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1 Introduction

This document contains information to help students navigate the UT CS340d course, De-
bugging and Verifying Programs. This information is arranged in a hierarchical manner.
We would appreciate receiving suggestions for improvements in all aspects of our course, in-
cluding this information, classroom activities, presentations, assignments, laboratories, and
anything else related to this class. Thus, comments, criticisms, assistance, ideas, examples,
and improvements are welcome.

Our course introduces students to rigorous (sometimes formal) specification and (analytic)
analysis techniques that should help them be better programmers and to analyze and under-
stand methods for confirming program correctness by proof methods. Some of our methods
will be practical — rules of thumb, or just suggestions for successful coding. Other methods
will involve using mathematics to write specifications; and subsequently, performing proofs
to assure that code is meeting its specification.

1.1 Example Subjects and Problems

To give a feel for kinds of things we will investigate, we consider a few examples.

Addition by -1 (decrementing) and +1 (incrementing). Show invariant.

Termination of loop that counts bigger side until both sides are zero. Show termination
argument.

Termination of 3n+1 problem.

Let’s make this a bit more concrete. Consider the C-language subroutine below. What does
this code do?

void does_what( int *x, int *y ) {

*x = *x ^ *y;

*y = *x ^ *y;

*x = *x ^ *y;

}

What specification could we write for this code?

If we have a specification, how can we confirm that this code carries out our intention
precisely?

Does this code need to be debugged?

Do we need a “test harness”? Can we analyze the code without using a C-language compiler?

Can this code be verified?

Will this code always terminate? Will this code always function correctly?

1.2 Authors

This document was created initially and is being maintained by Warren A. Hunt, Jr. Carl
Kwan, Charles Sandel, and Scott Staley have provided significant additional content, and
will be involved with our class this semester. Hunt expresses his heart-felt thanks for their
contributions.
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1.3 Course Announcement

In this class, we will consider how sequential programs are specified and how the correctness
of their implementations are confirmed. This class will require careful thought as we will
be pushing the boundaries of what the academic community considers to be an adequate
specification and sufficient confirmation evidence that a program meets its specification.
Typically, some form of testing is the only mechanism that is used to see if a program meets
its specification – this class will investigate both testing and other verification methods.

To develop skill in program specification, analysis, verification, and debugging, we will
assign a litany of problems where students will be expected to write specifications, write
code that meets these specifications, produce arguments that defend their claim that their
solutions meet the specifications, and write reports about their efforts.

Remember this course carries a writing flag, and students will write more often than is
typical in other CS courses. Students will also be asked to address problems where they
will need to decide whether various implementations produced by others are correct, and
to debug these programs when they are not correct.

To be able to debug programs, we will investigate common debugging and analysis tools.
To be able to use such tools effectively, it will be necessary for students to understand how
binary is used to direct a processor. Students will need to understand how binary programs
are organized and also how to inspect such binary programs during their execution.

Another component of debugging and verification is a well-organized method for program
development. Version control for code and documentation is widely used and is generally
necessary – especially in multi-person teams. It can also be necessary and effective tool for
a single person dealing with a complex project structue or very large numbers of software
components in a system.

In some cases, we will use proof-based techniques to determine the correctness of our code.
At first, we will investigate hand proofs; that is, we will use some informal notation to
compare a specification program to an implementation program. We will also convert the
behavior of some programs into a form that will allow a mechanical comparison of the
behavior of two programs.

This class will be taught in an "inverted" style. That is, we will concentrate class time on
examples, working through code, describing challenges, and exploring problems being faced
by students working on homework sets or larger laboratory projects. Thus, it is important
that you bring your laptop to class. There will be lectures to introduce various topics, but
primarily, we will use class time for problem solving, demonstrating how to use various
tools, and exchanging information.

Most of the information needed for this course will be provided; however, we do expect
students to have internalized information from their algorithms and data structure courses.
In addition, we will make use of the material in "Computer Systems, A Programmer’s
Perspective", 3rd Edition (the CS429 textbook). In our use of the Y86 ISA, we may
occasionally refer to Intel’s specification for the X86. Information not provided we be
readily available on web, such as the programming information available from Agner Fog
http://www.agner.org/optimize/ website. And, students may wish to have occasional
access to "Hacker’s Delight, 2nd Edition" by Henry S. Warren, Jr.

In addition to being a UTCS undergraduate student, the prerequisite for CS340D is the
successful completion of CS429. There is no textbook required for CS340D, but we will

http://www.agner.org/optimize/
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sometimes refer to your CS429 textbook ("Computer Systems, A Programmer’s Perspec-
tive" Third Edition, by Randal E. Bryant and David O’Hallaron, Prentice Hall). In
addition, we will sometimes make use of the second edition of the book "Hacker’s De-
light" by Henry S. Warren, Jr. This book will be used for various background problems,
and some of the homework and programming assignments will be based on the material
from this book. We will make use of other web-based material as needed and references
will be provided in class. There is a website (https://github.com/lancetw/
ebook-1/blob/master/02_algorithm/Hacker%27s%20Delight%202nd%20Edition.

pdf) associated with the "Hacker’s Delight" book. And another great source of problems
is the Hakmem website (http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html).

