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Abstract—This paper presents the ELDARICA version 2 model
checker. Over the last years we have been developing and
maintaining ELDARICA as a state-of-the-art solver for Horn
clauses over integer arithmetic. In the version 2, we have extended
the solver to support also algebraic data types and bit-vectors,
theories that are commonly applied in verification, but currently
unsupported by most Horn solvers. This paper describes the
high-level structure of the tool and the interface that it provides
to other applications. We also report on an evaluation of the
tool. While some of the techniques in ELDARICA have been
documented in research papers over the last years, this is the
first tool paper describing ELDARICA in its entirety.

I. INTRODUCTION

In recent years, the computer-aided verification commu-
nity has been advocating Horn clause solving as a uniform
framework for reasoning about different aspects of software
safety [7], [20], [32], [25]. Horn clauses form a fragment
of first-order logic, modulo various background theories, in
which models can be constructed effectively with the help of
model checking algorithms. Horn clauses can be used as an
intermediate verification language that elegantly captures var-
ious classes of systems (e.g., sequential code, programs with
functions and procedures, concurrent programs, or networks
of timed automata) and various verification methodologies
(e.g., the use of state invariants, verification with the help
of contracts, Owicki-Gries-style invariants, or rely-guarantee
methods). Horn solvers can be used as off-the-shelf back-
ends in verifiers, and thus enable construction of verification
systems in a modular way.

ELDARICA first appeared as a solver for Horn clauses over
Presburger arithmetic in 2013 [32].! It combines Predicate
Abstraction [19] with Counterexample-Guided Abstraction
Refinement (CEGAR) [12] to automatically check whether a
given set of Horn clauses is satisfiable. The tool has been
significantly improved since then and can now solve problems
over the theories of integers, algebraic data-types [24], and bit-
vectors. It can process Horn clauses and programs in a variety
of formats, implements sophisticated algorithms to solve tricky
systems of clauses without diverging, and offers an elegant
API for programmatic use.

A. An Initial Example

To verify systems using Horn clauses, we first need to fix
a set R of uninterpreted fixed-arity relation symbols, which
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represent the unknowns in the Horn clauses. A constrained
Horn clause is a formula H < C A By A --- A B,, where

o (' is a constraint over some background theory;

o cach B; is an application p(t1,...,t;) of a relation
symbol p € R to first-order terms, usually including first-
order variables;

o H is similarly either an application p(t1, . . .
to first-order terms, or false.

H is called the head of the clause, CABy A - -AB,, the body.
In case C' = true, we usually leave out C' and just write H <
By A --- A B,. First-order variables in a clause are implicitly
universally quantified; relation symbols represent set-theoretic
relations over the universe U of a structure (U, ) € S.

A solution to a set of Horn clauses assigns a formula to each
relation symbol in such a way that all Horn clauses become
valid formulas, considering first-order variables as implicitly
universally quantified. When no solution exists, a derivation
of false can be constructed as a counterexample.

Figure 1 shows a simple C program, together with a control-
flow graph illustrating the program structure. The verification
task consists of proving that the assertion in the program can
never fail, i.e., showing program safety. In order to extract
a set of Horn clauses that encode program safety, relation
symbols R = {ry,re} representing state invariants of the
program are introduced. The arguments of the relation symbols
correspond to the values of program variables that are in scope
at a particular location; in this case, to the value of n. The
Horn clauses in Figure lc represent the program transitions,
and include a clause with empty body for the function entry
point, two clauses corresponding to the assignments in the
body of the loop, and an assertion clause with head false for
the program assertion.

The clauses are constructed in such a way that safety
of the program is equivalent to satisfiability of the Horn
clauses. Solvers search for solutions of the Horn clauses
with the help of techniques like CEGAR (e.g., in HSF [20]
or ELDARICA) or IC3/PDR (e.g., in Z3 [21]). Beyond just
sequential programs, Horn clauses can elegantly represent also
concurrent programs, programs with functions and procedures,
or timed and parameterized systems (e.g., [20], [25]).

