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Abstract—A Constrained Horn Clause (CHC) is a logical
implication involving unknown predicates. Systems of CHCs are
widely used to verify programs with arbitrary loop structures:
interpretations of unknown predicates, which make every CHC
in the system true, represent the program’s inductive invariants.
In order to find such solutions, we propose an algorithm based
on Syntax-Guided Synthesis. For each unknown predicate, it
generates a formal grammar from all relevant parts of the
CHC system (i.e., using syntax). Grammars are further enriched
by predicates and constants guessed from models of various
unrollings of the CHC system (i.e., using data). We propose an
iterative approach to guess and check candidates for multiple
unknown predicates. At each iteration, only a candidate for one
unknown predicate is sampled from its grammar, but then it gets
propagated to candidates of the remaining unknowns through
implications in the CHC system. Finally, an SMT solver is used to
decide if the system of candidates contributes towards a solution
or not. We present an evaluation of the algorithm on a range
of benchmarks originating from program verification tasks and
show that it is competitive with state-of-the-art in CHC solving.

I. INTRODUCTION

To formally prove that a program meets a given safety
specification, one needs to discover inductive invariants for
every loop that appears in the program. Each loop invariant
safely approximates the set of program states reachable before
and after the corresponding loop. However, it is hard to
synthesize them in isolation: if there is a program path through
two loops, then invariants for these loops are likely related.
For existing approaches to invariant synthesis, the increase
in complexity of loop structure enlarges the search space
drastically and lowers the chances of finding a suitable system
of invariants.

We view the task of program verification as an instance of
a more general problem of Constrained Horn Solving (e.g.,
[1], [2], [3], [4], [5], [6]). It takes as input a set of logical
implications, called Constrained Horn Clauses (CHCs), over a
set of unknown predicates, and aims at either finding a suitable
interpretation for all predicates, that makes all implications
true or showing that no such interpretation exists. Therefore,
a conventional formulation of the invariant synthesis task for a
transition system is an instance of the CHC task itself, which
involves only one unknown predicate.

In this work, we present an algorithm for solving CHC
tasks of arbitrary structure. It is based on a recently proposed
solution for the CHC task for transition systems [7], [8],
[9]; and it relies on a paradigm of Syntax-Guided Synthesis
(SyGuS) [10]. In our context, each unknown predicate of

the CHC system gets its own formal grammar that encodes
the search space for a solution. Then, candidate formulas are
sampled from the corresponding grammars and substituted in
the CHC system, and the resulting formulas are checked by a
Satisfiability Modulo Theories (SMT) solver for validity.

Our central idea behind the grammar construction is to use
both syntax and data. In particular, this process relies on 1)
pre-computed predicates obtained by parsing the interpreted
parts of the CHC system, and 2) pre-computed predicates
and constants synthesized from various traces (i.e., models
of unrollings) of the CHC system. With these ingredients at
hand, a single grammar per unknown predicate is created. By
construction, it describes all the pre-computed predicates and
possibly more. The use of syntax and data to obtain grammars
are complementary to one another. Using syntax makes a
number of useful candidates readily available that may be
computationally expensive to derive from data. Whereas using
data provides meaningful semantic candidates that the CHC
system may be syntactically oblivious to.

However, the need to synthesize interpretations for multiple
unknowns from multiple grammars produces a bottleneck: all
candidates should be consistent with each other. That is, each
pair of candidates for two unknowns that might appear in one
CHC should make the CHC true. It is hard to enforce this
requirement in practice: usually, either one or both candidates
would be withdrawn and re-synthesized – this would make our
algorithm inefficient. Instead, our algorithm exploits a more
accurate approach to sampling: it generates a candidate for
one unknown predicate at a time, and then propagates it to
candidates of the remaining unknowns through all possible
implications in the CHC system.

In comparison to existing approaches to CHC solving, our
approach has several unique features. First, to the best of our
knowledge, it exploits data more extensively than any other
tool: it allows generating candidates on the fly, for which
it gets models from various formulas obtained from CHCs.
Furthermore, our algorithm does not necessarily consider
candidates of a fixed predetermined shape: due to the use
of grammars to learn candidates, the shape of pre-computed
predicates (using syntax and data) is modified during the run
of the algorithm. Compared to the algorithm of generating data
candidates for transition systems [9], our algorithm explores
unrollings modularly (i.e., for each loop in isolation), and thus
it avoids SMT solving for potentially large formulas.

Finally, our approach does not involve a potentially expen-



sive fixed-point computation. Although our propagation rou-
tine is algorithmically similar to that in Generalized Property
Directed Reachability [1], [4], we do not apply it recursively.
Thus, our algorithm can never diverge while unwinding loops.
The tradeoff is that our approach is not guaranteed to find
an invariant, but it often does due to the rich grammars we
generate, as shown in our experimental evaluation.

Our algorithm has been implemented on top of FREQHORN,
a SyGuS-based CHC solver [7]. We have evaluated its ef-
fectiveness on a range of benchmarks originated from the
verification tasks (i.e., programs with two or more loops and
their safety specifications). Compared to state-of-the-art, our
prototype exhibits a competitive performance and delivers
results for most of the examples where the competing tools
diverge. Our tool is particularly effective while discovering
complex invariants over non-linear arithmetic.

The rest of the paper is structured as follows. Sect. II
gives definitions, notation, and useful lemmas. Then, Sect. III
presents our algorithm for a SyGuS-based CHC solver, driven
by syntax, data and the candidate propagation. Finally, Sect. IV
summarizes the evaluation, Sect. V outlines the related work,
and Sect. VI concludes the paper.

II. PRELIMINARIES

For a given formula 𝜙 in a first-order theory T , the
Satisfiability Modulo Theories (SMT) task is to decide whether
there is an assignment 𝑚 of values to variables in 𝜙 that makes
𝜙 true. If every satisfying assignment to 𝜙 is also a satisfying
assignment to some formula 𝜓, we write 𝜙=⇒ 𝜓. By ⊤ and
⊥ we denote constants true and false, respectively. By Expr
we denote a space of all possible quantifier-free formulas in
T and by Vars a range of possible variables in T .

