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Abstract—The problem of loop bound analysis can conceptu-
ally be seen as an instance of invariant generation. However,
the methods used in loop bound analysis differ considerably
from previous invariant generation techniques. Interestingly,
there is almost no previous work comparing the two sets of
techniques. In this paper, we show that loop bound analysis
methods can efficiently produce invariants which are hard to
prove for state-of-the-art invariant generation techniques (e.g.,
polynomial invariants or invariants relating many variables) and
thus enrich the tool-set of invariant analysis.

I. INTRODUCTION

In this paper we aim at connecting two fields of program
analysis: invariant generation and loop bound analysis. Specif-
ically, we suggest the use of loop bound analysis techniques
for invariant generation. Invariant generation is a traditional
discipline with a long history. Invariants are program proper-
ties (usually given as formulas over program variables) holding
on a specific program location in each program run. A special
case of interest are loop invariants which hold before and
after each loop iteration. For example, in the program from
Figure 1(a), we have the loop invariant x+ c ≤ n ∧ x ≥ 0.
Loop bound analysis is a younger field, where most of the
research was done in the last decade. Its goal is to find an
upper bound on the number of iterations of a given loop inside
a program. Reachability bound analysis [9] generalizes the
problem to finding an upper (or lower) bound on the number
of executions of a specific part of a program (e.g., a branching
inside the loop). For example, in the program from Figure 1(a),
n is a bound of the only loop, as well as a reachability bound
of basic block B1. We will use the term bound analysis to
cover both, loop and reachability bound analysis.

Invariants and loop bounds are linked: 1) Invariants can
be used to infer loop bounds. A straight-forward idea is to
introduce a counter variable c for the loop of interest and to
compute an invariant of shape c ≤ bound . While this idea only
works for simple loops, more elaborated approaches have been
proposed in the literature [8]. 2) Loop bounds can be used to
infer invariants. We are not aware of any publication devoted
to this point except for the brief discussions in [18] and [16].
In this paper, we address this gap and also show that invariant
generation using loop bound analysis techniques can be more
effective than state-of-the-art methods.

We illustrate the use of bound analysis for invariant gener-
ation on example (a) in Figure 1. The invariant c ≤ n holding

after the loop is hard to prove for state-of-the-art invariant
analysis approaches, because of their need to derive suitable
loop invariants. Here, we specifically need the loop invariant
x + c ≤ n ∧ x ≥ 0. Its problematic part is the relation
x + c ≤ n. Since it does not syntactically appear in the
program, it is hard to discover for template-based [15] or
predicate-abstraction [12] approaches, because they need to
rely on heuristics for template/predicate selection. In contrast,
current abstract interpretation based approaches usually fix the
expressible invariants in advance: the popular octagon abstract
domain [14] cannot express the loop invariant (it can relate at
most two variables); the polyhedra domain [4] can express it,
but needs to be carefully controlled in order to scale to larger
problems.

The central idea of using bound analysis for invariant
generation is that variable values after a loop are determined
by their values before the loop and the number of times they
are increased or decreased inside the loop. In our example, we
obtain the equation

Post↑(c) = Pre↑(c) + Exec↑(B1) · 1, (1)

where Post↑(c) (resp. Pre↑(c)) denotes an upper bound
of c after (resp. before) the loop and Exec↑(B1) denotes
an upper bound on the number of executions of the basic
block B1 (containing the instruction c++). We note that
equation 1 is just a different representation of the postcondition
c ≤ Pre↑(c) + Exec↑(B1) · 1. Hence, in order to prove the
postcondition c ≤ n, it suffices to compute Pre↑(c) = 0
and Exec↑(B1) = n. Pre↑(c) = 0 is determined from the
precondition c = 0. The computation of Exec↑(B1) is where
loop bound analysis comes into play, because the number of
executions of block B1 is the same as the number of loop
iterations. The loop bound is inferred in the following way:
Variable x is greater than 0 in the beginning of every loop
iteration and it is decremented by 1 in every iteration, which
means that the maximal value of x in the beginning (which is
n) is an upper bound on the number of iterations. In this way,
we get Exec↑(B1) = n.

In this paper we make the following contributions:
1) We introduce a benchmark of challenging invariant gen-

eration tasks, which we took from previous invariant and
loop bound analysis evaluations. We argue that these
tasks are difficult for state-of-the-art invariant analysis
techniques.



a b c d e f g
CPACHECKER true unk true t/o unk unk unk
PAGAI true unk unk true unk unk unk
VERIABS true t/o true t/o t/o t/o true
ALIGATOR succ succ fail fail fail fail fail

TABLE I
RESULTS OF THE EVALUATION ON THE EXAMPLES FROM FIGURE 1.

2) We present the essence of the techniques underlying
bound analysis by introducing a few simple concepts.
We define the concepts such that they can be easily
used for generating invariants and illustrate their usage on
the tasks from our benchmark of challenging examples.
The concepts are sufficient to solve all benchmark tasks.
We believe that the concepts will enrich the tool set of
invariant analysis.

3) We provide experimental evaluations on two large bench-
mark sets. Our first experiment is executed on part of the
SV-COMP 2018 benchmark and demonstrates that the
current invariant analysis techniques can be significantly
improved by means of bound analysis. Our second ex-
periment is executed on a large industrial benchmark, it
shows that the class of invariants that can be verified
by state-of-the-art invariant analysis tools is to a large
extent different from the class of invariants that is found
by bound analysis.

