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Abstract—We revisit the two main SAT-based algorithms for
checking liveness properties of finite-state transition systems: the
k-LIVENESS algorithm of [1] and the FAIR algorithm of [2].
These approaches are fundamentally different. k-LIVENESS
works by translating the liveness property together with fairness
constraints to the form FGq, and then bounding the number
of times the variable q can evaluate to false. FAIR works by
finding an over-approximation R of reachable states, so that no
state in R is contained on a fair cycle. Each technique has unique
strengths on different problems. In this paper, we present a new
algorithm k-FAIR that builds upon both techniques, synergis-
tically leveraging their strengths. Experiments demonstrate that
this combined approach is stronger than running both in parallel.

I. INTRODUCTION

Efficient verification of liveness properties remains an im-
portant unsolved problem. A common approach is based on
the liveness-to-safety translation [3] that converts liveness
properties to safety properties, enabling the use of any safety
checking technique. In practice this translation works very
well especially for failing properties, though suffers from the
severe performance penalty of doubling the number of state
variables. More direct SAT-based approaches have thus been
proposed: FAIR [2] and k-LIVENESS [1]. In this paper, we
revisit these approaches, and present a new algorithm k-FAIR
that combines the strengths of both in a way that outperforms
running them in parallel.

A liveness property can be converted to form FGq, meaning
that on every path variable q must eventually evaluate to true
forever [1]. A counterexample would illustrate q evaluating to
false infinitely often. As the state-space of hardware models is
finite, such a counterexample may be represented as a lasso-
shaped trace, consisting of a prefix from an initial state to a
¬q-state s, and a repeating loop suffix from s back to itself.

Given a property FGq, k-LIVENESS [1] attempts to bound
the number of times that q can evaluate to false. Effectively,
this technique checks a sequence of safety properties pk which
evaluate to false when q evaluates to false at least k + 1
times. Initially p0 = q, and pk+1 is obtained from pk by
adding “absorbing logic” that masks one occurrence of ¬q.
If ¬pk is proven valid, FGq is clearly valid. A bounded
counterexample to ¬pk does not guarantee the existence of
a counterexample for higher bounds, though if it exhibits a
repeated state sequence within which q evaluates to false, it
is a valid unbounded counterexample. Given a finite state
space, for suitably-large k, either ¬pk will be proven or
will yield a valid unbounded counterexample. k-LIVENESS
is thus sound and complete. As noted in [4], in practice

unbounded counterexamples can often be detected even for
small values of k. Given the close relation between models
being checked for increasing k, an incremental model checker
such as IC3 [5], [6] offers the advantage of reusing information
such as bounded and absolute invariants between each query.

FAIR [2] is an iterative algorithm that incrementally learns
information about reachable states and the SCC-closed regions
of the state space. Roughly speaking, a reachability assertion
R indicates that all the states on a potential lasso-shaped
counterexample belong to R, while a wall W states that all
states on the loop suffix of a potential counterexample either
together belong to W or together belong to the complement of
W . If one side of the wall W has no reachable states, the wall
actually represents a constraint on all states on the loop of a
potential counterexample, called stabilizing constraints in [1].
Specializing to liveness properties of form FGq, FAIR uses
a SAT-solver to obtain a ¬q-state s, subject to the previously-
discovered reachability assertions and walls. If this query is
unsatisfiable, then FGq holds. Otherwise, FAIR tries to com-
pute lasso-shaped counterexample for s, checking whether s is
reachable from an initial state, then whether s can eventually
transition to itself. If both queries are satisfiable, the liveness
property fails. Otherwise, FAIR requires the underlying safety
model checker to produce an inductive proof of unsatisfiability.
If s is not reachable from an initial state, this proof represents
a new reachability assertion. If s cannot transition to itself,
this proof represents a new wall. [2] suggests several methods
to discover new walls, including a method to generalize s to
a set of states sgen, so that no state in sgen has a loop back
to itself; equivalently, ¬sgen is a new stabilizing constraint. In
either case, the algorithm makes progress and must eventually
terminate with a conclusive verification result.