A. Constrained Horn Clauses

Definition 1. A linear constrained Horn clause (CHC) over
a set of uninterpreted relation symbols R is a formula in
first-order logic that has the form of one of three implications
(called respectively a fact, an inductive clause, and a query):

𝜙(𝑥1) =⇒ 𝑖𝑛𝑣1(𝑥1)

𝑖𝑛𝑣1(𝑥1)∧𝜙(𝑥1, 𝑥2) =⇒ 𝑖𝑛𝑣2(𝑥2)

𝑖𝑛𝑣1(𝑥1)∧𝜙(𝑥1) =⇒⊥

where 𝑖𝑛𝑣1, 𝑖𝑛𝑣2 ∈ R are uninterpreted symbols, 𝑥1, 𝑥2 are
vectors of variables, and 𝜙, called a body, is a fully interpreted
formula (i.e., 𝜙 does not have applications of 𝑖𝑛𝑣1 or 𝑖𝑛𝑣2).

For a CHC 𝐶, by src(𝐶) we denote an application of 𝑖𝑛𝑣 ∈
R in the premise of 𝐶 (if 𝐶 is a fact, we write src(𝐶)

def
= ⊤).

Similarly, by dst(𝐶) we denote an application of 𝑖𝑛𝑣 ∈ R in
the conclusion of 𝐶 (if 𝐶 is a query, we write dst(𝐶)

def
= ⊥).

We define functions rel and args , such that for each 𝑖𝑛𝑣(𝑥⃗),
rel(𝑖𝑛𝑣(𝑥⃗))

def
= 𝑖𝑛𝑣 and args(𝑖𝑛𝑣(𝑥⃗))

def
= 𝑥⃗. For a CHC 𝐶,

by body(𝐶) we denote the body (i.e., 𝜙) of 𝐶.

Example 1. Fig. 1 shows a small C-like program1 with three
loops and its CHC-encoding. Each loop corresponds to one of
the uninterpreted relation symbols R = {𝑖𝑛𝑣1, 𝑖𝑛𝑣2, 𝑖𝑛𝑣3}.
CHC A encodes the initial assignments to variables (including
a nondeterministic choice for 𝑚 and 𝑛) and assumptions over
values of 𝑚 and 𝑛. CHCs B, D, and F encode bodies of the
first, the second, and the third loops, respectively. In order
to represent a nondeterministic conditional in the first loop,
CHC B contains the disjunction of encodings of both branches.
CHCs C and E encode the fragments of the program between
loops. Importantly, they include negations of the guards of
preceding loops. Finally, CHC G encodes the negation of the
assertion and the negation of the guard of the last loop.

Linear CHCs can encode programs with nested loops, but
cannot encode programs with non-inlined function calls2. For
simplicity of presentation, the paper considers systems of
CHCs that have only one query.

Definition 2. Given a set of uninterpreted relation symbols R
and a set 𝑆 of CHCs over R we say that 𝑆 is satisfiable if
there exists an interpretation for each 𝑖𝑛𝑣 ∈ R that makes
all implications in 𝑆 valid.

Strictly speaking, an interpretation assigns to each symbol
𝑖𝑛𝑣 ∈ R with arity 𝑛 a relation over 𝑛-tuples. This relation
can be represented by a formula 𝜙 over (at most) 𝑛 free
variables, denoted fv(𝜙) ⊆ Vars . In a specific application
of 𝑖𝑛𝑣 to arguments 𝑥⃗, the free variables of 𝜙 are substituted
by 𝑥⃗.

Example 2. The system of CHCs in Fig. 1 is satisfiable
(which means the program is safe), and a possible solution
maps uninterpreted symbols to their interpretations as follows:
𝑖𝑛𝑣1 ↦→ 𝑥+ 𝑦 + 𝑛 = 𝑚, 𝑖𝑛𝑣2 ↦→ (𝑥+ 𝑦 + 𝑛 = 𝑚 ∧ 𝑛 = 0),
and 𝑖𝑛𝑣3 ↦→ (𝑥+ 𝑦 + 𝑛 = 𝑚 ∧ 𝑛 = 0 ∧ 𝑥 = 0).

B. Unrolling of CHCs

The following is built on ideas from Bounded Model
Checking (BMC) [11] which aims at exploring finite length
traces of programs.

Definition 3. Given a system 𝑆 of CHCs over R , an un-
rolling of 𝑆 of length 𝑘 is a conjunction 𝜋⟨𝐶0,...,𝐶𝑘⟩

def
=⋀︀

0≤𝑖≤𝑘

body(𝐶𝑖)(𝑥⃗𝑖, ⃗𝑥𝑖+1), such that 1) each 𝐶𝑖 ∈ 𝑆, 2)

for each pair 𝐶𝑖 and 𝐶𝑖+1, rel(dst(𝐶𝑖)) = rel(src(𝐶𝑖+1)),
and variables of each 𝑥𝑖 are shared only between
body(𝐶𝑖−1)(𝑥⃗𝑖−1, 𝑥𝑖) and body(𝐶𝑖)(𝑥⃗𝑖, ⃗𝑥𝑖+1).

Note that Def. 3 gives a more general notion of unrolling
than it is customary for BMC. In particular, it allows the first
step 𝐶0 to be taken from an arbitrary place of the CHC system,
i.e., 𝐶0 is not necessarily a fact. We can consider unrollings,
search for their models, and generate so called behavioral

1Because the presentation of our approach in terms of CHCs could be
difficult to comprehend (e.g., notation is heavyweight in parts), here and
throughout the paper we bring the analogy with program verification.

2We elaborate on the case with nonlinear CHCs in Sect. III-F.



int x = 0, y = 0;
int m = n = nondet();
assume (m >= 0);
while (n != 0) {

n--;
if (nondet()) x++;
else y++;

}
while (x != 0) { m--; x--; }
while (y != 0) { m--; y--; }
assert (m == 0);

(A) 𝑥′= 0∧𝑦′= 0∧𝑚′= 𝑛′∧𝑚′ ≥ 0 =⇒ 𝑖𝑛𝑣1(𝑥
′,𝑦′,𝑚′,𝑛′)

(B) 𝑖𝑛𝑣1(𝑥,𝑦,𝑚,𝑛)∧¬(𝑛 = 0)∧𝑛′= 𝑛−1∧𝑚′= 𝑚∧
(︁
(𝑥′= 𝑥+1∧𝑦′= 𝑦)∨(𝑥′= 𝑥∧𝑦′= 𝑦+1)

)︁
=⇒ 𝑖𝑛𝑣1(𝑥

′,𝑦,′𝑚′,𝑛′)

(C) 𝑖𝑛𝑣1(𝑥,𝑦,𝑚,𝑛)∧(𝑛 = 0)∧𝑛′= 𝑛∧𝑚′= 𝑚∧𝑥′= 𝑥∧𝑦′= 𝑦 =⇒ 𝑖𝑛𝑣2(𝑥
′,𝑦,′𝑚′,𝑛′)

