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Abstract—We propose a shape analysis suitable for analysis
engines that perform automatic invariant inference using an
SMT solver. The proposed solution includes an abstract template
domain that encodes the shape of the program heap based
on logical formulae over bit-vectors. It is based on computing
a points-to relation between pointers and symbolic addresses
of abstract memory objects. Our abstract heap domain can be
combined with value domains in a straightforward manner, which
particularly allows us to reason about shapes and contents of
heap structures at the same time. The information obtained
from the analysis can be used to prove memory safety and
reachability properties, expressed by user assertions, of programs
manipulating dynamic data structures, mainly linked lists. The
solution has been implemented in the 2LS framework and
compared against state-of-the-art tools that perform the best in
heap-related categories of the well-known Software Verification
Competition (SV-COMP). Results show that 2LS outperforms
these tools on benchmarks requiring combined reasoning about
unbounded data structures and their numerical contents.

I. INTRODUCTION

Reasoning about dynamic data structures is one of the core

problems in software verification. The techniques implemented

in state-of-the-art verification tools for C programs such as

those competing in the Software Verification Competition

(SV-COMP) have shortcomings when it comes to combined

reasoning about shape and content of data structures as our

experiments revealed. We address this problem in this paper

in the context of template-based program verification.

Template-based verification uses a logic-based synthesis ap-

proach to inferring the invariants required for proving program

properties. It delegates semantic reasoning to SMT solvers and

focusses on the design of appropriate template domains and ef-

ficient algorithms for finding the optimal template parameters

(i.e. least fixed points in the abstract interpretation sense [14]).

The use of such templates makes it straightforward to compute

invariants describing both shape and value properties of data

structures, which is more difficult when combining domains

that are based on different principles.

Running example: To better illustrate the concepts and

methods proposed in the paper, we use the program in List-

ing 1 as a running example. It creates a singly-linked list, each

node containing a value between 10 and 20 (Lines 7–15). The

list is afterwards traversed repeatedly and the value of each

node is either incremented by 1 or halved (Lines 16–22). We

add an assertion that, in every iteration, the value of each

node stays between 10 and 20. The goal of the analysis is to

prove that the assertion always holds. This requires an analysis

capable of reasoning about unbounded linked data structures

and numerical content of their nodes at the same time.

Listing 1: A running example

1 typedef struct node {

2 int val;

3 struct node *next;

4 } Node;

5

6 int main() {

7 Node *p, *list = malloc(sizeof(Node));

8 Node *tail = list;

9 *list = {.next = NULL, .val = 10};

10 while (__VERIFIER_nondet_int()) {

11 int x = __VERIFIER_nondet_int();

12 if (x < 10 || x > 20) continue;

13 p = malloc(sizeof(Node));

14 *p = {.next = NULL, .val = x};

15 tail→next = p; tail = p;

16 }

17 while (1) {

18 for (p = list; p!= NULL; p = p→next) {

19 assert(p→val <= 20 && p→val >= 10);

20 if (p→val < 20) p→val++;

21 else p→val /= 2;

22 } } }

To prove this property we have to infer that the value of the

val field of the dynamic objects allocated in Line 7 and 13

is always in the range [10, 20].
With the help of our technique, we will infer an invariant

for the loop on Line 10 that states the following:

• tail may point to the sets of Node objects created in

Line 7 and 13. We denote these sets ao
7

and ao
13

, resp.

• The next field of ao
7

may point to ao
13

or null. Its

val field has a value in the interval [10,10].

• The next field of ao
13

may point to ao
13

or null.

However, its val field has a value in the interval [10,20].

This means that ao
13

abstracts a set of Node objects

whose val fields have values in the interval [10,20].

For the loop in Line 18, we infer the invariant that the val

fields of ao
7

and ao
13

must both be in the interval [10,20],

which implies that the property holds.

Contributions: The contributions of this paper, which

form the contents of Sections III–VII, are as follows:

1) We propose a novel abstract template domain for rea-

soning over heap-allocated data structures such as singly

and doubly linked lists using a template-based parameter

synthesis engine.

2) We show how we can build product and power domain

combinations of our heap domain with structural domains

(e.g. trace partitioning) and value domains such as tem-

plate polyhedra that capture the content of data structures.

3) We implement our abstract heap domain in the 2LS ver-

ification tool for C programs. We demonstrate the power



of the proposed domain on benchmarks, which require

combined reasoning about the shape and content of data

structures, showing that other tools, which performed well

in SV-COMP, cannot handle these examples.

II. TEMPLATE-BASED PROGRAM VERIFICATION

This section describes the approach to program verification

using template-based synthesis of inductive invariants which

the 2LS tool [35] is based upon and that underlies our approach

too. The source program is first translated into single static

assignment (SSA) form. Using this program representation,

the verification task can then be expressed as a second-

order logical formula. However, since suitable solvers for such

formulae are not available, the verification problem is reduced

to synthesising loop invariants using parametrised templates

and an SMT solver to find suitable values of the parameters.