II. CHALLENGES FOR STATE-OF-THE-ART INVARIANT
GENERATION

In this section, we introduce our small benchmark of
invariant generation tasks. The tasks are given in Figure 1.
They model some of the invariant generation challenges, which
we found in SV-COMP [22] - category ”Loops” (tasks (a), (b),
(c), (e), (g)) or cBench [21] (tasks (d), (f)). They consist of
a precondition, a while-loop written in a simple imperative
C-like language, and the postcondition to be proven.

a) Challenges: In order to prove the postcondition, state-
of-the-art invariant generation techniques typically need to
infer loop invariants (properties holding before and after each
iteration of a loop). We present three main challenges of our
benchmark tasks 1:

1) Polynomial invariants: Some part of the loop invariant
is a polynomial inequation (resp. equation).

2) Invariants with more than 2 variables: Some part of the
loop invariant is an inequation (resp. equation) relating
more than two program variables.

3) Disjunctive invariants: The loop invariant requires a case
distinction (e.g., max{x, y}).

Next to each example in Figure 1, we state the loop invariant
needed for proving the postcondition. Note that the loop
invariants are often more complex than the postconditions.

b) Experimental Results: We have evaluated several
state-of-the-art invariant generation tools on our benchmark of
challenging examples. PAGAI (git revision 16eed0f ) [11] uses

1Although there is a variety of invariant generation techniques tackling
with these challenges, they are either computationaly expensive or rely on
heuristics. For a lack of space, we omit a detailed discussion about the
techniques and their drawbacks.

abstract interpretation with linear domains (interval, octagon,
polyhedra) and path focusing. CPACHECKER 1.6.12 combines
several analysis in different modes. We used the predicate
abstraction mode which worked the best on the benchmark.
VERIABS [5], the winner of subcategory ReachSafety-Loops
in SV-COMP 2018, abstracts loops by static value analysis
with loop acceleration and k-induction and then uses bounded
model checking to prove properties. ALIGATOR [13] (git revi-
sion eb79fef) is a representative of polynomial loop invariant
generation. The technique is built on recurrence equations.

The input C-programs for the tools were generated by
introducing ”assume” resp. ”assert” statements representing
the pre- resp. post-condition. E.g., for example (a), we gen-
erated the statements assume(0<=m && m<=x && x<=n
&& c==0) and assert(m<=c && c<=n). For ALIGA-
TOR, we had to manually rewrite the examples into its input
format and as ALIGATOR only generates loop invariants, we
could not include the precondition and postcondition.

Table I shows the results: ”unk” stands for an unknown
result, ”true” for a successful proof of the assertion, and
”t/o” for timeout - 60 seconds. A special case is ALIGATOR.
Because it only generates the loop invariants, we distinguish
two cases: ”succ” for successfully generating a loop invariant
which is, together with the precondition, sufficient for proving
the postcondition, and ”fail” otherwise. The experiments were
performed on a Linux system with an Intel dual-core 3.2 GHz
processor using 1.5 GB memory. Regarding the timeouts, the
tools did not finish computation even when we extended the
limit to 5 minutes, so we consider such cases as failures.

The experimental results support our hypothesis that Fig-
ure 1 represents classes of problems which are difficult for
state-of-the-art invariant generation techniques. In contrast, in
Sections IV and V we will present simple concepts of bound
analysis which suffice for analyzing the programs of Figure 1.

III. BASIC DEFINITIONS

Program representation. Programs in our examples are
while-loops without function calls (but with possible nesting)
written in C, together with a precondition that holds before
the loop. The conditions that we are not able to model or
which are non-deterministic (e.g., depending on user input)
are represented by the symbol ?.
Program Variables and States. By V we denote the finite
set of program variables and by C its subset of constant
variables, i.e. variables that are never altered in the program.
For simplicity, we work only with integers.

A program state is a function σ : V → Z mapping program
variables to their values. We denote the set of states by Σ.
Expressions and Conditions. Expressions are terms built
with program variables, integers, and functions +, −, ·, /,
max, and min. Division by default rounds down. We denote
division with rounding up semantics by wrapping it with the
brackets d.e. The set of expressions is denoted by Expr . A
constant expression is an expression that does not contain any
non-constant program variable. We denote the set of constant
expressions by Expr c.



precondition code postcondition loop
invariant

concepts

a
0 ≤ m ≤ x ≤ n ∧

c = 0

l1:while(x>0){
B1: x--; c++;
l1:}

m ≤ c ≤ n
x+ c ≤ n ∧
x+ c ≥ m ∧

x ≥ 0

RF (IV-A)
MF (IV-B)
VB1 (V-A)

b
n ≥ 0 ∧m > 0 ∧
x = n ∧ c = 0

B1:while(x>0){
B1: x=x-m; c++;
l1:}

c = d nme
x+m · c = n ∧
x ≥ 1−m

RF (IV-A)
MF (IV-B)
VB1 (V-A)

c
0 ≤ x ≤ n ∧
c = 0 ∧
y = 3

B1:while(x>0){
B1: x--; c++;
B1: if(*)
B2: y=c;
B1:}

y ≤max{3, n}
x+ c ≤ n ∧
x ≥ 0 ∧

y ≤max{3, n}

RF (IV-A)
VB2 (V-B)

d
n ≥ 0 ∧ x = n ∧
c = 0 ∧ r = 0

B1:while(x>0){
B1: x--;
B1: if(*)
B2: r++;
B1: else
B1: while(r>0){
B3: r--; c++;}
B1:}

c ≤ n
c+ r + x ≤ n ∧

r ≥ 0 ∧
x ≥ 0

LRF (IV-C)
VB1 (V-A)

