
Learning Linear Temporal Properties
Daniel Neider

Max Planck Institute for Software Systems
67663 Kaiserslautern, Germany

Email: neider@mpi-sws.org

Ivan Gavran
Max Planck Institute for Software Systems

67663 Kaiserslautern, Germany
Email: gavran@mpi-sws.org

Abstract—We present two novel algorithms for learning for-
mulas in Linear Temporal Logic (LTL) from examples. The
first learning algorithm reduces the learning task to a series
of satisfiability problems in propositional Boolean logic and
produces a smallest LTL formula (in terms of the number of
subformulas) that is consistent with the given data. Our second
learning algorithm, on the other hand, combines the SAT-based
learning algorithm with classical algorithms for learning decision
trees. The result is a learning algorithm that scales to real-world
scenarios with hundreds of examples, but can no longer guarantee
to produce minimal consistent LTL formulas. We compare both
learning algorithms and demonstrate their performance on a
wide range of synthetic benchmarks. Additionally, we illustrate
their usefulness on the task of understanding executions of a
leader election protocol.

I. INTRODUCTION

Making sense of the observed behavior of complex systems
is an important problem in practice. It arises, for instance, in
debugging (especially in the context of distributed systems),
reverse engineering (e.g., of malware and viruses), specification
mining for formal verification, and modernization of legacy
systems, to name but a few examples. However, understanding
a system based on examples of its execution is clearly
a challenging task that can quickly become overwhelming
without proper tool support.

In this paper, we address this problem and develop learning-
based techniques to help engineers understand the dynamic
(i.e., temporal) behavior of complex systems. More precisely,
we solve the problem of learning formulas in Linear Temporal
Logic (LTL) [1], which are meant to distinguish between
desirable and undesirable executions of a system (e.g., to
explain the root-cause of a bug). The particular choice of
LTL in this work is motivated by two observations: first,
logical formulas often provide concise descriptions of the
observed behavior and are relatively easy for humans to
comprehend; second, LTL—together with Computational Tree
Logic (CTL) [2]—is widely considered to be the de facto
standard for specifying temporal properties and, hence, many
engineers are familiar with its use.

The precise problem we are aiming at is the following: given
a sample S consisting of two finite sets of positive and negative
examples, learn an LTL formula ϕ that is consistent with S
in the sense that all positive examples satisfy ϕ, whereas all

negative examples violate ϕ.1 To be as general and succinct as
possible, we here consider examples to be infinite, ultimately
periodic words (e.g., traces of a non-terminating system) and
assume the standard syntax of LTL. However, our techniques
can easily be adapted to the case of finite words and extend
smoothly to arbitrary future-time temporal operators, such
as “release”, “weak until”, and so on. We fix all necessary
definitions and notations in Section II.

The main contribution of this work are two novel learning
algorithms for LTL formulas from data, one based on SAT
solving, the other on learning decision trees.

SAT-based learning algorithm: The idea of our first
algorithm, presented in Section III, is to reduce the problem of
learning an LTL formula to a series of satisfiability problems
in propositional Boolean logic and to use highly-optimized
SAT solvers to search for solutions. Inspired by ideas from
bounded model checking [10], our learning algorithm produces
a series of propositional formulas ΦSn for increasing values
of n ∈ N \ {0} that depend on the sample S and have
the following two properties: (1) ΦSn is satisfiable if and
only if there exists an LTL formula of size n (i.e., with n
subformulas) that classifies the examples correctly, and (2) a
model of ΦSn contains sufficient information to construct such
an LTL formula. By increasing the value of n until ΦSn becomes
satisfiable, we obtain an effective algorithm that learns an LTL
formula that is guaranteed to classify the examples correctly
(given that the sample is non-contradictory).

By design, our SAT-based learning algorithm has three
distinguished features, which we believe are essential in
practice. First, our algorithm learns LTL formulas of minimal
size (i.e., with the minimal number of subformulas). As we
seek to learn formulas to be read by humans, the size of
the learned formula is a crucial metric since larger formulas
are generally harder to understand than smaller ones. Second,
once an LTL formula has been learned, our algorithm can be
queried for further, distinct formulas that are consistent with
the sample. We believe that this feature is important in practice
as it allows generating multiple explanations for the observed
data. Third, our algorithm does not rely on an a priori given

1Note that, in contrast to classical computational learning theory [3] and
modern statistical machine learning [4], [5], we seek to learn a formula that
does not make mistakes on the examples. In fact, separation problems of this
sort are of great interest in automata and formal language theory. Prominent
examples in this area are the minimization of incompletely-specified state
machines [6], [7] and Regular Model Checking [8], [9].

set of templates, which is in stark contrast to existing work on
learning temporal properties (e.g., Bombara et al. [11]). To the
best of our knowledge, our SAT-based algorithm is in fact the
first learning algorithm that is not restricted to a fixed class of
templates. However, restrictions to the shape of LTL formulas
(e.g., to the popular GR(1)-fragment of LTL [12]) can easily
be encoded if desired.

Learning algorithm based on decision trees: Our second
learning algorithm, which we present in Section IV, trades in
the guarantee of finding minimal solutions in order to attain
better scalability. The key idea is to perform the learning in
two phases. In the first phase, we run the SAT-based learning
algorithm described above on various subsets of the examples.
This results in a (small) number of LTL formulas, named
“LTL primitives”, that classify at least these subsets correctly.
In the second phase we use a standard learning algorithm for
decision trees [13] to learn a Boolean combination of these LTL
primitives that classifies the whole set of examples correctly,
though it might not be minimal. Note, however, that we need
to carefully choose the subsets of examples such that the
resulting LTL primitives (a) separate all pairs of positive and
negative examples and (b) are general enough to permit “small”
decision trees. We have experimented with numerous strategies
to select subsets, but in this paper we present only the two
that performed best. A well known advantage of decision trees
is that they are simple to comprehend due to their rule-based
structure.

In Section V, we evaluate the performance of both learning
algorithms on a wide range of synthetic benchmarks that reflect
typical patterns of LTL formulas used in practice. Additionally,
we illustrate their usefulness for understanding causes of
inconsistencies in the leader election used by Zookeeper’s
atomic broadcast protocol [14].

Details and proofs omitted due to space constraints can be
found in an extended version of this paper [15].

Related Work

Learning of temporal properties from examples has recently
attracted increasing interest, especially in the area of Signal
Temporal Logic (STL) [16] and parametric STL [17]. Examples
include the work by Asarin et al. [17], Kong et al. [18],
[19], Vaidyanathan et al. [20], and Bartocci, Bortolussi,
and Sanguinetti [21]. In contrast to our SAT-based learning
algorithm, however, all of these techniques either rely on
user-given templates or can only learn formulas from very
restricted syntactic fragments. Various techniques for mining
LTL specifications [22], [23] and CTL specifications [24]
exist as well, but these also rely on templates or restrict the
class of formulas severely. To the best of our knowledge, our
SAT-based algorithm is in fact the first that is capable of
learning unrestricted LTL formulas without relying on user-
given templates. Nonetheless, expert knowledge in form of
constraints on the syntax can easily be encoded if desired.