In a verification system based on Horn clauses, Horn solvers
are typically interfaced either using a textual format, most
often just a Horn dialect of SMT-LIB [6], or programmatically.
Figure 2 shows the Horn clauses from Figure 1 in SMT-LIB,
assuming that the program variable n ranges over mathemat-
ical integers. The corresponding clauses in signed bit-vector
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1 |int n = 0;

2 |while (true) { @
3 n=n+ 1;

4 assert(n >= -10);

5 n=n- 1;

-

(a) C program

(b) Control-flow graph

Tl(O) <
ro(n +1) + ri1(n)
ri(n —1) < ra(n)
false + —(n > —10) Ara(n)

(c) Horn Clause Representation

Fig. 1: Sample code with corresponding Control-Flow-Graph and Horn clauses.
The clauses are satisfied by setting 71 (n) = (n = 0) and r2(n) = (n = 1).

(set-logic HORN)

(Int) Bool)
(Int) Bool)

(declare—-fun rl
(declare-fun r2

(assert (rl 0))
(assert (forall ((n Int))
(=> (rl n) (r2 (+ n 1)))))
9 | (assert (forall ((n Int))
10 (=> (r2 n) (£l (- n 1)))))
11 | (assert (forall ((n Int))
12 (=> (and (r2 n) (not (>=n (- 10)))) false)))
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14 | (check-sat)

Fig. 2: The example from Figure 1 in SMT-LIB notation, with
mathematical integer semantics.

1 | (set-logic HORN)

2

3 (declare-fun rl ((_ BitVec 32)) Bool)

4 (declare-fun r2 ((_ BitVec 32)) Bool)

5

6 | (assert (rl (_ bv0 32)))

7 | (assert (forall ((n (_ BitVec 32)))

8 (=> (rl n) (r2 (bvadd n (_ bvl 32))))))
9 | (assert (forall ((n (_ BitvVec 32)))
10 (=> (r2 n) (rl (bvsub n (_ bvl 32))))))
11 | (assert (forall ((n (_ BitVec 32)))
12 (=> (and (r2 n)
13 (not (bvsge n (bvneg (_ bvl0 32)))))
14 false)))
15
16 | (check-sat)

Fig. 3: The example from Figure 1 in SMT-LIB notation, with
bit-vector semantics.

arithmetic of width 32 is shown in Figure 3. Both sets of
Horn clauses can easily be proven satisfiable by ELDARICA
and other tools.

B. Related Work.

Horn solvers have been implemented using a variety of
algorithms, often by extending methods from hardware or
software model checking to the more general case of solving
sets of Horn clauses. Existing state-of-the-art tools can be

classified according to their underlying solving algorithm as
the following:

e CEGAR and predicate abstraction, such as HSF [20],
Duality [30], and ELDARICA;

o IC3/PDR, such as the PDR engine in Z3 [21]. The algo-
rithm implemented in SPACER [28] extends IC3/PDR by
maintaining both under- and over-approximations during
analysis;

o Transformation of Horn clauses, such as VeriMAP [13]
and Rahft [26];

e Machine learning, such as SynthHorn [33], FreqHorn
[17] and Holce [11], which progressively drive concrete
invariant samples and use machine learning classification
techniques to find the inductive invariant.

Many of the solvers in addition use techniques like abstract
interpretation to synthesise invariants, and this way support
the main algorithm.

Compared to other Horn solvers, distinguishing features of
ELDARICA are the set of convergence heuristics implemented
(Section II-C), which enable ELDARICA to solve particularly
tricky Horn problems, the range of supported theories (includ-
ing algebraic data types and bit-vectors), and the provided API.

II. AN OVERVIEW OF ELDARICA

We start by describing the ELDARICA design and imple-
mentation. ELDARICA is open source, entirely implemented
in Scala, and only depends on Java or Scala libraries,? which
implies that ELDARICA can be used on any platform with
a JVM. ELDARICA can be used as a standalone tool, but
can also easily be integrated as a library into other systems
implemented in Scala or Java. To reduce the JVM start-
up/warm-up delay in standalone use, ELDARICA can also be
run in a daemon mode.

ELDARICA uses PRINCESS [31] as SMT solver for satis-
fiability and implication checks, and as interpolation proce-
dure for Presburger arithmetic [9], algebraic data-types [24],
and bit-vectors [3]. The CEGAR engine of ELDARICA also
loads PRINCESS as a library that provides the data-structures

2With the exception of the FLATA library optionally used for acceleration,
as described below, which depends on Yices [16].
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Fig. 4: The Main Architectural Components of ELDARICA

to represent terms, formulas, and background theories. This
approach initially reduced the implementation effort, but also
helps to speed up SMT queries because copying and conver-
sion of expressions largely becomes unnecessary.

