Runtime Verification of Scientific Software

PARAN

1D 'Interdept. Neuroscience Program, Yale University

Maxwell Shinn', Clarence Lehman?, Ruzica Piskac’
SCIENTIST ‘Dept. of Ecology, Evolution, and Behavior, University of Minnesota I a, e

*Dept. of Computer Science, Yale University

Introduction

Scientific software has several defining characteristics:

- Expected result is unknown. Only trivial cases may
be compared to expected results

 Run for investigation. Implemented for personal
investigation, run a limited number of times, usually
by the programmer

- Moving target. Specifications unclear upfront and
change rapidly (weekly or even daily)

- Usually limited or no tests. Culture and code
structure' prevent extensive testing

- Bugs can be dangerous. Bugs can have major
consequences for public health and public policy’

Motivating example

Example bug from a data analysis pipeline:

def graph_measure(filename):
Load data from file
timeseries = load_from_csv(filename)
Generate a correlation matrix
corr_matrix = corr_coef(timeseries) #diag=1+10"
Normalize from [-1,1] > (—%,©)
normalized = arctanh(corr_matrix) # diag-> NaN
Convert to an undirected graph
G = matrix_to_graph(normalized) #NaN->0
Compute statistics on the graph
return graph_clustering(G) #777

Our approach

Developed the Paranoid Scientist

Python library:

- Entry and exit conditions.
Runtime checks of function

conditions

- Refinement types. Conditions
specified with refinement

types’

3

- Automated testing. "Free" offline unit/fuzz testing

Advantages compared to:

. Static typing: Favors human over machine
interpretation and understanding”

. Contracts: Refinement types conceptually simple’

- Full verification: Minimal learning curve and

development time®

Simple examples

from paranoid.types import Number, Positive, \
Naturall, Natural®, Range

from paranoid.decorators import accepts, returns, \
requires, ensures

@accepts(x=Number, y=Number)

@returns(Positive)
@requires("x != y")

def some_formula(x, y):
return 1/((x-y)**2)

~

Entry conditions

Case Study caccents (Number) Exit conditions
. @returns (Number) ‘(’/
- PyDDM simulates SDEs to # of bugs found in PyDDM @ensures("x >= x' --> return >= return'")

understand decision-making paranoid_ det cube 0O}
. Our tool found 4 major bugs >cientist

Future directions

difficult to detect otherwise Code _
. It also found 1 bug in user FEVIEW
code Unit.
. . test
 Unit tests and code review o

™ (monotonicity)

| . Case studies with scientific software

. Increase efficiency (currently ~20-150%

each found 1 bug 0 2 4
performance penalty)
More information . Improve tooling and usability
Code:
github.com/mwshinn/paranoidscientist References

Documentation:
paranoid-scientist.readthedocs.io
Email:
maxwell.shinn@yale.edu

'Upulee Kanewala and James M. Bieman. Testing scientific software: A
systematic literature review. Information and Software Technology,
56(10):1219 - 1232, 2014.

*Thomas Herndon, Michael Ash, and Robert Pollin. Does high public debt
consistently stifle economic growth? a critique of Reinhart and Rogoff.
Cambridge Journal of Economics, 38(2):257-279, 2014.

*Tim Freeman and Frank Pfenning. Refinement types for ML.
SIGPLAN Not., 26(6):268-277, May 1991.

*MyPy project: http://mypy-lang.org/index.html

*PyContracts project: https://andreacensi.github.io/contracts/

°®Nagini project: https://github.com/marcoeilers/nagini

https://github.com/mwshinn/paranoidscientist
https://paranoid-scientist.readthedocs.io
mailto:maxwell.shinn@yale.edu