Our SAT-based learning algorithm is inspired by bounded
model checking [10] and earlier work of the first author

on learning (minimal) automata over finite words [7], [9].
However, since regular languages are strictly more expressive
than LTL (the former being equivalent to monadic second-
order logic [25], while the latter being equivalent to fist-order
logic [26]), automata learning techniques—including active
learning algorithms [27], [28] that operate in Angluin’s active
learning framework [29]—are not immediately applicable.
However, lifting the methods developed in this work to an
active learning setup, without a detour via automata, is part of
our plans for future work.

Using decision trees to learn Signal Temporal Logic (STL)
formulas has been explored by Bombara et al. [11], whose main
contribution is an adaptation of the classical impurity measure
to account for STL formulas. However, this work still requires
user-defined STL primitives to be provided, which serve as the
features for the decision tree learning algorithm. By contrast,
our technique uses the SAT-based learning algorithm to infer
LTL primitives fully automatically.

Learning of logical formulas has also been studied in the
context of probably approximately correct learning (PAC) [3].
Grohe and Ritzert [30], for instance, considered learning of
first-order definable concepts over structures of small degree.
Subsequently, Grohe, Löding, and Ritzert [31] studied the
learning of hypotheses definable using monadic second order
logic on strings. Due to the fundamental differences between
PAC learning and the learning model considered here (one
being approximate and the other being exact), their techniques
cannot easily be applied.

II. PRELIMINARIES

In this section, we set up definitions and notations used
throughout the paper.

Finite and Infinite Words: An alphabet Σ is a nonempty,
finite set. The elements of this set are called symbols.

A finite word over an alphabet Σ is a sequence u = a0 . . . an
of symbols ai ∈ Σ, i ∈ {0, . . . , n}. The empty sequence is
called empty word and written as ε. The length of a finite word
u is denoted by |u|, where |ε| = 0. Moreover, Σ∗ denotes the
set of all finite words over the alphabet Σ, while Σ+ = Σ∗\{ε}
is the set of all non-empty words.

An infinite word over Σ is an infinite sequence α = a0a1 . . .
of symbols ai ∈ Σ, i ∈ N. We denote the i-th symbol of
an infinite word α by α(i) and the infinite suffix starting
at position j by α[j,∞). Given u ∈ Σ+, the infinite word
uω = uu . . . ∈ Σω is the infinite repetition of u. An infinite
word α is called ultimately periodic if it is of the form α = uvω

for a u ∈ Σ∗ and v ∈ Σ+. Finally, Σω denotes the set of all
infinite words over the alphabet Σ.

Propositional Boolean Logic: Let Var be a set of proposi-
tional variables, which take Boolean values from B = {0, 1}
(0 representing false and 1 representing true). Formulas in
propositional (Boolean) logic—which we denote by capital
Greek letters—are inductively constructed as follows:
• each x ∈ Var is a propositional formula; and
• if Ψ and Φ are propositional formulas, so are ¬Ψ and

Ψ ∨ Φ.

Moreover, we add syntactic sugar and allow the formulas true ,
false , Ψ∧Φ, Ψ⇒ Φ, and Ψ⇔ Φ, which are defined as usual.

A propositional valuation is a mapping v : Var → B, which
maps propositional variables to Boolean values. The semantics
of propositional logic is given by a satisfaction relation |=
that is inductively defined as follows: v |= x if and only if
v(x) = 1, v |= ¬Ψ if and only if v 6|= Ψ, and v |= Ψ ∨ Φ if
and only if v |= Ψ or v |= Φ. In the case that v |= Φ, we say
that v satisfies Φ and call it a model of Φ. A propositional
formula Φ is satisfiable if there exists a model v of Φ. The
size of a formula is the number of its subformulas (as defined
in the usual way).

The satisfiability problem of propositional logic is the
problem to decide whether a given formula is satisfiable.
Although this problem is well-known to be NP-complete [32],
modern SAT solvers implement optimized decision procedures
that can check satisfiability of formulas with millions of
variables [33]. Moreover, SAT solvers also return a model
if the input-formula is satisfiable.

Linear Temporal Logic: Linear Temporal Logic (LTL) [1]
is an extension of propositional Boolean logic with modalities
that allow expressing temporal properties. Starting with a
finite, nonempty set P of atomic propositions, formulas in
LTL—which we denote by small Greek letters—are inductively
defined as follows:
• each atomic proposition p ∈ P is an LTL formula;
• if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ

(“next”), and ψUϕ (“until”).
Again, we add syntactic sugar and allow the formulas true :=
p ∨ ¬p for some p ∈ P , false := ¬true, as well as ψ ∧ ϕ
and ψ → ϕ, which are defined as usual. Moreover, we allow
the additional temporal formulas Fψ := true Uψ (“finally”)
and Gψ := ¬F¬ψ (“globally”). The size of an LTL formula
ϕ, which we denote by |ϕ|, is the number of its subformulas.
Finally, let C = {∧,∨,¬,→,F,G,U,X} be the set of LTL
operators.

LTL formulas are interpreted over infinite words α ∈ (2P)ω ,
though there exist various semantics for LTL over finite words
and our techniques smoothly extend to these situations. For
the sake of a simpler presentation, we define the semantics of
LTL in a slightly non-standard way by means of a valuation
function V . This functions maps pairs of LTL formulas and
infinite words to Boolean values and is inductively defined
as follows: V (p, α) = 1 if and only if p ∈ α(0), V (¬ϕ, α) =
1 − V (ϕ, α), V (ϕ ∨ ψ, α) = max {V (ϕ, α), V (ψ, α)},
V (Xϕ, α) = V (ϕ, α[1,∞)), and V (ϕUψ, α) =
maxi≥0 {min {V (ψ, α[i,∞)),min0≤j<i {V (ϕ, α[j,∞))}}}.
We call V (ϕ, α) the valuation of ϕ on α and say that α
satisfies ϕ if V (ϕ, α) = 1.

Our SAT-Based learning algorithm relies on a canonical
syntactic representation of LTL formulas, which we call syntax
DAGs. A syntax DAG is essentially a syntax tree (i.e., the
unique tree labeled with atomic propositions as well as Boolean
and temporal operators that is derived from the inductive
definition of an LTL formula) in which common subformulas
are shared. This sharing turns the syntax tree into a directed,

acyclic graph (DAG), whose number of nodes coincides with
the number of subformulas of the represented LTL formula.
As an example, Figure 1b (on Page 4) depicts the (unique)
syntax DAG of the formula (pUG q) ∨ (FG q), in which the
subformula G q is shared; the corresponding syntax tree is
depicted in Figure 1a. Note that syntactically distinct formulas
have different (i.e., non-isomorphic) syntax DAGs.