A. Available Front-ends and Formats

Figure 4 presents an overview of the ELDARICA’s architec-
ture. ELDARICA accepts input in a range of formats: the main
input format for Horn clauses is (standard-compliant) SMT-
LIB v2 [6], writing each clause as an explicitly quantified
disjunction or implication. Support for the SMT-LIB rule
dialect offered by Z3 is considered for the future. ELDARICA
also supports Prolog-style input of Horn clauses over integer
arithmetic.

ELDARICA is also able to parse programs in two (simple)
formats, and handle the clause encoding internally. ELDARICA
can read and verify input in the Numerical Transition Systems
(NTS) format [1], [23], a format handled and produced by
several verification tools. ELDARICA can also parse pro-
grams in a fragment of the C language (currently excluding
pointers, arrays, and heap), as well as networks of timed
automata in a C-like language with support for unbounded
parallelism, clocks, binary communication channels, and time
invariants [25].

B. The Main Algorithms Used in ELDARICA

To check the satisfiability of Horn clauses, ELDARICA
applies lazy Cartesian predicate abstraction [19], [5], in combi-
nation with a variant of Counterexample-Guided Abstraction
Refinement (CEGAR) [12], [4]. Horn clauses are first sent
through a number of preprocessing stages, applying transfor-
mations such as (forward) slicing, (forward and backward)
reachability analysis to eliminate dead relation symbols, clause
inlining, splitting of clauses with complicated constraints or
long bodies, constant propagation, abstract interpretation over
an interval domain to infer basic information about variable
ranges, as well as interval constraint propagation to further
narrow down variable ranges.

The main CEGAR engine of ELDARICA then attempts to
construct an abstract reachability (hyper)graph (ARG) that
would witness satisfiability of Horn clauses, starting from a

(user-provided, and often empty) set of predicates for each
relation symbol. Implication properties are checked with the
help of the SMT solver PRINCESS. If ARG construction fails,
the obtained abstract counterexample DAG is checked for
spuriousness by PRINCESS, resulting in either a concrete coun-
terexample, or additional predicates computed through Craig
interpolation. By default, ELDARICA maps the counterexample
DAG to a tree interpolation problem for this purpose, but also
disjunctive interpolation [32] can be switched on using the
command-line option —disj.

C. Convergence Heuristics

Beyond basic CEGAR and Craig interpolation, ELDARICA
applies two methods to minimise the likelihood of divergence,
i.e., of the phenomenon that a model checker can sometimes
fail to discover the right predicates, and continue refining
the constructed abstraction indefinitely. The first method is
based on acceleration: if during preprocessing cycles con-
sisting of only linear clauses (with only conjunctive, numeric
constraints) are detected, then precise static acceleration [10],
[22] is applied to replace the cycle with a single clause with
the same effect. ELDARICA loads the FLATA tool® as a
Java library for this purpose. Acceleration later helps Craig
interpolation to discover sufficiently general predicates, and
has been shown to significantly extend the reach of CEGAR
for tricky verification tasks [22]. Since this optimisation can
sometimes slow down the model checker, and it is only
applicable for cycles with linear clauses, it is optional and
can be switched on with the command-line option -stac.

As a second method, ELDARICA uses interpolation abstrac-
tion [29] to control the predicates computed through Craig
interpolation. Interpolation abstraction is driven by the results
of a global analysis of the cycles (corresponding to program
loops) present in a set of Horn clauses, including information
about modified loop variables and strides of loop counters,
derived during preprocessing. Among others, interpolation ab-
straction helps to analyse loops modifying multiple variables,
e.g. the Horn clauses corresponding to the following program:

int x = 0, y = 0;
while (x < N) {
X++; v+

oW N

assert(N < 0 || y == N);

In this case, loop analysis will identify the term x — y as a
useful expression (or interpolation template) in invariants, and
interpolation abstraction will guide the interpolation process
towards expressions that avoid the variables x, y, unless they
occur in the context x — y. This approach enables ELDAR-
ICA to rank interpolants according to their expected generality,
and has been shown to speed up the solving process, as well
as to significantly reduce the possibility of divergence [29],
[14]. Interpolation templates can also be specified manually
by the user to control the derived predicates.

