
Complete and Efficient DRAT Proof Checking
Adrián Rebola-Pardo

TU Wien
arebolap@forsyte.com

Luı́s Cruz-Filipe
University of Southern Denmark

lcf@imada.sdu.dk

Abstract—DRAT proofs have become the standard for ver-
ifying unsatisfiability proofs emitted by modern SAT solvers.
However, recent work showed that the specification of the format
differs from its implementation in existing tools due to optimiza-
tions necessary for efficiency. Although such differences do not
compromise soundness of DRAT checkers, the sets of correct
proofs according to the specification and to the implementation
are incomparable. We discuss how it is possible to design DRAT
checkers faithful to the specification by carefully modifying
the standard optimization techniques. We implemented such
modifications in a configurable DRAT checker. Our experimental
results show negligible overhead due to these modifications,
suggesting that efficient verification of the DRAT specification
is possible. Furthermore, we show that the differences between
specification and implementation of DRAT often arise in practice.

I. INTRODUCTION

Recent years have seen SAT solvers become increasingly
popular, with many sucess stories in their application to
several open problems, e.g. the recent computation of the
Schur number five [11]. Popularity has also brought about
the question of reliability: how much can we trust an answer
provided by a SAT solver? A satisfiability result can be easily
checked, since SAT solvers output a satisfying assignment. In
the case of unsatisfiability results, several formats have been
developed aimed at representing proofs of unsatisfiability in a
way that is both compact and efficient to check. In this paper
we focus on the DRAT format [10], [16], which has been
widely adopted in SAT competitions and can represent most
inferences done by SAT solvers. DRAT proofs can be checked
both by efficient, untrusted programs such as DRAT-trim,
and by certified, slower programs that work on extended
formats such as LRAT [2] and GRAT [12].

A mismatch between the definition of DRAT proofs and
the results of state-of-the-art proof checkers has been recently
exposed [15]. The class of correct DRAT proofs and that of
proofs accepted by modern checkers are incomparable: simple
proofs which are correct but rejected, or incorrect but accepted,
exist. This is not as catastrophic as it may sound, since it can
be shown that whenever checkers accept a DRAT refutation
of a formula, the latter is indeed unsatisfiable. Hence, one
may consider state-of-the-art checkers as implicitly defining
a proof system of their own. These two notions of correct
DRAT refutations have been refered to as flavors: the original
definition of a DRAT proof corresponds to the specified flavor,
whereas the one defined by the results of DRAT checkers is
the operational flavor. The fundamental difference between

them is that in the operational flavor specific clause deletion
instructions, called unit deletions, are ignored.

While this issue attracted some interest within the SAT
solving community, a discussion on the convenience of either
flavor is hindered by the absence of specified-DRAT checkers.
The reason for this unavailability lies deep down at the
heart of how DRAT checkers work. Deleting unit clauses
breaks invariants required by some lazy data structures for
unit propagation, which are necessary for the huge efficiency
of checkers. Without specified-DRAT checkers, it is virtually
impossible to assess how often discrepancies between the two
flavors occur in proofs produced by SAT solvers in practice.

In this paper, we explain how an efficient specified-DRAT
checker can be implemented. By carefully repairing the in-
volved data structures, the invariants necessary for effective
unit propagation can be restored. Extensively applying these
repairs would be extremely expensive; we identify restrictions
that greatly curb the induced overhead. To measure the repara-
tion overhead in specified-DRAT checking, we implemented
our method in a configurable checker, which can be run to
check proofs on either flavor. To the best of our knowledge,
this is the first specified-DRAT checker available. Experimen-
tal data suggests that the overhead of checking specified-DRAT
proofs over checking operational-DRAT proofs is negligible.
Furthermore, we find that discrepancies between both flavors
occur relatively often in practice, and are not just an artifact
of carefully handcrafted proofs.

Related work: There is extensive literature on clausal
proof generation and checking for SAT solvers [5], [6], [8],
[10], [16]. Several methods to validate correctness results
of DRAT checkers through certified means have been pro-
posed [2], [7], [12], although none of them covers incor-
rectness results. The incompleteness of state-of-the-art DRAT
checkers and its relation with unit clause deletion has been
observed and acknowledged [4], [10], [15].

II. PRELIMINARIES

Given a variable x, we denote its complement by x. A literal
is a variable or its complement. A clause is a disjunction of
literals; we denote clauses by juxtaposition, i.e. x ∨ y ∨ z
is denoted by xyz. We assume that clauses do not contain
complementary literals. The unsatisfiable or empty clause is
denoted by 2. A CNF formula is a conjunction of clauses. We
follow the usual definitions of satisfiability and entailment. We
construe CNF formulas as clause sets and clauses as literal
sets. For a clause C, we denote by C the set of clauses



containing the size-one clause l for each literal l ∈ C. A
partial assignment is a finite, complement-free set of literals
I . For any literal l, we define I(l) as follows: I(l) = 1 if
l ∈ I; I(l) = 0 if l ∈ I; and I(l) = ? otherwise.

A clause C is called unit w.r.t. a partial assignment I
whenever there is a literal l ∈ C with I(l) = 1, and for
any other literal k ∈ C \ {l} we have I(k) = 0. We say
that a CNF formula F implies a literal l by unit propagation
whenever there is a finite sequence l1, . . . , ln of literals such
that ln = l, and we can find a clause Ci ∈ F with li ∈ Ci

and Ci \ {li} ⊆ {l1, . . . , li−1} for 1 ≤ i ≤ n. Furthermore,
we say that F implies a conflict by unit propagation whenever
there are two complementary literals l and l implied by unit
propagation over F . A clause C is a reverse unit propagation
(RUP) clause in F whenever F ∪C implies a conflict by unit
propagation. Moreover, C is called a resolution asymmetric
tautology (RAT) in F upon a literal l ∈ C whenever the clause
C ∨ (D \ {l}) is a RUP in F , for all clauses D ∈ F with
l ∈ D. We assume that clauses contain at least two literals.
In practice, the empty clause is never introduced in the data
structures, but size-one clauses are. For simplicity, we assume
that a new literal > is made true by all partial assignments.
Then, we replace size-one clauses l by the size-two clause l>.