e
0 ≤ x ≤ n ∧
m ≥ 0 ∧
y = c = 0

B1:while(x>0){
B1: x--; y=m;
B1: while(y>0){
B2: y--; c++;
B2: }
B1:}

c ≤ m · n c ≤ m · (n− x) ∧
x ≥ 0

LRF (IV-C)
VB1 (V-A)

f
n ≥ 0 ∧

r = y = n ∧
c = x = 0

B1:while(y>0){
B1: x=r;
B1: while(y>0 && *){
B2: x++; y--; }
B1: while(x>0 && *){
B3: x--; r--; c++;
B1: }
B4: y--;
B1:}

c ≤ 2n
c+ max{r, x}+ y ≤ 2n
∧ y ≥ 0 ∧ x ≥ 0

LRF (IV-C)
VB1 (V-A)

g
x ≥ 0 ∧ j = 0 ∧

i = 0

S1:while(i<x){
B1: i++; j=j+i;
S1:}

j ≤ (x−1)·x
2

j ≤ (i−1)·i
2 ∧

i ≤ x
RF (IV-A)

VBRE (V-C)

Fig. 1. Our small invariant generation benchmark. Each task consists of a precondition, a while-loop written in C, and the postcondition to be proven. The
symbol ? is used to abstract from some conditions in the programs, it represents a non-deterministic boolean value (e.g., dependent on a user input). Each
label Bi denotes the basic block (sequence of assignments) associated with the respective line. For each program, we also state the loop invariant needed for
state-of-the-art invariant generation techniques to prove the postcondition. The last column states combinations of concepts from Sections IV and V which
are sufficient to prove the postcondition.

For expressions e1, e2 ∈ Expr and a variable v, e1[v/e2] is
the expression e1 where all occurrences of v are simultane-
ously replaced by e2. Further, e[vi/ei | i ∈ I] denotes multiple
simultaneous replacements.

We can now extend the notion of a program state to whole
expressions. For an expression e ∈ Expr and a state σ ∈ Σ,
we define σ(e) = e[x/σ(x) | x ∈ V]. We say that σ(e) is the
value of e in state σ.

Conditions (except the non-deterministic condition ?) are
formulas built from expressions and classical relational and

logical operators. The set of conditions is denoted by Cond
with Init being the precondition. We extend the concept of a
simultaneous replacement from expressions to conditions. We
say that a state σ satisfies a condition γ (denoted by σ |= γ)
if γ[x/σ(x) | x ∈ V] is a tautology.

Basic Blocks. A program part consisting only of assignments
is called a basic block. We denote the set of basic blocks
in a program by B. We assume a special initial basic block
Bb ∈ B and final basic block Be ∈ B, which both consist of
zero assignments. We also assume that each block either has



a single successor or exactly two successors connected by a
branching condition.

We further require that Bb does not have any predecessor
and that Be does not have any successor. In our examples,
each basic block is given as one line of code. For example, in
the program from Figure 1(a), the basic block B1 consists of
two assignments, x-- and c++. The blocks Bb and Be are
not explicitly marked in our examples.

Program semantics. The effect of a basic block is a function
E : B → (V → Expr) such that whenever a block B is
executed in a program state σ resulting in a state σ′, it holds
that σ′(v) = σ(E(B)(v)).

E.g., if V = {x, y, c}, C = {c}, and B = x++; y+=x;,
then E(B)(x) = x+1, E(B)(y) = y+x+1, and E(B)(c) = c.

We assume that for each constant variable c ∈ C, E(B)(c) =
c, i.e., constant variables never change their value.

We extend the effect of a basic block to expressions as
follows: For e ∈ Expr , E(B)(e) = e[x/E(B)(x) | x ∈ V]

A program run is a (possibly infinite) sequence
(σ0, B0), (σ1, B1), . . . , where each (σi, Bi) ∈ Σ × B,
B0 = Bb, σ0 |= Init , each Bi+1 is a successor of Bi, σi |= γ
for any branching condition γ between Bi and Bi+1, and for
all v ∈ V we have σi+1(v) = σi(E(Bi)(v)). Further, if the
program run is finite with Bn being the last basic block, then
Bn = Be.

Execution bounds. Given a program run ρ, #(B, ρ) denotes
the number of occurrences of the basic block B in ρ.

An upper (resp. lower) execution bound for a basic block
B is a constant expression b ∈ Expr c such that for each
program run ρ ≡ (σ0, B0), (σ1, B1) . . . , #(B, ρ) ≤ σ0(b)
(resp. #(B, ρ) ≥ σ0(b)).

An execution upper (resp. lower) bound mapping is a
function Exec↑ : B → Expr c (resp. Exec↓ : B → Expr c)
that maps an upper (resp. lower) bound to each basic block
in the program. E.g., Exec↓(B1) = m and Exec↑(B1) = n in
Figure 1(a). 2

Invariants and expression/variable bounds. Let B ∈ B be
a basic block. We say a condition γ ∈ Cond is an invariant
before B if for each program run (σ0, B0), (σ1, B1) . . . holds
that if Bi = B then σi |= γ. For example, x > 0 is an invariant
before B1 in Figure 1(a).

A precondition (resp. postcondition) is an invariant before
Bb (resp. Be). We use the term universal invariant to denote
the invariant holding before each B ∈ B.

An initial, resp. final, resp. universal upper bound of an
expression e is a constant expression b ∈ Expr c such that
b ≥ e is a precondition, resp. postcondition, resp. universal
invariant.