(D) 𝑖𝑛𝑣2(𝑥,𝑦,𝑚,𝑛)∧¬(𝑥 = 0)∧𝑛′= 𝑛∧𝑚′= 𝑚−1∧𝑥′= 𝑥−1∧𝑦′= 𝑦 =⇒ 𝑖𝑛𝑣2(𝑥
′,𝑦,′𝑚′,𝑛′)

(E) 𝑖𝑛𝑣2(𝑥,𝑦,𝑚,𝑛)∧𝑥 = 0∧𝑛′= 𝑛∧𝑚′= 𝑚∧𝑥′= 𝑥∧𝑦′= 𝑦 =⇒ 𝑖𝑛𝑣3(𝑥
′,𝑦,′𝑚′,𝑛′)

(F) 𝑖𝑛𝑣3(𝑥,𝑦,𝑚,𝑛)∧¬(𝑦 = 0)∧𝑛′= 𝑛∧𝑚′= 𝑚−1∧𝑥′= 𝑥∧𝑦′= 𝑦−1 =⇒ 𝑖𝑛𝑣3(𝑥
′,𝑦,′𝑚′,𝑛′)

(G) 𝑖𝑛𝑣3(𝑥,𝑦,𝑚,𝑛)∧𝑦 = 0 ∧ ¬(𝑚 = 0) =⇒ ⊥

Fig. 1: Example program: (left) source code, and (right) its CHC encoding.

candidates for interpretations of unknown symbols that appear
in the unrollings. We elaborate on this in Sect. III-C.

The following lemma provides yet another use of unrollings
(for which 𝐶0 is required to be a fact, and 𝐶𝑘 – the query). We
can enumerate various such unrollings and check satisfiability
of the resulting formulas. Once a satisfiable formula is found,
it does not make any sense to search for interpretations of any
symbols in R .

Lemma 1. Given a system of CHCs 𝑆, let 𝜋⟨𝐶0,...,𝐶𝑘⟩ be one
of its unrollings, such that 𝐶0 is a fact, and 𝐶𝑘 is the query.
Then if 𝜋⟨𝐶0,...,𝐶𝑘⟩ is satisfiable then 𝑆 is unsatisfiable.

C. Polynomial behavioral candidates

We recall a few basic definitions from linear algebra that
are needed for the generation of behavioral candidates. Given
a vector space V over a field F, its basis B = {v1, . . . , v𝑛} is
a minimal subset of V satisfying:

1) ∀𝑎1, . . . , 𝑎𝑛 ∈ F, if
∑︀

1≤𝑖≤𝑛

𝑎𝑖 ·v𝑖 = 0, then
⋀︀

1≤𝑖≤𝑛

𝑎𝑖 = 0.

2) ∀v ∈ V,∃𝑎1, . . . , 𝑎𝑛 ∈ F such that v =
∑︀

1≤𝑖≤𝑛

𝑎𝑖 · v𝑖.

Consider the following fixed-degree polynomial equation:

𝑐1 · 𝛼1 + 𝑐2 · 𝛼2 + · · ·+ 𝑐𝑛 · 𝛼𝑛 = 0 (1)

where 𝛼𝑖 = 𝑥𝑘1
1 · · ·𝑥𝑘𝑙

𝑙 are monomials, 𝑐𝑖 ∈ Q are coefficients,
and 𝑥1, . . . , 𝑥𝑛 are the variables from Vars . The degree of a
monomial is the sum

∑︀
1≤𝑖≤𝑛

𝑘𝑖, and the degree of a polynomial

equation is the highest degree among its monomials.
Given the values of variables from Vars , let a data matrix

contain values of monomials for Vars up to degree 𝑑. We rely
on [12] to obtain equations of form (1) over Vars using a data
matrix. When these values are substituted for monomials, we
get a system of linear equations over 𝑐1, . . . , 𝑐𝑛. Solutions to
these equations form a vector space, and the basis of this vector
space, computed by the well-known Gauss-Jordan elimination
algorithm, gives coefficients of polynomial equations.

III. CHC SOLVING AS ENUMERATIVE SEARCH

In this section, we first give a general idea of our setup,
then proceed to describe details that make the search procedure
effective in practice and finally summarize everything in one
algorithm.

A. Basic idea

A solution for a system of CHCs 𝑆 with uninterpreted
symbols R is a mapping ℓ from each symbol to a formula
(written as ℓ : R → Expr ) that makes each CHC in 𝑆 true.
For a synthesis of ℓ, suppose that every 𝑖𝑛𝑣 ∈ R has its
grammar 𝐺(𝑖𝑛𝑣) that describes a set of possible candidate
formulas for 𝑖𝑛𝑣. In a naive scenario, in each iteration of a
synthesis loop, a candidate formula for each 𝑖𝑛𝑣 gets sampled
from 𝐺(𝑖𝑛𝑣). All candidates are substituted in 𝑆, and if at
least one of the implications is invalid then the entire system
of candidates is failing and the synthesis loop iterates.

Clearly, this naive approach has a large search space. For
example, if for the system of CHCs in Fig. 1, the candidate
for all three uninterpreted symbols 𝑖𝑛𝑣1, 𝑖𝑛𝑣2, and 𝑖𝑛𝑣3

is 𝑥 + 𝑦 + 𝑛 = 𝑚, then all of them will be rejected
because the candidate for 𝑖𝑛𝑣3 is too coarse to prove the
query (i.e., it needs to be conjoined with 𝑥 = 0 ∧ 𝑛 = 0).
However, following [7] and [8], we can optimize the search by
synthesizing conjunction-free lemmas for each 𝑖𝑛𝑣𝑖 separately
and then by conjoining them together.

Definition 4. For a system of CHCs 𝑆 over R and a mapping
ℓ : R → Expr , we say that ℓ is a set of lemmas for 𝑆 if it
makes every CHC in 𝑆 (except the query) valid.

Example 3. For the system of CHCs in Fig. 1, a mapping
from all 𝑖𝑛𝑣1, 𝑖𝑛𝑣2, and 𝑖𝑛𝑣3 to 𝑥 + 𝑦 + 𝑛 = 𝑚 is one
set of lemmas. A mapping 𝑖𝑛𝑣1 ↦→ ⊤, 𝑖𝑛𝑣2 ↦→ 𝑛 = 0, and
𝑖𝑛𝑣3 ↦→ 𝑛 = 0 is another set of lemmas.