Interpolation abstraction is enabled by default, but can
optionally be switched off with the option —~abstract:off.

3http://nts.imag.fr/index.php/Flata
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There is also an option —abstractPO for running a portfolio
of two solvers, one with interpolation abstraction enabled, and
one without interpolation abstraction.

III. STATUS OF THEORY SUPPORT
A. Unbounded Integers

The development of ELDARICA initially focused on the
theory of unbounded linear integer arithmetic (LIA, quantifier-
free Presburger arithmetic, but also including Booleans), for
which efficient Craig interpolation is well understood. Among
the supported theories, linear integer arithmetic in ELDARICA
is at this point the most refined and mature, and has been
evaluated extensively in previous work [22], [29], [14].

Based on the interpolation procedure presented in [3],
we have recently also added support for non-linear integer
arithmetic (NIA) to ELDARICA. The handling of NIA is best-
effort though: procedures for NIA are necessarily incomplete,
and quantifier-free interpolants do not exist in all cases. We
have not yet collected a lot of experience with NIA problems.

B. Arrays

ELDARICA can also handle problems with arrays, and
can compute quantified solutions for such problems using
the transformation approach from [8]. ELDARICA accepts
an extended Horn fragment for problems with arrays, with
additional universal quantifiers allowed in front of each occur-
rence of a relation symbol specifying the intended quantifier
structure of solutions. As an example, we consider a program
filling an array with consecutive numbers:

int n, int ar([];
assume(n > 0);

int 1 = 0;
while (i < n) {
ar[i] = 1i;

i++;

}

assert(forall int j; 0 <= j && j < n => ar[j] >= 0)
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A simple Horn representation of this verification task, using
a single relation symbol inv representing the required loop
invariant, is given in Figure 5. The encoding specifies that
solutions are supposed to be of the form inv(n,i,ar) =
Yind. inuM (n, i, ind, ar[ind]), where the matrix invM is the
actual unknown to be determined by the Horn solver.

Instead of providing the quantifier pattern explicitly in the
SMT-LIB input, it is also possible to leave the introduction
of quantifiers to ELDARICA, and simply declare inv to be a
symbol with an array argument:

1 (declare-fun inv (Int Int (Array Int Int)) Bool)

The number of quantifiers to be introduced can be controlled
using the command-line option —arrayQuans:n.

C. Algebraic Data-Types

Moving towards version 2, we have recently added support
for algebraic data-types (ADTs) with fully-free constructors
to ELDARICA. This makes it possible to analyse Horn clauses

(set-logic HORN)

(declare-fun invM (Int Int Int Int) Bool)
(define—-fun inv ((n Int) (i Int)

(ar (Array Int Int))) Bool

(forall ((ind Int)) (invM n i ind (select ar ind))))

W Jo U WN

9 | (assert (forall ((n Int) (ar (Array Int Int)))

10 (=> (>n 0) (inv n 0 ar))))

11

12 (assert (forall ((n Int) (i Int) (ar (Array Int Int)))
13 (=> (and (inv n i ar) (< i n))

14 (inv n (+ i 1) (store ar i i)))))

15

16 (assert (forall ((n Int) (i Int) (ar (Array Int Int)))
17 (=> (and (inv n i ar) (>= 1 n) )

18 (forall ((3J Int))

19 (=> (and (<= 0 j) (< j n))

20 (>= (select ar j) 0))))))

21

22 | (check-sat)

Fig. 5: An array example in SMT-LIB. To solve the example
using ELDARICA, the option -splitClauses is needed.