An initial, resp. final, resp. universal upper bound mapping
is a partial function Pre↑, resp. Post↑, resp. Univ↑ that maps

2We note that the upper and lower bound mappings are not unique. We
can infer different mappings depending on the used concept or ranking (resp.
metering) function (see next section). However, for technical convenience and
better readability we always use the same name Exec↑ and Exec↓ for the
mappings.

an initial, resp. final, resp. universal upper bound to each
expression.

We define the initial, resp. final, resp. universal lower bound
analogically with the upper bounds (only the invariant is b ≤ e
instead of b ≥ e) and the bound mappings are denoted as Pre↓,
Post↓, and Univ↓.

For example, in Figure 1(a), we have Pre↓(x) =
m,Pre↑(x) = n,Univ↓(x) = 0,Univ↑(x) = n, and
Post↓(x) = Post↑(x) = 0.

For all the previous definitions, we use the term variable
bound in case e is a variable.

Using Loop Bound Analysis For Invariant Generation.
In this paper, we extract initial expression bounds from the
precondition and use them to infer execution bounds. Based
on the execution bounds and initial expression bounds, we
compute universal and final variable bounds.

Note that computing final and universal expression bounds
can usually be decomposed to several variable bound com-
putations (whether we take an upper or a lower bound of
each variable depends on the sign with which it appears in the
expression). For example, we may compute Post↑(2·x−y+3)
as 2 · Post↑(x)− Post↓(y) + 3.

We will describe concepts for execution bound computation
in Section IV and concepts for variable bound generation in
Section V.

IV. COMPUTATION OF EXECUTION BOUNDS

A. Ranking Functions

A lot of techniques for loop bound analysis use the concept
of ranking functions (e.g., [3], [17], [18], [2]). Ranking func-
tions are expressions that keep decreasing during an execution
of a program and they are bounded from below, thereby
proving that the program must eventually terminate.

Look at the program in Figure 1(a): x is a ranking function
of block B1, because (1) it is decreased by 1 with each
execution of B1, (2) it is never increased, and (3) it is bounded
from below by 0. Note that in this way it measures the number
of the remaining executions of B1.

Definition 1: Let ρ ≡ (σ0, B0), (σ1, B1) . . . be a program
run and e ∈ Expr an expression. We define O(e, ρ) = |{i |
σi(e) > σi+1(e)}|, so O(e, ρ) denotes the number of times e
is decreased on ρ.

Definition 2: An expression e is called a ranking function of
a basic block B ∈ B if for each run ρ ≡ (σ0, B0), (σ1, B1) . . .
the following holds:

1) #(B, ρ) ≤ O(e, ρ) (to each execution of B, we can
assign at least one decrement of e)

2) ∀i ≥ 0. σi |= e ≥ 0 (e is bounded from below by 0)
3) ∀i ≥ 0. σi(e) ≥ σi+1(e) (e is never increased)
The right ranking function can be found by simple heuris-

tics. E.g., in [18], the expression e is a candidate if e > 0
appears in the looping condition.



Concept RF. Let B be a basic block and e its ranking
function. Then Exec↑(B) = Pre↑(e) is an upper execu-
tion bound for B.

Example 1: As we already mentioned, x is a ranking
function of B1 in Figure 1(a), so we get Exec↑(B1) =
Pre↑(x) = n by Concept RF. We summarize the results for
all the examples in the following table:

ranking fnct execution bounds
a B1 : x Exec↑(B1) = Pre↑(x) = n

b B1 : d x
me Exec↑(B1) = Pre↑(d x

me) = d nme
c B1, B2 : x Exec↑(B1) = Exec↑(B2) = Pre↑(x) = n

d B1, B2 : x Exec↑(B1) = Exec↑(B2) = Pre↑(x) = n

e B1 : x Exec↑(B1) = Pre↑(x) = n

f B1, B2, Exec↑(B1) = Exec↑(B2) = Exec↑(B4)

B4 : y = Pre↑(y) = n

g B1 : x− i Exec↑(B1) = Pre↑(x− i) = x

Note that the expression representing the ranking function
of some basic block does not have to decrease by executing
the block itself. E.g., in Figure 1(d), x is a ranking function
for block B2 because each execution of B2 is preceded by
an execution of B1 which decreases x. To find the ranking
function of some basic block, it usually suffices to analyse
all possible paths from the block back to itself and find
expressions that decrease on these paths. Also note that the
ranking function does not have to be just one variable (as can
be seen in examples (b) and (g)).

We also want to remark that if we delete the initial condition
0 ≤ n in Figure 1(a) (respectively in the other examples), the
analysis does not fail. We would infer the ranking function
max{x, 0}. The conditions on non-negativity are added to
the examples only for simplicity.

B. Metering Functions

Because the research in bound analysis so far focused
mainly on computing upper execution bounds, there is no
widely adopted term analogical to “ranking function” for
computing lower execution bounds. For our paper, we have
chosen to adapt (and redefine) the term metering function used
in [7].

Definition 3: An expression e is called a metering function of
a basic block B ∈ B if for each run ρ ≡ (σ0, B0), (σ1, B1) . . .
the following holds:

1) #(B, ρ) ≥ O(e, ρ) (to each decrement of e, we can assign
at least one execution of B)

2) ∃j. σj |= e ≤ 0 (e is eventually non-positive)
3) ∀i ≥ 0. σi(e) ≤ σi+1(e) + 1 (e is never decreased by

more than 1 on one block)
Conditions (2) and (3) guarantee that the number of decre-

ments of e is greater or equal to its lowest possible initial
value. Because of condition (1), also the number of executions
of B is greater or equal to e’s lowest possible initial value.
Note that the requirement that e is eventually less or equal to
zero can be checked by a simple analysis. Usually, it follows

from the negated looping condition of the loop. The candidates
for metering functions can be chosen by the same heuristics
as in the case of ranking functions.