Samples and Consistency: Throughout this paper, we assume
that the data we learn from is given as two (potentially empty)
finite, disjoint sets P,N ⊂ (2P)ω of ultimately periodic words.
The words in P are interpreted as positive examples, while
the words in N are interpreted as negative examples. We call
the pair S = (P,N) a sample. Since we want to work with
the ultimately periodic words in a sample algorithmically, we
assume that they are stored as pairs (u, v) of finite words
u ∈ (2P)∗ and v ∈ (2P)+, which can be accessed individually.
To measure the complexity of a sample, we define its size to
be |S| =

∑
uvω∈P∪N |u|+ |v|.

Given an LTL formula ϕ and a sample S = (P,N), both
over a set P of atomic propositions, we call ϕ consistent
with S if V (ϕ, uvω) = 1 for each uvω ∈ P (i.e., all positive
examples satisfy ϕ) and V (ϕ, uvω) = 0 for each uvω ∈ N
(i.e., all negative examples do not satisfy ϕ); in this case, we
also say that ϕ separates P and N . We call ϕ minimally
consistent with S if ϕ is consistent with S and no consistent
LTL formula of smaller size exists.

III. A SAT-BASED LEARNING ALGORITHM

The fundamental task we solve in this section is:
“given a sample S, compute an LTL formula of
minimal size that is consistent with S”.

We call this task passive learning of LTL formulas—as opposed
to active learning [29] where the learning algorithm is permitted
to actively query for additional data. Note that this problem
can have more than one solution as there can be multiple, non-
equivalent LTL formulas that are minimally consistent with a
given sample.

Before we explain our learning algorithm in detail, let us
briefly comment on the minimality requirement in the definition
above. On the one hand, we observe that the problem becomes
simple if no restriction on the size is imposed: for α ∈ P and
β ∈ N , construct a formula ϕα,β with V (ϕα,β , α) = 1 and
V (ϕα,β , β) = 0 that describes the first symbol where α and
β differ using a sequence of X-operators and an appropriate
propositional formula; then,

∨
α∈P

∧
β∈N ϕα,β is consistent

with S since we assume P and N to be disjoint. However,
simply characterizing all differences between positive and
negative examples is clearly overfitting the sample and, hence,
arguably of little help in practice. On the other hand, we believe
that small formulas are easier for humans to comprehend than
large ones, which justifies spending effort on learning a smallest
formula. However, we do not impose any preference amongst
minimal consistent formulas (which is an interesting topic for
future work).

Let us now turn to describing our learning algorithm. Its
underlying idea is to reduce the construction of a minimally

consistent LTL formula to a satisfiability problem in proposi-
tional logic and use a highly-optimized SAT solver to search
for solutions. More precisely, given a sample S and a natural
number n ∈ N \ {0}, we construct a propositional formula ΦSn
of size polynomial in n and |S| that has the following two
properties:

1) ΦSn is satisfiable if and only if there exists an LTL formula
of size n that is consistent with S; and

2) if v is a model of ΦSn , then v contains sufficient infor-
mation to construct an LTL formula ψv of size n that is
consistent with S.

By increasing the value of n by one and extracting an LTL
formula ψv from a model v of ΦSn as soon as it becomes
satisfiable (indeed, any model is sufficient), we obtain an
effective algorithm that learns an LTL formula of minimal size
that is consistent with S . This idea is shown in pseudo code as
Algorithm 1. In fact, the existence of a trivial solution for the
passive LTL learning task (as sketched at the beginning of this
section) shows that Algorithm 1 is guaranteed to terminate,
and the size of this solution provides an upper bound on the
value of n.

Algorithm 1: SAT-based learning algorithm
Input: a sample S

1 n← 0;
2 repeat
3 n← n+ 1;
4 Construct and solve ΦSn ;
5 until ΦSn is satisfiable, say with model v;
6 Construct and return ψv;

The key idea of the formula ΦSn is to encode the syntax DAG
of an (unknown) LTL formula ϕ? with n subformulas and then
constrain the variables of ΦSn such that ϕ? is consistent with the
sample S. To simplify our encoding, we assign to each node
of this syntax DAG a unique identifier i ∈ {1, . . . , n} such
that (a) the identifier of the root is n and (b) if the identifier
of an inner node is i, then the identifiers of its children are
less than i. Note that such a numbering scheme is not unique
for a given syntax DAG, but it entails that the root always has
identifier n and the node with identifier 1 is always labeled
with an atomic proposition. We refer the reader to Figures 1b
and 1c for an example.

We encode a syntax DAG using three types of propositional
variables:
• xi,λ where i ∈ {1, . . . , n} and λ ∈ P ∪ C;
• li,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}; and
• ri,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}.

Intuitively, the variables xi,λ encode a labeling of the syntax
DAG in the sense that if a variable xi,λ is set to true, then
node i is labeled with λ (recall that each node is labeled
with either an atomic proposition from P or an operator from
C). The variables li,j and ri,j , on the other hand, encode the
structure of the syntax DAG (i.e., the left and/or right child of

∨

U F

p G G

q q

(a) Syntax tree

∨

U F

p G

q

(b) Syntax DAG

6

5 4

2 3

1

(c) Identifiers

Fig. 1: Syntax tree, syntax DAG, and identifiers of the syntax
DAG for the LTL formula (pUG q) ∨ (FG q)

TABLE I: Constraints enforcing that the variables xi,λ encode
a syntax DAG

[∧
1≤i≤n

∨
λ∈P∪C

xi,λ

]
∧
[∧
1≤i≤n

∧
λ6=λ′∈P∪C

¬xi,λ ∨ ¬xi,λ′

]
(1)

[∧
2≤i≤n

∨
1≤j<i

li,j

]
∧
[∧
2≤i≤n

∧
1≤j<j′<i

¬li,j ∨ ¬li,j′

]
(2)

[∧
2≤i≤n

∨
1≤j<i

ri,j

]
∧
[∧
2≤i≤n

∧
1≤j<j′<i

¬ri,j ∨ ¬ri,j′

]
(3)

∨
p∈P

x1,p (4)

inner nodes): if variable li,j (ri,j) is set to true , then j is the
identifier of the left (right) child of node i. By convention, we
ignore the variables ri,j if node i of the syntax DAG is labeled
with an unary operator; similarly, we ignore both li,j and ri,j
if node i is labeled with an atomic proposition. Note that in
the case of li,j and ri,j , the identifier i ranges from 2 to n
because node 1 is always labeled with an atomic proposition
and, hence, cannot have children. Moreover, j ranges from 1
to i− 1 to reflect the fact that identifier of children have to be
smaller than the identifier of the current node.