Lemma 2. Given a system of CHCs 𝑆 over R and two sets
of lemmas ℓ1 and ℓ2, let a mapping ℓ3 : R → Expr be such
that for each 𝑖𝑛𝑣 ∈ R . ℓ3(𝑖𝑛𝑣)

def
= ℓ1(𝑖𝑛𝑣) ∧ ℓ2(𝑖𝑛𝑣). Then

ℓ3 is a set of lemmas for 𝑆.

Our algorithm generates grammars based on a set of for-
mulas, called seeds [8]. By construction, grammars should be
able to describe all seeds and, as a side effect, also formulas
which are syntactically close to seeds (called mutants). In the
next two subsections, we outline the process of determining
seeds automatically.

B. Collecting seeds from syntax

Given a system 𝑆 of CHCs over R , let 𝑖𝑛𝑣 ∈ R be
an uninterpreted symbol for which we wish to generate a



formal grammar. Perhaps, the most obvious sources of seeds
are the bodies of CHCs in 𝑆 that have applications of 𝑖𝑛𝑣.
First, the body of a CHC 𝐶 that has applications of 𝑖𝑛𝑣 is
parsed, and clauses that contain only variables in args(src(𝐶))
or only variables in args(dst(𝐶)) are extracted. Then, the
obtained formulas are rewritten in terms of variables 𝑥⃗ ⊆ Vars
(practically, it is convenient to specify 𝑥⃗

def
= args(src(𝐶 ′)) of

some CHC 𝐶 ′ with 𝑖𝑛𝑣 = rel(src(𝐶 ′))).
Formally, for a formula 𝜙 in Conjunctive Normal Form,

let Cnjs(𝜙) be a set of its clauses. For sets of variables 𝑥⃗
and 𝑦⃗, let a set 𝐹𝑥⃗,𝑦⃗(𝜙) be defined as 𝐹𝑥⃗,𝑦⃗(𝜙)

def
= {𝜓 | ∃𝜑 ∈

Cnjs(𝜙) . 𝜓 = 𝜑[𝑥⃗/𝑦⃗] ∧ fv(𝜑) ⊆ 𝑥⃗}, where 𝜑[𝑥⃗/𝑦⃗] denotes
the result of substitutions of variables 𝑥⃗ in 𝜑 by variables 𝑦⃗.
Thus, a set of seeds obtained from bodies of CHCs can be
defined as follows.

Definition 5. Given a system 𝑆 of CHCs over R , let 𝑖𝑛𝑣 ∈ R .
Then

SyntSeeds(𝑖𝑛𝑣)(𝑥⃗)
def
=⋃︁

𝐶∈𝑆 s.t. rel(src(𝐶))=𝑖𝑛𝑣

𝐹args(src(𝐶)),𝑥⃗(body(𝐶)) ∪⋃︁
𝐶∈𝑆 s.t. rel(dst(𝐶))=𝑖𝑛𝑣

𝐹args(dst(𝐶)),𝑥⃗(body(𝐶))

Example 4. For the system of CHCs in Fig. 1, all four
conjuncts of body(𝐴) give seeds {𝑥 = 0, 𝑦 = 0,𝑚 =
𝑛,𝑚 ≥ 0} for 𝑖𝑛𝑣1 and 𝑥⃗ = ⟨𝑥, 𝑦,𝑚, 𝑛⟩. Furthermore, seeds
¬(𝑛 = 0) and 𝑛 = 0 are obtained from body(𝐵) and body(𝐶)
respectively.

C. Collecting seeds from data

We bootstrap the grammar generation by seeds that are
learned from the concrete values of variables produced while
checking satisfiability of various unrollings of CHCs. If a CHC
system 𝑆 encodes some program, then an unrolling 𝜋⟨𝐶0,...,𝐶𝑘⟩
would correspond to a program trace whose sequentially
executed statements are encoded by bodies of each 𝐶𝑖. If such
an unrolling is unsatisfiable, then the corresponding program
trace is infeasible. Otherwise, a model of the unrolling gives
the concrete values of program variables at each execution
step. We follow the ideas of the generation of behavioral seeds
from models of program unrollings recently presented in [9].

The CHC task makes our setting different from [9], which
considers CHCs with one uninterpreted relation symbol only.
First, the presence of multiple symbols (and consequently,
multiple loops) drastically complicates the creation of un-
rollings: the resulting formulas become too large and might
become difficult for SMT solving. Second, it might be difficult
to find a satisfiable unrolling since an unwinding number
suitable for one loop might not be suitable for another loop.
For example in Fig. 1, if the first and the second loops are
unrolled 𝑛 times, then to get a satisfiable unrolling, the third
loop should be unrolled only zero times.

To overcome these two challenges, we propose to explore
unrollings modularly: for each cycle in isolation. Recall that
Def. 3 allows an unrolling 𝜋⟨𝐶0,...,𝐶𝑘⟩ to start from the body of

some CHC 𝐶0, where 𝐶0 is not a fact. Thus, when determining
behavioral seeds for some 𝑖𝑛𝑣 (e.g., when there is no fact
in 𝑆 with an application of 𝑖𝑛𝑣), we are free to consider
any unrolling that starts from an arbitrary 𝐶0, as long as
rel(dst(𝐶0)) = 𝑖𝑛𝑣. In addition, we must ensure that 𝑖𝑛𝑣 is
visited often enough, and the cycle has been terminated after
𝐶𝑘; otherwise, the collected data would not be sufficient for
generating meaningful seeds. Def. 6 reflects these conditions
formally.

Definition 6. Given a system 𝑆 of CHCs over R , let
𝑖𝑛𝑣 ∈ R . If an unrolling 𝜋⟨𝐶0,...,𝐶𝑘⟩ is such that
1) rel(src(𝐶0)) ̸= 𝑖𝑛𝑣, 2) rel(dst(𝐶0)) = 𝑖𝑛𝑣, 3)
rel(src(𝐶𝑘)) = 𝑖𝑛𝑣, and 4) rel(dst(𝐶𝑘)) ̸= 𝑖𝑛𝑣, and⃒⃒
{𝐶𝑖 ∈ ⟨𝐶0, . . . , 𝐶𝑘⟩ s.t. rel(dst(𝐶𝑖)) = 𝑖𝑛𝑣}

⃒⃒
= 𝑛, we call

it modular for 𝑖𝑛𝑣 and denote it 𝜋𝑛
𝑖𝑛𝑣 .