Tests and quizzes are open-book, open-notes affairs – however, no electronic devices (lap-
tops, cell phones, tablets, PDAs, calculators, etc.) of any kind are allowed during test and
quiz events. As such, you may wish to have a physical copy of any materials that you
believe will be helpful. Remember, cell phones are not allowed during exams.

This course requires students to write programs in C. Knowledge of assembler will also be
critical as it is the binary code that really determines what programs do – and it is during
binary execution on physical hardware that code will fail. It is recommended that you
have access to "The C Programming Language" (https://en.wikipedia.org/wiki/
The_C_Programming_Language), Second Edition, by Brian Kernighan and Dennis Ritchie,
Prentice Hall Software Series. For examples and help with C-language use, you will find
that there are many Web pages devoted to C-language programming.

Why do we use C, or its extension, C++? C is the language that is used to implement
many systems, such as FreeBSD, Linux, MacOS, Windows, as well as many user tools
(e.g., wc, grep, ed, sed, emacs,...). Java programmers should have no problem with the
subset of C that we will use, but Java programs are not generally used to interface with
assembly language programs. Students might be introduced to processor-specific-language
capabilities, such as referencing x86 processor-specific counters, that lie outside of the official
C-language definition. Students will be introduced briefly to the GNU Debugger ("gdb")
program; we will use a tiny subset of “gdb” as a model for one of the class laboratories.

Depending on the skills and interests of the students in this class, students may wish to
develop a BDD package. We will also investigate and use a SAT solver. For such analysis
tools, we will use the Z3 and ACL2 systems, and work on several examples of using logic to
verify hardware circuits or assembler program models. If time permits, we may learn the
rudiments of Lisp – one of the oldest programming languages.

In some cases, it may be helpful to reference documentation about the x86 architecture. In
some cases, students may be asked to read small sections of x86 documentation. Note that
these documents are large – these documents are indicative of the complexity of the x86 ar-
chitecture and, in general, of modern computer systems. Companies other than Intel (AMD
and VIA) that develop and market x86 processors must fully comprehend the information
contained in these documents. Unfortunately, the information contained in these docu-
ments is insufficient to develop a competitive x86 processor implementation. AMD offers
their own manuals, which can be a place to look if the Intel documentation isn’t sufficient.
VIA doesn’t publish any specification for their X86 implementations. Note, there are many
undocumented features (e.g., caching read-ahead strategies, I/O ordering behavior, virtual-
ization, context-switch mechanisms, encryption-and-decryption instructions, etc.) that are
necessary to make an x86 processor perform well on a litany of common benchmarks. For

https://github.com/lancetw/ebook-1/blob/master/02_algorithm/Hacker%27s%20Delight%202nd%20Edition.pdf
https://github.com/lancetw/ebook-1/blob/master/02_algorithm/Hacker%27s%20Delight%202nd%20Edition.pdf
https://github.com/lancetw/ebook-1/blob/master/02_algorithm/Hacker%27s%20Delight%202nd%20Edition.pdf
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_C_Programming_Language
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an x86 processor to be competitive, it will need to contain some of these features. Although
many x86 implementation mechanisms are protected by patents, anyone is now free to build
their own 32-bit x86 implementation using Intel’s IP as all of Intel’s patents specific to the
(32-bit x86) Pentium have expired.

For the adventurous student, special projects are possible. The content of a special project
is pretty flexible – so long as it has to do with specification and validation. For instance, we
are interested in the development of an ISA (instruction set architecture) model of IBM’s
Harvest computer, which was a extension of IBM’s Stretch computer. Another possible
specification project might involve some older microprocessor, e.g., the Motorola 68030 or
the National Semiconductor NS32032. Or, a student might wish to formally specify RISC-V.
Another project of high intetest concerns booting FreeBSD or Linux on our evolving ACL2-
based x86 ISA emulator. Other independent study projects are possible; please discuss your
particular interest in one of the above projects or some new ideas with the instructor.

The value you get from this class will be directly related to the effort you (as a student)
put forward. This class will require that you learn to work on your own. You may find this
class to be less structured than many of the classes you have previously taken. For instance,
from experience in teaching CS429 many times, we know that lecture time dominates the
CS429 class. In this class, there will be one or two short (less than 15 minute) lectures, but
not nearly as many nor as long as is typical in CS429. The majority class time will be used
to directly address problems and seek their solutions. Students will need to have access to
a computer during class.