These two algorithms have different strengths. When FGq
is valid, k-LIVENESS works well when a small value of k
is sufficient to prove unsatisfiability; otherwise the underlying
safety queries become unscalable as k becomes large. FAIR
works well when inductive proofs restrict large portions of the
search space; otherwise, too many iterations are required.

In this paper, we propose a new algorithm k-FAIR that com-
bines ideas from both approaches. Similarly to k-LIVENESS,
we pose a safety query that checks for a trace on which
q evaluates to false at least k times. If unsatisfiable, the
liveness property is proven. If satisfiable, we check whether
the bounded counterexample has a repeated ¬q-state; if so,
the liveness property is disproven. Otherwise, we select a ¬q-
state s from the trace, and (similar to FAIR) check if it can
eventually transition back to itself. If so, the liveness property



is disproven. Otherwise, we extract a new stabilizing constraint
c = ¬sgen, by generalizing s to a larger set of states sgen
without a self-loop. These stabilizing constraints are used to
restrict every occurrence of ¬q in future checks for a trace
on which c → q evaluates to false at least k times. Note
that when a new stabilizing constraint is discovered, there is
no need to increase k for completeness, enabling convergence
with smaller bounds than k-LIVENESS.

In Section II, we describe details for making these restric-
tions more efficient with IC3 queries, and for more-efficient
detection of new stabilizing constraints. Originally [2] suggests
to periodically look for single-literal stabilizing constraints.
[1] improves upon this technique by considering all nets in a
circuit as candidate constraints, and using the liveness signal
q in a stronger way; however, this is purely a preprocessing
technique. k-FAIR uses the best of both worlds: applying the
method of [1] periodically, using the external reachability in-
variants and stabilizing constraints to strengthen the induction
hypothesis.

II. k-FAIR

A. Algorithm Overview

Algorithm 1 k-FAIR

Input: Liveness property FGq
Data: Reachability invariants R, Stabilizing constraints S

1: OnLoop← CreateOnLoopReg ()
2: r ← register with init = true and next = (OnLoop→ q)
3: p← r, k ← 0, R← ∅, S ← ∅
4: while true do
5: if (*) then
6: (st, S)← StabilizingConstraints(R,S)
7: if (st = UNSAT) then
8: return PASS
9: (st, α,R)← Run_kLIVENESS(p,R, S)

10: if (st = UNSAT) then
11: return PASS
12: if α has a state repetition with ¬r then
13: return FAIL
14: if (*) then
15: s← Select last state on α with ¬r
16: (st, β, S)← Run_FAIR(s,R, S)
17: if (st = SAT) then
18: return FAIL
19: if (*) then
20: p← AbsorbingLogic(p, r), k++

Our k-FAIR algorithm is depicted in Algorithm 1. It accepts
a liveness property FGq (which embeds fairness constraints),
and returns PASS or FAIL with counterexample. The algorithm
incrementally updates two important structures: reachability
invariants R (that constrain all states on a potential lasso-
shaped counterexample), and stabilizing constraints S (that
constrain all states on the loop of a potential lasso-shaped

counterexample). In practice, each constraint in R and S is a
clause (disjunction) over registers and internal nets.

Lines 1–3. Function CreateOnLoopReg creates a new
register OnLoop that is initialized to 0, which nondeter-
ministically changes its value to 1 after which it remains 1
forever. We create a new register r with next-state function
OnLoop → q. It is easy to see that the validity of FGq is
equivalent to the validity of FGr, and a counterexample to
FGr is a counterexample to FGq. Intuitively, OnLoop allows
to efficiently pass information to the underlying safety model
checker, while register r simplifies implementation details.
Variable p represents the value of the current safety property.
For clarity, index k corresponds to the safety property pk.

Lines 5–8. Algorithm StabilizingConstraints de-
rives new stabilizing constraints, accepting R and S and
updating S. This function is similar to [1], except that it
additionally uses R and S to restrict both current- and the
next-states in the SAT-solver. Additionally, we have found it
useful to reason about the original fairness constraints instead
of q when looking for nets that stabilize to a constant value.
Theoretically, this allows StabilizingConstraints to
discover more stabilizing constraints as the sets R and S are
extended elsewhere, justifying the value of running this func-
tion periodically. In cases, these new stabilizing constraints
exclude all reachable states, in which case the algorithm
terminates with PASS.