Modern SAT solvers are able to generate unsatisfiability
certificates called DRAT proofs. A DRAT proof is a string
of instructions i1, . . . , in; every instruction is either a clause
introduction i:C or a clause deletion d:C, for a clause C.
Given a DRAT proof π and a CNF formula F , the accumulated
formula F [π] by F through π is recursively defined as follows:

F [ε] = F

F [i:C, π] = (F ∪ {C})[π]

F [d:C, π] = (F \ {C})[π]

The set of literals implied by unit propagation from the
formula accumulated by F through π is called the accumulated
partial assignment. In [15], the accumulated partial assignment
was characterized as the minimal UP-model of F [π].

Given a CNF formula F , a DRAT proof i1, . . . , in is called
a correct DRAT proof of F if 2 = im for some 1 ≤ m ≤ n,
and for every 1 ≤ j ≤ n either of the following holds:
• ij is a deletion instruction d:C.
• ij is an introduction instruction i:C, and C is a either a

RUP or a RAT in F [i1, . . . , ij−1].

Example 1. Throughout this paper we use the following
running example. We consider a CNF formula F containing
the following clauses:

x1

x1x2

x1x2x3

x1x3x4

x5x6

x2x5x7

x1x5x6

x5x6x4

x3x6x8

x6x4x3

x8x5

x3x9x10

x4x9x10

x10x9

x9x7

x7x8x9x10

Furthermore, we consider the following two DRAT proofs:

π = i:x5, d:x1x2, i:x9, i:2 π′ = i:x5, i:x9, i:2

Both π and π′ are correct DRAT proofs. Let us check that the
instruction i:x9 in π is correct. The accumulated formula at
that point is F ′ = (F \ {x1x2}) ∪ {x5}. F ′ ∪ {x9} implies
both x9 and x9 by unit propagation, so x9 is a RUP in F ′.

The proofs π and π′ do not contain any RAT introduction
instruction. As an example, clause x5 is not a RUP in F ,
but it is a RAT in F . The formula F ∪ {x5} implies by unit
propagation exactly the literals x1, x2, x3, x4, x5, x6, x7, x8, so
x5 is not a RUP in F . To show that it is a RAT in F upon
x5, we check that x5x6 = x5 ∨ (x5x6 \ {x5}) and x5x8 =
x5∨(x5x8 \{x5}) are RUPs in F . This holds, for F ∪{x5x8}
(resp. F ∪ {x5x6}) implies by unit propagation x8 and x8
(resp. x6 and x6). �

Our definition of a DRAT proof, reflecting the original
from [9], [10], is central to this paper. DRAT checkers are
programs that determine whether a DRAT proof is correct or
not. DRAT checking is computationally challenging, due to the
sheer size of proofs and the need for unit propagation to check
introduction instructions. Several DRAT checkers are avail-
able. DRAT-trim1 is the de facto standard checker, and is
used in SAT Competitions to certify unsatisfiability results [1],
[10]. Some data structure improvements have been shown to
induce notable improvements over DRAT-trim [12].

However, recent work exposed critical differences between
the way DRAT proofs are defined and the way DRAT proofs
are checked [15]. DRAT checkers ignore deletion instructions
removing clauses that are unit w.r.t. the accumulated assign-
ment. Hence, whereas the notion of correctness stays the same,
DRAT checkers compute the accumulated formula differently:
F [d:C, π] is defined as F [π] if C is a unit clause w.r.t. the
acumulated assignment for F ; and (F \ {C})[π] as usual oth-
erwise. Proofs that are correct but rejected by DRAT checkers
exist, and vice versa. We refer to the original definition as the
specified flavor of DRAT, whereas the operational flavor uses
the modified definition for accumulated formula.

A. Data structures for DRAT checking

Modern DRAT checkers are relatively complex programs.
Efficient unit propagation is required to check the correctness
of RUP and RAT introductions. This is achieved through the
same two-watched literal schema CDCL SAT solvers are based
upon, where each clause is watched on two distinct literals,
and the clauses watched on literal l are stored in the watchlist
for l [13]. Also as in SAT solvers, a trace of the assigned
literals is kept as a stack. The trace stores the accumulated
assignment (i.e. the literals implied by unit propagation by
the accumulated formula), together with information about the
order on which they were assigned and the reason clause that
triggered that propagation. Moreover, watchlists keep track of
clauses that are candidate to trigger future unit propagations.
Both data structures maintain invariants throughout the exe-
cution of the DRAT checker, which are required so that all
available unit propagations are appropriately detected.

1https://github.com/marijnheule/drat-trim



At a given stage during checking, the j-th instruction is
considered. The trace then contains the accumulated assign-
ment Ij for the accumulated formula Fj . Remarkably, literals
in the trace occur in the same order as they were assigned.
In fact, they are staged: the trace behaves like a stack that
grows monotonically throughout the proof, so it can be divided
in sections such that the first j′ sections correspond to the
accumulated assignment Ij′ . Furthermore, every clause is
watched in such a way that that the following invariant holds:

Invariant 1. If a clause is watched on literals l and k, and
the current trace Ij falsifies l, then Ij satisfies k.

