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Introduction

Scientific software has several defining characteristics:

- Expected result is unknown. Only trivial cases may
be compared to expected results

 Run for investigation. Implemented for personal
investigation, run a limited number of times, usually
by the programmer

- Moving target. Specifications unclear upfront and
change rapidly (weekly or even daily)

- Usually limited or no tests. Culture and code
structure' prevent extensive testing

- Bugs can be dangerous. Bugs can have major
consequences for public health and public policy’

Motivating example

Example bug from a data analysis pipeline:

def graph_measure(filename):
# Load data from file
timeseries = load_from_csv(filename)
# Generate a correlation matrix
corr_matrix = corr_coef(timeseries) #diag=1+10"
# Normalize from [-1,1] > (—%,©)
normalized = arctanh(corr_matrix) # diag-> NaN
# Convert to an undirected graph
G = matrix_to_graph(normalized) #NaN->0
# Compute statistics on the graph
return graph_clustering(G) #777

Our approach

Developed the Paranoid Scientist

Python library:

- Entry and exit conditions.
Runtime checks of function

conditions

- Refinement types. Conditions
specified with refinement

types’
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- Automated testing. "Free" offline unit/fuzz testing

Advantages compared to:

. Static typing: Favors human over machine
interpretation and understanding”

. Contracts: Refinement types conceptually simple’

- Full verification: Minimal learning curve and

development time®

Simple examples

from paranoid.types import Number, Positive, \
Naturall, Natural®, Range

from paranoid.decorators import accepts, returns, \
requires, ensures

@accepts(x=Number, y=Number)

@returns(Positive)
@requires("x != y")

def some_formula(x, y):
return 1/((x-y)**2)
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