Concept MF. Let B be a basic block and e its metering
function. Then Exec↓(B) = Pre↓(e) is a lower execution
bound for B.

Example 2: As in the previous subsection, we summarise
the metering functions and lower execution bounds in a table:

metering function execution bounds
a B1 : x Exec↓(B1) = Pre↓(x) = m

b B1 : d x
me Exec↓(B1) = Pre↓(d x

me)
= d nme

c B1 : x Exec↓(B1) = Pre↓(x) = n

d B1 : x Exec↓(B1) = Pre↓(x) = n

e B1 : x Exec↓(B1) = Pre↓(x) = 0

f B1, B4 : y Exec↓(B1) = Exec↓(B4)

= Pre↓(y) = n

g B1 : x− i Exec↓(B1) = Pre↓(x− i) = 0

Note that for block B2 in example (c), x is a ranking
function, but not a metering function. For all basic blocks
that are not mentioned in the table, we may use the implicit
metering function 0, which always satisfies all the conditions
of a metering function and leads to the trivial lower execution
bound 0.

C. Lexicographic Ranking Functions

We will now extend the concept of a ranking function. Let
us look at example (d) in Figure 1: r would be a ranking
function of B3 if it was not incremented on B2. However,
we may notice that B2 itself has the ranking function x, so
B2 is executed at most Pre↑(x) = n times (by Concept RF)
and thus r is increased altogether by at most n (by 1 with
each execution of B2). Hence B3 cannot be executed more
than Pre↑(r) + n = n times. We will call r a local ranking
function of B3.

Definition 4: The expression e is called a local ranking
function of a basic block B ∈ B if for each run ρ ≡
(σ0, B0), (σ1, B1) . . . the following holds:

1) #(B, ρ) ≤ O(e, ρ)

2) ∀i ≥ 0. σi |= e ≥ 0

Note that the only difference to Definition 2 is that a local
ranking function may increase during a program run (condition
(3) is missing).

Definition 5: Let B1, . . . , Bn be basic blocks with local
ranking functions e1, . . . , en such that for each 1 ≤ i < j ≤ n
it holds that E(Bj)(ei) ≤ ei (i.e., we can order the basic blocks
such that an execution of any of them does not increase local
ranking functions of the blocks that are higher in the order).
Then we say that (e1, . . . , en) is a lexicographic ranking
function of blocks (B1, . . . , Bn).



Concept LRF. Let (e1, . . . , en) be a lexicographic rank-
ing function of blocks (B1, . . . , Bn). Let ci,j ∈ Expr c

denote the maximal value by which one execution of Bi

can increase ej , i.e. E(Bi)(ej) ≤ ej + ci,j . Then we set:

Exec↑(Bj) = Pre↑(ej) +

j−1∑
k=1

Exec↑(Bk) · ck,j

More details about lexicographic ranking functions can be
found in [17], [3], and [2]. For the computation of lower
bounds, nothing like lexicographic metering functions has
been published so far. It is possible to define such functions,
but we omit the definition here for lack of space.

Example 3: In example (d) from Figure 1, we have the
lexicographic ranking function (x, r) of blocks (B2, B3). We
also have c1,2 = 1 (otherwise ci,j = 0). Hence by applying
Concept LRF, we get Exec↑(B2) = Pre↑(x) = n and
Exec↑(B3) = Pre↑(r) + 1 · Exec↑(B2) = 0 + 1 · n = n.

On this example, we can see how lexicographic ranking
functions can handle amortized complexity problems. Even
though there are n iterations of the outer loop and B3 can be
executed up to n− 1 times during one iteration, it cannot be
altogether executed more than n times.

For example (e), we infer the lexicographic ranking function
(x, y) of blocks (B1, B2). We now need an auxiliary invariant
y ≥ 0 holding before B1 (which is easily found by a simple
invariant generator) to infer that the upper ranking function y
of B2 is increased by at most m with each execution of B1.
By applying Concept LRF, we get Exec↑(B1) = Pre↑(x) = n
and Exec↑(B2) = Pre↑(y)+m·Exec↑(B1) = 0+m·n = m·n.

On example (f), we can see that the choice of the local
ranking functions can have impact on the obtained bounds.
When choosing x as a local ranking function of B3, we
get the lexicographic ranking function (y, y, x) of blocks
(B1, B2, B3) with c1,3 = n, c2,3 = 1, and c1,2 = 0. Thus
Exec↑(B3) = Pre↑(x) + n · Exec↑(B1) + 1 · Exec↑(B2) =
0 + n · n + 1 · n = n2 + n. However, this bound is
unnecessarily coarse. When choosing max{x, r} as a local
ranking function of B3

3, the reset x=r on B1 does not have
any effect on the local ranking function and we get c1,3 = 0
and thus Exec↑(B3) = Pre↑(max{x, r}) + 0 · Exec↑(B1) +
n · Exec↑(B2) = n+ 0 + n = 2n.