A DRAT checker can decide whether a CNF formula
together with some assumed literals implies a conflict by
unit propagation using a well-known procedure [13]. After
assigning each assumed literal l, the watchlist for l̄ is traversed.
By Invariant 1, clauses that trigger new propagations must
be watched on l̄, so they are all eventually encountered. The
checker tries to relocate the watches in each clause so that
Invariant 1 is satisfied. Two conditions may prevent this. In
one case, the trace falsifies all literals, hence a conflict is
reported. In the other case, all literals are falsified but for
one unassigned literal k. In this case, k is implied by unit
propagation, so it can be assigned to true. In turn, this triggers
new propagations, which are detected when the watchlist for
k̄ is traversed. If no further watchlists for previously assigned
literals remain to be processed, and a conflict has not been
reached, the checker can conclude there is no conflict by unit
propagation. Preparing the data structures to check if a new
set of assumed literals implies a conflict by unit propagation
only requires to unassign the literals in the trace: any watch
choice satisfies Invariant 1 correct afterwards.

B. Double-sweep DRAT checking

The described procedure can already check DRAT proofs: to
check if C is a RUP in F , it suffices to assume C̄ and perform
unit propagation, and RAT checking can be done via several
RUP checks. There is however much room for improvement.
DRAT checkers implement a number of techniques to speed
checking up, e.g. resolution candidate caching [12] and core-
first propagation [8]. Two techniques are especially relevant
to our work: an undocumented technique we call incremental
prepropagation, and backwards checking [8]. DRAT checkers
perform two sweeps through the proof. In the first sweep, in-
cremental prepropagation traverses the proof forwards, caching
propagation information that will be used in the second sweep.
Incremental prepropagation performs no proper checking. In-
stead, the second sweep called backwards checking performs
RUP or RAT checks for introduction instructions, traversing
the proof backwards. Backwards checking allows to skip
irrelevant parts of the proof by performing conflict analysis.

Incremental prepropagation: The description of the unit
propagation algorithm above implicitly assumes that the trace
starts empty. This is unnecessary: as long as the watches satisfy
Invariant 1, the initial trace may contain literals. Invariant 1
also implies that the trace contains all literals implied by unit

propagation. DRAT checkers exploit this by preserving the
anterior part of the trace stack between instructions during the
first sweep, in such a way that the trace grows monotonically.

Incremental prepropagation traverses the CNF instance and
the DRAT proof forwards. Every premise or introduction
instruction adds a clause C to the clause database; deletion
instructions are discussed later in this section. After a clause is
introduced, the trace and watchlists are updated. New literals
implied by unit propagation are incrementally added to the
trace stack. Hence, the trace has the form I0I1 . . . Im, and the
substack I0 . . . Ij is the accumulated assignment after the j-th
instruction. The data structures can be updated in three ways:
• If watches for C respecting Invariant 1 exist, no further

literals are propagated. C is added to the relevant watch-
lists, and the checker moves on to the next instruction.

• If C is falsified by the trace, then C is a RUP in F , and
moreover 2 is a RUP in F ∪{C}. This can be treated as
the end of the proof, and backwards checking starts.

• Otherwise, C only contains falsified literals except for
one unassigned literal l. In this case, C is watched
in l and in some other literal, and l follows by unit
propagation. Hence, l is pushed into the trace stack, and
the propagation procedure is called to derive new literals.

As observed above, the stack structure of the trace is mono-
tonic with respect to the proof: to recover the trace computed
before introducing C, if C was the reason to propagate l, it
suffices to drop the latter part of the stack starting with l. When
doing so, watches need not be modified, although this is not
so obvious; again, we defer this discussion to Section III-C,
when we will have the tools to explain the reason for this.

Example 2. Let us reconsider the proofs from Example 1:

π = i:>x5, d:x1x2, i:>x9, i:2 π′ = i:>x5, i:>x9, i:2

where we have introduced the literal > to prevent size-one
clauses. Figure 1 shows the evolution of the trace throughout
incremental prepropagation. Observe that the trace evolution
for π is non-monotonic, since some literals are removed from
the trace, whereas the one for π′ is monotonic. The reason
for this difference is the deletion of reason clause x1x2 in π.
State-of-the-art checkers would ignore this deletion instruction
in π because x1x2 is a unit clause w.r.t. the trace before
the deletion, thus implicitly checking proof π′. Therefore,
checking π and π′ is equivalent under the operational flavor.
Observe that the procedure described above to restore previous
traces works well in all cases except for recovering the trace
“after i:>x5” from “d:x1x2” in π. As we will see later, this
is the reason why unit clause deletions are ignored. �

Backwards checking: Once a conflict in the accumulated
assignment is reached, the second sweep starts. Backwards
checking traverses the proof from the conflict point towards the
beginning of the proof. Introduction instructions are checked
for RUP or RAT by restoring the trace to its state before that
instruction during incremental inprocessing. RUP checks for
a clause C are performed by assumming C and propagating;
RAT checks can be reduced to a number of RUP checks.



trace preprocessing for π = i:>x5, d:x1x2, i:>x9, i:2 trace preprocessing for π′ = i:>x5, i:>x9, i:2

start after i:>x5 after d:x1x2 after i:>x9 start after i:>x5 after i:>x9
x1: >x1 x1: >x1 x1: >x1 x1: >x1 x1: >x1 x1: >x1 x1: >x1
x2: x1x2 x2: x1x2 x5: >x5 x5: >x5 x2: x1x2 x2: x1x2 x2: x1x2
x3: x1x2x3 x3: x1x2x3 x6: x1x5x6 x6: x1x5x6 x3: x1x2x3 x3: x1x2x3 x3: x1x2x3
x4: x1x3x4 x4: x1x3x4 x4: x5x6x4 x4: x5x6x4 x4: x1x3x4 x4: x1x3x4 x4: x1x3x4

x5: >x5 x3: x6x4x3 x3: x6x4x3 x5: >x5 x5: >x5
x6: x1x5x6 x8: x3x6x8 x8: x3x6x8 x6: x1x5x6 x6: x1x5x6
x7: x2x5x7 x9: >x9 x7: x2x5x7 x7: x2x5x7
x8: x3x6x8 x7: x9x7 x8: x3x6x8 x8: x3x6x8

x10: x4x9x10 x9: >x9
x10: x7x8x9x10 x10: x4x9x10

x10: x7x8x9x10

Fig. 1. Trace evolution throughout incremental prepropagation for proofs π and π′ from Example 1. Reason clauses for each propagated literal are indicated.

