TeaDsa: Type-aware DSA-style Pointer Analysis
for Low Level Code

(S RI)

International

Jakub Kuderski, Nham L&, Arie Gurfinkel (UWaterloo); Jorge Navas (SRI International)

Pointer Analysis (PTA) Detecting Field Overflow Memory Safety Bugs

 Determines whether two pointer expressions refer to the same struct Node { Node *next = nullptr; int TAG; };
memory location struct IntNode : Node { int *i; };

* Essential for any non-trivial reasoning about programs struct FloatNode : Node { float *f; };

Node *node;
node = getNode();

Aliasing :
, , , , , , if (node->TAG == INT_TAG)
Pointer expressions p; and p, alias, alias(py, p;), iff there is an *(((IntNode *) node)->i) = 123; // SAFE?
execution II such that:
p1, Do are valid at a program location [and n((?f(i? = 8etN0de(;3 oy
_ *(((FloatNode *) node)->f) = 3.14f; // SAFE?
[l[p;@!] = |p,@]] node
 \ Obs?rvation | l Is Relying on Types Sound?
alias(py, p2) does not imply p; = p; Low-level language features (casts, memcpy, type punning)
<0, Node **> :
* Potential memory faults ’
Existing PTAs for LLVM are Inadequate 0. Node** \\ Yo\.
1. SeaDsa p 4 .
 Context-, field-, and array-sensitive <0, Node*> | <8, int*> | <8, float*> O
* Unification-based (Steensgaard-style)
 Scalable but not precise enough . int? l“ml
2. SVF
 Context and array-insensitive, quasi-field-sensitive int float
* Inclusion-based (Andersen-style)
* Does not scale 'y
Statement Inclusion-based Unification-based \ Consistent Dynamic Typing Assumption
p = malloc(n) p 2 loc(malloc) p = loc(malloc) E bi h : £f : duri :
e I D ~ g very program object must have a unique etrective type auring Its
kD = q pts(p) 2 q pts(p) ~ ¢ life time. The type is known at first assighment and can never
P=*q p_2pts(q) P~ pts(q) change while the object is alive.
p = &x p 2 loc(x) p = loc(x)

1. Stronger than Strict Aliasing in C and C++ standards
2. Consistent Dynamic Typing Checker:
e Use the results of TeaDsa to statically check if the CDT
assumption holds
 Reasoning appears to be circular, but is not [4]

Source of Imprecision in Unification-based PTA

* A points-to graph node can have at most one outgoing edge

 |f a node were to have two outgoing edges, the destination
nodes need to be merged together, forming a single node

1 3) .
nl Evaluation
Program Source Size [kB of |SVF SeaDsa TeaDsa | % Checks
n2 U n4 Language |bitcode] |Time[s] |[Time[s] |Time [s] |Discharged
l with Types
bzip2 C 0.19 0.19 0
‘n3 Ll nS‘
mcf C 37 1.98 0.02 0.03
libquantum C 30 3.66 0.08 0.09
\ ldea: TeaDsa | .) | " 4 fiald L sjeng C 308 260 0.44 0.45 0
Improve SeaDsa's preC|§|on y using type-based ftield-sensitivity! CAGS Con . c300 620 gt -
* Fields as abstract objects
] htop C 300 -- 5.02 3.80 /1
* Types discovered by accesses
. . . hmmer C 359 2548 3.51 3.60 1
* Fields identified by <Offset, Type>
. . h264ref C 1784 11525 9.44 10 26
* Allows to separate fields based on types, even if offsets are the
Ssame
References:
| [1] A. Gurfinkel, J. A. Navas: A Context-Sensitive Memory Model for Verification of
struct Base { int val; }; f::t C/C++ Programs. SAS 2017
truct Derived : B float size; }; 1base ! : : i .
SrrHeT TErE ase { Hloat size;) 'Derived ; [2] Y. Sui, J. Xue: SVF: interprocedural static value-flow analysis in LLVM. CC 2016
void *buffer = malloc(sizeof(Derived)); ; | [3] C. Lattner, A. Lenharth, V. S. Adve: Making context-sensitive points-to analysis
__construct_Base((Base *) buffer); | <0, int*> | <0, float*> with heap cloning practical for the real world. PLDI 2007
__construct_Derived((Derived *) buffer); : : L :
y [4] C. L. Conway et al.: Pointer Analysis, Conditional Soundness, and Proving the
Derived *obj = (Derived *) buffer; \ Composite types identified by the Absence of Errors. SAS 2008

int *x = &(obj->val);

*y - iy type of the innermost field.
float Ty = &(obj->size); " Available on GitHub!
github.com/seahorn/sea-dsa/tree/types