V. COMPUTATION OF VARIABLE BOUNDS

A. A Simple Variable Bound Computation

The simplest approach to variable bound computation was
already suggested in the introduction and it follows from [3]
and [17]. For a variable that is changed only at one basic
block where it is incremented by a constant, we compute the
final variable upper bound by multiplying the constant by the

3Both x and r decrease on B3 so max{x, r} is decremented by 1 with
each execution of B3 and x is always non-negative so also max{x, r} is
non-negative.

maximal number of executions of the block and adding the
maximal initial value of the variable.

We now generalise this idea for a computation of lower
variable bounds and we involve variables that are not only
incremented, but also decremented on possibly more than one
basic block. For each variable v, we define a set of tuples
(B, d) where B is a basic block and d is the amount by which
B increments or decrements v.

Definition 6: Let v ∈ V . We define the increments and
decrements of v in the following way:

I(v) =
{(B, d) ∈ B × Expr c | E(B)(v) = v + d ∧
Init =⇒ d > 0}

D(v) =
{(B, d) ∈ B × Expr c | E(B)(v) = v − d ∧
Init =⇒ d > 0}

In the following simple concept, we require that the variable,
for which we are computing the bound, cannot be changed in
any other way than incrementing and decrementing it by a
constant. Note that if there is an assignment incrementing or
decrementing the variable by a non-constant expression, we
can replace the non-constant expression by its universal upper
or lower bound (depending on whether we compute an upper
or lower variable bound).

Concept VB1. Let v ∈ V and for each basic block B
which does not appear in I(v) or D(v) it holds that
E(B)(v) = v (i.e., it does not change v). Then we set

Post↑(v) =
Pre↑(v) +

∑
(B,d)∈I(v) Exec

↑(B) · d
−

∑
(B,d)∈D(v) Exec

↓(B) · d

Post↓(v) =
Pre↓(v)−

∑
(B,d)∈D(v) Exec

↑(B) · d
+

∑
(B,d)∈I(v) Exec

↓(B) · d
Univ↑(v) = Pre↑(v) +

∑
(B,d)∈I(v) Exec

↑(B) · d
Univ↓(v) = Pre↓(v)−

∑
(B,d)∈D(v) Exec

↑(B) · d

Example 4: For example (a) in Figure 1, we have I(c) =
{(B1, 1)} and D(c) = ∅. Thus Post↑(c) = Pre↑(c) +
Exec↑(B1)·1 = n and Post↓(c) = Pre↓(c)+Exec↓(B1) = m.
We may apply the same computation for examples (b), (d), (e),
and (f) and use the execution bounds computed in the previous
subsections.

We now demonstrate the computation of universal upper and
lower bounds for variable r in example (f). We have I(r) =
∅ and D(r) = {(B3, 1)}. We have computed Exec↑(B3) =
2n in the previous subsection and thus we get Univ↑(r) =
Pre↑(r) = n and Univ↓(r) = Pre↓(r) − Exec↑(B3) · 1 =
n− 2n = −n.

B. Variable Bound Computation with Resets

We will now extend the previous simple variable bound
concept such that it covers also basic blocks which reset the
given variable, i.e. which set it to a new value independent
of its previous value. Assume that we want to compute the
final upper variable bound for a variable v. We do not analyse
the order in which the blocks are executed, but we can safely



assume that all decrements of v happen before any reset (so
they would not have any effect on the final value), then v is
reset to the biggest possible value and afterwards incremented
the maximum number of times. We proceed analogically with
the lower bound. The concept is partially inspired by [18].

As in the previous subsection, we first define the set of
resets for a given variable. For simplicity, we consider only
resets of the form v=a+expr, where a is a variable and expr
is a constant expression.

Definition 7: Let v ∈ V . We define the resets of v in the
following way:

R(v) = {(B, a, d) ∈ B × V × Expr c | E(B)(v) = a+ d}

To formulate the concept, we will yet need two auxiliary
sets which contain the largest (resp. smallest) values (given as
constant expressions) to which a given variable may be reset.
For that purpose, we consider the initial value of a variable
also as a reset.

Definition 8:

R↑c (v) = {Pre↑(v)} ∪
⋃

(B,a,d)∈R(v){Univ
↑(a) + d}

R↓c (v) = {Pre↓(v)} ∪
⋃

(B,a,d)∈R(v){Univ
↓(a) + d}

Now we can formulate the concept. Note that (as discussed
earlier) decrements have no effect on the upper variable bound
and increments have no effect on the lower variable bound.
Thus, there is also no difference between final and universal
variable bounds here.

Concept VB2. Let v ∈ V and for each basic block B
that does not appear in I(v), D(v), or R(v) it holds that
E(B)(v) = v (i.e., it does not change v). Then we set

Post↑(v) = Univ↑(v) =
max(R↑c (v))

+
∑

(B,d)∈I(v) Exec
↑(B) · d

Post↓(v) = Univ↓(v) =
min(R↓c (v))

−
∑

(B,d)∈D(v) Exec
↑(B) · d

Example 5: In example (c) from Figure 1, we have R(y) =
{(B2, c, 0)}, D(x) = {(B1, 1)}, I(c) = {(B1, 1)} and I(y) =
D(y) = I(x) = R(x) = D(c) = R(c) = ∅. By Concept VB1,
Univ↑(c) = Pre↑(c) + Exec↑(B1) = 0 + n = n, and thus
we can compute R↑c (y) = {Pre↑(y),Univ↑(c) + 0} = {3, n},
and Post↑(y) = max{3, n} by Concept VB2.

C. Variable Bounds by Recurrence Equations

An alternative approach to Concept VB1 and Concept VB2
for variable bound computation is based on recurrence equa-
tions. It is similar to the technique [13] used by ALIGATOR.