Done naı̈vely, restoring the trace would mean storing the
trace for each instruction in the proof, and then retrieving the
appropriate trace for every instruction. Watches would then
need to be relocated too, incurring in large costs. Fortunately,
as explained above, the checker can restore a previous trace
can be recovered by simply removing the latter part of the
trace stack. Also, this makes watch relocation unnecessary.

This does not justify checking the proof backwards: the
same effect can be obtained by checking introductions during
the first sweep. However, by performing conflict analysis
on each conflict similarly to CDCL [13], the checker can
determine which clauses were involved in the conflict. These
clauses get marked; unmarked clauses are skipped during
backwards checking, since they are unnecessary to derive 2.

Ignoring unit clause deletions: We had let aside the issue
of deletion instructions in incremental prepropagation. Clauses
that were not involved in trace propagation can be safely
removed from the clause database and watchlists. Otherwise,
C triggered the propagation of a literal l in the trace; we refer
to C as a reason clause for l. Removing a reason clauses is
cumbersome. For one, the propagated literal l may be used to
propagate later literals in the trace. For another, l (or any of the
subsequently propagated literals) may still be implied by unit
propagation, just through a different propagation sequence.

The solution adopted by state-of-the-art checkers is rather
pragmatic: ignore such deletions. If the checker only ignored
reason clauses, the results would be unpredictable, for reason
clauses depend on arbitrarities like the order of clauses in
the formula or the order of literals within clauses. Instead,
a more semantic criterion is used: a deletion instruction for
C is ignored whenever C is a unit w.r.t. the accumulated
assignment, which is stored in the trace. This is a necessary
condition for being a reason clause, albeit not a sufficient one.

Example 3. Consider the instruction d:x1x2 in proof π in
our running example. At this point, the trace is storing the
accumulated assignment {x1, x2, x3, x4, x5, x7, x6, x8}, and
the clause x1x2 is a unit w.r.t. this assignment. Therefore this
deletion instruction is simply ignored by DRAT checkers. �

This criterion makes the results of DRAT checkers stable,

i.e. equivalent representations of proofs yield the same correct-
ness result. However, ignoring unit clause deletions changes
the class of accepted proofs: DRAT checkers are checking
something else instead. The implicitly defined proof system is
sound, i.e. it can only prove unsatisfiable formulas. However,
its class of correct proofs is incomparable to that of correct
DRAT proofs. The implicit proof system has been formalized
and named operational-DRAT, in contrast to the originally
defined specified-DRAT proof system. A comparison between
the two flavors and a discussion on the need for specified-
DRAT checkers can be found in [15].

III. (NAÏVELY) CHECKING SPECIFIED-DRAT PROOFS

Due to the problems discussed in Section II-B, no DRAT
checkers for the specified flavor are available: the invariants
broken by unit clause deletion are precisely those that make
DRAT checking efficient. In this section, we describe how
to restore broken invariants after unit clause deletion. The
operations described in this section are expensive, but the
optimizations in Section IV vastly curb this overhead.

Our first goal is to construct the trace after a reason clause
deletion during incremental propagation, such as the trace
“after d:x1x2” in Example 2. A very inefficient way to do
that would be simply to discard the trace and the watches and
reconstruct them from scratch. We aim to improve over this
by reusing the trace before the deletion as much as possible.

We construct the trace after deleting the reason clause C
for literal l in two stages. First, we identify which literals in
the trace used l to be derived by unit propagation; we call
these literals the propagation cone of l. After removing the
propagation cone from the trace, the second stage restores into
the trace the removed literals that are still implied by unit
propagation. These two stages are illustrated in Example 4.

A. Computing the propagation cone
Intuitively, the propagation cone P (l) for literal l with

respect to a trace is determined inductively by two rules:
• The literal l is in the propagation cone.
• A literal k from the trace with reason clause D is in the

propagation cone if D contains a (necessarily falsified)
literal m 6= k where m is in the propagation cone.



after i:>x5 after cone after after
removal reinsertion propagation

x1: >x1 x1: >x1 x1: >x1 x1: >x1
x2: x1x2 x5: >x5 x5: >x5 x5: >x5
x3: x1x2x3 x6: x1x5x6 x6: x1x5x6 x6: x1x5x6
x4: x1x3x4 x4: x5x6x4 x4: x5x6x4
x5: >x5 x3: x6x4x3
x6: x1x5x6 x8: x3x6x8
x7: x2x5x7
x8: x3x6x8

Fig. 2. Constructing the trace “after d:x1x2” from π in Example 2.

To compute the propagation cone P (l) w.r.t. a trace inducing
the partial interpretation I , let P0(l) = {l}, and

Pn+1(l) = Pn(l) ∪ {k ∈ I | ∃m ∈ Rk \ {k}, m ∈ Pn(l)}

for each n ≥ 0, where we denote by Rk the reason clause for
literal k in the trace. The propagation cone is then the fixpoint
P (l) =

⋃
n≥0 Pn(l), which exists and is reachable because the

sequence (Pn(l))n∈N is increasing and P (l) is finite. Because
the reason clauses for trace literals are stored for conflict
analysis purposes, all information needed for computing the
propagation cone is available. The cone P (l) is then removed
from the trace, keeping the order of remaining literals.

