functional
description of SD-Card and PFF source code, we extracted
following concrete alphabets with which the PFF can run the
SD-Card communication protocol in SPI mode.

I = {GO_IDLE_STATE(0x0), SEND_IF_COND(0x1AA), APP_CMD(0x0),
SD_SEND_OP_COND(0x0), SD_SEND_OP_COND(1<<30),

SEND_STATUS(0x0), READ_SINGLE_BLOCK(n),

SD_STATUS(0x0), READ_OCR(0x0)}
O = {R1(n), R2(n), R3(n), R7(n), 〈R1(n), DATA(b)〉 | n ∈ N} .

In case of successful execution, input READ_SINGLE_BLOCK re-
turns two outputs R1(n), and DATA(b) where b is a data block

TABLE V: Abstraction for PFF.

State (s) Symbol (a) ∇(s, a)

r0, r1 R1(n) R1(n & 0x7F)
r0, r1 R2(n) R2(n & 0x7FFF)
r0 R3(n) R3(n & 0x7FFFFFFFFF)
r1 R3(n) R3(n & 0x00F0000000)
r0, r1 R7(n) R7(n & 0x7FF0000FFF)
r0, r1 〈R1(n), DATA(b)〉

if n & 0x7F 6= 0 ε
if n & 0x7F = 0 DATABLOCK

r0, r1 READ_SINGLE_BLOCK(n) READBLOCK
r0, r1 everything else a

TABLE VI: Coverage results for PFF & Certgate SD-Card.

Coverage Metric pff.c main.c
Concolic Symbolic Concolic Symbolic

Line Coverage 8.53% 83.89% 28.57% 100.0%
Branch Coverage 4.41% 55.15% 10.00% 100.0%

of size 512 bytes. Therefore, we define a compound symbol
〈R1(n), DATA(b)〉 in our output alphabet.
Mapper. We define the state space R as {r0, r1}, and ∆ by:

∆(r, a) =

{
r1 if a = READ_OCR(0x0)

r0 otherwise

and we define the abstraction method by Table V. We ran the
learning on three SD-Card controllers namely Certgate SDC,
Kingston SDC, and Kingston SDHC. Although the abstract
alphabet is very large, in practice we only observed 23, 51,
and 44 abstract outputs for Certgate SDC, Kingston SDC, and
SDHC respectively. The learned Mealy machines are of size
39, 68, and 41 states and 351, 612, and 369 transitions for
Certgate SDC, Kingston SDC, and SDHC respectively.
Symbolic Execution. We ran the experiment for 24 hours
using concolic execution and discovered one execution path.
Meanwhile, symbolic execution increases the code coverage
for both “pff.c” and “main.c” drastically; please see Table VI.
Since “diskio.c” implements the interface to the black-box
component we considered its code coverage to be irrelevant.

VII. RELATED WORK

Anand et al. [27] used type-dependence analysis to auto-
matically pinpoint the variables to which the flow of symbolic
values will cause a problem (e. g., parameters of black-box
methods). They were able to automatically indicate problem-
atic variables before performing symbolic execution along
with contextual information that can help manual interven-
tions. Although a first step towards coping with black-boxes in
symbolic execution, a user had to implement models manually.

Cadar et al. [4] implemented 2500 lines of code to de-
fine simple models for roughly 40 system calls to model
the execution environment. They also compiled and linked
software systems that were built on top of the C standard
library against a much more straightforward implementation
(i. e., µClibc [28]) to facilitate symbolic execution of the whole
software system. This manual effort is only worth for com-
monly used components. Moreover, since deployed software



systems often consist of more sophisticated implementations
of components, this solution shifts system-level correctness to
the correctness of handwritten models of the black-boxes.

Chipounov et al. [29] point out that manual modelling
of black boxes is labor-intensive and that models are often
inaccurate, especially when systems evolve. They present
the S2E platform, which avoids such problems by allowing
symbolic execution of binaries, if source code is not available.
In this paper, we proposed a method to symbolically execute
codes that are dependent on black-boxes other than binaries.