In class, we will be doing some real-time programming to support discussing various issues,
such as how the debugger or version control system functions. Eventually, all programming
assignment must work on the CS Department Linux machines, but being able to use your
own IDE (Integrated Development Environment) may speed up your work and you may end
up with more tools on your programming toolbox than when you started this class. When
we are discussing programming issues and working together on coding it may be helpful
for you to try things immediately. Note, if needed, it is possible to checkout a Linux-based
laptop from the UTCS Department. You can check with the instructor if you wish to borrow
such a laptop.

Students will be encouraged to give short (five- to ten-minute) presentations in class on
particular topics. When well done, these presentations can serve in place of a missed quiz
or homework. In fact, any student may be called upon to give a two- or three-minute
presentation on something being discussed in class or on their solution to a homework
problem. Please come to class prepared to work.

We will sometimes stop our classroom activities for a few minutes to give everyone a chance
to consolidate their thinking. During this time you might formulate questions that can help
you and your fellow students overcome problems of general concept understanding or with
questions about the in-class presentations.

Our office hours are listed on the main class web-page. In addition, if you need help, you
may certainly seek out and visit with the class TA and/or the instructor(s). You may
arrange to meet us at times other than those listed, but you will need to send E-mail to
arrange a time. If we become too busy during the scheduled office hours, we will expand our
office hours to meet the needs of the students. If you cannot come to the scheduled office
hours due to conflicts with other classes, let us know quickly so we can make arrangements
to meet your needs.
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1.4 Class Syllabus

The following gives an outline of the topics we will cover in this course. We are open to
discussing other topics of general interest, and we will include some of our own experience
in hardware and software verification.

The syllabus below is approximate; the exact rate at which we will cover some of the
material is hard to predict. So the schedule may vary. All changes to this sechedule will
be announced in class and broadcast to the course CANVAS page. Additional summary
information about the class laboratory and homework assignments will be made available
as the course progresses.

NOTE! Because of the UT shutdown from Monday, February 15, 2021, through Tuesday,
February 23, 2021, we missed week four (4) and the first half of week five (5). The balance
of week 5 was spent getting back on track. Homework assignments were delayed two weeks.
Lab #1 retained its due date, and additional information was provided to students so that
they could complete it successfully.

Due to the UT shutdown, below we present a revised syllabus.

Schedule Below is Approximate, Lectures Dates Will Change Slightly

*** NOTE: Quizzes can and will occur during nearly every class period.

*** NOTE: At-Your-Desk Problems will be pursued during class.

*** NOTE: Due dates for Homework and Labs are tentative until assigned.

*** NOTE: Schedule changes will be announced in class and on Canvas

Week Class Date Short Description

0 00 Jan 19 Course Content Introduction,

Course Procedures and UT required disclosures

C-language Introduction

0 01 Jan 21 C-language features: types, pointer, control flow

system calls, and the assert statement.

The simplest kind of verification -- co-simulation

1 02 Jan 26 Lab 0, Discussion, Program model

y86 Assembler/Dis-assembler, Word count

1 03 Jan 28 Compiling C to binary

How can correctness be stated?

2 04 Feb 2 How to specify termination requirements?

Code annotation snippets

2 05 Feb 4 How to specify correctness requirements?

Requirement statements, C assert

3 06 Feb 9 Byte order, Bit count, Word count

3 07 Feb 11 C-language loops, Program termination

Lab 0 Due; Lab 1, Discussion, Y86 Interpreter
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4 08 Feb 16 Ice storm: No Class

4 09 Feb 18 Ice storm: No Class

5 10 Feb 23 Ice storm: No Class

5 11 Feb 25 Picking up the pieces, discussion of Lab 1

6 12 Mar 2 Array code, array-segment zero

6 13 Mar 4 Specifying zero-filled array segment

7 14 Mar 9 Discussion of Lab 1

7 15 Mar 11 Discussion of the rest of this course.

Laboratory 1 due

Mar 15-20 Spring Break

8 16 Mar 23 Discussion of array copy (using ACL2)

Laboratory 2, the class GDB

8 17 Mar 25 Discussion of insertion sort (using ACL2)

Laboratory 2, more GDB

9 18 Mar 30 Mathematics for proof

9 19 Apr 1 Automated verification tools, ACL2, Z3

10 20 Apr 6 Computer Arithmetic Analysis Practicum

10 21 Apr 8 Use of Z3 for program analysis, ACL2, Z3

11 22 Apr 13 Lab 3 assigned

11 23 Apr 15 Loop measures and termination proofs

12 22 Apr 20 Code analysis, Lab 2 due

12 23 Apr 22 Z3 advanced usage, ACL2, Z3

Lab 3, Debugging y86 binary programs

13 26 Apr 27 Binary-tree algorithms

13 27 Apr 29 Tree-based algorithms

14 28 May 4 Temporal Logic, Laboratory 3 due

14 29 May 6 Discussion of BDDs and BDD operations,

Stump the professor

15 30 May 12 Final Exam -- essentially a 3-hour class

2-5 pm Several quizzes will be given

1.5 Writing Flag

As a future employee, one of the most important things you will need to do is to be able to
communicate with your co-workers and your customers. Yes, you may be a programmer,
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and your work output may be code, but you will need to write descriptions of what your
code does, write reports to document your efforts, write documentation for your code, or
write proposals for funding new projects.