B. Reintroducing literals implied by unit propagation

The fact that a literal k is in the propagation cone of l only
means that l was used to derive k by unit propagation in the
original trace; but k might still be implied through a different
propagation sequence. Such literals must be restored into the
trace; to find them, we exploit that unit propagation only
requires Invariant 1 to discover all propagations. To satisfy it,
we can relocate the watches; calling unit propagation would
then do the heavy work. Again, the simple way is to relocate
watches for each clause; again, we can outperform this.

Let I and J be the partial assignments defined by the
traces before and after the removal of the propagation cone.
Invariant 1 is satisfied by I , but possibly violated by J . This
only happens for clauses D with watched literals k and m such
that J(k) = 0 and J(m) 6= 1. Removing literals from I can
only unassign literals; in particular, we infer that I(k) = 0.
By Invariant 1 we conclude that I(m) = 1, and so m got
unassigned by the removal of the propagation cone. Hence, m
was in the propagation cone.

This means that the only clauses whose watches may need to
be relocated are watched in a literal from the propagation cone.
In order to enforce Invariant 1, one can traverse the watchlist
for every literal m in the propagation cone P (l) and relocate
watches. When this cannot be done, then Invariant 1 is en-
forced by assigning literal m back into the trace. Furthermore,
in the latter case, all subsequent clauses watched in m have
correct watches, so we can move on to the next propagation
cone literal. This procedure may reassign some literals, which
may in turn lead to new propagations. Since Invariant 1 is
satisfied afterwards, we can simply perform unit propagation to

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l1

l2

l3

l6

l7

l10

l12

l8

l11

l5

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

before d:C after d:C

Fig. 3. Stack structure of trace reconstruction after a unit deletion. In this
case, the deleted clause C is the reason clause for l4. The propagation cone
P (l4) is shaded on the left; as explained in Section III-A these literals are
removed, and the unshaded part in the stack on the right is obtained. Some
literals from P (l4) may be reinserted as presented in Section III-B; these are
the shaded literals on the right, which need not preserve the order on the left.

find them out. Our procedure always reintroduces these literals
in the latter part of the stack; this will become very relevant
in Section III-C. An overview of the procedure is depicted in
Figure 3.

Example 4. Let us consider the traces for π from Example 2.
Starting from the trace “after i:>x5”, we construct the trace
“after d:x1x2”. Let us assume the following watch choices
(shown as dots and only for clauses of size larger than 2):

x1ẋ2ẋ3

x1ẋ3ẋ4

x2ẋ5ẋ7

x1ẋ5ẋ6

x5ẋ6ẋ4

x3ẋ6ẋ8

ẋ6x4ẋ3

x3ẋ9 ˙x10

x4ẋ9 ˙x10

x7x8ẋ9 ˙x10

Clause x1x2 is the reason for literal x2 in the trace “after
i:>x5”. The propagation cone P (x2) contains the literals x2,
x3, x4, x7, x8. By removing those literals from the trace,
we obtain the trace “after cone removal” in Figure 2. The
procedure above can be applied to the watchlists for literals
in P (x2). We perform the following changes:
• Watchlist for literal x3: clause ẋ6x4ẋ3 becomes x6ẋ4ẋ3.
• Watchlist for literal x4: clause x5ẋ6ẋ4 causes literal x4

to be reinserted in the trace.
• Watchlist for literal x7: clause x2ẋ5ẋ7 becomes ẋ2x5ẋ7.
• Watchlist for literal x8: clause x3ẋ6ẋ8 becomes ẋ3x6ẋ8.

This yields the trace “after reinsertion”. Unit propagation then
finds clause x6ẋ4ẋ3 in the watchlist for x4, propagating x3,
and clause ẋ3x6ẋ8 in the watchlist of x3, propagating x8. We
obtain the trace “after propagation”, which corresponds to the
trace “after d:x1x2”. �

C. Restoring trace and watches in backwards checking

The methods explained above apply to the incremental
prepropagation sweep. It nevertheless remains unclear how
would this work during backwards checking. One problem is



recovering the trace before the deletion: removing the latter
part of the trace as in Section II-B does not work anymore:
fter reverting a clause deletion, some unassigned literals may
become assigned. In terms of Example 2, what we need to do
is to recover the trace “after i:>x5” from “d:x1x2” for π.

For the time being, our solution is simple: store the trace
every time a unit clause deletion is processed during incremen-
tal propagation, and then restore it back when the deletion is
reverted during backwards checking. This does not solve all
the problems, though. In Section II-B, the trace is restored by
removing its latter part. As we mentioned there, Invariant 1 is
satisfied after doing so; let us inspect the reasons for this.

Removing arbitrary literals from the trace can violate
Invariant 1, which is required for exhaustive unit propagation.
For example, a clause x1x2 satisfies the Invariant 1 for a
trace containing x1 and x2, but violates it after x1 is dropped
from the trace. Operational-DRAT checkers must be somehow
preventing this situation. It is apparent from Invariant 1 and
from the monotonic growth of the trace stack in operational-
DRAT checking that, once a watched literal is satisfied by the
trace during stack prepropagation, further watch relocation is
unnecessary. This is not a only an efficiency hack, but also
needed to maintain Invariant 1 during backwards checking too:
this ensures that, in the conditions above, if x1 (resp. x2) was
added to the trace in the j1-th (resp. j2-th) instruction during
trace preprocessing, then j2 ≥ j1. Hence, during backwards
checking, x2 is dropped from the trace before or at the same
time as x1, and so the problematic situation above never arises.