Lines 9–11. Function Run_kLIVENESS(p,R, S) checks
whether an initial state can reach a ¬p-state, subject to
constraints R ∧ (OnLoop→ S). Equivalently, this checks for
a path from an initial state, on which OnLoop ∧ ¬q occurs
at least k times under these constraints. In particular, the
stabilizing constraints S must hold on every state after the
first occurrence of OnLoop ∧ ¬q. This is slightly stronger
than suggested in [1], where the stabilizing constraints are
only used to restrict the ¬q-states. This function returns the
verification status st ∈ {SAT,UNSAT}, counterexample α for
st = SAT, and additional reachability invariants R discovered
in the process. As in [1], we use an incremental IC3-engine,
which reuses bounded and absolute invariants between runs;
this allows to neglect explicitly passing R to this engine.
Instead of synthesizing (OnLoop → S) using new logic, we
have extended the IC3-engine to accept clausal constraints
over registers and internal nets. In particular, for each clause
c ∈ S, we pass the clausal constraint ¬OnLoop ∨ c. If
the verification status st returned by Run_kLIVENESS is
UNSAT, the algorithm terminates with PASS.

Lines 12–13. If the safety query returns SAT, then as
suggested in [4] we analyze the counterexample α to check if
it exhibits a state repetition on which r evaluates to false. If
so, the counterexample is valid and the algorithm terminates
with FAIL. Additionally, we may manipulate α using the
trace manipulation techniques described in [4] to improve the
likelihood of producing a valid counterexample from α.

Lines 14–18. First, we select a ¬r-state s from α; by
construction there are at least k+1 such states. In practice, the
last such state is most effective, though any (or multiple) may



be selected. Function Run_FAIR(s,R, S) checks for a path
from s back to itself, subject to constraints R∧S. If the result
is SAT, a valid counterexample β exists and the algorithm
terminates with FAIL. (A valid counterexample to FGr can
be constructed by concatenating α and β). If st = UNSAT,
we use the technique of [2] to generalize s to a larger set of
states sgen, none of which can transition to sgen. In this case,
we update S by adding a new stabilizing constraint ¬sgen. As
in [2], we use an IC3-engine, which produces inductive invari-
ants. To avoid trivial 0-length paths, we introduce an additional
register Z with initial value 0 and next-state function 1, and the
actual query checks whether s∧¬Z can reach s∧Z. Note that
passing sets R and S to IC3 is not required for correctness,
so using them most efficiently in the underlying IC3-engine
poses a complex implementation choice. In our experience,
having many redundant clausal constraints may slow down
IC3 (hurting ability to reduce proof obligations by ternary
simulation or alternative techniques). In our implementation,
we pass S as clausal constraints and R as clausal invariants,
the difference being that clausal invariants are ignored when
reducing proof obligations.

Lines 19–20. If Run_FAIR was executed, a new stabilizing
constraint was detected hence the algorithm made progress.
Contrary to k-LIVENESS, adding absorbing logic is not
required for completeness: we may continue with the same
value of k (or even reduced k). In fact, FAIR can be seen as
an instance of this algorithm when k is always zero.

B. Comparison to k-LIVENESS and to FAIR

k-FAIR effectively combines the strengths of k-
LIVENESS and FAIR. If Run_FAIR is never executed
(if the if-condition on line 14 is always false), then k-
FAIR closely corresponds to k-LIVENESS modulo the
ability to detect new stabilizing constraints via reachability
invariants from IC3. k-FAIR can be viewed as k-LIVENESS
extended with an additional technique to look for unbounded
counterexamples. On the other hand, if AbsorbingLogic
is never executed (if the if-condition on line 19 is always
false), k-FAIR corresponds to an alternative implementation
of FAIR. Though instead of using a SAT-solver to find
candidate ¬q-states s and checking if they are reachable from
an initial state, we search for such reachable states directly.
Additionally, when s cannot reach itself, we only borrow
the method of [2] that discovers stabilizing constraint and
not a more general wall constraint. Arguably, this makes our
implementation simpler, but may lose some potential power
enabled by more general constraints.

