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Abstract: Formal verification of arithmetic circuits checks
whether or not a gate-level circuit correctly implements a
given specification model. In cases where this equivalence
check fails – the presence of a bug is detected – it is required
to: i) debug the circuit, ii) identify a set of nets (signals)
where the circuit might be rectified, and iii) compute the
corresponding rectification functions at those locations. This
paper addresses the problem of post-verification debugging
and correction (rectification) of finite field arithmetic circuits.
The specification model and the circuit implementation may
differ at any number of inputs. We present techniques that
determine whether the circuit can be rectified at one particular
net (gate output) – i.e. we address single-fix rectification.

Starting from an equivalence checking setup modeled as
a polynomial ideal membership test, we analyze the ideal
membership residue to identify potential single-fix rectification
locations. Subsequently, we use Nullstellensatz principles to
ascertain if indeed a single-fix rectification can be applied at
any of these locations. If a single-fix rectification exists, we
derive a rectification function by modeling it as the synthesis
of an unknown component problem. Our approach is based
upon the Gröbner basis algorithm, which we use both as a
decision procedure (for rectification test) as well as a quan-
tification procedure (for computing a rectification function).
Experiments are performed over various finite field arithmetic
circuits that demonstrate the efficacy of our approach, whereas
SAT-based approaches are infeasible.

I. INTRODUCTION

Past few years have seen extensive investigations into formal
verification of arithmetic circuits. Circuits that implement
polynomial computations over large bit-vector operands are
hard to verify using methods such as SAT/SMT-solvers, de-
cision diagrams, etc. Recent techniques have investigated the
use of polynomial algebra and algebraic geometry techniques
for their verification. These include verification of integer
arithmetic circuits [1] [2] [3] and also finite field circuits
[4] [5]. While these are successful in proving correctness or
detecting the presence of bugs, the problem of debugging and
correction of arithmetic circuits has only just begun to be
addressed [6], [7].

In this paper, we address the problem of rectification of
buggy finite field arithmetic circuits. A specification model
(Spec) is given either as a polynomial description f over a
finite field, or as a golden model of a finite field arithmetic
circuit. The finite field considered is the field of 2k elements
(denoted by F2k ), where k corresponds to the operand-width

(bit-vector word length). An implementation circuit C is also
given. Equivalence checking is performed between the Spec
and the circuit C, and the presence of a bug is detected. No
restrictions on the number, type, or locations of the bugs are
assumed.

We perform error-diagnosis and a subset N of the nets
of the circuit is identified as potential rectification locations.
Given the Spec, the buggy implementation circuit C, and the
set N of potential rectifiable locations, our objective is to
determine whether or not the buggy circuit can be rectified
at one particular net xi ∈ N . This is called single-fix
rectification in literature [8]. If a single-fix rectification does
exist at net xi in the buggy circuit, then our subsequent
objective is to derive a polynomial function U(XPI) in terms
of the set of primary input variables XPI . This polynomial
can be translated (synthesized) into a logic subcircuit such
that xi = U(XPI) acts as the rectification function for the
buggy circuit C so that C matches the specification.

Our techniques and algorithms are based on symbolic
computer algebra and algebraic geometry – particularly on
the concepts of the Strong Nullstellensatz and Gröbner bases
[9]. We show how to apply our techniques to rectify finite
field arithmetic circuits, where conventional SAT-solver based
rectification approaches are infeasible.

The paper is organized as follows: The following section
reviews related previous work. Section III covers preliminary
concepts. The formulation of the verification test is described
in Section IV. Section V describes conditions for rectification
at a particular net. Section VI describes how rectification func-
tion can be synthesized once single-fix rectification is deemed
possible. Section VII describes our experimental results and
Section VIII concludes the paper.

II. PREVIOUS WORK

Automated diagnosis and rectification of digital circuits
has been addressed in [10], [11]. The paper [12] presents
algorithms for synthesizing Engineering Change Order (ECO)
patches - an analogous problem to rectification. The use of
interpolation for ECO has been presented in [8], [13]. The
single-fix rectification function approach in [13] has been
extended in [8] to generate multiple partial-fix functions.
As these approaches are SAT based, they are not efficient
for arithmetic circuits. In contrast to these works, our work
presents a word-level formulation for single-fix rectification.
Computer algebra has been utilized for circuit debugging and
rectification in [6], [7]. These approaches rely heavily on the
structure of the arithmetic circuit for coefficient calculation.



Moreover, if the arithmetic circuits contain redundancies, then
we have shown that their approach is incomplete in that it
cannot resolve the rectification question. We have uploaded
an appendix at [14] for detailed discussion on these issues.

Once rectification is deemed feasible, the problem of
finding the rectification function has been considered as a
partial synthesis problem. The most recent and relevant ap-
proach [15], [16] resolves the unknown component problem
using an incremental SAT formulation.

The approach used in [17] inserts logic corrector MUXs
on the unknown sub-circuits and relies on SAT solvers to
realize the functionality. The authors in [18] present a QBF
formulation for answering whether a partial implementation
can be extended to a complete design that models a given
specification.

Despite using state-of-the-art SAT solvers, all the above ap-
proaches fail to verify large and complex finite field arithmetic
circuits. We demonstrate the efficiency of our implementation
by comparing the results against the most recent SAT based
approach [15] showing improvement by several orders of
magnitude.

III. PRELIMINARIES: NOTATION AND BACKGROUND

Let Fq denote the finite field of q elements, where q = pk is
a prime power. To model functions over k-bit vector operands,
we use q = 2k, i.e. the finite field F2k of 2k elements. The
field F2k is constructed as F2k = F2[X] (mod P (X)), where
F2 = {0, 1} is the field of two elements, and P (X) is a given
irreducible polynomial of degree k with α as one of its root,
i.e. P (α) = 0.