For practical reasons, we are interested in minimal un-
rollings 𝜋𝑛

𝑖𝑛𝑣 satisfying Def. 6 for some 𝑛 and 𝑖𝑛𝑣 ∈ R .
Then we obtain a model 𝑚𝑖𝑛𝑣 of 𝜋𝑛

𝑖𝑛𝑣 and compute the data
matrix using the values in 𝑚𝑛

𝑖𝑛𝑣 for every args(dst(𝐶𝑖)) ∈
⟨𝐶0, . . . , 𝐶𝑘⟩, such that rel(dst(𝐶𝑖)) = 𝑖𝑛𝑣. This data matrix
is then used to discover behavioral seeds for 𝑖𝑛𝑣, denoted
BehavSeeds(𝑖𝑛𝑣), that have the fixed-degree polynomial
form (1) (recall Sect. II-C).

Example 5. For CHCs in Fig. 1, 𝜋3
𝑖𝑛𝑣1

def
= body(𝐴)(𝑥⃗0) ∧

body(𝐵)(𝑥⃗0, 𝑥1) ∧ body(𝐵)(𝑥⃗1, 𝑥2) ∧ body(𝐶)(𝑥⃗2, 𝑥⃗3). We
are interested in values of variables in 𝑥⃗0, 𝑥⃗1 and 𝑥⃗2 (which
correspond to program variables ⟨𝑥, 𝑦,𝑚, 𝑛⟩ at the beginning
of each loop iteration) that make 𝜋3

𝑖𝑛𝑣1
true. For instance:

x y m n
0 0 2 2
0 1 2 1
1 1 2 0

Using this data matrix, we can generate a set
BehavSeeds(𝑖𝑛𝑣)(⟨𝑥, 𝑦,𝑚, 𝑛⟩) = {𝑥+ 𝑦−𝑚+𝑛 = 0}. It is
easy to see that this equality holds for every row of the data
matrix.

D. Candidate propagation

In practice, seeds obtained using methods from Sect. III-B
and Sect. III-C are often insufficient for generating rich enough
formal grammars. Consequently, candidate formulas that are
sampled from these grammars, are often insufficient for the
discovery of useful lemmas. Recall a solution of the system
of CHCs in Fig. 1, as shown in Ex. 2. It requires a set of
lemmas that have conjunct 𝑛 = 0 in interpretations of 𝑖𝑛𝑣2

and 𝑖𝑛𝑣3. However, the set of formulas shown in Ex. 4, can
offer 𝑛 = 0 only for 𝑖𝑛𝑣1. Our main idea, described formally
in the rest of this subsection, is to exploit that every CHC 𝐶
with rel(dst(𝐶)) = 𝑖𝑛𝑣2 or rel(dst(𝐶)) = 𝑖𝑛𝑣3 has a clause
𝑛′ = 𝑛 in its body (i.e., it merely reuses an old value of 𝑛),
and thus the candidate 𝑛 = 0 of 𝑖𝑛𝑣1 can be pushed forward
to become a candidate of 𝑖𝑛𝑣2 and 𝑖𝑛𝑣3.

Before propagating candidates, we need to ensure that they
are self-consistent in the following sense.



Definition 7. Given a system of CHCs 𝑆 over R and a subset
R ′ ⊆ R . A mapping Cand : R ′ → Expr is called self-
consistent if it makes every CHC in 𝑆′ def

= {𝐶 ∈ 𝑆 | (src(𝐶) =
⊤ ∨ rel(src(𝐶)) ∈ R ′) ∧ rel(dst(𝐶)) ∈ R ′} valid.

Clearly, if the candidates are not self-consistent, they cannot
be extended to a set of lemmas. Alg. 1 gives a simple routine
to check the self-consistency of candidates with respect to
CHCs 𝑆′ that have applications of symbols from R ′ only.
If the algorithm finds an invalid CHC 𝐶, then it weakens
the candidate for rel(dst(𝐶)) and repeats the self-consistency
check. Intuitively, if 𝐶 has the form (2), then (3) is invalid.

𝑖𝑛𝑣𝑖(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ 𝑖𝑛𝑣𝑗(𝑥𝑗) (2)
Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗) (3)

Alg. 1 weakens Cand(𝑖𝑛𝑣𝑗) to ⊤, and thus (3) becomes
trivially valid. Continuing such operation for other CHCs from
𝑆′ guarantees discovering a self-consistent set of candidates.
Note that Alg. 1 takes as additional input a set of formulas
which are already proved to be lemmas (recall Def. 4).

Further reasoning of the candidate propagation, given self-
consistent formulas Cand for some R ′ ⊆ R , boils down to
recursive post- and precondition inference: for any CHC in 𝑆
that has the form (2), where 𝑖𝑛𝑣𝑖 ∈ R ′ and 𝑖𝑛𝑣𝑗 /∈ R ′, we
wish to identify a formula Cand(𝑖𝑛𝑣𝑗), such that (3) holds.
Symmetrically, if 𝑖𝑛𝑣𝑖 /∈ R ′ and 𝑖𝑛𝑣𝑗 ∈ R ′, we wish to
identify a formula Cand(𝑖𝑛𝑣𝑖), such that again (3) holds.

The method of candidate propagation is based on quantifier
elimination.

Definition 8. Given a formula that has the form (4).

Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ 𝑖𝑛𝑣𝑗(𝑥𝑗) (4)

Forward propagation of Cand(𝑖𝑛𝑣𝑖) gives a formula
Cand(𝑖𝑛𝑣𝑗), such that:

Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗)
def
= ∃𝑥𝑖 .Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) (5)

Intuitively, if 𝜙(𝑥𝑖, 𝑥𝑗) encodes a transition from a pro-
gram state 𝑥𝑖 to a program state 𝑥𝑗 , then Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗)
encodes a set of all possible states that are reachable from
Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) by making the 𝜙(𝑥𝑖, 𝑥𝑗) step. Note that in
case Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) = ⊤, propagating ⊤ can still give mean-
ingful candidates, if e.g., the dst-arguments do not depend on
the src-arguments. On the other hand, if Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖) =
⊥, propagating ⊥ ends up with ⊥ again.

Note that the result of forward propagation (5) can be sub-
stituted back to implication (4) and make it true. Interestingly,
the operation of backward propagation (defined below) does
not have such property; and to enforce it, we should apply an
additional weakening of the propagated formula.

Definition 9. Given a formula that has the form (6).