Davidson et al. [30] encountered the same issue while
extending symbolic execution to embedded platforms. They
elaborated on scenarios in which the black-box is a hardware
component. Not being aware of an architectural specification
in the hardware component, the symbolic execution engine
may follow an incorrect execution path. They manually mod-
eled certain aspects of the hardware to facilitate symbolic
execution. The problem is, architectural specifications are
often abstruse, not well documented, or not published. Simi-
larly, manual modeling of hardware components is often not
practical, because it is both tedious and error-prone.

Jeon et al. [31] proposed to use program synthesis for mod-
eling Java libraries to facilitate symbolic execution of software
systems that are built on top of them. They instrumented the
library source-code such that they can log simulations of tuto-
rial programs exercising the library. Logs descriptively record
either a call to or a return from a method that happened in a
tutorial program discarding details of what happened inside the
library after invocation. They successfully synthesized models
that produced the same instantiations of design patterns as the
library, should it run against the same tutorial program under
the same inputs. This approach requests white-box access to
the third-party components for instrumentation; moreover, it
is based on instantiations of design patterns while we based
our approach on finite-state machines; therefore, addressing a
different and possibly broader set of components.

Godefroid et al. [8] showed that concolic execution might
lead to divergence during system-level testing. Hence, the
method with which concolic execution concretizes symbolic
variables should be black-box specific. A program may induce
exponentially many execution paths and concolic execution
in a way prunes them unsystematically by replacing sym-
bolic variables with random concrete values. This results in
wandering through random execution paths pretty much like
random testing; and like random testing, concolic execution
also provides no sensible guarantees in terms of system-
level coverage in presence of black-box components. Hence,
concolic execution does not excel in presence of a black-box
component whose behavior matters during path exploration.

Păsăreanu et al. [32] applied symbolic execution in unit-
level testing while performing a system-level concrete execu-
tion to generate test cases that satisfy user-specified testing
criteria. They outperformed random testing and manual test-
case generation regarding both coverage and time. In a follow-
up study, Davies et al. [33] used treatment learning to reduce
number of system-level inputs that affect values of unit-level

variables for a path condition of interest. Next, they applied
function fitting to find a predictive relationship between the
unit-level inputs and associated system-level inputs. Once they
have calculated an approximation function for unit-level inputs
with respect to system-level inputs, they form a higher-level
path condition that also takes the approximation function (i. e.,
potentially interesting unit-level inputs) into account. They
achieved higher coverage with fewer test cases compared to
their previous study. The issue with this work is that approxi-
mated inputs of a software unit are not accurate enough to get
a black-box, like a communication-protocol implementation,
to run in practice.

VIII. CONCLUSION & FUTURE WORK

System-level test-case generation is complicated in the pres-
ence of black-box components; e. g., communication channels,
communication protocols, locking mechanisms. This hardship
arises from the fact that exact input values often trigger
interesting behaviors of a software system, but the execution
path affecting the system-level inputs is only partially visible.
To cope with black-boxes, we propose to learn automata
of them and instead execute software units against learned
automata symbolically. Through this system-level symbolic
execution, we can generate test cases for the actual software
system under test. Using multiple case studies, we showed
the applicability of our approach in generating test cases that
cover corner cases and achieve higher coverage.

In this paper, we manually crafted mappers for our learning
experiments using our own domain knowledge. Although
labour intensive, mapper creation requires less effort compared
to modeling systems manually, e. g., for model-based testing.
Moreover, mappers are more easily reusable, e. g., [19] uses
a single mapper for five different but similar systems. Ad-
ditionally, we can avoid manual effort of crafting mappers
for a certain class of systems through register automata
learning [34], or through abstraction refinement [20, 35],
which is our first direction for future research. For the second
research direction, we speculate concolic execution might as
well benefit from the additional information provided by the
mappers; yet, we could not think of an easy way to enable that
unless we assume the state space of black-box component is
irrelevant. The third research direction would be to investigate
how to embed the concept of time into our approach and a
primary step can be extending our approach to the class of
Mealy machines with timers [36]. Finally, we could extend
the applicability of symbolic execution in system-level testing
to a more comprehensive class of systems by investigating the
possibility of approximating outputs of a black-box from its
inputs using machine learning methods like treatment learning
and function fitting as proposed in [33].
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