Let R = Fq[x1, . . . , xn] be the polynomial ring in variables
x1, . . . , xn with coefficients in Fq . A polynomial f ∈ R
is written as a finite sum of terms f = c1X1 + c2X2 +
· · ·+ctXt. Here c1, . . . , ct are coefficients and X1, . . . , Xt are
monomials, i.e. power products of the type xe11 · x

e2
2 · · ·xenn ,

ej ∈ Z≥0. To systematically manipulate the polynomials, a
monomial order > (also called a term order) is imposed on
the polynomial ring. Subject to >, X1 > X2 > · · · > Xt, and
lt(f) = c1X1, lm(f) = X1, lc(f) = c1, are the leading term,
leading monomial and leading coefficient of f , respectively.
Also, for a polynomial f , tail(f) = f − lt(f). In this work,
we are mostly concerned with lexicographic (lex) term orders.

1) Polynomial Reduction via division: Let f, g be polyno-
mials. If lm(f) is divisible by lm(g), then we say that
f is reducible to r modulo g, denoted f

g−→ r, where
r = f − lt(f)

lt(g) · g. Similarly, f can be reduced w.r.t. a set
of polynomials F = {f1, . . . , fs} to obtain a remainder r.
This reduction is denoted as f F−→+ r, where the remainder
r is said to be reduced – i.e. no term in r is divisible by
the leading term of any polynomial fj in F . Algorithm 1
(Alg. 1.5.1 from [9]) depicts a procedure for this reduction.
Along with the remainder r, the algorithm also returns the set
of quotients {u1, . . . , us} of division of f by {f1, . . . , fs},
respectively, such that f = u1 · f1 + · · ·+ us · fs + r.

Algorithm 1 Multivariate Reduction of f by F = {f1, . . . , fs}
1: procedure multi var division(f, {f1, . . . , fs}, fj 6= 0)
2: uj ← 0; r ← 0, h← f
3: while h 6= 0 do
4: if ∃j s.t. lm(fj) | lm(h) then
5: choose j least s.t. lm(fj) | lm(h)

6: uj = uj + lt(h)
lt(fj)

7: h = h− lt(h)
lt(fj)

fj
8: else
9: r = r + lt(h)

10: h = h− lt(h)

11: return ({u1, . . . , us}, r)

2) Polynomial Ideals, Varieties and Gröbner Bases:

Definition III.1. Given a ring R = Fq[x1, . . . , xn] and a set
of polynomials F = {f1, . . . , fs} from R, the ideal generated
by F is J = 〈F 〉 ⊆ R:

J = 〈f1, . . . , fs〉 = {h1 · f1 + · · ·+ hs · fs : h1, . . . , hs ∈ R}. (1)

The polynomials f1, . . . , fs form the basis of ideal J .

Let a = (a1, . . . , an) ∈ Fnq be a point in the affine space,
and f a polynomial in R. If f(a) = 0, we say that f vanishes
on a. We have to analyze the set of all common zeros of the
polynomials of F that lie within the field Fq . This zero set
is called the variety, which depends on the ideal generated
by the polynomials. We denote it by V (J), where: V (J) =
VFq

(J) = VFq
(f1, . . . , fs) = {a ∈ Fnq : ∀f ∈ J, f(a) = 0}.

An ideal may have many different sets of generators, i.e. it
is possible to have J = 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 = · · · =
〈h1, . . . , hr〉, such that V (f1, . . . , fs) = V (g1, . . . , gt) =
· · · = V (h1 . . . , hr). A Gröbner basis (GB) of an ideal is one
such generating set G = {g1, . . . , gt}, which possesses many
important properties that allow to solve many polynomial
decision problems.

Definition III.2. [Gröbner Basis] [9]: For a monomial or-
dering >, a set of non-zero polynomials G = {g1, g2, · · · , gt}
contained in an ideal J , is called a Gröbner basis of J iff
∀f ∈ J , f 6= 0, there exists gi ∈ G such that lm(gi) divides
lm(f); i.e., G = GB(J) ⇔ ∀f ∈ J : f 6= 0 ∃gi ∈ G :
lm(gi) | lm(f).

Then J = 〈F 〉 = 〈G〉 holds and G = GB(J) forms
a basis for J . The Gröbner basis for an ideal J can be
computed using the Buchberger’s algorithm [19]. It takes as
input a set of polynomials {f1, . . . , fs} and computes its GB
G = {g1, g2, · · · , gt}. The reader may refer to Algorithm 1.7.1
in [9] for a detailed explanation.

Buchberger’s algorithm can be easily extended to output not
just the Gröbner basis G = {g1, . . . , gt} but also a t×s matrix



M with polynomial entries such that:
g1
g2
...
gt

 = M ·


f1
f2
...
fs

 (2)

An important property of Gröbner bases is that as a decision
procedure, they allow for membership testing of a polynomial
in an ideal.

Proposition III.1. (Ideal Membership Testing) Let G =
GB(J) = {g1, . . . , gt} be the Gröbner basis of ideal J , and
f be any polynomial. Then f ∈ J ⇐⇒ f

G−→+ 0.