As this course includes the writing-flag designation, students will be asked to write more
often than is typical in other CS courses. Students will be asked to address problems
where they will need to decide whether various implementations are correct, to debug the
programs when they are not correct, and to articulate clearly what they have done in a
technical report.

1.6 Homework

There will be ten to twelve homework assignments given during the semester. On most
weeks, homework will be assigned on Thursdays and due twelve (12) days later (on Tuesday)
by class time. No homework will be assigned the last two weeks of class, but there may be
a homework due the last week of class. The two lowest homework grades will be dropped
in the computation of the final homework grade.

Homework will not be accepted late! We repeat, no late homework!

1.7 Laboratory Projects

There will be four (0, 1, 2, and 3) Laboratory Projects assigned. Once a laboratory due
date has arrived, material addressed in that laboratory may appear on a quiz or exam.
Laboratory assignments are important; performing the work necessary to complete the
class laboratories is the means by which you will solidify your understanding of the class
material and the work that it takes to make you a better thinker and programmer.

Laboratory Projects may be turned in up to one week late, but no later than the last day
of class. Late laboratory project submissions suffer a 20% reduction of the grade given for
the content of the project. So a perfectly done laboratory assignment handed in late, can
do no better than a maximum grade of 80%.

For each laboratory, a lab report will be part of the requirement. Remember, this course
carries a writing flag, the quality and completeness of lab reports will count for 20% to 35%
of the grade for the laboratory. So, it is important that you allot time and make a serious
effort to provide the documentation required for each laboratory.

1.8 Quizzes

Over the course of the semester, there will twenty, or more, in-class quizzes. Quizzes are
ten- to 20-minute affairs. In this course, no long exams will be given.

The material on quizzes will be cumulative, and we might even have two quizzes within
a single class period. There will be no final exam, but there will be a 3-hour, final-class
session during the final exam period. During this final exam time, we will work on various
problems and several quizzes will be given. The two lowest quiz grades will be dropped in
calculating the final course grade.

1.9 Class Assessment

The weighting of the grades for the various aspects of the course are:

Component Percentage of Course Grade
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Quizzes: 30% (any class period and final exam period)

Homework: 30% (submitted to an on-line system)

Labs: 40% (see individual weighting just below)

The Laboratory Projects will be weighted as follows:

Laboratory Percentage of Course Grade

Lab 0: 10%

Lab 1: 10%

Lab 2: 10%

Lab 3: 10%

The grading for the entire course will be as follows:

Course Score Grade

[90 -- 100) A

[87 -- 90) A-

[85 -- 87) B+

[80 -- 85) B

[77 -- 80) B-

[75 -- 77) C+

[70 -- 75) C

[67 -- 70) C-

[65 -- 67) D+

[60 -- 65) D

[ 0 -- 60] F

Note the interval marks around the course-score column. For example, a course grade of B
will be assigned if your semester grade is greater than or equal to 80 and (strictly) less than
85. This also means that a course grade of at least 67 needs to be achieved for this course
to count toward a UTCS degree – a grade of D+ or D is not considered a passing grade for
a UTCS (student) major.

The final exam (3-hour) period will similar to our in-semester classes, although it will be
three hours and two or three quizzes will be administrated. At the time specified by the UT
Registrar http://registrar.utexas.edu/schedules/212/finals we will hold a 3-hour
(final) class. Note, the exact time for final exams is published by the UT Registrar – and
we will use that time for our final. Each time we teach a large course, we are told by some
student that he/she needs to take the exam early because of an existing airline reservation
or whatever. Please make sure that your post-semester activities do not interfere with our
final exam period.

1.10 Class Advice

The students who do well in this class are survivors. This class is a fair amount of work,
and it is important to keep current. The material in this class is cumulative, and it can be
difficult to catch up if one falls behind. It is very important to keep turning in homework
and laboratories. Generally, homework grades are our most reliable indicator of how well
a student will do (or is doing) in this class. Note, it is very important to attend class, as
quizzes will be given, and material that is not available readily may be discussed.

http://registrar.utexas.edu/schedules/212/finals
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1.11 Electronic Class Delivery

This course will be offered electronically – using the Zoom video-conferencing system. We
have adapted our course to this educational format, and this format requires a kind of
cooperation and engagement that differs from typical classroom-based instruction. Thus,
we have reduced the number and kind of interactions that are possible so as to reduce the
amount of effort we have to spend on process. We will provide office hours multiple times
each week so students may continue to engage with the Instructor and Teaching Assistant
directly.