To enforce that the variables xi,λ, li,j , and ri,j in fact encode
a syntax DAG, we impose the constraints listed in Table I.
Formula (1) ensures that each node is labeled with exactly
one label. Similarly, Formulas (2) and (3) enforce that each
node (except for node 1) has exactly one left and exactly one
right child (although we ignore certain children if the node
represents an unary operator or an atomic predicate). Finally,
Formula (4) makes sure that node 1 is labeled with an atomic
proposition.

Let ΦDAG
n now be the conjunction of Formulas (1) to (4).

Then, one can construct a syntax DAG from a model v of
ΦDAG
n in a straightforward manner: simply label node i with

the unique label λ such that v(xi,λ) = 1, designate node n
as the root, and arrange the nodes of the DAG as uniquely
described by v(li,j) and v(ri,j). Moreover, we can easily derive
an LTL formula from this syntax DAG, which we denote by
ψv . Note, however, that ψv is not yet related to the sample S
and, thus, might or might not be consistent with it.

To enforce that ψv is indeed consistent with S, we now
constrain the variables xi,λ, li,j , and ri,j further. More precisely,

we add for each ultimately periodic word uvω in S a
propositional formula Φu,vn that tracks the valuation of the
LTL formula encoded by ΦDAG

n (and all its subformulas) on
uvω . The observation that enables us to do this is the following.

Observation 1: Let uvω ∈ (2P)ω, ψ be an LTL formula
over P , and k ∈ N. Then, uvω[|u|+k,∞) = uvω[|u|+m,∞)
with m ≡ k mod |v|. In addition, V (ϕ, uvω[|u|+ k,∞)) =
V (ϕ, uvω[|u|+m,∞)) holds for every LTL formula ϕ.

Intuitively, Observation 1 states that the suffixes of a word
uvω eventually repeat periodically. As a consequence, the
valuation of an LTL formula on a word uvω can be determined
based only on the finite prefix uv (recall that the semantics of
temporal operators only depend on the suffixes of a word). To
illustrate this claim, consider the LTL formula Xϕ and assume
that we want to determine the valuation V (Xϕ, uvω[|uv| −
1,∞)) (i.e., Xϕ is evaluated at the end of the prefix uv). Then,
Observation 1 permits us to compute this valuation based on
V (ϕ, uvω[|u|,∞)), as opposed to the original semantics of
the X-operator, which recurs to V (ϕ, uvω[|uv|,∞)) (i.e., the
valuation at the next position). Note that similar, though more
involved ideas can be applied to all other temporal operators.

Each formula Φu,vn is built over an auxiliary set of propo-
sitional variables yu,vi,t where i ∈ {1, . . . , n} is a node in the
syntax DAG and t ∈ {0, . . . , |uv| − 1} is a position in the
finite word uv. The meaning of these variables is that the
value of yu,vi,t corresponds to the valuation V (ϕi, uv

ω[t,∞))
of the LTL subformula ϕi that is rooted at node i. Note that
the set of variables for two distinct words from the sample
must be disjoint.

To obtain this desired meaning of the variables yu,vi,t , we
impose the constraints listed in Table II, which are inspired
by bounded model checking [10]. Formula (5) implements
the LTL semantics of atomic propositions and ensures that
if node i is labeled with p ∈ P , then yu,vi,t is set to 1 if and
only if p ∈ uv(t). Next, Formulas (6) and (7) implement the
semantics of negation and disjunction, respectively: if node i
is labeled with ¬ and node j is its left child, then yu,vi,t is the
negation of yu,vj,t ; on the other hand, if node i is labeled with
∨, node j is its left child, and node j′ is its right child, then
yu,vi,t is the disjunction of yu,vj,t and yu,vj′,t. Moreover, Formula (8)
implements the semantics of the X-operator, following the
idea of “returning to the beginning of the periodic part v” as
sketched above. Finally, Formula (9) implements the semantics
of the U-operator. More precisely, the first conjunction in the
consequent covers the positions t ∈ {0, . . . , |u| − 1} in the
initial part u, while the second conjunct covers the positions
t ∈ {|u|, . . . , |uv| − 1} in the periodic part v. Thereby, the
second conjunct relies on an auxiliary set t#u,v t

′ defined by

t#u,v t
′ :=

{
{t, . . . , t′ − 1} if t < t′;
{|u|, . . . , t′ − 1, t, . . . , |uv| − 1} if t ≥ t′,

which contains all positions in v “between t and t′”. To avoid
cluttering this section too much, we have omitted the description
of the missing operators ∧, →, F, G and the constants true
and false , which are implemented analogously. Moreover, our

TABLE II: Constraints enforcing that the variables yu,vi,t track
the valuation of the prospective LTL formula on ultimately
periodic words

∧
1≤i≤n

∧
p∈P

xi,p →
[∧
0≤t<|uv|

{
yu,vi,t if p ∈ uv(t)

¬yu,vi,t if p /∈ uv(t)

]
(5)

∧
1<i≤n
1≤j<i

(xi,¬ ∧ li,j) →
∧

0≤t<|uv|

[
yu,vi,t ↔ ¬yu,vj,t

]
(6)

∧
1<i≤n

1≤j,j′<i

(xi,∨ ∧ li,j ∧ ri,j′) →
∧

0≤t<|uv|

[
yu,vi,t ↔ (yu,vj,t ∨ yu,v

j′,t)

]
(7)

∧
1<i≤n
1≤j<i

(xi,X ∧ li,j) →

[[∧
0≤t<|uv|−1

yu,vi,t ↔ yu,vj,t+1

]
∧
[
yu,v
i,|uv|−1

↔ yu,v
j,|u|

]] (8)

∧
1<i≤n

1≤j,j′<i

(xi,U ∧ li,j ∧ ri,j′) →

[[∧
0≤t<|u|

yu,vi,t ↔
∨

t≤t′<|uv|

[
yu,v
j′,t′ ∧

∧
t≤t′′<t′

yu,v
j,t′′

]]
∧

[∧
|u|≤t<|uv|

yu,vi,t ↔
∨

|u|≤t′<|uv|

[
yu,v
j′,t′ ∧

∧
t′′∈t#u,vt′

yu,v
j,t′′

]]]
(9)

SAT encoding is extensible, and additional LTL operators such
as weak until or weak and strong release can easily be added.

For each uvω ∈ P ∪N , let Φu,vn now be the conjunction of
Formulas (5) to (9). Then, we define

ΦSn := ΦDAG
n ∧

[∧
uvω∈P

Φu,vn ∧y
u,v
n,0

]
∧

[∧
uvω∈N

Φu,vn ∧¬y
u,v
n,0

]
.