Therefore, if f ∈ J , f can be written as a linear combination
(with polynomial coefficients) of the elements of the Gröbner
basis:

f = u1g1 + u2g2 + · · ·+ utgt, (3)

where ui’s correspond to the quotients of division f
g1,...,gt−−−−−→+

0. Subsequently, Eqns. (3) and (2) can be combined to give f
as combination of the original polynomials f1, . . . , fs:

f = v1f1 + · · ·+ vsfs. (4)

Given two ideals J1 = 〈f1, . . . , fs〉, J2 = 〈h1, . . . , hr〉, the
sum J1 + J2 = 〈f1, . . . , fs, h1 . . . , hr〉, and their product J1 ·
J2 = 〈fi · hj : 1 ≤ i ≤ s, 1 ≤ j ≤ r〉. Ideals and varieties are
dual concepts: V (J1+J2) = V (J1)∩V (J2), and V (J1 ·J2) =
V (J1) ∪ V (J2). Moreover, if J1 ⊆ J2 then V (J1) ⊇ V (J2).

3) The Strong Nullstellensatz in Finite Fields: For any el-
ement α ∈ Fq , we have that αq = α. Therefore, the
polynomial xq − x vanishes everywhere in Fq , and we call
it a vanishing polynomial. Let J0 = 〈xq1 − x1, . . . , xqn − xn〉
be the ideal of all vanishing polynomials in the ring R. Then,
VFq (J0) = VFq

(J0) = Fnq . Moreover, given any ideal J ,
VFq (J) = VFq

(J)∩Fnq = VFq
(J)∩ VFq

(J0) = VFq
(J + J0) =

VFq (J + J0).

Definition III.3. Given an ideal J ⊂ R and V (J) ⊆ Fnq , the
ideal of polynomials that vanish on V (J) is I(V (J)) = {f ∈
R : ∀a ∈ V (J), f(a) = 0}.

If f vanishes on V (J), then f ∈ I(V (J)). The Strong
Nullstellensatz, which has a special form over finite fields,
characterizes the ideal I(V (J)).

Theorem III.1 (The Strong Nullstellensatz over finite
fields (Theorem 3.2 in [20])). For any ideal J ⊂
Fq[x1, . . . , xn], I(VFq

(J)) = J + J0.

IV. THE VERIFICATION TEST

Given a specification polynomial f , and a circuit C, the
verification test is formulated as presented in [4]. The cir-
cuit is modeled by a set of multivariate polynomials F =
{f1, . . . , fs} in the ring R = F2k [x1, . . . , xn] for the given
data-path (operand) size k, where x1, . . . , xn denote the nets

(signals) in the circuit. As the circuit comprises Boolean logic
gates, they are modeled as polynomials in F2 ⊂ F2k :

z = ¬a → z + a+ 1 (mod 2)

z = a ∧ b → z + a · b (mod 2)

z = a ∨ b → z + a+ b+ a · b (mod 2)

z = a⊕ b → z + a+ b (mod 2)

(5)

The set of polynomials F generates an ideal, which we
denote by J = 〈F 〉. When C correctly implements f , then
f agrees with every evaluation of all the nets in C. In other
words, f vanishes on V (J), or equivalently f ∈ I(V (J)).
The Strong Nullstellensatz in finite fields (Thm. III.1) tells
us that I(V (J)) = J + J0, where J0 = 〈xqi − xi : i =
1, . . . , n〉. Thus, the verification test can be formulated as ideal
membership testing of f in J + J0 using Gröbner bases: to
check if f

GB(J+J0)−−−−−−−→+ 0?
The Gröbner basis computation GB(J + J0) in R =

Fq[x1, . . . , xn] exhibits high complexity, as it is shown to
be bounded by qO(n) [20]. In [4], the authors showed that
the expensive Gröbner basis computation can be avoided
altogether for this verification test. It was shown that for
any arbitrary combinational circuit, a specialized term order
can be derived by analyzing the topology of the given cir-
cuit. Imposition of this term order on R renders the set of
polynomials F = {f1, . . . , fs} itself a Gröbner basis. Based
on Buchberger’s product criteria, their approach exploits the
fact that when the leading terms of all polynomials in F are
relatively prime, then F already constitutes a Gröbner basis.

Definition IV.1. Let C be an arbitrary combinational circuit
described by a set of polynomials F = {f1, . . . , fs} with
variables {x1, . . . , xn}. Starting from the primary outputs,
perform a reverse topological traversal of C and order the
variables such that xi > xj if xi appears earlier in the reverse
topological order. Impose a lex term order > to represent each
gate as a polynomial fi, s.t. fi = xi + tail(fi). Then the set
F = {f1, . . . , fs} forms a Gröbner basis, as lt(fi) = xi and
lt(fj) = xj for i 6= j are relatively prime. This term order >
is called the Reverse Topological Term Order (RTTO).

Our formulations also contain k-bit word-level variables
corresponding to the input and output word-level operands.
These variables can also be accommodated in RTTO > by
imposing a lex term order with the variable order ”Output
word > input words > bit-level variables ordered reverse
topologically”. In [4], the authors analyzed the effect of such
a term order further on ideal generators that include the van-
ishing polynomials. Let XPI ⊂ {x1, . . . , xn} be the primary
input variables of the circuit. Let FPI0 = {x2i−xi : xi ∈ XPI}
denote the set of bit-level vanishing polynomials in primary
inputs. We utilize the following result from [4].

Proposition IV.1. (Corollary 6.1 in [4]) Using RTTO > to
represent the polynomials in R, the set F ∪FPI0 constitutes a
Gröbner basis of J + J0.



The benefit of using RTTO > is that the verification test can

be performed solely by way of polynomial division f
F,FPI

0−−−−→+

r, and by checking whether or not r = 0? If r = 0, then C
implements f . Otherwise when r 6= 0, there exists a bug in
the design. Moreover, RTTO > ensures that when r 6= 0, r
comprises only primary input variables XPI . Any assignment
to XPI that makes r 6= 0 generates a counter-example that
can be used for debugging.