A. Program Verification Using Inductive Invariants

A state of a program is a logical interpretation of logical

variables corresponding to each program variable. A set of

states can be described using a formula—states in the set are

defined by models of the formula. Given a vector of variables

~x, the predicate Init(~x) describes the initial states. A transition

relation is described as a formula Trans(~x, ~x′).
From these, it is possible to determine the set of reachable

states as the least fixed-point of the transition relation starting

from the states described by Init(~x). This is, however, difficult

to compute, so instead, we use an inductive invariant. A ver-

ification task requires showing that the set of reachable states

does not intersect with the set of error states Err(~x). Using

the concept of inductive invariants and existential second-order

quantification (∃2), we can formalise it as:

∃2Inv . ∀~x, ~x
′. (Init(~x) =⇒ Inv(~x)) ∧

(Inv(~x) ∧ Trans(~x, ~x′) =⇒ Inv(~x′)) ∧

(Inv(~x) ⇒ ¬Err(~x))

(1)

B. Invariant Inference via Templates

To directly handle Eq. (1) by a solver, it would require

the capability to deal with second-order logic quantification.

Since a suitably general and efficient second-order solver is

not currently available, the problem is reduced to one that can

be solved by an iterative application of a first-order solver.

This reduction is done by restricting the form of the inductive

invariant Inv to T (~x, ~δ) where T is a fixed expression (a so-

called template) over program variables ~x and template param-

eters ~δ. This restriction corresponds to the choice of an abstract

domain in abstract interpretation—a template only captures the

properties of the program state space that are relevant for the

analysis. This reduces the second-order search for an invariant

to a first-order search for the template parameters:

∃~δ. ∀~x, ~x′. (Init(~x) =⇒ T (~x, ~δ)) ∧

(T (~x, ~δ) ∧ Trans(~x, ~x′) =⇒ T (~x′, ~δ))
(2)

Although the problem is now expressible in first-order logic,

the formula contains quantifier alternation, which poses a prob-

lem for current SMT solvers. This is solved by iteratively

checking the negated formula (to turn ∀ into ∃) for different

choices of constants ~d as candidates for template parameters ~δ.

For a value ~d, the template formula T (~x, ~d) is an invariant if

and only if Eq. (3) is unsatisfiable.

∃~x, ~x′. ¬(Init(~x) =⇒ T (~x, ~d)) ∨

¬(T (~x, ~d) ∧ Trans(~x, ~x′) =⇒ T (~x′, ~d))
(3)

From the abstract interpretation point of view, ~d is an

abstract value, i.e. it represents (concretises to) the set of all

program states ~x that satisfy the formula T (~x, ~d). The abstract

values representing the infimum ⊥ and supremum ⊤ of the

abstract domain denote the empty set and the whole state

space, respectively: T (~x,⊥) ≡ false and T (~x,⊤) ≡ true [8].

Formally, the concretisation function γ is: γ(~d) = {~x |
T (~x, ~d) ≡ true}. In the abstraction function, to get the most

precise abstract value representing the given concrete program

state ~x, we let α(~x) = min(~d) such that T (~x, ~d) ≡ true.

Since the abstract domain forms a complete lattice, existence

of such a minimal value ~d is guaranteed.

The algorithm for the invariant inference takes an initial

value of ~d =⊥ and iteratively solves Eq. (3) using an SMT

solver. If the formula is unsatisfiable, then an invariant has

been found, otherwise a model of satisfiability is returned

by the solver. The model represents a counterexample to

the current instantiation of the template being an invariant.

The value of the template parameter ~d is then updated by

combining with the obtained model of satisfiability ~d′ using

a domain-specific join operator [8]. For example, assume we

have a program with a loop that counts from 0 to 10 in variable

x and we have a template x ≤ d. Let’s assume that the

current value of the parameter d is 3 and we get a new model

d′ = 4. Then we update the parameter to 4 by computing

d ⊔ d′ = max(d, d′), because max is the join operator for

a domain that tracks numerical upper bounds.

C. Source Program Encoding

In this paper, we deal with non-recursive programs with all

function calls inlined. As said above, we encode the program

into a formula representing a specific static single assignment

form (SSA). For acyclic programs, the SSA represents exactly

the strongest postcondition of the program—as usual, with a

fresh copy xi of each variable x for each program location i

where the value of x is modified. The effect of loops is over-

approximated as described in [8]. In this encoding, special

variables called guards are used to track the control flow of the

program. In particular, for each program location i, a Boolean

variable gi is introduced, and its value encodes whether the

program location is reachable.

To see how the over-approximation of program loops is

achieved, note that, at the loop head, the program path coming

from before the loop joins with the path coming from the

end of the loop (assuming that all paths within the loop join

before its end; and likewise for the paths coming from before

the loop). To achieve acyclicity of the SSA, we cut the path

coming from the end of the loop. We then represent the value



of each variable x at the loop head using a phi variable

xphi whose value is defined by a non-deterministic choice

between the value coming from before the loop, say x0, and

the value coming from the end of the loop. The latter value

is represented by a newly introduced loop-back variable xlb.

In particular, we let xphi = gls ? xlb : x0 where gls is a so-

called loop-select Boolean guard that is unconstrained in order

to model the non-deterministic choice. Moreover, to over-

approximate the effect of the loop, the value of the loop-back

variable xlb is initially unconstrained too and later constrained

by the derived candidate loop invariants.

Example. In Listing 1, the loop head at Line 10 joins

two different values of variable tail coming from program

locations 8 and 15. The value of tail coming from the end of

the loop (denoted tail
15

in the SSA) is replaced by the loop-

back variable taillb
16

. The corresponding phi variable list
phi
10

then non-deterministically joins taillb
16

with the value of tail

from before the loop via the loop-select variable gls
16

:

list
phi
10

= gls
16

? listlb
16

: list
8

(4)

III. ABSTRACT MEMORY OPERATIONS IN THE SSA FORM

We now propose a representation of heap memory and

operations over it, designed to be used within the approach laid

out in Section II. The proposal respects the fact that the con-

sidered SSA form is an acyclic program representation, over-

approximating reachable values of variables used in loops.

