
Sample R Programs
⋆ Many strange programs can be written in R!

⋆ Such programs are hard to analyze
⭑ Can statically detect some of these features

The R Language And Its Nuances
R's Language Features
⋆ Interpreted language with dynamic typing
⋆ Basic data types are vectors, environments, and functions
⋆ Imperative, functional, object-oriented
⭑ Function arguments are lazy
⭑ 3 types of object-orientation: S3, S4, reference classes

⋆ Allows manipulation of environments as first-class objects
⋆ Allows metaprogramming through eval and parse

R Language Interpreter Implementation
⋆ R is an open source: https://github.com/wch/r-source
⋆ Complicated grammar but simple internal core language
⋆ All data eventually lives on the heap
⋆ Very little optimization in the interpreter

Evaluation
⋆ Files scraped from Harvard Dataverse Repository
⭑ R code used in actual research

⋆ Most of the dangerous features were not used
⋆ Many programs make rm calls (deletes variable definition)
⭑ But 72.88% of these appear as the first or last expression

⋆ Most programs do use external libraries

Feature Usage 124 Files

Super assignments 0 (0%)

Non-S3 object orientation 0 (0%)

Uses environments 1 (0.81%)

Makes a rm call 59 (47.58%)

Out of place rm call 16 (12.90%)

Uses eval call 1 (0.81%)

Uses external library 94 (75.81%)

Towards Automated Analysis Of R Programs
Anton Xue1, Ross Mawhorter2, Gian Pietro Farina3, Stephen Chong4

1Yale University, 2Harvey Mudd, 3University at Buffalo, 4Harvard University

A Simple(-R) Formalization Of R
Simple-R Language Syntax
⋆ Reduced version of R's syntax

⋆ Differences with R:
⭑ Some de-sugaring (e.g. no for-loops)
⭑ No "super assignments" (direct environment manipulation)
⭑ Permits only S3-style object orientation

Simple-R Execution Semantics
⋆ Can be modeled as CEK-style lambda calculus interpreters

⋆ Differences with R:
⭑ Restrictions on primitive functions
⭑ No environment manipulation or metaprogramming

⭑ Strict evaluation of function arguments instead of lazy
⭑ Detecting when doing this preserves semantics is hard!

Motivation
⋆ The R statistical and graphical language is popular
⭑ 200k+ public GitHub repositories

⋆ R supports many potentially hazardous features
⭑ Lazy side effects, first-order environments, dynamic typing

⋆ Many users lack computer science background
⭑ May not understand features and write erroneous code

⋆ R has little formal methods support

Execution reduction rules:
1. Reduce each expression (redex R) to normal form
2. Allocate object (B) on heap (H).
3. Yield its pointer / memory (m) to the redex

a. Objects may be a:
i. Vector (array of constants or pointers)

ii. Environment (map variable to pointer)
iii. Closure (lambda with environment pointer)

4. Check next continuation (C) on stack (K)
5. Repeat until continuation stack is empty

Towards Symbolic Execution
⋆ Write custom parser to parse R programs into Simple-R
⋆ Preprocessor to lint, reject, or transform Simple-R programs
⋆ Run Simple-R execution semantics
⭑ Augmented with semantics to handle symbolic variables

⋆ Call solvers when branching on symbolic variables
⋆ Prototype: https://github.com/aremath/core-r

`rm` deletes variables

x <- 5
rm(x)
print(x) # Error

Super assign changes parent scope

x <- 5
foo <- function () { x <<- 6 }
foo()
print(x) # Prints 6 instead of 5

Conclusion And Future Work
⋆ Formalized syntax and semantics of a subset of R (Simple-R)
⋆ Evaluation of how Simple-R captures real-world R programs
⋆ Preliminary work towards analysis tools for R
⋆ TODO: develop symbolic execution, gradual typing system

Objectives
⋆ Formalize a subset of R (Simple-R)
⭑ Leverage previous efforts: Morandat et al. [ECOOP12]

⋆ Evaluate Simple-R can capture real-world programs
⭑ Use a corpus of code from Harvard's Dataverse Repository

⋆ Develop analysis tooling as a proof of concept
⭑ Symbolic execution as a first step

`eval` allows for metaprogramming

eval(parse(text="x<-5"));
print(x) # Prints 5!

Implicit conversions

0.01 < "0.05" # True
0.0001 < "0.05" # False

https://github.com/wch/r-source
https://github.com/aremath/core-r