We use the verification setup under RTTO > (i.e. Def. IV.1
and Prop. IV.1) to rectify the circuit. Our approach begins
when the verification test detects the presence of a bug in

the design, i.e. f
F,FPI

0−−−−→+ r with r 6= 0. In the sequel, we
will use the circuit shown in Fig. 1 as a running example to
demonstrate our approach to debugging and rectification. The
circuit is a modified version of a Mastrovito multiplier [21],
where extra redundant logic was first added in the circuit, and
then a bug was introduced in the redundant logic.

Fig. 1: Design verification of a 2-bit finite-field multiplier. The circuit
is buggy, with the bug introduced at net e3. A correct implementation
includes an AND gate at e3, which is replaced by an XOR gate to
introduce a bug.

Example IV.1. We perform verification of the design of a 2-
bit finite field multiplier in F4, where the output Z is to be
computed as A · B, where Z = {z1, z0}, A = {a1, a0}, B =
{b1, b0} are the given 2-bit operands. Assume further that
P (X) = X2 + X + 1 is the irreducible polynomial used to
construct F4 = F2[X] (mod P (X)), with P (α) = 0.

The implemented circuit C is given as shown in Fig. 1.
Denote polynomial f : Z+A·B as the design specification. For
the verification test, we perform a reverse topological traversal
of the circuit to derive RTTO >, i.e. a lex term order with
variable order: {Z} > {A > B} > {z0 > z1} > {r0} >
{e0 > e1} > {e2} > {e3} > {s0 > s1 > s2 > s3 > s4 >
s5} > {a0 > a1 > b0 > b1}.
The polynomials describing the circuit are given as:

f1 : Z + z0 + αz1; f9 : e2 + e3 + s4;

f2 : A+ a0 + αa1; f10 : e3 + b0 + s3;

f3 : B + b0 + αb1; f11 : s0 + a0b0;

f4 : z0 + s0 + e0; f12 : s1 + a1b1;

f5 : z1 + e0 + r0; f13 : s2 + a1b0;

f6 : r0 + e1 + s5; f14 : s3 + a0 + b0 + a0b0;

f7 : e0 + s1e2; f15 : s4 + b0 + 1;

f8 : e1 + s2e2; f16 : s5 + a0b1;

Then F = {f1, . . . , f16}, FPI0 = {a20 − a0, a21 − a1, b20 −
b0, b

2
1−b1}, and F∪FPI0 constitutes a Gröbner basis of J+J0.

Computing f
F,FPI

0−−−−→+ r gives r = (α + 1)a0a1b1b0 + (α +
1)a0a1b1+(α+1)a1b1b0+(α)a1b0. Since r 6= 0, the presence
of a bug in the design is detected. Our objective now is to
identify a net where rectification can be performed, and then
to subsequently identify a rectification function.

V. IDENTIFICATION OF THE RECTIFICATION TARGET

After the presence of a bug is detected, we address the
problem of single-fix rectification of C. In this section, we
present an approach that ascertains whether or not a single-fix
rectification can be applied at a given (target) net xi in C.
In principle, our approach can be applied at every net xi in
C to see if C at all admits single-fix rectification. However,
it is possible to prune the search for these target nets xi by
analyzing the non-zero remainder obtained by the Gröbner

basis reduction f
F,FPI

0−−−−→+ r. We show how to construct a
subset N ⊆ {x1, . . . , xn} as possible rectification targets.
This rectification target pruning approach is inspired from [7].
Then we present our rectification theorem and the search for
a rectification function.

1) Potential rectification target nets: The circuit C has k-
bit operands, and the output is expressed as Z =

∑k−1
i=0 ziα

i.
Then the non-zero remainder r can be partitioned based on
the coefficients of the monomials in r and re-expressed as:

r = α0(r0) + α1(r1) + · · ·+ αk−1(rk−1) (6)

Non-zero terms ri (with coefficient αi) imply that the
effect of the bug is observable at the bit-level output zi. We
consider the transitive fanin cones of logic of the output bits zi.
When a bug affects multiple outputs, a single-fix rectification
might exist only at the nets that lie in the intersection of
the respective fanin-cones of the affected outputs. In our
experiments, we include these nets in N to check if any one
of them admits a single-fix rectification.

Example V.1. As shown in Ex. IV.1, f
F,FPI

0−−−−→+ r =
(α+ 1)a0a1b1b0 + (α+ 1)a0a1b1 + (α+ 1)a1b1b0 + (α)a1b0.
We re-write the remainder r = α0r0 +α1r1 = α ·(a0a1b1b0 +
a0a1b1 + a1b1b0 + a1b0) + 1 · (a0a1b1b0 + a0a1b1 + a1b1b0).
Since both r0 and r1 are non-zero, the bug affects both
primary outputs z0, z1. By identifying the nets that lie in the
intersection of the fanin cones of z0, z1, we construct N =
{s4, s3, s2, s1, e3, e2, e0} as potential rectifiable locations.

2) Confirming a rectification target: After post-verification
debugging is performed to identify a set of nets N ⊆
{x1, . . . , xn} that are potential rectification target nets, we
now present an approach that confirms whether or not the
circuit can indeed be single-fix-rectified at net xi. Single-
fix-rectification at target net xi means that there exists a
polynomial function U(XPI) which, when implemented at net
xi, ensures that the circuit C would correctly implement the
specification f . Note that xi = U(XPI) is a polynomial



function of the type F|XPI |
2 → F2 as it implements a subcircuit

at net xi.
In the set of polynomials F , we replace fi = xi +U(XPI)

as the polynomial for the rectification function at xi, where
U(XPI) is a hitherto unknown/unresolved polynomial func-
tion component. In other words, F is updated to F =
{f1, . . . , fi−1, fi = xi+U(XPI), fi+1, . . . , fs}. We state and
prove the rectification theorem that checks for the existence of
U(XPI) as a single-fix rectification function at xi.