A. Abstract Memory Representation

Under our assumption of fully inlined, non-recursive pro-

grams, static memory objects correspond simply to a finite set

Var of program variables: we do not need to consider the

stack. We let PVar ,SVar ⊆ Var , PVar ∩ SVar = ∅, be the

sets of variables of pointer and structure type, respectively. A

linked data structure in C is typically defined using a struct

type, which groups together named fields for the payload data

and the link pointers (see Lines 1–4 in Listing 1). We use Fld

to denote the finite set of fields used in the given program.

Let PFld ⊆ Fld be the set of all pointer-typed fields.

1) Abstract Dynamic Objects: We use abstract dynamic

objects to represent dynamic memory objects, i.e. those that are

allocated using malloc (or some of its variants) on the heap.

An abstract dynamic object represents a set of concrete dy-

namic objects allocated at the same allocation site i, e.g. by the

same malloc call located at Line i in Listing 1. However, a

single abstract dynamic object is not sufficient to represent all

concrete dynamic objects allocated by a given malloc. The

reason for this is that the program may use several independent

objects created at an allocation site at the same time. Typically,

this issue is solved by the analysis algorithm materialising

dynamic objects on-demand. We take a different approach

and statically over-approximate the maximum number ni of

concrete objects required (see next section below). Hence, we

use a set AOi = {aoki | 1 ≤ k ≤ ni} of abstract dynamic

objects for that purpose. We let AO = ∪iAOi and require

Var ∩AO = ∅ and AOi ∩AOj = ∅ for i 6= j. The set of all

objects of our program abstraction is then Obj = AO ∪Var .

Pairs consisting of an abstract dynamic object and a field,

i.e. elements of the set AO ×Fld , represent an abstraction of

the appropriate fields of all the represented concrete objects.

We use the “dot” notation to represent such pairs: e.g. aoi.next

denotes the abstraction of the next field of all the concrete

dynamic objects represented by aoi.

We define Ptr = PVar ∪ ((SVar ∪AO)×PFld) to be the

set of all pointers of the given program abstraction. Pointers

can be assigned addresses of objects. Since we currently do not

support pointer arithmetic, the only addresses that we consider

are symbolic addresses of static and dynamic objects together

with the special address null. The symbolic address of an

abstract dynamic object aoi is an abstraction of the symbolic

addresses of the concrete dynamic objects represented by aoi.

To get the address of both static and dynamic objects, we

use the &-operator. Hence, the set Addr of addresses that we

consider is defined as Addr = {&o | o ∈ Obj} ∪ {null}.1

2) Pre-Materialisation: As mentioned above, instead of

materialising dynamic objects on-demand, we pre-materialise

a sufficient number ni of them for each allocation site i and

encode them into our SSA representation. In order for this

abstraction to be sound, it is sufficient that the number ni

equals the maximal number of distinct concrete objects allo-

cated at i that are simultaneously pointed to by some pointer

at any location of the analysed program.

For each allocation site i, we compute the number ni as

follows. First, using a standard static may-alias analysis, we

over-approximate, for each program location j, the set P i
j

of all pointer expressions of the source program that may

point to some object allocated at i. These might be pointer

variables from PVar , pointer-typed fields of static objects

from SVar×PFld , or pointer-typed fields of dynamic objects

accessed through dereferences of pointers—i.e. elements of

PVar × PFld . For simplicity, we assume that all chained

dereferences of the form p → f1 → f2 with f1, f2 ∈ PFld

are broken into two expressions using an intermediate variable.

Overall, P i
j ⊆ PVar ∪ ((SVar ∪ PVar) × PFld). Next, we

compute the must-alias relation ∼j . For each pair of pointers

p and q and for each program location j, p ∼j q iff p and q

must point to the same concrete dynamic object at j. Finally,

we partition the set P i
j into equivalence classes by ∼j , and ni

is given by the maximal number of such classes at any j.

B. Operations over the Abstract Memory Representation

1) Dynamic Memory Allocation: We represent a call to

malloc at program location i by a non-deterministic choice

among the addresses of objects from the set AOi. Hence,

a statement p = malloc(. . .) at i is translated to the formula

pi = gosi,1 ?&ao1i : (gosi,2 ?&ao2i : (. . . (gosi,ni−1
?&aoni−1

i :
&aoni

i ))) where gosi,j , 1 ≤ j < ni are free Boolean variables,

so-called object-select guards.

1We currently assume that addresses of newly allocated objects are fresh.
Hence, we can miss behaviours where some memory space is recycled while
some pointers are still pointing to it, which is undefined according to the C
standard, but sometimes used in practice. If that was a problem, we could,
e.g., extend our preliminary static analysis to detect objects that can possibly
be in that form and add them among possible returns from the allocation.



Example. In Listing 1, two calls of malloc occur on

Lines 7 and 13. For Line 7, a single abstract dynamic object

ao
7

is created as there is just one concrete object allocated.2

The malloc on Line 13 must be represented by two objects

ao1
13

and ao2
13

as, e.g. on Line 14, variables tail and p may

point to different concrete objects allocated by this malloc

call. Specifically, the statement on Line 13 will be translated

into the equality p
13

= gos
13

?&ao1
13

: &ao2
13

. Abstract dynamic

objects ao1
13

and ao2
13

then collectively represent all concrete

dynamic objects allocated in the loop.