Invariant 2. Consider a clause F in the current accumulated
formula for the c-th instruction Fc that is watched on a literal
l satisfied by the current trace Ic. Let p < c the largest index
such that Ip does not satisfy l, and k be the other watched
literal in D. Then either of the following holds:

a) D /∈ Fr for some index p ≤ r < c
b) Ir(k) 6= 0 for some index p ≤ r ≤ c

This invariant is preserved by operational-DRAT checkers,
and forces Invariant 1 to hold after the removal of the latter
part of the trace stack when reverting a clause introduction dur-
ing backwards checking. Unfortunately, reverting a unit clause
deletion by restoring the stored trace violates Invariant 2, and
this eventually causes Invariant 1 to be violated.

Example 5. Consider now the clause x2ẋ5ẋ7 during back-
wards checking in proof π from Example 1. After instruction
d:x1x2, literals x2 and x7 are unassigned, so Invariant 1 holds.
However, Invariant 2 is violated with this watch choice: the
literal x7 is last not satisfied in the “start” trace, but this trace
falsifies x2. Invariant 1 is eventually violated too. In “after
i:>x5”, literal x2 becomes falsified and x7 becomes satisfied,
and so Invariant 1 is still satisfied. Once backwards checking
moves on to “start”, x7 is unassigned while x2 is still falsified,
and this violates Invariant 1. RUP checks may then report false
negatives: if literal x5 is added to the trace, then literal x7 must
be propagated, but since the clause is not watched on literal
x5 the checker will not inspect this clause. �

The reason why Invariant 2 is broken in Example 5 lies on
the non-monotonic changes that reverting the reason clause
deletion d:x1x2 causes in the trace. Restoring Invariant 2 is
difficult, since this requires storing the traces after instructions.
Instead, we establish an invariant that is strong enough to force
Invariant 1 and weak enough to be simple to maintain.

Invariant 3. Consider a clause D in the current accumulated
formula Fc for the c-th instruction that is watched on a literal
l satisfied by the current trace Ic. Let p < c the largest index
such that Ip does not satisfy l, and k be the other watched
literal in D. Then either of the following holds:

a) D /∈ Fr for some index p ≤ r < c
b) Ir(k) 6= 0 for some index p ≤ r ≤ c
c) k is in the propagation cone from Section III-A at a

deletion in some index p < r ≤ c.

Together, Invariants 1 and 3 are preserved when reverting
an introduction instruction i:C during backwards checking at
index c. Assume that they both hold at the c-th instruction.
If Invariant 1 was violated at index c − 1 by some clause
D ∈ Fc−1, then the value of p would necessarily be c−1, and
Ic(k) = Ic−1(k) = 0. Since i:C is an introduction instruction,
Invariant 3 would be violated at index c − 1, which is a
contradiction. On the other hand, if Invariant 3 was violated at
index c−1, then we have Ic−1(l) = Ic(l) = 1, and furthermore
D ∈ Fr for all p ≤ r < c − 1; Ir(k) = 0 for all p ≤ r ≤ c;
and k is never removed as a part of a propagation cone at an
index p < r ≤ c−1. Because i:C is an introduction instruction
Ic(k) = Ic−1(k) = 0 holds, and k is also not removed as a
part of a propagation cone at index c. But then Invariant 3
would be violated at index c, which is again a contradiction.

The previous paragraph shows that Invariant 3 is strong
enough to guarantee the same good behavior as Invariant 2.
However, in the specified-DRAT case we also need to consider
reverting deletion instructions d:C during backwards checking
at index c, and in general Invariant 3 is not preserved by
this operation (although it almost is, as we will see in
Section IV-C). Instead, we explicitly reestablish the invariant
by relocating the watches in every clause D in the accumulated
formula Fc−1 before the deletion. If D is not a unit clause
w.r.t. Ic−1, we choose as watches any two non-falsified literals.
Otherwise, it contains one satisfied literal l, which is chosen
as one of the watches. All other literals k ∈ D \ {l} are
falsified by Ic−1. We choose as the second watch the k such
that k occurs the latest in the trace stack Ic−1. Finding k is
computationally simple, since the trace is stored as an array
in memory, and so it boils down to pointer comparison.

This watch choice trivially satisfies Invariant 1; we show
that Invariant 3 is attained too. The former case is straight-
forward; we explain the case when D is a unit w.r.t. Ic−1.
Assume D violates Invariant 3. Then we have Ic−1(l) = 1,
and furthermore D ∈ Fr for all p ≤ r < c − 1; Ir(k) = 0
for all p ≤ r ≤ c; and k is never removed as a part of a
propagation cone at an index p < r ≤ c − 1; where p is
defined as in Invariant 3. The trace Ip at the p-th instruction
is saturated under unit propagation, so Ip(l) 6= 1 implies that



there is some m ∈ D \ {l} such that Ip(m) 6= 0. Our choice
of watch k implies that m occurs strictly earlier in Ic−1 than
k. Now consider the instruction at the (c− 1)-th index.
• If it is an introduction, then Ic−1 is obtained from Ic−2 by

appending literals in the later part of the stack. Because
Ic−2(k) = 0, k is not one of the appended literals; and
m occurs strictly earlier than k in Ic−1, so neither is m .
We conclude that m occurs strictly earlier than k in Ic−2.

• If it is a deletion, Ic−1 is obtained from Ic−2 by removing
a propagation cone P , and reinserting some literals from
P into the result. We know that k /∈ P ; in particular k is
not reintroduced. As observed at the end of Section III-B,
literals are reintroduced at the later part of the stack; so
if m ∈ P held true, m would occur later than k in Ic−2,
but we have the opposite case. Thus, m /∈ P , and so m
occurs strictly earlier than k also in Ic−2.