(set-logic HORN)

(declare-datatype list ((nil)
(cons (hd Int) (tl list))))

(declare-fun C (list list list) Bool)

W oUW N

(define-fun len ((1 list)) Int (- (_size 1) 1))

<}

10 (assert (forall ((y list)) (C nil y y)))

11

12 | (assert (forall ((x list) (y list) (r list) (i Int))
13 (=> (C x y r)

14 (C (cons 1 x) y (cons i r)))))

15

16 (assert (forall ((x list) (y list) (r list))

17 (=> (and (not (= r nil)) (C x y r))

18 (or (= (hd r) (hd x))

19 (= (hd r) (hd y))))))

20

21 (assert (forall ((x list) (y list) (r list))

22 (=> (C xy r)

23 (= (len r) (+ (len x) (len y))))))
24

25 | (check-sat)

Fig. 6: A list example in SMT-LIB.

with common data-types like enumerations, unions, tuples,
lists, or trees. Clauses can also contain size constraints,
i.e., reason about the number of occurrences of constructor
symbols in a term.* This can be used to talk about the length
of lists or the size of trees. ADTs are handled with the help
of the decision and interpolation procedure presented in [24].

Figure 6 shows a Horn problem over the data-type of lists
of integers. The data-type is defined with constructors nil,
cons, and selectors hd, t1. The size of a list, in terms of
the number of constructor symbols, can be accessed using the
built-in operator _size; since _size also counts the nil
operator, in line 8 we define a function len that computes

4SMT-LIB does currently not define a size operator for ADTs, so that
resulting input is not SMT-LIB compliant.



standard list length. The relation symbol C is then defined to
compute list concatenation, and in lines 16-23 two properties
of concatenation are verified. A programmatic version of the
example is provided in the next section.

At this point, ELDARICA is only able to compute quantifier-
free (and recursion-free) solutions of Horn clauses over ADTs,
which restricts the class of systems and properties that can
meaningfully be analysed. For instance, ELDARICA cannot
derive solutions that state sortedness of an unbounded list,
or the property that all list elements are positive.

D. Bit-Vectors

ELDARICA version 2 also supports Horn clauses over bit-
vectors, using a lazy encoding approach to map bit-vector
constraints to quantifier-free Presburger constraints, which can
then be solved and interpolated using the existing procedures
in PRINCESS. The details of the interpolation procedure are
described in a companion paper at FMCAD 2018 [3]. EL-
DARICA supports almost the full SMT-LIB bit-vector theory,
although the interpolation procedure used for bit-vectors is
optimised mainly for arithmetic constraints (as opposed to bit-
wise operators) in Horn clauses. An SMT-LIB example with
bit-vectors is given in Figure 3, and a programmatic example
in the next section.

IV. PROGRAMMATIC USE OF ELDARICA

A. Algebraic Data Types

Since ELDARICA is implemented in Scala, it offers a conve-
nient embedded domain-specific language for writing formulas
and clauses, and can easily be integrated into other Scala
applications. Integration into Java applications takes a similar
form, but lacks the syntactic sugar provided through Scala,
and at the moment requires the programmer to go through the
slightly cumbersome process of calling Scala methods from
Java. Formulas and data-types are constructed using the API
of the underlying SMT solver PRINCESS.’

A complete runnable example is shown in Figure 7. In
line 11, debugging assertions are switched off. In lines 13—
17, again the ADT of lists over integers with sort name 1ist,
constructors nil, cons, and selectors hd, t1 is defined (mu-
tually recursive data-types can be created similarly). Lines 26—
29 declare variables of sort integer and list, respectively, and
line 31 a ternary relation symbol C over lists. The clauses in
lines 34-35 are written in Prolog-like notation, and axiomatise
C to represent concatenation. In line 39, a property about
the head of a list resulting from concatenation is stated as a
third clause. In line 41 the satisfiability of the three clauses is
checked, with solution C(z,y,r) = y =1V hd(r) = hd(x).

To run the example, it is only necessary to have the Scala
build tool sbt installed, which is included in many Linux
distributions. Further dependencies, such as the Scala compiler
and ELDARICA itself, will be downloaded automatically by the
command sbt run.

