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Alternative Function Definition and Memoization

Users of ACL2 often wish to confirm that some efficient, but complex
implementation, of some computing process is equivalent to a simple, clear
specification.

In this talk, we exhibit several ACL2 features that demonstrate functional
equivalence between functions with very different efficiencies.

We will also demonstrate ACL2’s memoization facility.
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Fibonacci Definition

Using ACL2, we can define the Fibonacci function.

(defun fib (x)

(declare (xargs :guard (natp x)))

(if (zp x)

0

(if (= x 1)

1

(+ (fib (- x 2))

(fib (- x 1))))))

For this definition to be accepted, two termination conjectures must be
checked – one for each inferior call to fib.

ACL2 can process this definition automatically, and observes that fib always
returns a natural number.
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Fibonacci Execution

The newly defined function, fib, can be executed immediately.

ACL2 !>(fib 10)

55

ACL2 !>(fib 20)

6765

However, when we evaluate the Fibonacci function with larger arguments, we
must wait for the answer...

ACL2 !>(time$ (fib 50))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 191.77 seconds realtime, 188.34 seconds runtime

; (16 bytes allocated).

12586269025
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Alternative Fibonacci Definition

ACL2 permits an alternative function for execution.

(defun fib (x)

(declare (xargs :guard (natp x)))

(mbe

:logic :exec

(if (zp x) (if (< x 10)

0 (case x

(if (= x 1) (0 0)

1 (1 1)

(+ (fib (- x 2)) (2 1)

(fib (- x 1))))) (3 2)

(4 3)

(5 5)

(6 8)

(7 13)

(8 21)

(9 34))

(+ (fib (- x 2))

(fib (- x 1))))))
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Requirement for Alternative Definition

For ACL2 to accept an alternative (:exec) definition, it must prove, that the
two definitions are equal when the input guard is satisfied.

(implies

(natp x)

(equal

(if (zp x) (if (< x 10)

0 (case x

(if (= x 1) (0 0)

1 (1 1)

(+ (fib (- x 2)) (2 1)

(fib (- x 1))))) (3 2)

(4 3)

(5 5)

(6 8)

(7 13)

(8 21)

(9 34))

(+ (fib (- x 2))

(fib (- x 1))))))



7 / 13

Execution

Defined functions may be executed.

ACL2!>(time$ (fib 50))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 3.65 seconds realtime, 3.59 seconds runtime

; (16 bytes allocated).

12586269025

Wow! Now, this function call takes less than 4 seconds!

By pre-computing the first ten values – the execution speeds up considerably.

Why? Because every execution can stop when (< X 10) – and just return the
answer from the CASE statement.

The :exec version of FIB includes memoized results for when (< X 10).
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Memoized Execution

We can tell ACL2 to memoize FIB function calls; for instance, when (< X 40).

Defined functions may be executed.

ACL2 !>(memoize ’fib :condition ’(< x 40))

[... 65 or so lines elided ...]

Now, we can again evaluate our previous (FIB 50) call.

ACL2 !>(time$ (fib 50))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 0.00 seconds realtime, 0.00 seconds runtime

; (16 bytes allocated).

12586269025

Everything seems great! But, is it?
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Memoized Execution, continued

Now, we want to calculate (FIB 80), with the first 40 values memoized.

ACL2 !>(time$ (fib 80))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 16.90 seconds realtime, 16.82 seconds runtime

; (16 bytes allocated).

23416728348467685

Again, we see that it takes a long time. Either, we must pre-compute all the
values – and store them for future use – or we need a better approach.

What about using a new algorithm? One that recognizes the relationship
between the results?

Can we idenify a recurrence relation in the sequence of results from our FIB
function?
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A New Fibonacci Function

By looking at the first ten values, we see that each entry is the sum of the
preceding two entries. The first two values are given as 0 and 1.

Can we encode this relationship in a new function?

(defun f1 (fx-1 fx n-more)

(declare (xargs :guard (and (natp fx-1)

(natp fx)

(natp n-more))))

(if (zp n-more)

fx

(f1 fx (+ fx-1 fx) (1- n-more))))

Function F1 has two registers and a third argument that says how many times
to iterate this function.
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The Completed New Fibonacci Function

We create a wrapper function with the first two values already computed.

(defun fib2 (x)

(declare (xargs :guard (natp x)))

(if (zp x)

x

(f1 0 1 (1- x))))

We run some tests to make sure that FIB and FIB2 agree on some values.

ACL2 !>(equal (fib 10) (fib2 10))

T

ACL2 !>(equal (fib 30) (fib2 30))

T

Looks good! So, can we compute (FIB2 100) ? Yes, in an instant!
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FIB2 is Equal to FIB

So, we would like to prove this conjecture:

(defthm fib2-is-fib

(implies (natp x)

(equal (fib2 x)

(fib x))))

This observation relates the logical definitions of FIB and FIB2.

I The theorem prover uses the logical definitions to compare these functions.

I For fast evaluation, we use the FIB2 definition.

So, now how fast is FIB, or more to the point, how fast is FIB2?
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Executing FIB2

Now, we can compute (FIB 1000) easily by computing (FIB2 1000).

ACL2 !>(time$ (integer-length (fib2 1000)))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 0.00 seconds realtime, 0.00 seconds runtime

; (61,200 bytes allocated).

694

If we want the complete answer, we can get it (which we split across 5 lines):

ACL2 >(FIB2 1000)

43466557686937456435688527675040625802564660517371...

78040248172908953655541794905189040387984007925516...

92959225930803226347752096896232398733224711616429...

96440906533187938298969649928516003704476137795166...

849228875
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