III. EXPERIMENTS

In this section we present our experimental results. The
techniques described in this paper are implemented in the IBM
formal verification tool Rulebase: Sixthsense Edition [7]. All
experiments are executed on a 2.00 GHz Linux machine with
an Intel Xeon E7540 processor, 16GB of RAM, and 3 hours
time-limit. We used all single-property liveness benchmarks

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

PASS PASS FAIL FAIL
solved time solved time

k-FAIR-fair 108 338,475 89 351,634
k-FAIR-b50 111 301,592 94 321,260
k-FAIR-b5 122 166,655 104 240,458
k-FAIR-klive 123 173,077 97 245,543
k-FAIR-klive-pre 117 250,431 100 225,971
LTS-BMC - - 114 94,103
LTS-IC3 116 225,059 99 226,321
VBS 131 37,270 117 29,315
VBS without klive 130 43,661 117 29,349
VBS without b5,b50 131 37,510 116 31,326
k-FAIR-fair & k-FAIR-klive-pre 124 175,581 107 154,646
LTS-IC3 & k-FAIR-klive 131 37,270 100 206,171
LTS-BMC & k-FAIR-b5 122 166,655 117 57,482

TABLE II
PROVEN k VALUE FOR COMMONLY-SOLVED BENCHMARKS

k-FAIR- fair b50 b5 klive klive-pre
average k 0 0.50 1.84 6.02 10.09

from the 2011–2017 Hardware Model Checking Competi-
tions [8], as well as various proprietary industrial testcases.
For a more realistic setup, the benchmarks are preprocessed
using standard logic synthesis techniques (similar to ABC [9]
commands rewrite, lcorr and ssw).

A. Review of results

The configurations evaluated include: The first five config-
urations are different variants of Algorithm 1. In k-FAIR-
fair, Run_FAIR runs on every iteration of the main loop
but the counter k is never incremented: this is “pure FAIR”
mode. In k-FAIR-b50 and k-FAIR-b5, Run_FAIR runs on
every iteration of the loop, while the counter k is incre-
mented on, respectively, every 50th and 5th iteration. In k-
FAIR-klive and k-FAIR-klive-pre, Run_FAIR never runs,
and the counter is incremented on every iteration of the
loop: this is the “pure k-LIVENESS” mode. In all five
variants, StabilizingConstraints runs on the first
iteration of the main loop as preprocessing. Additionally, in
the first four variants, StabilizingConstraints runs
periodically (either each time the counter increments, or on
every 50th iteration of the loop, whichever happens first).
In k-FAIR-klive-pre, StabilizingConstraints does
not run again, corresponding most closely to [1]. The last
two configurations LTS-BMC and LTS-IC3 correspond to
the liveness-to-safety translation, followed by BMC (Bounded
Model Checking) [10] and IC3, respectively.

Table I summarizes the experiments. Columns “PASS
solved” and “FAIL solved” show the number of passing and
failing instances, respectively, solved by a specific configura-
tion. Columns “PASS time” and “FAIL time” represent the
cumulative time in seconds for passing and failing properties,
respectively. Benchmarks solved by preprocessing alone, and



TABLE III
COMPARISON OF “PURE FAIR” IN k-FAIR AND FAIR IN IImc

PASS PASS FAIL FAIL
solved time solved time

k-FAIR-fair 108 (18) 208,875 89 (21) 70,834
IImc-fair 101 (11) 277,657 70 (2) 242,762

those not solved by any configuration, are excluded from
further consideration, leaving a total of 131 passing and 117
failing testcases. As BMC cannot prove properties, results are
shown only for failing properties. Row “VBS” corresponds
to the virtual best of all configurations. The last five rows
represent selected portfolios of the configurations above. For
example, row “VBS without klive” corresponds to running in
parallel all configurations except klive. Row “k-FAIR-fair &
k-FAIR-klive-pre” corresponds to running in parallel the two
configurations k-FAIR-fair and k-FAIR-klive-pre.