𝑖𝑛𝑣𝑖(𝑥𝑖) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) =⇒ Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗) (6)

Backward propagation of Cand(𝑖𝑛𝑣𝑗) gives a formula
Cand(𝑖𝑛𝑣𝑖), such that:

Cand(𝑖𝑛𝑣𝑖)(𝑥𝑖)
def
= ∃𝑥𝑗 .Cand(𝑖𝑛𝑣𝑗)(𝑥𝑗) ∧ 𝜙(𝑥𝑖, 𝑥𝑗) (7)

Algorithm 1: WEAKEN: establishing self-consistency.
Input: CHCs 𝑆′ over R ′, set of candidates

Cand : R ′ → Expr ; learned Lemmas : R → 2Expr

Output: weakened Cand

1 allGood ← ⊤;
2 for all 𝐶 ∈ 𝑆′ do
3 if

⋀︀
ℓ∈Lemmas(rel(src(𝐶)))

ℓ(args(src(𝐶))) ∧

Cand(rel(src(𝐶)))(args(src(𝐶))) ∧ body(𝐶) ≠⇒
Cand(rel(dst(𝐶)))(args(dst(𝐶))) then

4 Cand(rel(dst(𝐶)))← ⊤;
5 allGood ← ⊥;
6 break;
7 if allGood then return Cand ;
8 else return WEAKEN(Cand ,R ′, 𝑆′,Lemmas);

Algorithm 2: EXTEND: recursive propagation.
Input: CHCs 𝑆 over R ; R ′ ⊆ R , set of candidates

Cand : R ′ → Expr ; learned Lemmas : R → 2Expr

Output: res ∈ {⊤,⊥}, extended Cand

1 Cand ← WEAKEN(Cand ,R ′, 𝑆′,Lemmas);
2 if ∀𝑖𝑛𝑣 ∈ R ′ .Cand(𝑖𝑛𝑣) = ⊤ then return ⟨⊥, ⟩;
3 for all 𝐶 ∈ 𝑆 s.t. rel(src(𝐶)) ∈ R ′ and rel(dst(𝐶)) /∈ R ′

do
4 Cand(rel(dst(𝐶)))←

PROPAGATEFORWARD(𝐶,Cand);

5 ⟨positive,Cand⟩ ←
EXTEND(𝑆,R ′ ∪{rel(dst(𝐶))},Cand ,Lemmas);

6 if ¬positive then return ⟨⊥, ⟩;
7 for all 𝐶 ∈ 𝑆 s.t. rel(dst(𝐶)) ∈ R ′ and rel(src(𝐶)) /∈ R ′

do
8 Cand(rel(src(𝐶)))←

PROPAGATEBACKWARD(𝐶,Cand);

9 ⟨positive,Cand⟩ ←
EXTEND(𝑆,R ′ ∪ {rel(src(𝐶))},Cand ,Lemmas);

10 if ¬positive then return ⟨⊥, ⟩;
11 return ⟨⊤,Cand⟩;

Both forward and backward propagation can be applied re-
cursively for any set of candidates Cand and a subset R ′ ⊆ R .
This is shown formally in Alg. 2. After establishing the self-
consistency of candidates (line 1), Alg. 2 extends Cand by
adding inferred candidates using forward propagation (line 4)
for all CHCs 𝐶 that have rel(src(𝐶)) ∈ R ′ and rel(dst(𝐶)) ∈
R ∖ R ′, and inferred candidates using backward propagation
(line 8) for all CHCs 𝐶 that have rel(dst(𝐶)) ∈ R ′ and
rel(src(𝐶)) ∈ R ∖R ′. Each round of propagation enlarges the
set of symbols annotated by candidates R ′ as well as Cand ,
and Alg. 2 is called recursively (lines 5 and 9). If R ′ = R then
it is enough to check self-consistency of Cand (and weaken
it if needed) before returning Cand as a set of lemmas.

Theorem 1. Assuming termination of the quantifier elimi-
nation procedure and termination of each implication check,
Alg. 2 always terminates.



Algorithm 3: SOLVECHCS: overall algorithm.
Input: CHCs 𝑆 over R
Output: res ∈ {SAT, UNKNOWN}, Lemmas : R → 2Expr

1 for all 𝑖𝑛𝑣 ∈ R do
2 Seeds ← SyntSeeds(𝑖𝑛𝑣) ∪ BehavSeeds(𝑖𝑛𝑣);

3 𝐺(𝑖𝑛𝑣)← GETGRAMMAR(Seeds);
4 Lemmas(𝑖𝑛𝑣)← ∅;

5 while ∀𝐶 ∈ 𝑆 . (dst(𝐶) = ⊥) =⇒(︁ ⋀︀
ℓ∈Lemmas(rel(src(𝐶)))

ℓ(args(src(𝐶)))∧body(𝐶) ≠⇒ ⊥
)︁

do
6 if ∀𝑖𝑛𝑣 ∈ R . ALLBLOCKED(𝐺(𝑖𝑛𝑣)) then
7 return ⟨UNKNOWN,∅⟩;
8 𝑖𝑛𝑣 ← PICKRELATIONALSYMBOL(R );
9 Cand(𝑖𝑛𝑣)← SAMPLE(𝐺(𝑖𝑛𝑣));

10 ⟨positive,Cand⟩ ←
EXTEND(𝑆, {𝑖𝑛𝑣},Cand ,Lemmas);

11 for all 𝑖𝑛𝑣 ∈ R do
12 if positive then
13 Lemmas(𝑖𝑛𝑣)←

Lemmas(𝑖𝑛𝑣) ∪ {Cand(𝑖𝑛𝑣)};
14 𝐺(𝑖𝑛𝑣)← BLOCK(𝐺(𝑖𝑛𝑣),Cand(𝑖𝑛𝑣), positive);

15 return ⟨SAT,Lemmas⟩;

For theories which do not admit a terminating quantifier-
elimination procedure, Alg. 2 can be safely modified by
replacing the results of calling the propagation methods on
lines 4 and 8 by constant ⊤.

E. Core algorithm

Our main contribution is an effective search strategy for
a solution of a given system of CHCs 𝑆 over a set of
uninterpreted symbols R . The search is over a set of candidate
formulas for each 𝑖𝑛𝑣 ∈ R which is described by a formal
grammar 𝐺(𝑖𝑛𝑣). In this section, we instantiate the setup
outlined in Sect. III-A by the components that make the entire
procedure practical. The pseudocode of the algorithm is shown
in Alg. 3.

Alg. 3 starts by creating the sampling grammars 𝐺(𝑖𝑛𝑣)
for each 𝑖𝑛𝑣 ∈ R . Grammars are constructed automatically:
first (line 2), by collecting Seeds as described in Sect. III-B
and Sect. III-C; and then (line 3) by creating production
rules that would be able to produce all Seeds recursively.
We do not impose any restrictions on the implementation
of this routine, and in practice, one could additionally add
a normalization pass over all Seeds before processing them.
Note that various unrollings, considered for constructing the
behavior candidates, can be enhanced with the bodies of the
query (and of other clauses if necessary) to be checked for
the existence of counterexamples (recall Lemma 1). If no
counterexamples are found, the algorithm starts guessing and
checking candidate formulas Cand(𝑖𝑛𝑣) for each 𝑖𝑛𝑣 ∈ R .