Shttp://www.philipp.ruemmer.org/princess/doc/

1 |// List-example.scala
2
3 | import ap.SimpleAPI
4 import ap.theories.ADT
5 | import lazabs.horn.bottomup._
6 | import ADT._
7 import HornClauses._
8 | import ap.parser.IExpression._
9
10 | object ListExample extends App {
11 lazabs.GlobalParameters.get.assertions = false
12
13 val 1istADT = new ADT (Seq(”list”),
14 Seq((”nil”, CtorSignature(Seqg(), ADTSort(0))),
15 (”cons”, CtorSignature(Seq(
16 (”hd”, OtherSort(Sort.Integer)),
17 (”t1”, ADTSort(0))),
18 ADTSort (0)))))
19
20 val Seqg(list) = listADT.sorts
21 val Seqg(nil, cons) = 1istADT.constructors
22 val Seg(_, Seqg(hd, tl)) = 1listADT.selectors
23
24 SimpleAPI.withProver { p =>
25 import p._
26
27 val n = createConstant(”n”, Sort.Integer)
28 val x = createConstant(”x”, list)
29 val y = createConstant(’y”, list)
30 val r = createConstant(”’r”, list)
31
32 val C = createRelation(”C”, Seqg(list, list, list))
33
34 val defClauses = List(
35 C(nil(), vy, v) :— true,
36 C(cons(n, x), y, cons(n, r)) :- C(x, y, r)
37 )
38
39 val prop =
40 (hd(x) === hd(r) | hd(y) === hd(r)) :- (
41 C(x, y, r), r =/=nil())
42
43 SimpleWrapper.solve(prop :: defClauses) match {
44 case Left(sol) =>
45 println(”sat”); println(sol mapValues (pp(_)))
46 case Right(cex) =>
47 println(”unsat”); println(cex)
48
49 }
50 |}
1 | name := “list—example”
2 | scalaversion := 72.11.87
3 | resolvers += "uuverifiers” at “http://logicrunch.<+
research.it.uu.se/maven/”
4 | libraryDependencies += “uuverifiers” %% “eldarica” % "<
2.0 —alpha2”
1 | // Output of the program
2 > sbt run
3 [...]
4 sat
5 |Map(C/3 —> _1 = _2 | hd(_2) = hd(_0))
6 [...]

Fig. 7: Runnable ELDARICA example, analysing Horn clauses
over the data-type of lists. The program can be compiled
and run with the command sbt run, which takes care of
downloading all dependencies (including ELDARICA itself),
compilation, and execution.


http://www.philipp.ruemmer.org/princess/doc/

Int BV
Benchmarks # | ELDARICA Z3 ELDARICA Z3
sat/unsat sat/unsat|  sat/unsat sat/unsat
Consistency 56 27/27 28/27 5/16 0/0
HOLA [15] 46 45/0 36/0 29/4 1/0
IntDualyzer 6 5/1 5/1 3/3 1/0
SLayer (chain.) | 68 0/6 17/34 0/2 10/28
SLayer (fan.) 66 0/6 20/31 0/0 15/24
garmc 13 9/1 11/1 5/1 0/0
ssh-simplified 23 13/8 9/9 13/6 1/0

Fig. 8: Results for ELDARICA 2.0-alpha3 and Z3 4.7.1 on
integer and bit-vector benchmarks, an AMD Opteron 2220
SE machine, running 64-bit Linux and Java 1.8. Runtime was
limited to 30min wall clock time, and heap space to 2GB. The
table shows total number of benchmarks and the number of
the benchmarks that each solver could solve.

B. Bit-vectors

We show an example of Horn clauses over bit-vectors in
Figure 9. The overall structure of the program is similar
as in the previous section. Bit-vector expressions are again
constructed using the corresponding PRINCESS API, with the
bit-vector operators provided in class ModuloArithmetic.
The expression bv (32, n) generates the literal 32-bit con-
stant n, while bvadd represents bit-vector addition. More gen-
erally, the bit-vector API offers access to the complete SMT-
LIB bit-vector theory. The option useTemplates of the
SimpleWrapper enables interpolation abstraction, which is
in the API disabled by default.

V. EXPERIMENTAL RESULTS

Extensive experimental evaluations of ELDARICA have been
published in multiple recent research papers [29], [14], we
only report some experiments on some of the new features of
ELDARICA version 2. Figure 8 shows a comparison of ELDAR-
ICA 2.0-alpha3® and Z3 4.7.1 on integer and bit-vector bench-
marks. ELDARICA was run with the option —abstractPO,
and Z3 with default options.