Note, we consider the security of the Zoom platform to be somewhat porous; that is, we do
not have complete faith in electronic mechanisms for instruction. If you have any trouble
with accessing class materials, submitting work, connecting to our class session, or any other
issue that concerns your ability to function successfully, please do not hesitate to contact
us. And, if we are unable to cure your concern, please contact the UTCS Department
Chairperson.

1.12 Code of Conduct

Guidelines for how we will conduct class will be announced as the semester progresses, but
some things will differ from an in-person class.

The core values of the University of Texas at Austin are learning, discovery, freedom,
leadership, individual opportunity, and responsibility. Each member of the University is
expected to uphold these values through integrity, honesty, trust, fairness, and respect
toward peers and community.

We believe that you belong here! Although UT is a very large organization, we are attempt-
ing to foster a climate conductive to learning and creating knowledge; we believe this is a
basic tenant of people in our community. Bias, harassment and discrimination of any sort
have no place here in our community. If you notice an incident that causes concern, please
contact the Campus Climate Response Team (http://diversity.utexas.edu/ccrt).

In general, the information found in UT’s Code of Conduct (http://www.cs.utexas.
edu/users/hunt/class/2019-spring/cs340d/CodeOfConduct.html) is a good guide on
how to conduct yourself in this class. Additional general information about College of Nat-
ural Sciences (CNS) class coursework and procedures can be found in former Vice Provost
Laude’s memorandum (http://www.cs.utexas.edu/users/hunt/class/2019-spring/
cs340d/CNS_Coursework_Routine_09-10.pdf) to the CNS faculty.

This course attempts to comply with the requirements of the University and the State of
Texas. Texas House Bill 2504 specifies a number of items regarding course materials and
instructor qualifications (http://www.cs.utexas.edu/users/hunt/class/2019-spring/
cs340d/aug-2021.pdf).

In addition, the material contained here and referenced are designed to be compliant with
Gretchen Ritter’s (Vice Provost for Undergraduate Education and Faculty Governance)
August 3, 2012 memo (http://www.cs.utexas.edu/users/hunt/class/2019-spring/
cs340d/ritter-memo.txt).

Ritter’s memorandum also addresses issues concerning campus safety and security. Please
familiarize yourself with this information, and let us know if you believe the class Website
does not comply with any of these requirements.

http://diversity.utexas.edu/ccrt
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/CodeOfConduct.html
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/CodeOfConduct.html
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/CNS_Coursework_Routine_09-10.pdf
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/CNS_Coursework_Routine_09-10.pdf
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/aug-2021.pdf
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/aug-2021.pdf
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/ritter-memo.txt
http://www.cs.utexas.edu/users/hunt/class/2019-spring/cs340d/ritter-memo.txt
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Texas House Bill No. 2504

AN ACT

relating to requiring a public institution of higher education to

establish uniform standards for publishing cost of attendance

information, to conduct student course evaluations of faculty, and

to make certain information available on the Internet.

BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF TEXAS:

SECTION 1. Subchapter Z, Chapter 51, Education Code, is

amended by adding Section 51.974 to read as follows:

Sec. 51.974. INTERNET ACCESS TO COURSE INFORMATION.

(a) Each institution of higher education, other than a medical

and dental unit, as defined by Section 61.003, shall make

available to the public on the institution’s Internet

website the following information for each undergraduate

classroom course offered for credit by the institution:

(1) a syllabus that:

(A) satisfies any standards adopted by the

institution;

(B) provides a brief description of each major

course requirement, including each major

assignment and examination;

(C) lists any required or recommended reading;

and

(D) provides a general description of the subject

matter of each lecture or discussion;

(2) a curriculum vitae of each regular instructor that

lists the instructor’s:

(A) postsecondary education;

(B) teaching experience; and

(C) significant professional publications; and

(3) if available, a departmental budget report of the

department under which the course is offered, from

the most recent semester or other academic term

during which the institution offered the course.

(a-1) A curriculum vitae made available on the

institution’s Internet website under Subsection (a)

may not include any personal information, including

the instructor’s home address or home telephone number.

(b) The information required by Subsection (a) must be:
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(1) accessible from the institution’s Internet website

home page by use of not more than three links;

(2) searchable by keywords and phrases; and

(3) accessible to the public without requiring

registration or use of a user name, a password,

or another user identification.

(c) The institution shall make the information required by

Subsection (a) available not later than the seventh day

after the first day of classes for the semester or other

academic term during which the course is offered. The

institution shall continue to make the information

available on the institution’s Internet website until

at least the second anniversary of the date on which the

institution initially posted the information.