Simultaneous sampling from multiple grammars might lead
to many iterations of Alg. 3. To be turned to a set of lemmas,
each set of candidate formulas should be self-consistent. But

if the candidates are sampled without taking into account
any relationship among loops, the weakening by Alg. 1
might be too aggressive and might withdraw many good
candidates. Instead, we propose to fix precisely one grammar
(say, 𝐺(𝑖𝑛𝑣) for some 𝑖𝑛𝑣 ∈ R ) per iteration, to sample a
candidate formula Cand(𝑖𝑛𝑣) from 𝐺(𝑖𝑛𝑣), and to propagate
Cand(𝑖𝑛𝑣) recursively to candidate formulas Cand(𝑖𝑛𝑣′) for
all 𝑖𝑛𝑣′ ∈ R through all implications in 𝑆 (lines 8-10).

In particular, at each iteration, Alg. 3 picks 𝑖𝑛𝑣 ∈ R (in our
implementation, we use Weak Topological Ordering [13], but
any other heuristic can be used instead). Then the algorithm
samples a formula Cand(𝑖𝑛𝑣) – it could either be one of
Seeds or a syntactically mutated formula. The goal now is to
find candidate formulas for all other 𝑖𝑛𝑣′ ∈ R ∖ {𝑖𝑛𝑣} and
to check all implications in CHCs. The algorithm performs
inference of preconditions and postconditions using the routine
described in Sect. III-D (Alg. 2).

Recall that Alg. 2 not only populates Cand with candi-
date formulas for some symbols but also drops some un-
successful candidate formulas due to weakening. Note that
Alg. 1 implements a simple strategy, in which a candidate
formula Cand(𝑖𝑛𝑣𝑗) can only be dropped to ⊤ – this
helps when Cand(𝑖𝑛𝑣𝑗) is conjunction-free. However, in case
Cand(𝑖𝑛𝑣𝑗) is conjunctive (which could be due to quantifier
elimination), a more careful weakening (e.g., [14], [15]
or [16]) can be used. In the worst-case scenario, weakening
ends up with an empty candidate, which means that nothing
was learned at this iteration, and a new candidate formula
should be sampled.

In the case when a sequence of weakening-propagation
calls has converged, the entire Cand is learned as a lemma
(line 13). The process is repeated until the conjunction of
lemmas is strong enough to be a solution for the entire system
(apply Lemma 2). Finally, for the progress of the algorithm,
both failed and positive attempts are noted, and the algorithm
ensures that the candidates are not sampled again in the future
(line 14). If all candidates of all grammars are blocked, the
algorithm terminates with an unknown result (line 6). The
facts that each formal grammar admits only a finite number
of candidates and that each candidate is considered only once
enable us to prove the following theorem.

Theorem 2. Alg. 3 always makes a finite number of iterations,
and if it converges with SAT, the set of all learned lemmas
constitutes a solution of the CHC system.

Similarly to [8], the algorithm can be optimized by intro-
ducing bootstrapping and sampling stages, candidate batching
and exploiting counterexamples-to-induction, and thus it can
be effectively integrated with the elements of Generalized
Property Directed Reachability (GPDR) [1], [4].



F. Extension to nonlinear CHCs

Definition 10. A nonlinear CHC is a formula in first-order
logic that has the form of one of three implications:

𝜙(𝑥1) =⇒ 𝑖𝑛𝑣1(𝑥1)⋀︁
0≤𝑖≤𝑛

𝑖𝑛𝑣𝑖(𝑥𝑖)∧𝜙(𝑥0, . . . , ⃗𝑥𝑛+1) =⇒ 𝑖𝑛𝑣𝑛+1( ⃗𝑥𝑛+1)⋀︁
0≤𝑖≤𝑛

𝑖𝑛𝑣𝑖(𝑥𝑖)∧𝜙(𝑥0, . . . , 𝑥𝑛) =⇒⊥

Our synthesis algorithm can be adapted to solve systems of
nonlinear CHCs with limited backward propagation. The rest
of the components operate in the same way: each 𝑖𝑛𝑣 ∈ R
gets its grammar, and candidates are iteratively sampled from
them.

In the future, we would like to discover ways of effective
backward propagation for nonlinear CHCs. In particular, a
variant of (6) for nonlinear CHCs might be as follows:

𝑖𝑛𝑣𝑖(𝑥𝑖) ∧ 𝑖𝑛𝑣𝑗(𝑥𝑗) ∧ 𝜙(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘) =⇒ Cand(𝑖𝑛𝑣𝑘)(𝑥𝑘)

Applying quantifier elimination, we get candidates for con-
junctions Cand(𝑖𝑛𝑣𝑖)∧Cand(𝑖𝑛𝑣𝑗), but not necessarily for
individual conjuncts Cand(𝑖𝑛𝑣𝑖) and Cand(𝑖𝑛𝑣𝑗).

IV. IMPLEMENTATION AND EVALUATION

We have implemented the algorithm from Sect. III-E on
top of our previous implementation FREQHORN3. The tool
takes a system of CHCs, automatically performs its unrolling,
searches for counterexamples (if any), generates behavioral
candidates, propagates and weakens candidates. To elimi-
nate quantifiers, FREQHORN uses the technique based on
Model-Based Projections [17]. For solving SMT queries, it
uses Z3 [18]. For matrix operations, FREQHORN uses Ar-
madillo [19], a C++ library for linear algebra.

We evaluated FREQHORN on 101 satisfiable CHC-systems4

taken from the literature on program verification (e.g. [20])
and crafted by ourselves. There are 81 systems of CHCs over
the theories of linear (LIA) and 20 over nonlinear integer
arithmetic (NIA). All systems have two or more uninterpreted
relation symbols. Because our quantifier-elimination engine
has limited support for NIA, we disabled candidate propa-
gation for the cases when the body of corresponding CHCs
contains nonlinear arithmetic. In such cases, we assigned ⊤ to
the propagated candidates and performed the self-consistency
checks. Thus, disabling candidate propagation did not lead to
incorrect results.

Among the 101 benchmarks, FREQHORN was able to solve
81 within a timeout of 5 minutes: 65 over LIA, and 16
over NIA. The remaining 20 benchmarks require disjunctive
invariants which are difficult to find for FREQHORN. In
order to evaluate the significance of candidate propagation,

3The source code is available at https://github.com/grigoryfedyukovich/
aeval/tree/rnd.