If we have a non-nested loop, we can express variable
values as functions over the loop counter (which represents
the number of finished iterations). For example, the fact that a
variable v is incremented by 1 in each iteration of a loop can
be represented by a recurrence equation [v](n) = [v](n−1)+1
where [v](n) denotes the value of v after n iterations (n is here
the loop counter).

In comparison with [13], our generated invariants are in-
equalities instead of equalities and we incorporate the execu-
tion bounds, and thus take into account conditions in the loop.
The advantage of using recurrence equations over the concepts
VB1 and VB2 is that we can achieve more precise bounds
(as demonstrated next). The disadvantage is that they are less
general - in the way they are defined here, we may apply
them only on non-nested loops without branching. However,
the concept can be further extended to multi-path or nested
loops as in [19].

Definition 9: For v ∈ V , we introduce the functions [v]
↑

:
N → Expr c and [v]

↓
: N → Expr c such that [v]

↓
(n) ≤ v

and v ≤ [v]
↑
(n) holds after n iterations4 of the main program

loop.
For n = 0, we set [v]

↑
(n) = Pre↑(v) and [v]

↓
(n) =

Pre↓(v). For n > 0, we define [v]
↑
(n) and [v]

↓
(n) recursively

with the use of [v]
↑
(n − 1) and [v]

↓
(n − 1) by analysing

the effect of one iteration (the biggest possible increase or
decrease of v). Then we can infer the closed form solution
from the recursive definitions by a syntactic pattern matching
to the following well known case5:

f(n) = f(n−1)+c+d·n  f(n) = f(0)+c·n+d·n · (n+ 1)

2

where n ∈ N and c, d ∈ Expr c.
Definition 10: We say a function f : N→ Expr c is increas-

ing (resp. decreasing) if for each n ∈ N, f(n) ≤ f(n + 1)
(resp.f(n) ≥ f(n+ 1)).

Concept VBRE. Let B be a basic block located immedi-
ately after the loop header. Let v be a variable for which
we know the closed form of [v]

↑
(n) (resp. [v]

↓
(n)). Then

Post↑(v) =

{
[v]
↑
(Exec↑(B)) if [v]

↑
(n) is increasing;

[v]
↑
(Exec↓(B)) if [v]

↑
(n) is decreasing.

Analogically for the lower expression bound:

Post↓(v) =

{
[v]
↓〈Exec↓(B)〉 if [v]

↓
(n) is increasing;

[v]
↓〈Exec↑(B)〉 if [v]

↓
(n) is decreasing.

Example 6: In Figure 1(g), we have [i]
↑
(n) = [i]

↑
(n−1)+1,

hence [i]
↑
(n) = [i]

↑
(0) + n = n. [j]

↑
(n) = [j]

↑
(n − 1) +

[i]
↑
(n − 1) = [j]

↑
(n − 1) + n − 1 = [j]

↑
(0) + (−1) · n +

1 · n·(n+1)
2 = n·(n−1)

2 . By Concept RF, we have already
inferred Exec↑(B1) = x in Subsection IV-A. Because n·(n−1)

2
is increasing (the loop counter n is non-negative), we get
Post↑(j) = x·(x−1)

2 by replacing the counter with the upper
execution bound.

Note that for the computation of upper variable bound for j
with Concept VB1, we would have to replace the assignment
j=j+i (incrementing j by a non-constant expression) by the

4We leave the notion of a loop iteration to the reader’s intuition.
5Closed form computation of other types of recurrences is discussed, e.g.,

in [13].



assignment j=j+x (incrementing j by a constant expression).
Thus, we would get I(j) = {(B1, x)} and Post↑(j) = 0 +x ·
Exec↑(B1) = x · x which is less precise than x·(x−1)

2 .

VI. EXPERIMENTAL EVALUATION ON TASKS FROM
SV-COMP

We implemented the presented concepts into the tool LOOP-
ERMAN [19]. We set up the following experiment on base
of the SV-COMP 2018 benchmark in order to evaluate the
contribution that bound analysis can make to solving invariant
analysis challenges: We inserted the invariants that LOOPER-
MAN computes based on concepts RF, MF, and VB1 in form
of ”assume” statements into the benchmarks from SV-COMP’s
ReachSafety-Loops category. Specifically the invariants are
added after the loop and immediately after the loop header,
where they relate the current variable values to the values
before the loop. For example, the code from Figure 1(a) looks
as follows after applying the described pre-processing:

x_0 = x;
c_0 = c;
while(x>0){

assume(0<x && x<=x_0);
assume(0<=c && c<x_0);
x--;
c++;

}
assume(x==x_0-max(x_0,0));
assume(c==c_0+max(x_0,0));

We excluded the false-unreach cases (those with an invalid
assertion) from the benchmark as we aim at proving program
properties, not at finding counter-examples, which left us with
111 files with valid assertions. We ran the tools VERIABS,
CPACHECKER and PAGAI on the 111 files with valid asser-
tions that we enriched by our invariants, as well as on the
original 111 files. We did not run ALIGATOR because its inputs
are restricted to a special format. For the evaluation, we used
the same time limit of 900s as in SV-COMP. The files with
generated invariants, LOOPERMAN, as well as a detailed table
of results, is available at [1].