Theorem V.1 (Rectification Theorem). Given the specification
polynomial f , and the implementation circuit C, derive RTTO
> to represent the polynomials. Using RTTO >, construct two
ideals:

• JL = 〈FL〉, where FL = {f1, . . . , fi−1, fi = xi +
1, fi+1, . . . , fs};

• JH = 〈FH〉, where FH = {f1, . . . , fi−1, fi =
xi, fi+1, . . . , fs};

where the polynomials f1, . . . , fi−1, fi+1, . . . , fs are the same
as in the generators of ideal J (representing the circuit), and
fi is replaced with fi = xi + 1 in JL and fi = xi in JH ,
respectively. Perform the reductions:

• f
FL,F

PI
0−−−−−→+ rL

• f
FH ,F

PI
0−−−−−→+ rH

Let VFq
(rL), VFq

(rH) denote the varieties of rL and rH ,
respectively, over the given field Fq . Then the buggy circuit
C admits a single-fix rectification at the net (gate output) xi
if and only if VFq (rL) ∪ VFq (rH) = F|XPI |

q = V (JPI0 ).

Proof. As rectification at net xi makes the circuit C match
the specification f , f should vanish on V (J). Thus, the rec-
tification condition can be equivalently stated as: “f vanishes
on VFq

(J) ⇐⇒ VFq
(rL) ∪ VFq

(rH) = F|XPI |
q .”

(i) To prove ⇒: Let xPI ∈ F|XPI |
q be an assignment to the

primary input variables of C. For every point xPI , there exists
a corresponding assignment xint to the rest of the variables of
the circuit. For each primary input assignment, the target net
xi evaluates to either xi = 0 or xi = 1. When xi = 0, then JH
vanishes on the point (xPI , xint). Likewise, when xi = 1, JL
vanishes on (xPI , xint). Since f

JH ,J0−−−−→+ rH and f
JL,J0−−−−→+

rL, and f vanishes on the point (xPI , xint), we obtain that
either rH(xPI) = 0 or rL(xPI) = 0. In other words, for every
primary input assignment xPI , either rL or rH vanishes. This
implies that V (rL) ∪ V (rH) = F|XPI |

q = V (JPI0 ).
(ii) To prove “⇐”: Say there exists an assignment to the

primary inputs xPI ∈ F|XPI |
q such that rH vanishes on xPI ,

i.e. rH(xPI) = 0. Corresponding to xPI , there exists an
assignment to the rest of the variables of the circuit xint.
As f

JH ,J0−−−−→+ rH , we have that f is a member of the
ideal JH + J0 + 〈rH〉. Therefore, when rH(xPI) = 0, the
ideal JH also vanishes on (xPI , xint), and J0 by definition
vanishes everywhere. This implies that f(xPI , xint) = 0.
Similarly, the argument also holds that when rL(xPI) = 0,
then f(xPI , xint) = 0. This proves that for all primary inputs

if rL or rH vanishes, then f vanishes too; and that completes
the proof.

Note that the check “Is VFq
(rL) ∪ VFq

(rH) = F|XPI |
q =

V (JPI0 )?” can be performed as shown below, where the union
of varieties corresponds to the product of ideals.

VFq (rL) ∪ VFq (rH) =VFq (rL · rH) = VFq
(〈rL · rH〉+ JPI0 )

= VFq
(〈rL · rH〉+ JPI0 )

Thus, to check for single-fix rectification at the net xi, we
need to compute the Gröbner basis G = GB({rL ·rH}∪FPI0 )
and see if G exactly equals FPI0 .

Example V.2. Continuing with our running example, we
demonstrate the rectification checks at nets e3, s1. As the bug
was introduced at e3, it is obvious that the circuit is rectifiable
at e3. For the rectification check at e3, we mark the polynomial
f10 for modification:
• JL = 〈FL〉, where FL = {f1, . . . , f10 = e3+1, . . . , f16},
• JH = 〈FH〉, where FH = {f1, . . . , f10 = e3, . . . , f16}.
Reducing the specification f : Z+A·B modulo these ideals,

we get:

• rL = f
FL,F

PI
0−−−−−→+ (α+ 1)a1b1b0 + (α+ 1)a1b1

• rH = f
FH ,F

PI
0−−−−−→+ (α+ 1)a1b1b0 + (α)a1b0

When we compute the Gröbner basis G = GB(rL ·
rH , F

PI
0 ), we obtain G = {a20−a0, a21−a1, b20− b0, b21− b1},

corresponding to the ideal of all vanishing polynomials in
primary inputs. This implies the existence of a rectification
function at e3.

In fact, the rectification test also passes for the net s4;
implying that the bug at e3 can indeed be rectified at a different
gate which does not lie in the fanin cone of e3. However,
the rectification test fails at net s1. When the problem is
formulated by modifying the polynomial f12 at net s1, the
corresponding computation for G = GB(rL ·rH , FPI0 ) results
in G = {a20 − a0, b20 − b0, a21 − a1, b21 − b1, a1b0, a0a1b1 +
(α)a0a1b0}. Due to the presence of the last 2 polynomials,
G 6= FPI0 , and rectification is not possible at net s1. In our
experiments, the rectification check is performed on subset
N starting from the net closest to the primary inputs with the
intent of reducing variables in computed rectification function.