Iterating this argument shows that m occurs strictly earlier
than k in Ip+1. Now, Ip(l) 6= 1 = Ip+1(l), so the instruction
at index p must be an introduction. Then, Ip is obtained from
Ip+1 by removing literals in the later part of the stack. Now,
Ip(k) = Ip+1(k) = 0, so k is not removed; and m occurs
earlier than k, so neither is m. But then Ip(m) = Ip+1(m) = 0
contradicts our choice of m. Therefore, Invariant 3 is fulfilled.

This completes our method for checking specified-DRAT
proofs with incremental preprocessing and backwards check-
ing. To summarize, we give a method that behaves essentially
like operational-DRAT checkers, the only difference being the
treatment of unit clause deletion instructions. During incre-
mental preprocessing, our method is able to construct a trace
reflecting the accumulated assignment after the deletion, and
relocate watches in a suitable way. By storing this assignment
to memory, we are able to restore it when the same unit clause
deletion is encountered during backwards checking; at that
point, watches for all clauses must be relocated.

IV. OPTIMIZING UNIT CLAUSE DELETION

The methods from Section III are computationally expen-
sive, and in practice they make specified-DRAT checking
much less efficient than operational-DRAT checking. This
overhead is mainly due to three causes. First, the fixpoint
computation for the propagation cone involves traversing the
trace quadratically many times. Second, storing each trace
before a deletion instruction may have a notable impact in
memory even if the changes in the trace are minimal. Last, the
watch relocation method in Section III-C involves relocating
the watches for every clause in the formula. We now explain
optimizations that greatly reduce the clause deletion-induced
overhead in specified-DRAT checking.

A. Linearly computing propagation cones

In order to efficiently compute propagation cones, yet
another invariant maintained by traces can be exploited:

Invariant 4. Let l be a literal in the trace with reason clause
Rl. Then, every literal k ∈ Rl \ {l} is falsified by the trace,
and k either is >, or occurs earlier than l in the trace stack.

P (l) := {l}
for k, trace literal after l do

if there is a literal m ∈ Rk with m ∈ P (l) then
P (l) := P (l) ∪ {k}

end if
end for

Fig. 4. Algorithm to linearly compute the implication cone

literal position index reason

x2 3rd x1x2
x3 4th x1x2x3
x4 5th x1x3x4
x7 8th x2x5x7
x8 9th x3x6x8

Fig. 5. Information stored to reconstruct trace “after i:>x5” from trace “after
d:x1x2” in Example 1.

The algorithm in Figure 4 exploits Invariant 4 to compute
the implication cone in a single pass through the trace2.

B. Storing deleted traces as permutations

Rather than storing each trace before a reason clause dele-
tion during incremental prepropagation and restoring it during
backwards checking, we can store the permutation that the
trace undergoes. By deleting a clause, no literal is derived:
some literals are removed from the trace, and some others are
moved to the latter part of the trace stack. From Figure 3 it is
apparent that storing the original reasons and positions within
the trace for propagation cone literals is enough to restore the
trace before deletion from the trace after deletion. Following
Example 1, we store the information in Figure 5 to reconstruct
the trace “after i:>x5” from the trace “after d:x1x2”.

C. On-demand watch relocation

Our previous analysis required the relocation of watches
during backwards checking for all clauses in the accumulated
formula. This is immensely wasteful: our preliminary experi-
ments showed that doing so takes up to 85% of the checking
runtime. This can however be vastly improved, reducing the
runtime share spent on this sort of watch relocation negligible.

Consider a clause deletion d:C at the c-th index, which
removed the propagation cone P from the trace Ic−1, reintro-
ducing afterwards a set R ⊆ P of literals to obtain Ic. Let D
be a clause in Fc watched on l and k, and assume it satisfies
Invariants 1 and 3 at the c-th instruction. If k and l do not
occur in P , it is easy to check that both invariants also hold at
the (c−1)-th instruction. In other words: the watch relocation
explained in Section III-C is only needed for clauses in the
watchlist of l for every literal l in the propagation cone.

2An anonymous reviewer pointed out that MiniSAT contains a similar
algorithm in its analyzeFinal function [3].



V. EXPERIMENTAL EVALUATION

The ideas described in this paper were implemented in a
proof-of-concept DRAT checker rupee. Our DRAT checker
can be run in operational or specified modes; the operational
mode is designed to be as close as possible to a standard
DRAT checker, whereas the specified mode includes the unit
deletion processing methods described in this paper. Being a
proof-of-concept implementation, this checker lacks of many
optimizations, including efficient proof parsing, exploitation
of CPU cache, core-first propagation, and resolution candidate
caching. We thus expect worse performance than state-of-the-
art checkers. However, our goal is to measure the overhead in-
duced by specified-DRAT checking compared to operational-
DRAT checking, and for this we needed a system that we
completely understood to minimally change the behavior be-
tween the two modes. To the best of our knowledge, there is
no reason to think that the aforementioned optimizations are
incompatible with our methods for specified-DRAT checking.

An LRAT certificate [2] can be generated for instances that
rupee reports as correct. For instances reported as incorrect,
rupee reports information on the state of the trace at the end
of RUP and RAT checks on failing instructions. To the best of
our knowledge, rupee reports the right result in both modes.

We selected 11 benchmarks which were solved fast
by solvers in the SAT Competition 2017. DRAT proofs
for these benchmarks were generated by 4 participant
solvers: COMiniSatPS_Pulsar_drup, glucose-4.1,
Maple_LCM_Dist, and cadical-sc17-proof. The 44
resulting proofs were checked with rupee in both modes, as
well as with the state-of-the-art DRAT-trim as a baseline3.
DRAT-trim and rupee in operational mode agree on all

instances, as expected; rupee in specified mode only agrees
on 18 instances, rejecting all remaining instances. Hence,
discrepancies between specified-DRAT and operational-DRAT
occur rather frequently. Despite the semantic complexity of
the interaction between RAT introduction and clause dele-
tion [14], [15], this is not the cause of discrepancies: none
of the discrepant proofs contains RAT clauses. The distribu-
tion of the discrepancies gives some insight in this regard:
cadical-sc17-proof produced no discrepancies; for the
other three solvers 8 out of 11 proofs were discrepant. We con-
jecture that the cause of discrepancies may be in the MiniSAT
patch which most checkers use for proof generation in the
CDCL loop, since cadical-sc17-proof implements its
own method.