Table II compares the results the respective tool obtains with
the help of the invariants inferred by LOOPERMAN (column 2)
and without these invariants (column 1). CPACHECKER was
able to validate 16 (14.4%) additional assertions with the help
of the invariants. PAGAI improved its results by 9 cases (8.1%).
Given that VERIABS already proves 103 of 111 assertions, it
is hard to further improve its results, and in our experiment it
did not not benefit from the additional ”assume” statements.
However, considering the results of our third experiment (see
below), it seems that CPACHECKER and PAGAI are more
reliable on real world code than VERIABS.

When comparing to other tools from SV-COMP 2018 on
this set of programs, CPACHECKER in predicate analysis mode
would move from the 5th place to the 2nd place by using our
additional invariants, preceded only by VERIABS with 103
proven files, and followed by UTAIPAN [6] with 82 proven
files and UAUTOMIZER [10] with 78 files.

proven true proven true
(without invariants) (with invariants)

CPACHECKER 68 (61.26%) 84 (75.68%)
PAGAI 57 (51.35%) 66 (59.46%)
VERIABS 103 (92.79%) 103 (92.79%)

TABLE II
RESULTS OF THE EVALUATION ON 111 TRUE-UNREACH PROGRAMS OF
REACHSAFETY-LOOPS CATEGORY FROM SV-COMP 2018 WITH AND

WITHOUT OUR GENERATED INVARIANTS.

fail oom timeout unknown false true true (%)
CPACHECKER 98 0 187 165 0 311 40.87%
PAGAI 0 8 36 342 0 375 49.2%
VERIABS 183 0 265 262 10 41 5.4%
CBMC 0 8 474 0 0 279 36.66%

TABLE III
RESULTS OF THE EVALUATION ON ALL 761 LOOPS IN CBENCH FOR WHICH

LOOPUS INFERRED A BOUND OVER THE STACK VARIABLES.

We conclude that bound analysis techniques can consider-
ably improve state-of-the-art approaches to invariant analysis.

VII. EXPERIMENTAL EVALUATION ON AN INDUSTRIAL
BENCHMARK

By our third experiment on an industrial benchmark we
evaluate to which extent invariant analysis tools can solve
bound analysis problems. For this purpose we ran our bound
analysis tool LOOPUS on the program and compiler optimi-
sation benchmark Collective Benchmark [21] (cBench, 1027
different C files with 211.892 lines of code) and annotated the
inferred bounds as assertions into the code: We instrumented
a counter c for each loop and added the assertion c ≤ bound ,
where bound is the loop bound computed by LOOPUS. We
then asked CPACHECKER, PAGAI and VERIABS to prove
these assertions. Since it is to be expected that loop bounds
formulated over heap values are difficult to verify, we only
considered those bounds which are purely formulated over
the stack variables. In this way, we generated 761 assertion
tasks. We also ran the bounded model checker CBMC 5.3 [20]
on our benchmark in order to check the correctness of the
generated assertions (by loop unrolling CBMC can disprove
wrong loop bounds in many cases). We chose a timeout of
60s for LOOPUS as well as for the verification tools because
increasing the timeout did not improve results significantly,
neither for LOOPUS nor the verifiers. The generated files with
assertions, the version of LOOPUS which we used, as well as
a detailed table of results, is available at [1].

Table III shows the overall results. The column ”fail” states
the number of loops (assertions about the loop bounds) for
which the respective tool crashed, ”oom” refers to the cases
for which the tool ran out of memory, ”timeout” are the cases
where the computation exceeded 60 seconds, and ”unknown”,
”false”, and ”true” are the cases where the tool terminated with
results ”unknown”, ”false”, or ”true” respectively. The result
”false” indicates that the tool disproved the bound inferred by
LOOPUS. We checked the 10 loops for which VERIABS refuted
the asserted loop bound and it turned out that the bound is
actually sound.

Interestingly, even though the assertions are usually of a
simple form (we used an industrial, not an academic bench-



fail oom timeout unknown false true true (%)
CPACHECKER 61 0 186 160 0 309 43.16%
PAGAI 0 8 33 300 0 375 52.37%
VERIABS 179 0 247 239 10 41 5.73%
CBMC 0 8 429 0 0 279 38.97%

TABLE IV
RESULTS OF THE EVALUATION ON 761 LOOPS IN CBENCH FOR WHICH
LOOPUS INFERRED A LINEAR OR CONSTANT BOUND OVER THE STACK

VARIABLES.

mark), the best tool in this comparison, PAGAI, succeeded to
prove only 49% of the assertions. The second CPACHECKER
proved only 41%, CBMC 37%, and VERIABS 5.4%.

The low success rate is partially caused by the fact that some
of the bounds (assertions) are polynomial, which is problem-
atic for the provers, as discussed in Section II. Therefore we
state the results restricted to the case of linear or constant
bounds in Table IV. Nevertheless, the provers were not much
more successful with 52% (PAGAI), 43% (CPACHECKER),
39% (CBMC), and 5.7% (VERIABS) proven assertions.

In conclusion, our experiment demonstrates that in many
cases invariants computed by bound analysis cannot be com-
puted by state-of-the-art invariant analysis techniques.

VIII. CONCLUSION

We have formulated simple bound analysis concepts for
computing invariants which are challenging for state-of-the-art
invariant generation techniques. On a set of tasks from the
SV-COMP 2018 benchmark, we have demonstrated that
current invariant analysis techniques can be significantly
improved by means of bound analysis. Additionally, we
have shown by an experimental evaluation on an industrial
benchmark that the class of invariants which can be verified
by state-of-the-art invariant analysis tools is to a large
extent different from the class of invariants that is found by
bound analysis. Our results show that using bound analysis
techniques for invariant generation is very promising and we
hope that they motivate further research in this area.
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