VI. COMPUTING A RECTIFICATION FUNCTION

After the confirmation that the circuit indeed admits a
rectification function at net xi, our objective is to compute a
rectification function xi = U(XPI). We call U the unknown
component which has to be resolved. Due to the presence
of internal don’t care conditions, there may exist one or
more polynomial functions U that may rectify the circuit.
Our approach computes one of the candidate functions U , and
proceeds as follows.

Once again, we use RTTO > to represent the set of poly-
nomials of the circuit. The polynomial corresponding to the
target net xi is replaced by the polynomial fi = xi+U(XPI),



where lm(fi) = xi and tail(fi) = U(XPI). In other words,
the set F is updated to F = {f1, . . . , fi = xi + U, . . . , fs}.
Notice that due to RTTO >, the set F still constitutes a
Gröbner basis, as all polynomials in F have leading terms
that are relatively prime. Moreover, by virtue of Prop. IV.1,
the set F ∪ FPI0 also constitutes a Gröbner basis. Thus, for

a correct implementation, the condition f
F∪FPI

0−−−−−→+ 0 still
holds. Using Prop. III.1 and Eqn. 3, we can rewrite f in terms
of these generators as:
f = h1f1+h2f2+· · ·+hifi+· · ·+hsfs+

∑
xl∈XPI

Hl(x
2
l −xl)

(7)
where h1, . . . , hs, Hl are arbitrary polynomials from the ring
R. Substituting fi = xi + U for the unknown component in
Eqn. (7), we have:
f = h1f1 + · · ·+ hi−1fi−1 + hixi + hiU + · · ·+ hsfs

+
∑

xl∈XPI

Hl · (x2l − xl) (8)

f − h1f1 − · · · − hi−1fi−1 − hixi = hiU + hi+1fi+1+

· · ·+ hsfs +
∑

xl∈XPI

Hl · (x2l − xl) (9)

Notice that on the L.H.S. of Eqn. (9), the polynomi-
als f, f1, . . . , fi−1 and the monomial xi are known quanti-
ties/expressions. Therefore, f can be divided by f1, . . . , fi−1,
and by xi, to obtain the respective quotients of the division
h1, . . . , hi and a remainder r where r = f−h1f1−· · ·−hixi.
After hi is computed (as the quotient of this division by xi),
the R.H.S. of Eqn. (9) consists of hi, fi+1, . . . , fs and all the
vanishing polynomials x2l − xl as known expressions. This
implies that:

f − h1f1 − · · · − hixi ∈ 〈hi, fi+1, . . . , fs, x
2
l − xl〉 (10)

r ∈ 〈hi, fi+1, . . . , fs, x
2
l − xl〉 (11)

This ideal membership implies that r can be writ-
ten as some polynomial combination of the generators
hi, fi+1, . . . , fs, x

q
l − xl. This combination can be identi-

fied by first computing the Gröbner basis G of the ideal
〈hi, fi+1, . . . , fs, x

q
l − xl〉, and then performing the ideal

membership test r G−→+ 0, while utilizing Eqns. (3) and (4).
As a result, we can write:
r = h′ihi + h′i+1fi+1 + · · ·+ h′sfs +

∑
Hl(x

2
l − xl) (12)

Then U = h′i is a polynomial function that forms the
solution to the unknown component problem. Algorithmically,
as U = h′i is computed as a quotient of division, U may
contain any variables X ⊆ {x1, . . . , xn} in its support.
However, due to the imposition of RTTO >, U will contain
only those variables xj in its support set that are less than xi
in the reverse topological order. Once such a polynomial U is
obtained, it can be easily expressed in terms of the primary
input variables. To achieve such a normalization, U can be
reduced modulo the set of polynomials {fj = xj + tail(fj)}
such that xj lies in the fanin cone of U . Performing this
division also in a reverse topological fashion results in U

being expressed in primary inputs only. In this fashion, the
polynomial fi : xi + U(XPI) can be identified to implement
the function of a subcircuit at the net xi so that C correctly
implements f .

Note that in Eqn. (11), while {fi+1, . . . , fs} constitutes a
GB under RTTO, the set {hi, fi+1, . . . , fs} may not. So a
GB computation is required. On the other hand, we may also
encounter situations when hi results as being a constant in the
field Fq . When a constant is a member of an ideal J , then
GB(J) = {1}. To arrive at an implementable solution in this
case, we multiply r by the inverse of hi (h−1i ) and reduce the
result modulo the rest of the polynomials{fi+1, . . . , fs}.

r · h−1i
fi+1−−−→ fi+2−−−→ . . .

fs−→+ U. (13)

We now demonstrate the application of this approach on our
running example.

Example VI.1. In Ex. V.2, we showed that rectification is
possible at the net e3, i.e. there exists a polynomial f10 :
e3 + U that can rectify the circuit. Using the same term
order as in the previous examples, we mark f10 = e3 + U
as the unknown component, and include it in the set F =
{f1, . . . , f10 = e3 + U, . . . , f16}. Based on Eqns. (9)-(11),
we begin reducing the specification polynomial f modulo the
set {f1, . . . , f9, e3} ∪ F0. The reduction order for f based on

RTTO > is: f
f1−→ f2−→ f3−→ f4−→ f5−→ f6−→ f7−→ f8−→ f9−→ lt(f10)−−−−→ r.

