
Runtime Verification of Scientific Software
Maxwell Shinn¹, Clarence Lehman², Ruzica Piskac³

¹ I nterdept. Neuroscience Program, Yale University
²Dept. of Ecology, Evolution, and Behavior, University of Minnesota

³Dept. of Computer Science, Yale University

Introduction

Scientific software has several defining characteristics:
• Expected result is unknown. Only trivial cases may

be compared to expected results
• Run for investigation. I mplemented for personal

investigation, run a l imited number of times, usual ly
by the programmer

• Moving target. Specifications unclear upfront and
change rapidly (weekly or even daily)

• Usually limited or no tests. Culture and code
structure¹ prevent extensive testing

• Bugs can be dangerous. Bugs can have major
consequences for public health and public pol icy²

Our approach

Developed the Paranoid Scientist

Python l ibrary:
• Entry and exit conditions.

Runtime checks of function
conditions

• Refinement types. Conditions
specified with refinement
types³

• Automated testing. "Free" offl ine unit/fuzz testing

Advantages compared to:
• Static typing : Favors human over machine

interpretation and understanding4
• Contracts: Refinement types conceptual ly simple5
• Full verification: Minimal learning curve and

development time6

More information

Code:
github.com/mwshinn/paranoidscientist

Documentation:
paranoid-scientist.readthedocs.io

Email :
maxwell .shinn@yale.edu

Simple examples
from paranoi d. types i mport Number, Posi ti ve, \

Natural1, Natural0, Range

from paranoi d. decorators i mport accepts, returns, \

requi res, ensures

@accepts(x=Number, y=Number)

@returns(Posi ti ve)

@requi res("x ! = y")

def some_formula(x, y) :

return 1/((x-y) **2)

@accepts(Number)

@returns(Number)

@ensures("x >= x` --> return >= return` ")

def cube(x) :

return x**3

Entry conditions

Exit conditions

(monotonicity)

Case Study

• PyDDM simulates SDEs to
understand decision-making

• Our tool found 4 major bugs

difficult to detect otherwise
• I t also found 1 bug in user

code

• Unit tests and code review
each found 1 bug

Motivating example

def graph_measure(fi lename) :

Load data from fi le

ti meseri es = load_from_csv(fi lename)

Generate a correlati on matri x

corr_matri x = corr_coef(ti meseri es) # diag = 1 +1 0¯¹0
Normali ze from [-1, 1] → (-∞, ∞)

normali zed = arctanh(corr_matri x) # diag → NaN

Convert to an undi rected graph

G = matri x_to_graph(normali zed) # NaN → 0
Compute stati sti cs on the graph

return graph_clusteri ng(G) # ???

Example bug from a data analysis pipel ine:

References
¹Upulee Kanewala and James M. Bieman. Testing scientific software: A

systematic l iterature review. I nformation and Software Technology,
56(1 0):1 21 9 – 1 232, 201 4.

²Thomas Herndon, Michael Ash, and Robert Pol l in. Does high public debt
consistently stifle economic growth? a critique of Reinhart and Rogoff.
Cambridge Journal of Economics, 38(2):257–279, 201 4.

³Tim Freeman and Frank Pfenning. Refinement types for ML.
SIGPLAN Not., 26(6):268–277, May 1 991 .

4MyPy project: http://mypy-lang.org/index.html
5PyContracts project: https://andreacensi.github.io/contracts/
6Nagini project: https://github.com/marcoeilers/nagini

Future directions

• Case studies with scientific software
• I ncrease efficiency (currently ~20-1 50%

performance penalty)
• I mprove tool ing and usabil ity

0 2 4

Paranoid
Scientist

Code
review

Unit
tests

of bugs found in PyDDM

https://github.com/mwshinn/paranoidscientist
https://paranoid-scientist.readthedocs.io
mailto:maxwell.shinn@yale.edu