2) Reading through Dereferenced Pointers: We handle ex-

pressions of the form p → f for p ∈ PVar , f ∈ Fld appearing

on the right-hand side of assignments or in conditions as

follows. We first perform a may-points-to analysis, which over-

approximates for each pointer p ∈ Ptr and each program

location i the set of objects from Obj that p may point to at i.

Using the result of the analysis, we can replace the pointer

dereference p → f by a choice among the values of the field f

of the objects possibly pointed to by p.

To facilitate the replacement, we introduce purely logical

dereference variables. Assume that at program location i there

appears an R-expression p → f and that the pointer p may

point to a set of objects O ⊆ Obj at i. We replace the use

of p → f by using a fresh variable drf(p).fi whose value

is defined by the formula (
∧

o∈O pj = &o =⇒ drf(p).fi =
o.fk)∧((

∧

o∈O pj 6= &o) =⇒ drf(p).fi = o⊥) where pj , o.fk
are the relevant versions of the concerned variables at program

location i and o⊥ denotes a special “unknown object” (a result

of a dereference of an unknown or invalid (null) address).3

Example. We give the translation of the assignment p =
p → next from Line 18 in Listing 1. Since the assignment

is executed at the end of each loop iteration, we define its

program location to be Line 22. At this program location, p

may point to the set of objects {ao
7
, ao1

13
, ao2

13
}. Hence, the

assignment will be represented by the following formula.

p
22
=drf(p).next22 ∧

(

p
phi
18

=&ao
7
⇒ drf(p).next22=ao

7
.next

phi
18

)

∧
∧

l=1,2

(

p
phi
18

=&aol
13

⇒ drf(p).next22=aol
13
.next

phi
18

)

∧

(

(

p
phi
18

6=&ao
7
∧

∧

l=1,2

p
phi
18

6=&aol
13

)

⇒ drf(p).next22=o⊥

)

The first conjunct represents the transformed assignment, and

the following conjuncts define the value of the dereference

variable. The value of p entering program location 22 is the

value from the loop head p
phi
18

. If it equals the address of

ao
7
, ao1

13
, or ao2

13
, the value of drf(p).next22 is ao

7
.next

phi
18

,

ao1
13
.next

phi
18

, or ao2
13
.next

phi
18

, otherwise, it equals o⊥.

As an optimisation, if the dereference variable is once

created and the value of the concerned expression does not

2In fact, we should write ao1
7

, but we omit the superscript when a single
abstract object suffices. Likewise for the object-select guards below.

3A dereference of the form ∗p for a non-structured object can be handled
analogously, just without the field f in the above formula.

change, we reuse the existing dereference variable. Second,

when dealing with a statement like v = p → f , the use of

the dereference variable may seem unnecessary as one can

plug vi instead of drf(p).fi into the formula defining the value

of drf(p).fi. This can be done, but, as explained below, the

use of dereference variables can give us more precision when

dealing with sequences of reading and writing operations.

3) Writing through a Dereference: When writing into an

abstract dynamic object aoi, we need to respect the fact that

only one concrete object abstracted by aoi is actually written

to, and the others keep the original value. Hence, we need

to make a join of the original and new value. We again use

dereference variables to facilitate the transformation.

Assume that at program location i, we have an assignment

p → f = v, p ∈ PVar , f ∈ Fld , v ∈ Var , and that p

may point to a set of objects O ⊆ Obj at the entry to i.4

We replace the L-expression p → f by a fresh variable

drf(p).fi whose value is defined by the value of v, i.e. we

assert that drf(p).fi = vl where vl is the version of v valid

at program location i. We then use drf(p).fi to update the

value of the field f of the referenced object, using the formula
∧

o∈O o.fi = (pj = &o ∧ gosi ) ? drf(p).fi : o.fk where

pj , o.fk are the relevant versions of the variables p and o.f

at program location i.5 The formula expresses the fact that

o.fi gets updated if p equals the address of o, otherwise

its value remains unchanged; k is the last program location

before i where the value of o.f was changed. The object-

select guard gosi , which is a freshly introduced unconstrained

Boolean variable, enforces that the value of field f is changed

in only one of the concrete objects abstracted by o while it

remains unchanged in the other objects abstracted by o. If o

is not allocated in a loop (and hence representing a single

instance), gosi may be omitted.

Example. For illustration, the assignment tail->next=p

from Line 15 of Listing 1 will be translated into the formula:

(drf(list).next15 = p
13
) ∧

(

ao
7
.next

15
=(listphi

10
=&ao

7
) ?

drf(list).next15 : ao
7
.next

phi
10

)

∧
∧

l=1,2

(aol
13
.next

15
=(listphi

10
=&aol

13
∧ gos

15
) ?

drf(list).next15 : aol
13
.next

phi
10

)

As mentioned above, the use of dereference variables may

increase the precision of our analysis. This happens in par-

ticular when we write into an abstract object through some

pointer and later read the written value back through the same

pointer (or a pointer aliased with it) without any change of

the pointers and the concerned value in between. Then, we get

back exactly the value that we wrote, which would otherwise

not happen due to the joins involved.

4) Memory Free: Since the free operation has no effect

on the heap reachability itself, we defer its discussion to

Section V devoted to checking memory safety.