We use a collection of benchmarks in linear integer arith-
metic from various sources.” C programs from HOLA [15]
were first translated to NTS using Frama-C, and then to Horn
clauses by ELDARICA. Since there are not many benchmarks
for Horn clauses in bit-vector arithmetic, we wrote a script
to convert all the operations in linear integer arithmetic to
their equivalent bit-vector operations (32 bit signed). Using
the script we transformed the original linear integer arithmetic
benchmarks to bit-vector benchmarks. Of course, this can
potentially change the satisfiability of the original benchmark,
but it is useful for making a library of benchmarks of Horn
clauses in bit-vector arithmetic.

The experiments show that ELDARICA performs well on
most benchmark families. This might be due to the effec-
tive convergence heuristics in ELDARICA (Section II-C). An

Shttps://github.com/uuverifiers/eldarica/releases
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1 |// BV-example.scala
2
3 | import ap.SimpleAPI
4 import ap.theories.ModuloArithmetic._
5 import lazabs.horn.bottomup._
6 | import HornClauses._
7 import ap.parser.IExpression._
8
9 | object BVExample extends App {
10 lazabs.GlobalParameters.get.assertions = false
11
12 SimpleAPI.withProver { p =>
13 import p._
14
15 val x = createConstant(”x”, UnsignedBVSort(32))
16 val y = createConstant(”y”, UnsignedBVSort(32))
17
18 val C = createRelation(”’C”,
19 Seq(UnsignedBVSort (32),
20 UnsignedBVSort(32)))
21 val D = createRelation(”’D”,
22 Seq(UnsignedBVSort(32),
23 UnsignedBVSort(32)))
24
25 val defClauses = List(
26 C(bv(32, 1), bv(32, 1)) :- true,
27 C(bvadd(x, bv(32, 1)),
28 bvadd(bv(32, 1), y)) :- C(x, vy),
29 D(x, y) = (C(%, y),
30 x === bv(32, 0))
31 )
32
33 val prop =
34 (y === bv(32, 0)) :- D(x, y)
35
36 SimpleWrapper.solve(prop :: defClauses,
37 useTemplates = true) match {
38 case Left(sol) =>
39 println(”sat”); println(sol mapValues (pp(_)))
40 case Right(cex) =>
41 println(”unsat”); println(cex)
42 }
43 1
44 |}
1 |[name := "eldarica—example”
2 | scalaversion := 72.11.87
3 | resolvers += “uuverifiers” at “http://logicrunch .+«
research.it.uu.se/maven/”
4 | libraryDependencies += “uuverifiers” %% “eldarica” % "<
2.0 —alpha2”
1 |// Output of the program
2 > sbt run
3 [...]
4 sat
5 |Map(C/2 -> _0 = _1, D/2 -> _1 =0 & _0 = 0)
6 | [...1
7 >

Fig. 9: Runnable ELDARICA example, analysing Horn clauses
over bit-vectors. As in Figure 7, the program can be compiled
and run with the command sbt run.


https://github.com/uuverifiers/eldarica/releases
https://github.com/chc-comp/eldarica-misc
https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/

exception are the benchmarks in the SLayer families, which
are solved more efficiently by Z3, possibly due to a large
number of Boolean relation symbols arguments. Converting
the problems to bit-vector semantics tends to produce harder
benchmarks for both solvers. On many families ELDARICA
can still solve a comparable number of problems, but generally
fewer than with integer semantics.

VI. ADOPTION

ELDARICA has been used in a variety of applications, we
list some examples. CoCoSim [2] is an analysis and code
generation framework for Simulink that uses ELDARICA as
one possible back-end. Similarly, JayHorn [27], a software
model checking tool for Java supports ELDARICA as one
of its back-ends. VAC [18] (Verifier of Access Control) an
automatic tool for the analysis of Administrative Role Based
Access Control (ARBAC) policies also relies on ELDARICA
for solving Horn clauses. ELDARICA has also been used for
the analysis of business processes expressed as Petri nets [29].

VII. CONCLUSIONS

ELDARICA is an efficient open source Horn solver sup-
porting integer arithmetic, arrays, algebraic data types, and
bit-vectors. It supports various input formats including SMT-
LIB, Prolog, and numerical transition systems, and provides
a Scala API. Future work includes (i) integration of further
background theories, (ii) further improved heuristics to solve
Horn clauses while avoiding divergence, (iii) generation of
quantified solutions for problems with algebraic data types,
and (iv) optimisation.
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