
M A K A I M A N N , C L A R K B A R R E T T

Data Integrity Proof
➢ Non-deterministically choose a

“magic packet”
➢ Keep track of the location
➢ Expect it to match when exits

rdPtr wrPtr

count=2

Learning From Previous Bounds

➢ Bounded Model Checking
➢ Sequence of unsat calls, potentially

followed by sat
➢ Resolution Refutation Proof in SAT

➢ Vector encoding of clauses
➢ Literals mapped to representative

variable from circuit
➢ Heuristically assign scores to clauses
➢ Train ML algorithm to score clauses

𝑍,¬𝑋 ¬𝑍, 𝑌 𝑄, ¬𝑍, 𝑋 ¬𝑄, 𝑋

¬𝑌 𝑌, ¬𝑋 ¬𝑍, 𝑋

¬𝑋

𝑍

𝑋

{}
Example based on:
http://www.cs.toronto.edu/~fbacchus
/Presentations/SATandCSP-4up.pdf

Example Resolution Refutation Proof

Applying Model

➢ Use learned model from bound j < k
➢ Generate many resolvents and keep

high scoring ones
➢ Achieved 40% reduction in solve

time at bound 11
➢ Currently dominated by learning
➢ Next Steps:

➢ Permutation invariant encoding
➢ Learning good splits

Statistical Techniques

Modular (Structural) Techniques

Transition Relation Techniques

Finding Critical Clauses in SMT-based Hardware Verification

3 Major Approaches

magic packet

Design 1
Design 1

(after pass)

Equivalence Proof

Counterexample

Constants Folded Equivalence Property

TS1 x TS2
Candidate Lemmas

Encoders

BMC with K-Ind

CoSA

➢ Automated lemma extraction
➢ Nothing in the pass is trusted
➢ But it can provide hints

➢ Check substitutions
➢ Then add as lemmas

➢ Significant performance improvement
➢ 1.3 min vs. T.O. at 2 hours
➢ Found bug in reduction-and

Design Info
➢ Configured Processing Element (PE)

➢ Essentially an ALU
➢ Configured for multiplication by 2

Verification
➢ Design before and after optimization pass

CoerIR Pass: Fold-Constants
➢ Replace any sub-circuit with constant output

with a constant
➢ Can change state elements

Evidence of Hope for SMT BMC
Guiding solvers:
➢ Lemma mining
➢ Proof lifting

➢ See Transition Relation Techniques
➢ Partial Order Reduction
➢ Encoding tricks: booleans vs. bit-vectors
➢ Much bigger impact on lazy SMT solving

Proof lifting (modulo circuit unrolling)

Init[0] |-> Prop[k] Init[1] |-> Prop[k+1]
➢ Weak initial state, strong lifted proof
➢ 2 Requirements on initial state:

➢ Contain concrete initial state
➢ Preserve property (if it holds)

➢ Add lifted proof at next bound

Partial Order Reduction
➢ Simplest: No-stutter

➢ Disallow “no-ops”
➢ More efficient to make

assumption on inputs e.g.
assume(push | pop)

➢ Requires side condition proof
➢ Show that the partial order

reduction is safe

Regular BMC
with abstract initial state

Lifted Proof
Don’t allow same trace
starting from second state

More states in abstract initial state means
More states are blocked by lifted proof