(d) The institution shall update the information required

by Subsection (a) as soon as practicable after the

information changes.

(e) The governing body of the institution shall designate an

administrator to be responsible for ensuring

implementation of this section. The administrator may

assign duties under this section to one or more

administrative employees.

(f) Not later than January 1 of each odd-numbered year, each

institution of higher education shall submit a written

report regarding the institution’s compliance with this

section to the governor, the lieutenant governor, the

speaker of the house of representatives, and the presiding

officer of each legislative standing committee with primary

jurisdiction over higher education.

(g) The Texas Higher Education Coordinating Board may adopt

rules necessary to administer this section.

(h) Institutions of higher education included in this

section shall conduct end-of-course student evaluations of

faculty and develop a plan to make evaluations available

on the institution’s website.

SECTION 2. Subchapter E, Chapter 56, Education Code, is

amended by adding Section 56.080 to read as follows:

Sec. 56.080. ONLINE LIST OF WORK-STUDY EMPLOYMENT

OPPORTUNITIES. Each institution of higher education shall:
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(1) establish and maintain an online list of

work-study employment opportunities, sorted by

department as appropriate, available to students on

the institution’s campus; and

(2) ensure that the list is easily accessible to the

public through a clearly identifiable link that

appears in a prominent place on the financial aid

page of the institution’s Internet website.

SECTION 3. Subchapter C, Chapter 61, Education Code, is

amended by adding Section 61.0777 to read as follows:

Sec. 61.0777. UNIFORM STANDARDS FOR PUBLICATION OF COST OF

ATTENDANCE INFORMATION.

(a) The board shall prescribe uniform standards intended to

ensure that information regarding the cost of attendance

at institutions of higher education is available to the

public in a manner that is consumer-friendly and readily

understandable to prospective students and their

families. In developing the standards, the board shall

examine common and recommended practices regarding the

publication of such information and shall solicit

recommendations and comments from institutions of higher

education and interested private or independent

institutions of higher education.

(b) The uniform standards must:

(1) address all of the elements that constitute the

total cost of attendance, including tuition and

fees, room and board costs, book and supply costs,

transportation costs, and other personal expenses;

and

(2) prescribe model language to be used to describe

each element of the cost of attendance.

(c) Each institution of higher education that offers an

undergraduate degree or certificate program shall:

(1) prominently display on the institution’s Internet

website in accordance with the uniform standards

prescribed under this section information regarding

the cost of attendance at the institution by a

full-time entering first-year student; and

(2) conform to the uniform standards in any electronic

or printed materials intended to provide to
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prospective undergraduate students information

regarding the cost of attendance at the institution.

(d) Each institution of higher education shall consider the

uniform standards prescribed under this section when

providing information to the public or to prospective

students regarding the cost of attendance at the

institution by nonresident students, graduate students, or

students enrolled in professional programs.

(e) The board shall prescribe requirements for an institution

of higher education to provide on the institution’s

Internet website consumer-friendly and readily

understandable information regarding student financial aid

opportunities. The required information must be provided

in connection with the information displayed under

Subsection (c)(1) and must include a link to the primary

federal student financial aid Internet website intended to

assist persons applying for student financial aid.

(f) The board shall provide on the board’s Internet website a

program or similar tool that will compute for a person

accessing the website the estimated net cost of attendance

for a full-time entering first-year student attending an

institution of higher education. The board shall require

each institution to provide the board with the information

the board requires to administer this subsection.

(g) The board shall prescribe the initial standards and

requirements under this section not later than January 1,

2010. Institutions of higher education shall comply with

the standards and requirements not later than April l,

2010. This subsection expires January 1, 2011.

(h) The board shall encourage private or independent

institutions of higher education approved under Subchapter

F to participate in the tuition equalization grant

program, to the greatest extent practicable, to

prominently display the information described by

Subsections (a) and (b) on their Internet websites in

accordance with the standards established under those

subsections, and to conform to those standards in

electronic and printed materials intended to provide to

prospective undergraduate students information regarding

the cost of attendance at the institutions. The board

shall also encourage those institutions to include on

their Internet websites a link to the primary federal
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student financial aid Internet website intended to assist

persons applying for student financial aid.

(i) The board shall make the program or tool described by

Subsection (f) available to private or independent

institutions of higher education described by Subsection

(h), and those institutions shall make that program or

tool, or another program or tool that complies with the

requirements for the net price calculator required under

Section 132(h)(3), Higher Education Act of 1965 (20

U.S.C. Section 1015a), available on their Internet

websites not later than the date by which the institutions

are required by Section 132(h)(3) to make the net price

calculator publicly available on their Internet websites.

SECTION 4. Section 51.974, Education Code, as added by this

Act, applies beginning with the 2010 fall semester.

SECTION 5. As soon as practicable after the effective date

of this Act, each public institution of higher education shall

establish an online list of work-study employment opportunities for

students as required by Section 56.080, Education Code, as added by

this Act.