4More complex assignments can be transformed into this form.
5A write to a dereference of the form ∗p to a non-structured object can be

handled analogously, omitting field f from the formula.



IV. AN ABSTRACT DOMAIN FOR HEAP ANALYSIS

We will now work towards our template-based abstract

domain suitable for reasoning about properties of heap-

manipulating programs, starting from a base shape domain and

refining it. We will show that, due to the fact that all domains

in the considered approach are based on templates, the new

domain can be easily combined with other domains, e.g. for

inferring properties about numerical data of data structures.

A. Base Abstract Shape Domain

In the considered approach, an abstract domain needs to

have the form of a template—a fixed, parametrised, quantifier-

free first-order logic formula describing the desired property

of a program. As described in Section II, templates are used to

efficiently compute loop invariants of the analysed program.

These are used to constrain values of the loop-back variables

that are used in the SSA-based program encoding to over-

approximate values returning from the end of the loop to the

loop head. Hence, a loop invariant describes a property that

holds for some program variables at the end of the loop body

after any iteration of the loop. Hence, we limit our shape

domain to the set Ptr lb of all loop-back pointers. Let L be the

set of all loops in the program. Since there is one loop-back

pointer variable for each pointer variable and each loop, we

define Ptr lb = Ptr × L. We denote elements (p, l) ∈ Ptr lb

by plbi where i is the program location of the end of the loop

l. Intuitively, the value of plbi is an abstraction of the value of

the pointer p coming from the end of the body of the loop

l. The property that our base shape domain describes is the

may-point-to relation between the set Ptr lb and the set Addr .6

The template of our base shape domain has the form of

the formula T S ≡
∧

plb
i
∈Ptr lb T S

plb
i

(dplb
i
). It is a conjunction

of so-called template rows T S
plb
i

, each row corresponding to

one loop-back pointer from the set Ptr lb. A template row

T S
plb
i

(dplb
i
) describes the may-point-to relation for the loop-back

pointer plbi . The parameter dplb
i
⊆ Addr of the row (a so-called

abstract value of the row) specifies the set of all addresses

from the set Addr that p may point to at the location i.

The template row can thus be expressed as the quantifier-free

formula T S
plb
i

(dplb
i
) ≡ (

∨

a∈d
plb
i

plbi = a).

Abstract values of template rows corresponding to pointer

fields of abstract dynamic objects allow the domain to describe

unbounded linked paths in the heap, such as list segments.

Example. In Listing 1, a list segment is created by the

first loop. Objects in the segment are linked through the

pointer field next, and they are represented by the abstract

dynamic objects ao1
13

and ao2
13

. In our base shape domain,

the shape of this segment will be described by an invariant

for the first loop, specifically by the two template rows

for ao1
13
.nextlb

16
and ao2

13
.nextlb

16
. They will give us the

formula ∧l=1,2T
S
aol

13
.nextlb

16

({&ao1
13
,&ao2

13
, null}) where the

rows T S
aol

13
.nextlb

16

are the formulae aol
13
.nextlb

16
= &ao1

13
∨

6Note that unlike the previously mentioned point-to relations, this relation
is computed not just syntactically but using the considered abstract semantics.

aol
13
.nextlb

16
= &ao2

13
∨ aol

13
.nextlb

16
= null. These formulae

say that the next fields of both ao1
13

and ao2
13

may either

point to one of the objects themselves or to null. This describes

an unbounded linked path in the heap composed of objects

abstracted by ao1
13

or ao2
13

and terminated by null.

B. Guarded Shape Templates

In order to use the base shape domain in our approach, we

have to augment it with information about the guard variables

that encode the program’s control flow in the SSA. The

guards express when an appropriate loop-back control edge

is executed and the loop-back pointer has a defined value7.

A row of a guarded shape template is defined as a formula

T G
plb
i

(dplb
i
) ≡ Gplb

i
⇒ T S

plb
i

(dplb
i
) where Gplb

i
is a conjunction

of SSA guards associated with the definition of the variable

plbi and T S
plb
i

is as in the base shape domain. If Gplb
i

is true

for a program run, the definition of plbi was reached in the

run. A shape template T G with guards is then a conjunction

T G ≡
∧

plb
i
∈Ptr lb T G

plb
i

(dplb
i
).

Let plbi be a loop-back pointer abstracting the value of

a pointer p ∈ Ptr coming from the end of a loop l ∈ L.

The row guard Gplb
i

is a conjunction of the following guards:

• The guard glhj linked with the head of the loop l located at

program location j, encoding that the loop l is reachable.

• The guard glsi linked with the use of plbi . The value of glsi
is true if plbi is chosen as the value of the corresponding

phi variable at the head of l (see Section II-C).

• If plbi describes a pointer field of some abstract dynamic

object (i.e. it has the form aokj .f
lb
i for some aokj ∈

AO , f ∈ Fld ), we also use the guard gao
k
j linked with

the allocation of aokj at program location j. This guard

conjoins the guard expressing reachability of program

location j with the object-select guards gosj,l and their

negations denoting allocation of the k-th materialisation

aokj of the object allocated at j.