Figure 6 shows runtime results. We only compared results
on instances where all three checkers accepted the proof;
comparing discrepant instances would be meaningless, since
execution stops as soon as an instruction is declared incorrect.
DRAT-trim performs about one order of magnitude better
than rupee; this is expectable due to the lack of optimizations
in our tool. However, the runtimes of rupee in both its modes
are comparable, with the specified mode outperforming the
operational mode in hard instances. We conclude that the

3https://github.com/arpj-rebola/fmcad2018

	0

	500

	1000

	1500

	2000

	2500

	3000

	0 	2 	4 	6 	8 	10 	12 	14 	16

tim
e	
(s
ec
on

ds
)

solved	instances

drat-trim
rupee-operational

rupee-specified

Fig. 6. Performance of DRAT-trim compared to both versions of rupee.

overhead of checking specified-DRAT proofs as compared
to operational-DRAT proofs can be made negligible. Further
research is required to verify the observed speed-up; one
possible explanation would be that, by deleting more clauses
in the specified mode, less resolution candidates are available
for RAT checks, and so less RUP check calls need to be made.

VI. CONCLUSION

The notion of a correct DRAT proof in the specification
differs from the used in the implementation of DRAT checkers.
We discussed the practical reasons for this, which lie on data
structure invariants that are broken if the original definition
of DRAT were to be respected. We proposed several changes
in DRAT checkers’ data structures and algorithms to check
DRAT proofs according to the specification in an efficient
way. In particular, we explained how to maintain slightly more
intricate invariants so that unit clause deletions can be applied,
and explored ways to vastly reduce the induced overhead.

We implemented these enhanced algorithms in a tool
rupee, and used it to verify DRAT proofs produced by
modern SAT solvers. Our results show that the discrepancy
between the DRAT definition and the operational notion of
correctness arises relatively often in practice. Our tool has a
negligible overhead over checking with respect to the opera-
tional semantics, although further efforts in optimization must
be done in order to attain similar performance to state-of-the-
art DRAT checkers. Our data also suggests that discrepancies
might have their root cause in an anomalous behavior of the
CDCL proof logging method underlying many solvers. This
suggests that future work should be directed towards efficient,
specification-complying proof generation.

Acknowledgments: We would like to acknowledge anony-
mous reviewers who pointed out several relevant details.
This work was supported by the Austrian National Research
Network S11403-N23 (RiSE), the LogiCS doctoral program
W1255-N23 of the Austrian Science Fund (FWF), the Vi-
enna Science and Technology Fund (WWTF) through grant
VRG11-005 and Microsoft Research through its PhD Schol-
arship Programme.



REFERENCES

[1] Tomas Balyo, Marijn J. H. Heule, and Matti Järvisalo. SAT compe-
tition 2016: Recent developments. In AAAI Conference on Artificial
Intelligence, pages 5061–5063, 2017.

[2] Luı́s Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-
mann, and Peter Schneider-Kamp. Efficient certified RAT verification.
In CADE, volume 10395 of LNCS, pages 220–236. Springer, 2017.

[3] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT,
volume 2919, pages 502–518. Springer, 2004.

[4] Walter Forkel, Tobias Philipp, Adrian Rebola-Pardo, and Elias Werner.
Fuzzing and verifying RAT refutations with deletion information. In
Florida Artificial Intelligence Research Society Conference, pages 190–
193. AAAI Press, 2017.

[5] Allen Van Gelder. Producing and verifying extremely large propositional
refutations - have your cake and eat it too. Ann. Math. Artif. Intell.,
65(4):329–372, 2012.

[6] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability
for CNF formulas. In DATE, pages 886–891. IEEE, 2003.

[7] Marijn Heule, Warren A. Hunt Jr., Matt Kaufmann, and Nathan Wetzler.
Efficient, verified checking of propositional proofs. In Interactive
Theorem Proving, volume 10499 of LNCS, pages 269–284. Springer,
2017.

[8] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while
checking clausal proofs. In Formal Methods in Computer-Aided Design,
pages 181–188. IEEE, 2013.

[9] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying
refutations with extended resolution. In CADE, volume 7898 of LNCS,
pages 345–359. Springer, 2013.

[10] Marijn J. H. Heule. The DRAT format and drat-trim checker. CoRR,
abs/1610.06229, 2016.

[11] Marijn J. H. Heule. Schur number five. In Sheila A. McIlraith and
Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, Louisiana, USA,
February 2-7, 2018. AAAI Press, 2018.

[12] Peter Lammich. Efficient verified (UN)SAT certificate checking. In
CADE, volume 10395 of LNCS, pages 237–254. Springer, 2017.

[13] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conference, pages 530–535. ACM, 2001.

[14] Tobias Philipp and Adrián Rebola-Pardo. Towards a semantics of
unsatisfiability proofs with inprocessing. In LPAR, volume 46 of EPiC
Series in Computing, pages 65–84. EasyChair, 2017.

[15] Adrián Rebola-Pardo and Armin Biere. Two flavors of DRAT. EasyChair
Preprint no. 457, EasyChair, 2018.

[16] Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim:
Efficient checking and trimming using expressive clausal proofs. In
SAT, volume 8561 of LNCS, pages 422–429. Springer, 2014.