B. Overall summary

Simple liveness-to-safety followed by BMC is a very strong
falsification strategy, solving all but 3 failing testcases. Inter-
estingly, these 3 are solved by k-FAIR-b5 (with one unique
solve), and in each case the counterexample is detected by
Run_FAIR vs. the state repetition check. This may be because
candidate states returned by Run_kLIVENESS for large k
have a higher chance to belong to a valid counterexample.
The best two-engine parallel portfolio consists of LTS-BMC
and k-FAIR-b5, solving all failing properties with a runtime
improvement of 1.6 vs. LTS-BMC alone. A parallel portfolio
running all seven configurations improves total runtime by an
additional factor of 1.9.

For passing properties, the “pure k-LIVENESS approach
with an incremental detection of stabilizing constraints” per-
forms best (yielding one unique solve), outperforming both the
“pure FAIR” approach, the liveness-to-safety followed by IC3,
and the “standard k-LIVENESS approach” k-FAIR-klive-
pre. A best two-engine portfolio consists of LTS-IC3 and
k-FAIR-klive, solving all passing properties in the smallest
possible time.

C. Examining k sufficient for proof

There are 100 passing testcases (out of 131) solved by
all five variants of k-FAIR. In Table II we restrict to these
testcases and report the values of k sufficient for proof,
averaged over all the testcases. Not surprisingly, this value
is 0 in “pure FAIR” mode, and gradually increases to 6.02
as the variant changes to “pure k-LIVENESS.” This table
shows that stabilizing constraints based upon Run_FAIR
reduce the value of k needed to obtain a proof. Without
the incremental detection of stabilizing constraints based on
StabilizingConstraints, the sufficient value of k is
even larger.

D. Comparing k-FAIR-fair to IImc-fair
As an additional experiment, we compare k-FAIR-fair

– our “pure FAIR” approach, and IImc-fair – the original

FAIR algorithm of [2]. IImc-fair uses the implementation in
IImc [11] with command iimc -t fair -v1 --fair timeout 10800.
The results are summarized in Table III. As before, we present
data only for testcases solved by at least one configuration. The
numbers in parentheses represent unique solves. Overall k-
FAIR-fair performs substantially better than IImc-fair, both
on passing and failing properties, though both variants have
unique value. Unfortunately, a detailed comparison is difficult,
as the two techniques are implemented in very different
verification frameworks, and the improvements may be due
to a large number of different factors, including an improved
method in [1] to find stabilizing constraints, only looking for
loops from a priori reachable states, and the syntactic check
for a state repetition (for failing properties). In any case the
adaptation of FAIR presented in this paper seems as a viable
alternative to the implementation in IImc [11].

IV. CONCLUSION AND FURTHER WORK

In this paper we presented the algorithm k-FAIR, which
combines the strengths of the prominent SAT-based algorithms
for liveness verification: k-LIVENESS and FAIR. We experi-
mented with several variants of k-FAIR and demonstrated that
a combined portfolio approach brings unique value.

Fine-tuning the algorithm is likely to offer addi-
tional performance improvements. Each of the main meth-
ods StabilizingConstraints, Run_kLIVENESS or
Run_FAIR may be the key to success, but may also be
the bottleneck of the approach. Carefully balancing the effort
spent on each component (e.g., by suitably imposing resource
limits, or by increasing or decreasing k more aggressively)
is a subject of further research. Another promising direction
consists of tuning the underlying IC3-engine towards the
safety queries posed by the algorithm. For example, one could
attempt to leverage the fact that all safety queries made by
Run_kLIVENESS (except for possibly the very last one)
are satisfiable, while all safety queries made by Run_FAIR
(except for possibly the very last one) are unsatisfiable. Ad-
ditionally, one could attempt to devise better methods to pass
constraints, invariants, etc. to the IC3-engine, and to use these
more efficiently in the IC3-engine itself.
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