Example. In Section IV-A, we presented a shape invariant

describing the linked segment created by the first loop from

Listing 1. The corresponding guards for the two template rows

of that invariant are Gao1
13

.nextlb
16

= g
10
∧gls

16
∧ (g

13
∧gos

13
) and

Gao2
13

.nextlb
16

= g
10

∧ gls
16

∧ (g
13

∧ ¬gos
13
). Here, the loop head

guard is g
10

, the loop-select guard is gls
16

, and the allocation

guard is given by the guard of the reachability of the allocation

site g
13

and by the appropriate object-select guards (gos
13

for

ao1
13

and ¬gos
13

for ao2
13

, respectively).

C. Shape Domain with Symbolic Loop Paths

Unfortunately, guarded shape templates are not precise

enough for many heap-manipulating programs. One often

needs to allow the invariant of a loop to be able to distinguish

which loops were or were not executed while reaching the

given loop. This can, e.g. distinguish which objects were

allocated and can hence be processed in the given loop.

7Using the base domain without the guard variables would be sound.
However, it would produce very imprecise results since the abstract value
would need to cover even states in which the loop-back edge was not taken.



To deal with the above problem, we introduce the concept

of symbolic loop paths and compute different invariants for

different paths. Since we use loop-select guards to express the

control flow through the loops (see Section II-C), a symbolic

loop path is simply a conjunction of loop-select guards.8

Let Gls be the set of all loop-select guards of all loops in

a program. A symbolic loop path π is then formally defined as

π =
∧

g∈Gls lg where lg is a literal of the variable g, i.e. either

g or ¬g. We use Π to denote the set of all symbolic loop paths

of a given program. A shape template extended with symbolic

loop paths is then given by a formula T L ≡
∧

π∈Π
π =⇒ T G

π

where the T G
π formulae are guarded shape templates as defined

in Section IV-B. Here, π⊥ a special path containing negative

literals only. On that path no loop invariants are computed.

Example. We now show invariants for the pointer p for

the second loop of the program in Listing 1. Using our

(trace-insensitive) guarded shape domain, the corresponding

template row would be T G
plb
22

({&ao1
13
,&ao2

13
, null}). In other

words, p would be understood as possibly pointing to ao1
13

or

ao2
13

even on paths where they were not allocated. However,

symbolic loop paths allow us to obtain two different invariants

depending on the execution of the first loop (for simplicity,

we only provide the appropriate template row): namely, gls
16

∧
gls
22

⇒ T G
plb
22

({&ao1
13
,&ao2

13
, null}) for the case when the body

of the first loop is executed and ¬gls
16

∧ gls
22

⇒ T G
plb
22

({null})

for the case when the body of the first loop is not executed.

D. Combinations of Domains

The true power of the template-based verification approach

lies in the simplicity of domain combinations. Since templates

are general logical formulae, they can be easily composed,

forming abstract domains capable of describing more complex

properties of programs while relying on the solver to do the

heavy-lifting on the combination of the domain operations and

the mutual reduction of their abstract values.

1) Power Templates: The definition of shape templates

with symbolic loop paths shows one way how a complex

template can be formed from a simpler one. In this case,

the template parameter, i.e. the abstract value, maps particular

symbolic loop paths to sets of parameters of the original

shape template. In fact, the shape domain could be replaced

by any other abstract domain. The symbolic paths template

can hence be viewed as a power template—in the sense of

power domains [15]—which assigns to each element of the

base domain an element of the exponent domain.

2) Product Templates: From the perspective of program

analysis, a very interesting possibility is the combination of the

shape domain with an abstract domain capable of describing

values of variables of non-pointer types, e.g. numerical vari-

ables (such as the well-known interval or octagon domains).

The simplest way to achieve such a combination is to use

a Cartesian product template that combines templates of

different kinds to be used independently side-by-side. The

8The notion of symbolic loop paths can be easily generalised to program
path sensitivity by including branches of conditional statements too.

proposed shape template with loop-back guards T G from

Section IV-C can be combined with a template for analysis

of numerical values T V by simply taking their conjunction,

i.e. T G∧T V . This not only allows us to analyse programs that

use pointer and numerical variables simultaneously, but also

to reason about the contents of data structures on the heap. We

achieve this by analysing numerical fields of abstract dynamic

objects using the value part of the template.

In addition, we use this product template as the inner

template of the template with symbolic loop paths, forming an

even stronger abstract domain: T LV ≡
∧

π∈Π
π =⇒ T G

π ∧T V
π .

Using this domain for the running example allows us to

analyse the shape and the contents of the linked list at the

same time, obtaining the invariants described in Section I that

enable us to prove the given property of interest.

V. MEMORY SAFETY ANALYSIS

Apart from checking user-defined assertions, we can also

verify memory safety. This includes a number of properties:

(1) pointer dereferencing safety, (2) free safety, and (3) ab-

sence of memory leaks.

A. Dereferencing a null Pointer

Since our invariants are over-approximating the reachable

program states, we can soundly verify may (or better called

must-not) properties. To check dereferences of null, for each

expression ∗p occurring in a program location i, we verify the

assertion pj 6= null where pj is the version of p valid at i.

B. Free Safety

Free safety includes the absence of dereferencing a freed

pointer and freeing an already freed pointer (a so-called “dou-

ble free”). To prove absence from these errors, we introduce

a new special variable fr initialised to null, which is then non-

deterministically set to the address of the object to be freed

in a free call. We replace each call of the form free(p)

at program location i by a formula fr i = g
fr
i ?pj : frk, where

pj and frk are the versions of p and fr , respectively, valid in

i, and g
fr
i is a free Boolean variable (a so-called free guard).