4Available at https://github.com/grigoryfedyukovich/aeval/tree/rnd/bench
horn multiple, and also contributed to CHC-COMP: http://chc-comp.github.
io/.

behavioral candidates, and candidates guessed from syntax,
we performed controlled experiments with the corresponding
features disabled. Fig. 2 gives the scatter plots that compare
configurations on all benchmarks. Each point in a plot repre-
sents a pair of the runtime (sec) of the full configuration of
FREQHORN (x-axis) and the runtime (sec) of the restricted
configuration of FREQHORN (y-axis). In each plot, the color
saturation roughly reflects the benefits of the full configuration,
i.e., the delta between the runtimes.

The configuration of FREQHORN with candidate propaga-
tion disabled (thus, candidates for all unknowns had to be
sampled independently) was able to solve 56 benchmarks, and
it was on average three times slower than the full configuration.
After disabling behavioral candidates (but with candidate
propagation), FREQHORN was able to solve 60 benchmarks.
Time-wise, this experiment gave less consistent results: for
15 benchmarks the restricted configuration outperformed the
full one. Finally, after disabling syntactic candidates (but with
candidate propagation and behavioral candidates), FREQHORN
was able to solve only 37 benchmarks. The experiment con-
firmed that all features of our algorithm are essential for its
efficacy, and it leaves room for devising heuristics to apply in
specific contexts.

We also compared our tool to SPACER v.3 [4], 𝜇Z
v.4.4.2 [1], and ELDARICA v.1.3 [2] CHC solvers (shown in
Fig. 3)56. Among the 101 benchmarks, SPACER was successful
on 45, 𝜇Z on 42, and ELDARICA on 71. FREQHORN solved
41 benchmarks on which SPACER diverged, 44 on which 𝜇Z
diverged, 22 on which ELDARICA diverged. In total, it solved
16 benchmarks on which all the competitors diverged, and 10
of them are over NIA.

In our benchmark selection, there are 8 tricky tasks which
were solved by none of the tools. Investigating bottlenecks in
solving them motivates our future work.

V. RELATED WORK

Conceptually, our algorithm for solving CHCs can be
viewed as an extension of the syntax-guided invariant synthe-
sizer [7] for transition systems (i.e., CHCs with one uninter-
preted relation symbol). Thus, [7] is built around one sampling
grammar, and does not require any candidate propagation.
For arbitrary CHCs, as shown in our experiments, a naively
extended approach of [7] does not scale well. Furthermore, in
many cases, for convergence, it would require some symbolic
constraints to be propagated across CHCs before the grammar
is constructed (otherwise, the grammars might not be suffi-
cient, and sometimes might be even empty). Our new solution
is insensitive to these challenges.

Other instantiations of [7] include [8] and [9], but they
still do not span beyond the transition systems. Our approach
incorporates essential details of [8] and [9], namely enriching
the grammars by externally created seeds. In particular, as
in [9], we use polynomial equations as candidates for a

5We excluded the time needed to start Java Virtual Machine from the
running time of ELDARICA.

6Full statistics are available at https://goo.gl/ADZdez.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd
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https://github.com/grigoryfedyukovich/aeval/tree/rnd/bench_horn_multiple
http://chc-comp.github.io/
http://chc-comp.github.io/
https://goo.gl/ADZdez
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Fig. 2: Internal statistics on FREQHORN (sec×sec): points above the diagonal represent runtimes for benchmarks on which full configuration outperformed
the restricted configuration.
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Fig. 3: Comparison of FREQHORN (sec×sec) and external tools: points above the diagonal represent runtimes for benchmarks on which the best configuration
of FREQHORN outperformed the competitor.

relation between variables, generated after analyzing mod-
els for unrollings of CHCs. But again, [9] does not deal
with multiple uninterpreted relation symbols. Our approach
required solutions to several new challenges. First, a satisfiable
unrolling for every loop must be found to obtain behavioral
data. Second, even if we get a good candidate for interpretation
of one symbol, often a weakening or a strengthening of this
candidate is needed to accommodate suitable candidates for
other symbols. We have addressed these issues by introducing
a concept of modular unrolling of a system of CHCs, and
by considering the seeds obtained from data to bootstrap the
grammar generation.

Apart from solving unrollings as in [9], there are promi-
nently two ways to get behavioral data – from infeasible
paths using interpolation [21], and from reachable states along
feasible paths using test-based executions [22], [12], [23], [24].
These techniques are not only limited by the expressiveness
of their grammar, which is fixed, they also take the naive
approach to dealing with multiple loops, i.e., the candidates
are learned independently for all loops. In contrast, we use
behavioral seeds to bootstrap the grammar. Furthermore, we
propagate candidates learned for one loop to obtain constraints
on those for adjacent loops.

Propagation of candidates and search for inductive subsets

is at the heart of the approaches based on Generalized Property
Directed Reachability (GPDR) [1], [4]. In a nutshell, they
are based on implicit unrollings of loops and a monotonic
fixed-point computation, driven by spurious counterexamples.
However, such methods often diverge due to failures to gener-
alize an inductive invariant from counterexamples. In contrast,
our approach does not perform a fixed-point computation,
and propagates candidates only through a finite number of
implications, specified directly in CHCs. Failures to propagate
lead to withdrawing the candidate and generating a new
guess from the grammar. In practice, this makes our solution
effective on many benchmarks which are difficult for GPDR.

VI. CONCLUSIONS

We have presented an algorithm for solving systems of
CHCs based on Syntax-Guided Synthesis. For each unknown
predicate in CHCs, our algorithm generates a formal grammar
from the syntax of the CHC system and models of various
unrollings of the system. A solution for the system (i.e., an
interpretation of each unknown predicate that makes all CHCs
true) is then guessed from the corresponding grammars and
checked by an SMT solver. It is crucial for the effectiveness of
the approach to use modular unrollings of CHCs and to propa-
gate candidates through all available implications in the CHC



system. We have presented the evaluation of our prototype
built on top of the FREQHORN tool and have confirmed that
the algorithm is effective on a range of benchmarks originating
from program verification tasks and competitive with state-of-
the-art CHC solvers. As we go ahead, we plan to optimize the
algorithm using heuristics, to develop effective strategies for
backward candidate propagation in case of nonlinear CHCs,
and to extend our tool with the support of CHCs over arrays,
algebraic data types and bit-vectors.
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[2] H. Hojjat, F. Konecný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer,
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