SECTION 6. This Act takes effect immediately if it receives

a vote of two-thirds of all the members elected to each house, as

provided by Section 39, Article III, Texas Constitution. If this

Act does not receive the vote necessary for immediate effect, this

Act takes effect September 1, 2009.

______________________________ ______________________________

President of the Senate Speaker of the House

I certify that H.B. No. 2504 was passed by the House on May 8,

2009, by the following vote: Yeas 138, Nays 0, 2 present, not

voting; and that the House concurred in Senate amendments to H.B.

No. 2504 on May 29, 2009, by the following vote: Yeas 143, Nays 0,

1 present, not voting.

______________________________

Chief Clerk of the House



Chapter 1: Introduction 16

I certify that H.B. No. 2504 was passed by the Senate, with

amendments, on May 27, 2009, by the following vote: Yeas 31, Nays

0.

______________________________

Secretary of the Senate

APPROVED: __________________

Date

__________________

Governor

1.13 Scholastic Dishonesty

Any scholastic dishonesty will be referred to the Dean of Students Office. The following
passage is taken from the University of Texas at Austin Information Handbook for Faculty.

The Discipline Policies Committee believes that in most cases of scholastic dishonesty the
student forfeits the right to credit in that course, and that a penalty of "F" for the course
may be warranted. In addition to the academic penalties assigned by a faculty member, the
Dean of Students or the hearing officer may assign one or more of the University discipline
penalties listed in the "General Information" bulletin, Appendix C, Sections 11-501 and
11-502. Certain types of misconduct, such as a student substituting for someone else on an
exam or having someone substitute for the student, submitting a purchased term paper, or
altering academic records, have usually involved a penalty of suspension from the University.

As a reminder, the “UT Code of Conduct” is available (http://catalog.
utexas.edu/general-information/the-university/#universitycodeofconduct)
where plagiarism, cheating, and other issues are described. If there are any questions,
please see the UT General Information document about the Academic Policies and
Procedures of UT Austin (http://catalog.utexas.edu/general-information/
academic-policies-and-procedures/).

We fully support the University’s scholastic honesty policies, and we will follow the Univer-
sity’s policies in the event of any scholastic dishonesty. If you are ever unsure whether some
act would be considered in violation of the University’s policies, do not hesitate to ask your
instructors or other University academic representatives.

1.14 Students with Disabilities

Students with disabilities (http://ddce.utexas.edu/disability/) may request appropri-
ate academic accommodations from the Division of Diversity and Community Engagement,
Services for Students with Disabilities, 512-471-6259.

1.15 Religious Holidays

A notice regarding accommodations for religious holidays. By UT Austin policy, you must
notify your instructor(s) of your pending absence at least fourteen days prior to the date
of observance of a religious holy day. If you must miss a class, an examination, a work

http://catalog.utexas.edu/general-information/the-university/#universitycodeofconduct
http://catalog.utexas.edu/general-information/the-university/#universitycodeofconduct
http://catalog.utexas.edu/general-information/academic-policies-and-procedures/
http://catalog.utexas.edu/general-information/academic-policies-and-procedures/
http://catalog.utexas.edu/general-information/academic-policies-and-procedures/
http://ddce.utexas.edu/disability/
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assignment, or a project in order to observe a religious holy day, you will be given an
opportunity to complete the missed work within a reasonable time after the absence.

1.16 Emergency Evacuation

The following recommendations regarding emergency evacuation from the Office of Campus
Safety and Security, 512-471-5767, or see the safety office website (http://www.utexas.
edu/safety/).

Although not likely pertinent for on-line courses, occupants of buildings on The University of
Texas at Austin campus are required to evacuate buildings when a fire alarm is activated.
Alarm activation or announcement requires exiting and assembling outside. Familiarize
yourself with all exit doors of each classroom and building you may occupy. Remember that
the nearest exit door may not be the one you used when entering the building. Students
requiring assistance in evacuation shall inform their instructor in writing during the first
week of class. In the event of an evacuation, please follow the instruction of faculty or class
instructors. Do not re-enter a building unless given instructions by one of the following:
Austin Fire Department, The University of Texas at Austin Police Department, or the UT
Fire Prevention Services office.

Information regarding emergency evacuation routes and emergency procedures is available
(http://www.utexas.edu/emergency).

1.17 UT Required Notices

The University of Texas (UT) requires that we provide a significant amount of information
about the organization, operation, and grading of our course.

http://www.utexas.edu/safety/
http://www.utexas.edu/safety/
http://www.utexas.edu/emergency
http://www.utexas.edu/emergency
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2 Lectures

Material for our in-class discussions and lectures will assist us in our cause: debugging and
verifying programs.