Treating fr as a standard pointer-typed variable allows us to

over-approximate the set of all freed addresses with the help

of our shape domain. Then, in each program location i where

either ∗p or free(p) occurs, we can check for the assertion

pj 6= frk to prove free safety (here, pj and frk are again

versions of p and fr , respectively, valid at i).

Even though this approach is sound, it is often too im-

precise. Freeing one of the concrete objects does not mean

that all objects were freed and that it is not safe any more to

dereference/free the abstract object. To improve precision, we

modify the representation of malloc calls. At each allocation

site i, we add one more object aocoi to the set {aoki }. The

object can be chosen as the result of the allocation non-

deterministically like any other aoki , but it is guaranteed to

be allocated only once (by an additional condition checking

that, upon its allocation, no loop-back pointer can point to

it). Hence, aocoi represents a concrete object. Then, for each



allocation site i, we only allow &aocoi to be assigned to fr . The

checks for free safety described above are done on concrete

objects only, avoiding possible imprecision stemming from

dealing with multiple objects represented by a single abstract

object which would join the possibly different values of these

objects. Also, as aocoi represents an arbitrary concrete object

allocated at i, if safety can be proven for it, it can be assumed

to hold for any other object allocated at i.

C. Absence of Memory Leaks

Using fr , we then check whether some aocoi object may be

not freed at the end of the program (if there is a leak, it must be

possible to show it on some concrete object). Unfortunately, as

we do not track the sequencing of abstract objects representing

a set of objects allocated at an allocation site (even when

they form a list segment), our analysis typically sees that aocoi
may be skipped in the deallocation loops, and hence remains

inconclusive on the memory leaks.

VI. IMPLEMENTATION

We implemented9 the proposed shape domain within the

2LS framework [35] that uses the template-based verification

method described in Section II. We extended the SSA form

generated by the framework to handle dynamic memory allo-

cation. 2LS is based on the CPROVER framework [13], which

includes an SMT solver based on reduction to propositional

logic. We used Glucose 4.0 as the back-end solver in our

experiments. We let 2LS inline all functions before running our

analysis. For combination with numerical domains described

in Section IV-D, we use the template polyhedra domain that

is already a part of 2LS. Our approach handles any sequential

C program, however, invariants are not inferred for array

contents and memory manipulation using pointer arithmetic.

VII. EXPERIMENTS

We performed the experiments to show how our ap-

proach improves the performance of 2LS and also how

it compares to other state-of-the-art software verifica-

tion tools.10 We used BenchExec [4] to run the experi-

ments with time limit set to 900 s and memory limit to

15GB. The first comparison was done on the subcate-

gories of the SV-COMP benchmarks [36] related to memory

safety, particularly ReachSafety-ControlFlow, ReachSafety-

Heap, MemSafety-Heap, MemSafety-LinkedLists, MemSafety-

Others. Tasks in ReachSafety are checked for reachability

of an error condition, tasks in MemSafety for absence of

invalid pointer dereference, invalid free, and memory leaks.

We compared our implementation to the version of 2LS from

SV-COMP’17 without the proposed shape analysis.

The results are shown in Table I. The proposed method

significantly improves the performance of the tool. Due to

missing heap analysis support, the old version of 2LS often

reported wrong results and therefore it had a negative score in

9Available at https://github.com/diffblue/2ls/releases/tag/2ls-0.7.
10All tools, benchmarks, and results are available here:

https://pschrammel.bitbucket.io/schrammel-it/research/2ls/fmcad18 exp.tar.xz.

three subcategories. 2LS with our analysis obtained a positive

score in all subcategories and it is also faster in some of them.

Although the results show an improvement, we are still

unable to compete with the best tools of SV-COMP’18 in the

heap categories. This is mainly because our analysis does not

yet support pointer arithmetic and is not yet expressive enough

to handle various kinds of trees or nested lists.

However, the main purpose of our work was to extend

possibilities of analysing combined shape and value proper-

ties of programs. To evaluate, we performed an experiment

comparing our tool with the leaders of SV-COMP’18 in the

heap-related categories, on tasks combining manipulation of

unbounded data structures with a need to reason about the

data stored in these structures. All these tasks11 are correct

programs created by our team, since no such programs are part

of the SV-COMP benchmarks yet. For each task, we verify that

no error state is reachable. The results of the evaluation are

shown in Table II. Numbers in the table represent CPU time

in seconds needed for the analysis of the example. The value

unknown means that the tool was not able to analyse the task.

On these benchmarks, 2LS outperforms the other tools

significantly. Even tools specialised in shape analysis,

Forester [17] and Predator [16], often report unknown, time-

out or even find a false error. This is probably caused by

their inability to reason about the data stored in the lists.

More general tools such as Symbiotic [9] or Ultimate Au-

tomizer [18] often time out since they probably lack an

efficient abstraction for combination of shape and value prop-

erties. CPAChecker [3] (in the CPA-Seq configuration from

SV-COMP’18) solved four tasks but times out on the rest.

VIII. RELATED WORK

There is a vast body of work on shape analysis. We can

only give an overview of the main lines of research in this

section. For a more complete survey, we refer to [25].

Many of the existing approaches to shape analysis are based

on abstract interpretation [14], some of them dating back to

1980s [23]. In particular, the TVLA engine [34] came with

a flexible approach based on abstract interpretation over a set

of user-supplied predicates. In comparison, our approach can

be viewed as using a set of parametrised predicates.

