
TeaDsa: Type-aware DSA-style Pointer Analysis
for Low Level Code

Jakub Kuderski, Nhâm Lê, Arie Gurfinkel (UWaterloo); Jorge Navas (SRI International)

Detecting Field Overflow Memory Safety Bugs

struct Node { Node *next = nullptr; int TAG; };
struct IntNode : Node { int *i; };
struct FloatNode : Node { float *f; };
...
Node *node;
node = getNode();
if (node->TAG == INT_TAG)

*(((IntNode *) node)->i) = 123; // SAFE?

node = getNode();
*(((FloatNode *) node)->f) = 3.14f; // SAFE?

Pointer Analysis (PTA)
• Determines whether two pointer expressions refer to the same

memory location
• Essential for any non-trivial reasoning about programs

Aliasing
Pointer expressions 𝑝1 and 𝑝2 alias, alias(𝑝1, 𝑝2), iff there is an
execution Π such that:
𝑝1, 𝑝2 are valid at a program location 𝑙 and

Π 𝑝1@𝑙 = Π 𝑝2@𝑙

Observation
alias(𝑝1, 𝑝2) does not imply 𝑝1 = 𝑝2

Source of Imprecision in Unification-based PTA
• A points-to graph node can have at most one outgoing edge
• If a node were to have two outgoing edges, the destination

nodes need to be merged together, forming a single node

Existing PTAs for LLVM are Inadequate
1. SeaDsa
• Context-, field-, and array-sensitive
• Unification-based (Steensgaard-style)
• Scalable but not precise enough

2. SVF
• Context and array-insensitive, quasi-field-sensitive
• Inclusion-based (Andersen-style)
• Does not scale

n4

n5n3

n2

n1

n5n3

n2 ⊔ n4

n1

n3 ⊔ n5

n2 ⊔ n4

n1
1) 2) 3)

Idea: TeaDsa
Improve SeaDsa's precision by using type-based field-sensitivity!
• Fields as abstract objects
• Types discovered by accesses
• Fields identified by <Offset, Type>
• Allows to separate fields based on types, even if offsets are the

same

Evaluation

Program Source
Language

Size [kB of
bitcode]

SVF
Time [s]

SeaDsa
Time [s]

TeaDsa
Time [s]

% Checks
Discharged
with Types

bzip2 C 29 173 0.19 0.19 0

mcf C 37 1.98 0.02 0.03 --

libquantum C 80 8.66 0.08 0.09 --

sjeng C 308 260 0.44 0.45 0

CASS C++ 765 5390 6.20 5.85 65

htop C 800 -- 5.02 3.80 71

hmmer C 859 2548 3.51 3.60 1

h264ref C 1784 11525 9.44 10 26

References:
[1] A. Gurfinkel, J. A. Navas: A Context-Sensitive Memory Model for Verification of

C/C++ Programs. SAS 2017
[2] Y. Sui, J. Xue: SVF: interprocedural static value-flow analysis in LLVM. CC 2016
[3] C. Lattner, A. Lenharth, V. S. Adve: Making context-sensitive points-to analysis

with heap cloning practical for the real world. PLDI 2007
[4] C. L. Conway et al.: Pointer Analysis, Conditional Soundness, and Proving the

Absence of Errors. SAS 2008

Statement Inclusion-based Unification-based
𝑝 = 𝑚𝑎𝑙𝑙𝑜𝑐 𝑛 𝑝 ⊇ loc mallo𝑐 𝑝 ≈ 𝑙oc 𝑚𝑎𝑙𝑙𝑜𝑐

𝑝 = 𝑞 𝑝 ⊇ 𝑞 𝑝 ≈ 𝑞

∗ 𝑝 = 𝑞 pts p ⊇ 𝑞 pts p ≈ 𝑞

𝑝 = ∗ 𝑞 𝑝 ⊇ pts 𝑞 𝑝 ≈ pts 𝑞

𝑝 = &𝑥 𝑝 ⊇ 𝑙𝑜𝑐 𝑥 𝑝 ≈ 𝑙𝑜𝑐 𝑥

Available on GitHub!
github.com/seahorn/sea-dsa/tree/types

struct Base { int val; };
struct Derived : Base { float size; };

void *buffer = malloc(sizeof(Derived));
__construct_Base((Base *) buffer);
__construct_Derived((Derived *) buffer);

Derived *obj = (Derived *) buffer;
int *x = &(obj->val);
float *y = &(obj->size);

x

Derived

Base

int float

<0, int*> <0, float*>

y

Composite types identified by the
type of the innermost field.

Is Relying on Types Sound?
• Low-level language features (casts, memcpy, type punning)
• Potential memory faults

Consistent Dynamic Typing Assumption
Every program object must have a unique effective type during its
life time. The type is known at first assignment and can never
change while the object is alive.
1. Stronger than Strict Aliasing in C and C++ standards
2. Consistent Dynamic Typing Checker:
• Use the results of TeaDsa to statically check if the CDT

assumption holds
• Reasoning appears to be circular, but is not [4]