Note that the subformula Φu,vn ∧y
u,v
n,0 makes sure that uvω ∈ P

satisfies the prospective LTL formula (more concretely, uvω

starting from position 0 satisfies the LTL formula at the root
of the syntax DAG), while Φu,vn ∧¬y

u,v
n,0 ensures that uvω ∈ N

does not satisfy it.
To prove the correctness of our learning algorithm, we first

establish that the formula ΦSn has in fact the desired properties.
Lemma 1: Let S = (P,N) be a sample, n ∈ N\{0}, and ΦSn

the propositional formula defined above. Then, the following
holds:

1) If an LTL formula of size n that is consistent with S
exists, then the propositional formula ΦSn is satisfiable.

2) If v |= ΦSn , then ψv is an LTL formula of size n that is
consistent with S.

Termination and correctness of Algorithm 1 then follow
from Lemma 1.

Theorem 1: Given a sample S, Algorithm 1 terminates
eventually and outputs an LTL formula of minimal size that is
consistent with S.

Proof: Since there exists a consistent LTL formula for
every non-contradictory sample, Part 1 of Lemma 1 guarantees

that Algorithm 1 terminates. Moreover, Part 2 ensures that
the output is indeed an LTL formula that is consistent with
S. Since n is increased by one in every iteration of the loop
until ΦSn becomes satisfiable, the output of Algorithm 1 is a
consistent LTL formula of minimal size.

It is important to emphasize that the size of ΦSn and, hence,
the performance of Algorithm 1 depends on the size of a
sample S = (P,N), as summarized next.

Remark 1: The formula ΦSn ranges over O(n2 + n|S|)
variables and is of size O(n2 + n3

∑
uvω∈P∪N |uv|3).

Finally. we conclude this section with a remark on incorpo-
rating expert knowledge into the learning process.

Remark 2: By adding constraints to the variables xi,λ, li,j ,
and ri,j , one can easily incorporate expert knowledge (e.g.,
syntactic templates) into the learning process.

IV. A DECISION TREE BASED LEARNING ALGORITHM

The SAT-based algorithm described in Section III is an
elegant, out-of-the-box way to discover minimal LTL formulas
describing a sample. Even though it scales well beyond toy
examples, its running time seems too prohibitive for real-world
examples (as discussed in Section V). That is why we now
present a learning algorithm based on a combination of SAT
solving and decision tree learning.

Our second algorithm proceeds in two phases, outlined
in Algorithm 2. In the first phase, we run Algorithm 1 on
small subsets of P and N . This is repeated until we obtain
a set Π of LTL formulas (we call them LTL primitives) that
separate all pairs of words from P and N . In the second
phase, formulas from Π are used as features for a standard
decision tree learning algorithm [13]. The resulting decision
tree is a Boolean combination of LTL formulas ϕi ∈ Π that is
consistent with the sample.

Algorithm 2: Learning algorithm based on decision
trees

Input: a sample S
1 Run Algorithm 1 on small subsets of P and N to

construct a set Π = {ϕ1, . . . , ϕn} of LTL formulas
such that for each pair u1vω1 ∈ P and u2vω2 ∈ N there
exists a ϕi ∈ Π with V (ϕi, u1v

ω
1) = 1 and

V (ϕi, u2v
ω
2) = 0;

2 Learn a decision tree t with LTL primitives from Π as
features and return the resulting Boolean combination
ψt of LTL primitives (which is consistent with S);

Note that this relaxes the problem addressed in Section III:
we can no longer guarantee finding a formula of minimal size.
However, decision trees are among the structures that are the
easiest to interpret by end-users. That makes them suitable for
our use-case, and the minimality of formulas is replaced by
structural simplicity of decision trees.

Learning Decision Trees: We assume familiarity with
decision tree learning and refer the reader to a standard textbook
for further details [5]. As illustrated in Figure 3, the decision

trees we seek to learn are tree-shaped structures whose inner
nodes are labeled with LTL formulas from Π and whose
leaves are labeled with either true or false . The LTL formula
represented by such a tree t is given by ψt :=

∨
ρ∈P

∧
ϕ∈ρ ϕ

where P is the set of all paths from the root to a leaf labeled
with true and ϕ ∈ ρ denotes that ϕ occurs on ρ (negated if
the path follows a dashed edge).

To learn a decision tree over LTL primitives, we perform a
preprocessing step and modify the sample as follows. For each
word uvω ∈ P ∪N , we use the LTL primitives as features and
create a Boolean vector of size |Π| with the i-th entry set to
V (ϕi, uv

ω); this vector is then labeled with true if uvω ∈ P
or with false if uvω ∈ N . In the second step, we apply a
standard learning algorithm for decision trees to this modified
sample (we used Gini impurity [34] as split heuristic in our
experiments). Since we are interested in a tree that classifies
our sample correctly, we disable heuristics such as pruning.

Obtaining LTL Primitives: Meaningful features are essen-
tial for a successful classification using decision trees. In our
algorithm, features are generated from the set of LTL primitives
Π. We used two different strategies, called Strategy α and
Strategy β, for obtaining Π.

Strategy α iteratively chooses subsets P ′ ⊂ P and N ′ ⊂ N
of size k according to probability distributions probP and
probN on P and N , respectively. After a formula ϕ separating
P ′ and N ′ is found using Algorithm 1 and added to Π, probP
and probN are updated to increase the likelihood of any word
that is not yet classified correctly by any of the ϕ ∈ Π to be
selected. This process is repeated until all pairs of positive
and negative examples are separated by some LTL primitive
or restarted after a user-given number of iterations. Although
this strategy is, in general, not guaranteed to terminate due to
its probabilistic nature, it always did in our experiments.

Strategy β computes LTL primitives in a more aggressive
way. Starting with the set S = P ×N , it uniformly at random
selects k pairs from S and uses Algorithm 1 to compute an
LTL primitive ϕ that separates those pairs. Then, it removes
all pairs separated by ϕ from S and repeats the process until
S becomes empty (i.e., all pairs of examples are separated).

We refer to the extended version of this paper [35] for a
detailed explanation of both strategies.

Correctness: The correctness of Algorithm 2 is formalized
below.

Theorem 2: Given a sample S, Algorithm 2 learns a (not
necessarily minimal) formula ψt that is consistent with S.

Theorem 2 follows from the fact that Step 1 of Algorithm 2
constructs a set of LTL primitives that allows separating any
pair of positive and negative examples. Once such a set is
constructed, any decision tree learner produces a decision tree
t that is guaranteed to classify the examples correctly. The
resulting LTL formula ψt, hence, is consistent with S.