We will use the following notations to depict this reduction:
’[]’ to represent quotients of division hj’s, ’()’ to represent the
divisors fj’s, and ’{}’ to represent the (partial) remainder fpj
obtained after every reduction step.
f

f1−→ [1](Z + z0 + αz1) + {AB + z0 + αz1} → fp1

fp1
f2−→ [B](A+a0+αa1)+{Ba0+αBa1+z0+αz1} → fp2

fp2
f3−→ [a0+αa1](B+b0+αb1)+{z0+αz1+αa0b1+a0b0+

(α+ 1)a1b1 + αa1b0} → fp3

fp3
f4−→ [1](z0 + e0 + s0) + {αz1 + e0 + s0 + αa0b1 + a0b0 +

(α+ 1)a1b1 + αa1b0} → fp4

fp4
f5−→ [α](z1 + r0 + e0) + {αz1 + e0 + s0 + αa0b1 + a0b0 +

(α+ 1)a1b1 + αa1b0} → fp5

fp5
f6−→ [α](r0 + e1 + s5) + {(α + 1)e0 + αe1 + s0 + αs5 +

αa0b1 + a0b0 + (α+ 1)a1b1 + αa1b0} → fp6

fp6
f7−→ [α+1](e0+ e2 ∗ s1)+{αe1+(α+1)e2s1+ s0+αs5+

αa0b1 + a0b0 + (α+ 1)a1b1 + αa1b0} → fp7

fp7
f8−→ [α](e1 + e2 ∗ s2) + {(α+1)e2s1 +αe2s2 + s0 +αs5 +

αa0b1 + a0b0 + (α+ 1)a1b1 + αa1b0} → fp8

fp8
f9−→ [(α+1)s1+αs2](e2+e3+s4)+{(α+1)e3s1+αe3s2+

s0 + (α+ 1)s1s4 + αs2s4 + αs5 + αa0b1 + a0b0 + (α+ 1)a1b1 +

αa1b0} → fp9
Finally, the obtained remainder fp9 is reduced by lt(f10) =

e3 to obtain the quotient h10 and the remainder r:
fp9

lt(f10)−−−−→ [(α+ 1)s1 + αs2︸ ︷︷ ︸
h10

](e3)+

{s0+(α+1)s1s4+αs2s4+αs5+αa0b1+a0b0+(α+1)a1b1+αa1b0}︸ ︷︷ ︸
r

Now that we have r, h10, f11, f12, f13, f14, f15, f16 available
as known expressions, the unknown component problem can
be formulated as an ideal membership test using Eqn. (11)
such that:



r ∈ 〈h10, f11, f12, f13, f14, f15, f16〉+ 〈FPI0 〉.

The above ideal membership can be solved by first comput-
ing the Gröbner basis of the generators and then expressing r
as a linear combination of the ideal members:
r = U ·h10+h11f11+h12f12+h13f13+h14f14+h15f15+h16f16

In this case, the ideal membership test results in the poly-
nomial r being expressed as:
r = [b0]h10 + [1]f11 + [α + 1]f12 + [αs4 + αb0]f13 + [0]f14 +

[(α+1)s1+αa1b0]f15+[α]f16+[0]f17+[0]f18+[0]f19+[0]f20;
Thus, U = b0 is a solution to the unknown component f10,

i.e. f10 = e3 + b0. This depicts that e3 implements just the
primary input net b0, thus also identifying redundancy in the
design.

VII. EXPERIMENTS

This section presents experimental results using our ap-
proach to debug the circuits and perform a single-fix rectifi-
cation. We compare results of our implementation against the
incremental SAT-based approach presented in [15] wherever
it’s relevant. The approach presented in [15] is implemented
using PICOSAT [22]. The experiments were performed on a
3.5GHz Intel(R) CoreTM i7-4770K Quad-Core CPU with 32
GB of RAM.

We have performed experiments for the cases when the
bugs are present near the input, middle, or near the output
of the circuit, represented using labels NI , NM , and NO
respectively in the tables. All the algorithms were implemented
in SINGULAR [23].

1) Verification between a word level specification v/s Mas-
trovito implementation: Table I presents the results of our ap-
proach when the bugs are placed in a Mastrovito multiplier im-
plementation compared against a specification, which is given
in terms of a word level polynomial f . A Mastrovito multiplier
has word level specification Z = A×B (mod P (x)), where
P (x) is a given primitive polynomial for the datapath size k.
Bugs in the circuit are introduced, and the presence of the
bugs is detetced. Then we apply our approach to check for
single-fix rectification interatively on the nets selected in N . If
rectification is feasible at xi, the unknown component problem
is solved to identify a rectification function.

We are able to verify and debug the circuits for upto 64-bits
within our stipulated Time Out (TO) period.

2) Word level specification v/s Point addition implemen-
tation: Point addition is an operation required for the task
of encryption, decryption and authentication in Elliptic Curve
Cryptography (ECC). Modern approaches represent the points
in projective coordinate systems, e.g., the López-Dahab (LD)
projective coordinate, due to which the point addition opera-
tion can be implemented as polynomials in the field.

Example VII.1. Given an elliptic curve: Y 2+XY Z = X3Z+
aX2Z2 + bZ4 over F2k , where X,Y, Z ∈ F2k and similarly,
a, b are constants from the field. Point addition over the elliptic

curve is (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, 1). Then X3,
Y3, Z3 can be computed as follows:

A = Y2 · Z2
1 + Y1 B = X2 · Z1 +X1

C = Z1 ·B D = B2 · (C + aZ2
1 )

Z3 = C2 E = A · C
X3 = A2 +D + E F = X3 +X2 · Z3

G = X3 + Y2 · Z3 Y3 = E · F + Z3 ·G

Each of the polynomials in the above design are
implemented as a (gate-level) logic block and are
interconnected to obtain final outputs X3, Y3 and Z3.
Table II shows the comparison of the time required for
debugging and rectification for the implementation of the
block D = B2 · (C + aZ2

1 ).