Several further approaches based on abstract interpretation

and various underlying formalisms (logics, automata, graphs)

are mentioned below. In general, our approach differs in that it

uses inductive invariant synthesis based on gradually refining

parameters of templates via SMT solving on the SSA form

(with no iterative execution), instead of iteratively executing

the program using abstract transformers and widening until

a fixed point is reached. Hence, our approach does not use

widening over gradually growing instances of dynamic data

structures to capture unbounded sets of instances of such

structures. Also, it does not use on-demand materialisation

of a concrete memory node from an abstract representation of

a set of such nodes followed by again abstracting the resulting

11See https://github.com/diffblue/2ls/tree/2ls-0.7/regression/heap-data.

https://github.com/diffblue/2ls/releases/tag/2ls-0.7
https://pschrammel.bitbucket.io/schrammel-it/research/2ls/fmcad18_exp.tar.xz
https://github.com/diffblue/2ls/tree/2ls-0.7/regression/heap-data


TABLE I: Comparison of 2LS using the proposed method with the previous version of the tool over the SV-COMP benchmark.

RS-ControlFlow RS-Heap MS-Heap MS-LinkedLists MS-Other

cpu (s) score cpu (s) score cpu (s) score cpu (s) score cpu (s) score

2LS 252 64 41 106 17.5 59 107 7 29 46

2LS-old 1400 45 53 -161 190 -194 96 -182 23 46

TABLE II: Comparison of 2LS with other tools on examples combining unbounded data structures and their stored data.

2LS CPA-Seq PredatorHP Forester Symbiotic UAutomizer

Calendar 2.88 timeout false unknown timeout timeout

Cart 23.70 timeout false unknown timeout timeout

Hash Function 3.65 8.51 unknown unknown unknown timeout

MinMax 5.14 timeout false unknown timeout timeout

Packet Filter 431.00 timeout timeout unknown unknown timeout

Process Queue 6.62 7.68 timeout unknown timeout timeout

Quick Sort 18.20 3.50 timeout unknown unknown 5.75

Running Example 1.24 timeout timeout unknown timeout unknown

SM1 0.53 timeout 0.31 false timeout timeout

SM2 0.55 5.41 false false timeout 14.50

memory configuration. These aspects are handled by our

encoding into guarded templates and representing malloc

calls by choosing abstract objects from a predefined pool.

Various extensions of Hoare logic have been developed to

cope with heap-manipulating programs. E.g., [22] proposed

a way to reason about lists using the Mona tool, which was

then extended to more complex data structures [29] and their

contents [27]. Another program logic is separation logic [32],

which enables reasoning about local memory modifications,

rather than looking at the memory as a whole. It has been

used for deductive program verification based on user-provided

annotations [11]. Fully automated approaches based on separa-

tion logic and abstract interpretation have also been proposed

and used, e.g., in the Space Invader [37] and SLAyer [2] tools.

More recently, automation of separation logic using SMT

solvers by reduction to effectively propositional logic has been

proposed by [31], [20], [21]. A different approach [30] uses

the Houdini algorithm to find inductive invariants over heap

predicates generated from grammars. These works share the

common approach with our method to use SMT solvers to

reason about heap properties; however, each of them uses

different techniques for synthesising the invariant predicates.

For an overview on template-based analysis techniques for

numerical properties, we refer to [8].

Other fully automated approaches based on abstract inter-

pretation build on shape graphs [26], such as the Predator

tool [16], or tree automata and regular tree model checking,

such as [6] or the Forester tool [17]. These approaches

primarily aim at handling unbounded heap structures. Their

combination with reasoning about value properties is not easy

as shown in the works [1], [19] that extended Forester with rea-

soning about finite data and a specialised support for handling

ordered list segments. As our experiments showed, Forester

and Predator could handle almost none of our examples.

Several further abstract domains have been proposed for

combining shape and data domains (e.g. [10], [5]). Our ap-

proach has the advantage that such domain combinations need

not be designed from scratch.

Beyond the mentioned tools, several participants in SV-

COMP, such as CPAChecker [3], Symbiotic [9], Ultimate

Automizer [18], or CBMC [13], provide support for dealing

with dynamic data structures and their content. However, they

cannot handle data structures of unbounded size.

All the above methods are store-based, i.e., they describe

the heap explicitly by a graph encoded in different ways. Other

approaches are inspired by storeless semantics [24] using

pointer access paths [12], [33], [28], [7] to describe reach-

ability properties on the heap. This idea proved most suitable

for our purposes. A pointer access path does not concretely

express the heap state, it only describes which dynamic objects

are reachable from a pointer. Using a set of access paths for

each pointer, one can efficiently describe the shape of the heap.

Compared with our method, the above approaches, however,

use abstract interpretation over CFGs, and their support of

dealing with the data content is limited [28].

IX. CONCLUSIONS AND FUTURE WORK

We present a verification approach for heap-manipulating

programs based on template-based invariant synthesis. We

propose an abstract template domain capable of expressing

reachability in dynamic data structures. We show that the

domain can easily be combined with other domains to form

power and product domains that are able to express complex

properties about the shape and the contents of data structures.

We experimentally evaluate our approach by within the 2LS

framework. We plan to extend the technique to support pointer

arithmetic and to develop templates that can express more

complex data structure shapes, such as trees, skip-lists, or

nested lists. Moreover, we work on using our method to infer

function summaries to enable a modular verification approach.
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