V. EVALUATION

In this section, we answer questions that arise naturally:
how performant is Algorithm 1 and what is the performance
gain of Algorithm 2. Furthermore, what is the complexity of

TABLE III: Common LTL patterns used in practice [37]

Absence Existence Universality

G(¬p0) F(p0) G(p0)
F(p1) → (¬p0 U p1) G(¬p0 ∨ F(p0 ∧ F(p1))) F(p1) → (p0 U p1)
G(p1 → G(¬p0)) G(p0 ∧ (¬p1 → (¬p1 U(p2 ∧ ¬p1)))) G(p1 → G(p0))

the learned decision trees in terms of the number of decision
nodes, and, finally, how do different parameters influence the
performance of Algorithm 2. After answering these questions
with experiments performed on synthetic data, we demonstrate
the usefulness of our algorithms for understanding executions
of a leader-election algorithm.

We implemented both learning algorithms in a Python tool2

using Microsoft Z3 [36]. All experiments were conducted on
Debian machines with Intel Xeon E7-8857 CPUs at 3 GHz,
using up to 5 GB of RAM.

Performance on Synthetic Data: To simulate real-world
use-cases, we generated samples based on common LTL
patterns [37], which are shown in Table III. Starting from
a pattern formula ψ, we generated sets of random words and
separated them into P and N depending on whether they
are a model of ψ or not. Thereby, we fixed |u| + |v| = 10
for all words in the sample and added noise in form of one
additional atomic proposition that is not constrained by the
pattern formula. The size of the generated samples ranges
between 50 and 5000. In total, we generated 192 samples.

Figure 2 compares the running times of Algorithm 1 and
Algorithm 2 (using Strategy α and k = 3) on samples of
varying sizes. (So as not to clutter the presentation too much,
we selected four LTL patterns that showed a typical behavior
of our learning algorithms. The complete results are available
in the technical report [35].) Overall, Algorithm 1 produces
minimal formulas consistent with a sample. It does so even
for samples of considerable size, but if the sample size grows
beyond 2000 (varies over samples), the SAT-based learner
(Algorithm 1) frequently times out. When Algorithm 2 (using
decision tree learning) is applied to these samples—as shown
on the right-hand-side of Figure 2—none of the computations
timed out and the running times significantly improved.

What kind of trees does Algorithm 2 produce? An example
output of the algorithm is shown in Figure 3. Moreover, as
Table IV illustrates, Algorithm 2 learns small trees, often with
less than five inner nodes. Upon closer inspection, we noticed
that it often happens that one of the LTL primitives was the
specified formula itself. This suggests that small subsets already
characterize our samples completely.

To be able to compare decision trees to the formulas learned
by Algorithm 2, we measure the size of a tree t in terms of the
size of the formula ψt this tree encodes. In our experiments,
the formulas learned by Algorithm 2 were on average 1.41
times larger than those learned by Algorithm 1. However, there
are outlier trees that are four times bigger than the one learned
by Algorithm 1. Nonetheless, about 70 % are of the same size.
Even for the outliers, as emphasized previously, the readability

2Our tool is publicly available at https://github.com/gergia/samples2LTL.

1,000 2,000 3,000
0

200

400

600

Size of sample

R
un

ni
ng

tim
e

in
s

Algorithm 1

1,000 2,000 3,000
0

200

400

600

Size of sample

Algorithm 2

F(p1) → (¬p0 U p1) G(p1 → G(p0))

G(p0 ∧ (¬p1 → (¬p1 U(p2 ∧ ¬p1)))) G(¬p0)

Fig. 2: Comparison of Algorithm 1 and Algorithm 2

G(p1 → p0)

¬p1 UG(p0) false

true

true ¬F(p1)

false

If a node evaluates to true, the out-
going full edge should be followed
(and the dashed edge otherwise). The
tree on the left represents the formula
ψt = [G(p1 → p0) ∧ (¬p1 UG(p0)] ∨
[G(p1 → p0) ∧ ¬(¬p1 UG(p0)) ∧
¬F(p1)].

Fig. 3: A decision tree obtained from a sample generated from
the LTL pattern G(p1 → G(p0))

does not degrade completely because the rule-based structure of
decision trees is known to be easily understandable by humans.
Note that the runtime and size of decision trees depends on
the parameters of Algorithm 2, which we discuss next.

Tuning the Decision Tree-Based Algorithm: As described
in Section IV, Algorithm 2 can be tuned by various parameters
(sampling strategy for obtaining LTL primitives, size of sample
subsets, probability increase rate, and number of repetitions
inside a single sampling). In this subsection, we explore how
those parameters affect the performance of the algorithm.

TABLE IV: Different parameters used for Algorithm 2

Sampling
strategy Subset size k Number of

timeouts
Avg. running

time in s
Avg. number of
nodes in a tree

α 3 0 / 192 21.00 3.05
α 6 4 / 192 35.28 1.47
α 10 8 / 192 42.72 1.2

β 3 4 / 192 30.92 1.37
β 6 12 / 192 48.46 1.19
β 10 21 / 192 48.11 1.06

Table IV shows the performance of Algorithm 2 for different
parameters, averaged over all 192 benchmarks. As the table
indicates, the less aggressive method of separating sets, Strat-
egy α, performs better. It seems that if the subset sizes are
increased, or Strategy β is used, the sampled subsets already
describe the specified formula completely. Finally, we chose
Strategy α and k = 3 to be our default parameters. Varying the
probability decrease rate and the number of repetitions inside

https://github.com/gergia/samples2LTL

a single sampling did not influence the performance much.
Explaining Executions of a Leader Election Protocol: A

number of methods exist for finding errors or reproducing
certain behavior in distributed systems through systematic
testing [38], [39]. However, finding an execution and a corre-
sponding schedule is only a first step towards understanding
an issue. In the following, we demonstrate how to apply our
technique in order to obtain a minimal LTL description of a
specific inconsistency in a leader election protocol.

The leader election protocol we consider is the Fast Leader
Election algorithm [14], [40] used by Apache Zookeeper. In
this protocol, every node has a unique ID and initially tries to
become the leader. To this end, every node sends messages to
all other nodes proclaiming its leadership. Upon receiving a
message by an aspirant leader with a higher ID, a node gives
up its claim and acknowledges its support for the aspirant. If a
node learns that an aspirant node has a support of a majority
of all nodes, it commits (after waiting for a constant time for
new messages) to the aspirant as the leader. Once committed,
the node never again changes its decision and informs any
other node of its commitment (one example is the message
depicted by the dotted arrow in Figure 5). If a node has not
committed and learns about another node that has committed,
it commits to the same leader.

node 1node 0 node 2

aspirantaspirant aspirant

supporting 1

supporting 2

majority
secured

supporting 2

majority
secured

committed 2

committed 2committed 2

P1

P2

A1

P2 A2

Fig. 4: Consistent schedule for
an execution of the leader elec-
tion protocol

node 1node 0 node 2

aspirantaspirant aspirant

aspirant

supporting 1

supporting 2

committed 2

majority
secured

committed 1

committed 1

majority
secured

committed 2

P1

A1

P2

A2

P2

Fig. 5: Inconsistent schedule
for an execution of the leader
election protocol

Figure 4 shows an example of a successful leader election
with three nodes in an UML-style message sequence chart. The
messages exchanged between nodes are proposing the leader i
(Pi) and node j acknowledging the claim of a leader (Aj). The
arrows indicate exchanged messages and imply a precedence
of events. Note that not all messages are shown in the figures,
but only the ones important for understanding the protocol.