TABLE II: Single fix rectification debug in Point Addition circuits against
word level specification. Time is in seconds; k = Datapath Size, #Gates = No.
of gates, K = 103, a=verification time, b=time for rectification check, c=time
for component correction computation, d=total time

k #Gates
Our implementation

NI NM NO
a b c d a b c d a b c d

8 244 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 1.2K 1.3 3.9 1.5 6.7 1.2 3.7 2 6.9 1.2 3.7 1.8 6.7
32 3.9K 37 112 77 226 38 110 22 170 37 108 35 180

3) Word level specification v/s Barrett reduction
implementation: Barrett reduction is the other widely
used multiplier design method adopted in cryptography
system designs. Based on Barrett reduction, a multiplier can
be designed in two steps: multiplication R = A × B and a
subsequent Barrett reduction G = R (mod P). Table III shows
results for debugging and rectification of Barrett multipliers
against a polynomial specification.

TABLE III: Single fix rectification debug in Barrett reduction circuits
against word level specification. Time is in seconds; k = Datapath Size, #Gates
= No. of gates, K = 103, a=verification time, b=time for rectification check,
c=time for component correction computation, d=total time

k #Gates
Our implementation

NI NM NO
a b c d a b c d a b c d

8 134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 427 0.1 0.0 0.0 0.1 0.0 0.2 0.1 0.3 0.0 0.1 0.3 0.4
32 1.4K 0.4 1.4 0.1 1.9 0.5 1.5 0.1 2.1 1.2 2.2 1.1 4.5
64 4.9K 19 58 5.4 82 21 60 1.7 83 63 104 141 308

Since the SAT-based approach cannot be applied against a
word level specification polynomial, we perform experiments
while using another multiplier implementation as the specifi-
cation.

4) Verification between a specification and implementation
given as gate level circuits: Mastrovito v/s Montgomery mul-
tipliers: Montgomery architectures [24] are considered more
efficient than Mastrovito multipliers for exponentiation, as they
do not require explicit reduction modulo P (x) after each step.

Table IV presents the results of our approach to debug
and rectification with the bugs placed in the Montgomery



TABLE I: Single fix rectification debug in Mastrovito circuit against word level specification. Time is in seconds; k = Datapath Size, #Gates = No. of
gates, K = 103, a=verification time, b=time for rectification check, c=time for component correction computation, d=total time

k #Gates
Our implementation

NI NM NO
a b c d a b c d a b c d

9 0.23K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.29K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.35K 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1
12 0.97K 0.1 0.5 0.4 0.9 0.2 0.5 0.4 1.1 0.5 0.8 0.4 1.7
13 0.82K 0.1 0.3 0.2 0.6 0.2 0.6 0.2 1.0 0.7 0.8 0.2 1.7
16 1.8K 0.9 2.6 1.0 4.5 1.1 3.5 1.0 5.6 2.8 5.3 1.0 9.1
32 5.4K 36 110 42 188 40 160 47 247 38 240 150 428
64 21.8K 2210 7100 2432 9532 2200 8000 2575 12775 2150 7840 10020 20010

TABLE IV: Rectification for Mastrovito circuit with Montgomery circuit as specification. Time is in seconds; k = Datapath Size, #Gates = No. of gates,
(TO): Time-Out = 3 hrs, K = 103, a=verification time, b=time for rectification check, c=time for component correction computation, d=total time

k #Gates

Incremental SAT [15] Our Approach

NI NM NO NI NM NO
a b c d a b c d a b c d

9 0.6K 35 37 33 0.1 0.5 0.2 0.8 0.2 0.2 0.1 0.5 1.8 2.2 0.6 4.6
10 0.7K 231 215 214 0.3 1 0.5 1.8 0.3 1 0.8 2.1 4.7 5.4 0.2 10
11 0.9K 2090 1927 2000 0.6 2 1 3.6 0.8 2 32 35 9 10 0.4 19
12 1.6K 8676 23400 24085 3.2 9.6 3.5 16 3.2 9.3 12 24 155 160 1.6 316
13 1.7K TO TO TO 3.3 10 4.5 18 3.5 10 22 35 170 177 1.6 349
16 3K TO TO TO 27 81 35 143 28 83 48 159 210 176 2.5 389
32 9.8K TO TO TO 2060 6595 1870 10525 2100 7320 1289 10709 2215 7870 1204 11289

multiplier with a Mastrovito multiplier circuit used as the
specification. While the approach [15] finds a satisfying
transformation assignment which can be mapped to a library
gate, our approach debugs the circuit and finds a single fix
rectification function. As shown in the table, our approach
shows improvement by several orders of magnitude over [15].

It takes considerable amount of time for verification and
rectification check when the bug is close to the output. We are
working on further improving the experiments by employing
better data structures like ZBDDs ([25]), and devising better
heuristics to perform rectification check. Due to several limita-
tions w.r.t the number of ring variables that can be declared in
SINGULAR, we have had to restrict our experiments within
64-bit data-path size.

VIII. CONCLUSIONS

This paper has presented a fully automated debug approach
for single fix rectification of finite field arithmetic circuits.
Given a specification and its circuit implementation, we verify
the circuit. If verification detects a bug, we identify all poten-
tial single-fix rectification target nets, and perform rectification
check at each of these nets. If a net admits single-fix rectifica-
tion, we compute a corresponding rectification function. The
underlying theory and algorithms are based on Gröbner basis
reductions, Nullstellensatz, and ideal membership test. The
experimental results demonstrate the efficacy of our approach
for finite field arithmetic circuits where we achieve several
orders of magnitude improvement as compared to recent SAT-
based approach. As part of our future work, we are working
on improving the efficiency of our implementation to target
higher bit-widths. We are also investigating how the current
procedure can be extended to cover integer arithmetic circuits.

Further research also includes exploring the current approach
for the case of multi-fix rectification.
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