In Figure 4 all the nodes have committed to the same
leader. On the other hand, Figure 5 shows a schedule that
ends up in an inconsistent state where nodes committed to
different leaders. This schedule was discovered by the PCTCP
algorithm [41], which systematically explores the space of
possible executions of distributed algorithms. The situation
in Figure 5 is caused by the asynchronous communication:
for performance reasons, nodes commit as quickly as possible

and then discard any messages, which otherwise would have
changed their commitment (indicated as a dashed line in
Figure 5). Note, however, that this is not a bug in Zookeeper’s
broadcast algorithm, as a leader without a quorum will not be
allowed to perform any action in the later phase.

To better understand how this inconsistent state arises, our
goal is to generate an LTL formula that describes the difference
between the schedules in Figures 4 and 5. To this end, we
constructed a sample by generating 20 linearizations of the
schedule from Figure 4 and 20 linearizations of the schedule
from Figure 5. Since we seek an explanation for the inconsistent
behavior, the former (with consistent outcomes) correspond to
negative examples (set N), and the latter (with inconsistent
outcomes) correspond to positive examples (set P). The set of
atomic propositions used to construct the examples contains
twelve elements: recv(i, j) for i, j ∈ {1, 2, 3} (meaning that
node j received a message from node i) and comm(i) for
i ∈ {1, 2, 3} (meaning that node i committed to a leader).3

Finally, we ran Algorithm 1 on this sample. The result was
the formula ¬recv(2, 1)U comm(1). Intuitively, node 1 did not
receive a message from node 2 before it committed to a leader.
That is exactly the difference between the schedules in Figures 4
and 5. Also, it hints at a specific reason for the inconsistency
in Figure 5, thus potentially helping the engineers improve
the system. Note, however, that this experiment still required
a significant amount of manual effort. In order to apply the
technique in practice, more automation is needed.

Summary: Algorithm 2 significantly improves upon the
performance of Algorithm 1, though with a small increase
in the size of the formula. The original motivation of getting
readable explanations for the behavior of a system is preserved
due to the fact that decision-trees are easy to comprehend.
Algorithm 2 works the best using Strategy α and subsets of
size k = 3. Finally, our techniques are able to give interesting
insight into real-world systems.

VI. CONCLUSION

We have presented two novel algorithms for learning LTL
formulas from examples. Our first algorithm is based on SAT
solving, while the second algorithm extends the first with
techniques for learning decision trees. We have shown that both
algorithms are able to learn LTL formulas for a comprehensive
set of benchmarks that we have derived from common LTL
patterns. Moreover, we have demonstrated how our methods
can help understand distributed algorithms.

Interesting directions of future work include the integration
of LTL past-time operators, lifting our techniques to an
active learning setup [29], as well as the development of
similar learning algorithms for CTL. Furthermore, we plan
to investigate the use of maximum-margin classifiers, such as
support vector machines. To this end, one needs to develop
a notion of distance between temporal formulas and words,
which is clearly of independent, theoretical interest as well.

3While we could have included more information into propositions, we had
to obscure some in order to avoid “stating the obvious” of the form “node 1
committed to node 1 as a leader, while node 2 committed to node 2”.

REFERENCES

[1] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. IEEE Computer Society, 1977, pp.
46–57.

[2] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logics of
Programs, ser. Lecture Notes in Computer Science, vol. 131. Springer,
1981, pp. 52–71.

[3] L. G. Valiant, “A theory of the learnable,” Commun. ACM,
vol. 27, no. 11, pp. 1134–1142, 1984. [Online]. Available: http:
//doi.acm.org/10.1145/1968.1972

[4] A. Blum, J. Hopcroft, and R. Kannan, Foundations of Data Science,
January 2018. [Online]. Available: https://www.cs.cornell.edu/jeh/book.
pdf

[5] T. M. Mitchell, Machine learning, ser. McGraw Hill series
in computer science. McGraw-Hill, 1997. [Online]. Available:
http://www.worldcat.org/oclc/61321007

[6] C. P. Pfleeger, “State reduction in incompletely specified finite-state
machines,” IEEE Trans. Computers, vol. 22, no. 12, pp. 1099–1102,
1973. [Online]. Available: https://doi.org/10.1109/T-C.1973.223655

[7] D. Neider, “Computing minimal separating dfas and regular invariants
using SAT and SMT solvers,” in Automated Technology for Verification
and Analysis - 10th International Symposium, ATVA 2012, Thiruvanan-
thapuram, India, October 3-6, 2012. Proceedings, ser. Lecture Notes in
Computer Science, vol. 7561. Springer, 2012, pp. 354–369.

[8] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili, “Regular
model checking,” in Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings,
ser. Lecture Notes in Computer Science, vol. 1855. Springer, 2000, pp.
403–418. [Online]. Available: https://doi.org/10.1007/10722167_31

[9] D. Neider and N. Jansen, “Regular model checking using solver
technologies and automata learning,” in NASA Formal Methods,
5th International Symposium, NFM 2013, Moffett Field, CA, USA,
May 14-16, 2013. Proceedings, ser. Lecture Notes in Computer
Science, vol. 7871. Springer, 2013, pp. 16–31. [Online]. Available:
https://doi.org/10.1007/978-3-642-38088-4_2

[10] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.
[Online]. Available: https://doi.org/10.1016/S0065-2458(03)58003-2

[11] G. Bombara, C. I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal logic,”
in Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control, HSCC 2016, Vienna, Austria, April 12-14,
2016. ACM, 2016, pp. 1–10.

[12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis
of reactive(1) designs,” J. Comput. Syst. Sci., vol. 78, no. 3, pp. 911–938,
2012. [Online]. Available: https://doi.org/10.1016/j.jcss.2011.08.007

[13] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[14] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in Proceedings of the 2011
IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2011, Hong Kong, China, June 27-30 2011, 2011, pp.
245–256. [Online]. Available: https://doi.org/10.1109/DSN.2011.5958223

[15] D. Neider and I. Gavran, “Learning linear temporal properties,” CoRR,
vol. abs/1806.03953, 2018. [Online]. Available: http://arxiv.org/abs/1806.
03953

[16] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, Joint International Conferences on Formal
Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal
Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004,
Grenoble, France, September 22-24, 2004, Proceedings, ser. Lecture
Notes in Computer Science, vol. 3253. Springer, 2004, pp. 152–166.
[Online]. Available: https://doi.org/10.1007/978-3-540-30206-3_12

[17] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric
identification of temporal properties,” in Runtime Verification - Second
International Conference, RV 2011, San Francisco, CA, USA, September
27-30, 2011, Revised Selected Papers, ser. Lecture Notes in Computer
Science, vol. 7186. Springer, 2011, pp. 147–160. [Online]. Available:
https://doi.org/10.1007/978-3-642-29860-8_12

[18] Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and C. Belta,
“Temporal logic inference for classification and prediction from data,”
in 17th International Conference on Hybrid Systems: Computation
and Control (part of CPS Week), HSCC’14, Berlin, Germany,
April 15-17, 2014. ACM, 2014, pp. 273–282. [Online]. Available:
http://doi.acm.org/10.1145/2562059.2562146

[19] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning
and detection of anomalous behavior,” IEEE Trans. Automat.
Contr., vol. 62, no. 3, pp. 1210–1222, 2017. [Online]. Available:
https://doi.org/10.1109/TAC.2016.2585083

[20] P. Vaidyanathan, R. Ivison, G. Bombara, N. A. DeLateur, R. Weiss,
D. Densmore, and C. Belta, “Grid-based temporal logic inference,” in
56th IEEE Annual Conference on Decision and Control, CDC 2017,
Melbourne, Australia, December 12-15, 2017, 2017, pp. 5354–5359.
[Online]. Available: https://doi.org/10.1109/CDC.2017.8264452

[21] E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Learning temporal logical
properties discriminating ECG models of cardiac arrhytmias,” CoRR, vol.
abs/1312.7523, 2013. [Online]. Available: http://arxiv.org/abs/1312.7523

[22] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for
synthesis,” in 9th IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE 2011, Cambridge,
UK, 11-13 July, 2011. IEEE, 2011, pp. 43–50. [Online]. Available:
https://doi.org/10.1109/MEMCOD.2011.5970509

[23] C. Lemieux, D. Park, and I. Beschastnikh, “General LTL specification
mining (T),” in 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015. IEEE Computer Society, 2015, pp. 81–92. [Online]. Available:
https://doi.org/10.1109/ASE.2015.71

[24] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” Autom. Softw. Eng., vol. 18, no. 3-4, pp. 263–292, 2011.
[Online]. Available: https://doi.org/10.1007/s10515-011-0084-1

[25] J. R. Büchi, “On a decision method in restricted second-order arithmetic,”
in Int. Congr. for Logic, Methodology and Philosophy of Science.
Stanford Univ. Press, 1962, pp. 1–11.

[26] A. W. Kamp, “Tense logic and the theory of linear order,” Ph.D.
dissertation, University of California, Los Angeles, 1968.

[27] A. Farzan, Y. Chen, E. M. Clarke, Y. Tsay, and B. Wang, “Extending
automated compositional verification to the full class of omega-regular
languages,” in Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
ser. Lecture Notes in Computer Science, vol. 4963. Springer, 2008, pp.
2–17.

[28] D. Angluin and D. Fisman, “Learning regular omega languages,” Theor.
Comput. Sci., vol. 650, pp. 57–72, 2016.

[29] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[30] M. Grohe and M. Ritzert, “Learning first-order definable concepts over
structures of small degree,” in 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017. IEEE Computer Society, 2017, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/LICS.2017.8005080

[31] M. Grohe, C. Löding, and M. Ritzert, “Learning mso-definable
hypotheses on strings,” in International Conference on Algorithmic
Learning Theory, ALT 2017, 15-17 October 2017, Kyoto University,
Kyoto, Japan, ser. Proceedings of Machine Learning Research,
vol. 76. PMLR, 2017, pp. 434–451. [Online]. Available: http:
//proceedings.mlr.press/v76/grohe17a.html

[32] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability, ser. Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press, 2009.

[33] T. Balyo, M. J. H. Heule, and M. Järvisalo, “SAT competition 2016: Re-
cent developments,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA. AAAI Press, 2017, pp. 5061–5063.

[34] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Wadsworth, 1984. Routledge, 1993.

[35] D. Neider and I. Gavran, “Learning linear temporal properties,” CoRR,
vol. abs/1806.03953, 2018. [Online]. Available: http://arxiv.org/abs/1806.
03953

[36] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and

http://doi.acm.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
https://www.cs.cornell.edu/jeh/book.pdf
https://www.cs.cornell.edu/jeh/book.pdf
http://www.worldcat.org/oclc/61321007
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1109/DSN.2011.5958223
http://arxiv.org/abs/1806.03953
http://arxiv.org/abs/1806.03953
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-29860-8_12
http://doi.acm.org/10.1145/2562059.2562146
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/CDC.2017.8264452
http://arxiv.org/abs/1312.7523
https://doi.org/10.1109/MEMCOD.2011.5970509
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1007/s10515-011-0084-1
https://doi.org/10.1109/LICS.2017.8005080
http://proceedings.mlr.press/v76/grohe17a.html
http://proceedings.mlr.press/v76/grohe17a.html
http://arxiv.org/abs/1806.03953
http://arxiv.org/abs/1806.03953

Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1792734.1792766

[37] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property specification
patterns for finite-state verification,” in Proceedings of the Second
Workshop on Formal Methods in Software Practice, ser. FMSP ’98.
New York, NY, USA: ACM, 1998, pp. 7–15. [Online]. Available:
http://doi.acm.org/10.1145/298595.298598

[38] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding bugs,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, 2010, pp. 167–
178. [Online]. Available: http://doi.acm.org/10.1145/1736020.1736040

[39] R. Majumdar and F. Niksic, “Why is random testing effective for
partition tolerance bugs?” PACMPL, vol. 2, no. POPL, pp. 46:1–46:24,
2018. [Online]. Available: http://doi.acm.org/10.1145/3158134

[40] A. Medeiros, “Zookeeper’s atomic broadcast protocol: Theory and
practice,” 2012.

[41] B. K. Ozkan, R. Majumdar, F. Niksic, M. T. Berfrouei, and G. Weis-
senbacher, “Randomized testing of distributed systems with probabilistic
guarantees,” in Proceedings of the 2018 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA, 2018, to appear.

http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://doi.acm.org/10.1145/298595.298598
http://doi.acm.org/10.1145/1736020.1736040
http://doi.acm.org/10.1145/3158134

	Introduction
	Preliminaries
	A SAT-based Learning Algorithm
	A Decision Tree Based Learning Algorithm
	Evaluation
	Conclusion
	References