The lectures are approximately in the order we will discuss them, but we will no doubt
“jump” around as our class evolves.

2.1 Introduction to C

We will use C to implement a variety of algorithms, and we will use annotations to designate
invariant program properties.

C-language Programming is (still) a mainstay of systems programming.

We use C because it is close "to the metal", and it is not so hard to see how it might be
translated to assembly language and on to binary.

Sometimes, we will inspect the output of the compiler; that is, we will compile C-language
code and specify that the compiler should generate x86 assembly code.

Although you may have been taught Java, C is language is most often used in system tools
(e.g., compilers, operating systems, networking and so on).

We also use C in this course because it is likely that, if you have not used C in your work
so far, you have used or are familiar with one or more of the following decendents or close
cousins of C: C++, C#, C*, Java, Objective-C, Rust, and Swift.

2.2 Trivial C Example

Here is a “trivial” C program.

// A Very Simple C Program

#include "stdio.h"

int main()

{

printf( "Hello!\n" );

}

How many files will be touched to compile this file?

How many system calls are necessary to compile this file?

Using a UTCS Linux machine, consider the output from:

strace -e trace=all -f -o gcc-compile.log gcc hello.c -o hello

Hopefully, this answer does not surprise you.

2.3 C Program Fragment

Debugging and verifying programs requires thoroughly understanding what code does.

Consider the following C-language program fragment.

void does_what( int *x, int *y ) {
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*x = *x ^ *y;

*y = *x ^ *y;

*x = *x ^ *y;

}

What does “does what” do? How could we confirm our conjecture?

2.4 Basic C Programming

Programming Process Tool Support

Writing C Programs Emacs, vi or other text
editor

Compiling C Programs cpp, and gcc

Linker, Loader, libs gcc -o

Asssembler, Core image gcc -a

Overall Process Integrated Development
Environment (IDE), e.g.,
XCODE, Emacs

Below is a sample C-language program. You will be asked to write and submit various C
programs.

// your-program-name.c

// Created by <Student Name> on 1/19/2021.

// The C-preprocessor (cpp) expands #define directives

#define NULL 0

#define EXIT_KEY ’8’

#define MAXLEN 1000

#define square(x) ((x) * (x))

// Unix Like systems provided include files

// These file can be found in /usr/local/include

// or /usr/include on some (classic) systems.

// When GCC is installed, headers can be found by:

// $ sudo find /usr -name stdio.h

#include <stdio.h>

#include <stdlib.h>
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#include <string.h>

#include <ctype.h> // Needed for isalpha(), isdigit(), etc.

#include <time.h> // Needed for system call gettimeofday()

#include <sys/time.h> // Needed for system call gettimeofday()

// You may include your own custom ‘‘*.h’’ files

#include ‘‘your-file-name.h’’

// C Main Program

int main(int argc, const char *argv[], char *envp[]) {

// insert code here...

// Variable type definitions and initializations examples.

int i = 0;

float x;

extern double val[];

unsigned long int x, y, z ;

(int *)func(); // func returns a pointer to an int.

// Type definitions and initializations for system call gettimeofday().

// Example from: @url{https://linuxhint.com/gettimeofday_c_language/}

struct timeval tv;

time_t t;

struct tm *info;

char buffer[64];

gettimeofday(&tv, NULL); // Make the system call

t = tv.tv_sec;

info = localtime(&t);

printf("%s",asctime (info));

strftime (buffer, sizeof buffer, "Today is %A, %B %d.\n", info);

printf("%s",buffer);

strftime (buffer, sizeof buffer, "The time is %I:%M %p.\n", info);

printf("%s",buffer);

return 0;

}
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2.5 Unix Like Process

On systems that run FreeBSD/Linux/MacOS, the process is the primary resource that users
are provided to access system resources.

The signature of the C-language starting point is:

int main( int argc, char *argv[], char *envp[] ) { ... }

What does this all mean? We consider the format of the input, shown below. For a quiz,
we may ask that you write a C-langauge predicate that recognizes such a structure.

+-------------+ +-------------+

| Usually 0 | | 0 |

+-------------+ +-------------+

| *str_argc_1 | argc - 1 | *envp_n_1 |

+-------------+ +-------------+

| *str_argc_2 | argc - 2 | *envp_n_2 |

+-------------+ +-------------+

ooo ooo

+-------------+ +-------------+

| *str2 | 2 | *envp2 | 2

+-------------+ +-------------+

| *str1 | 1 | *envp1 | 1

+-------------+ +-------------+

| *str0 | 0 | *envp0 | 0

+-------------+ <--- argv +-------------+ <--- envp

A user process, by way of the “main” routine in C, provides the number of command-line
arguments, the arguments represented as strings, and the environment variables at process
invocation.

What is the output signature? How can a return result be accessed?

On the web, there is a lot of information about environment variables; for example, see:

https://pubs.opengroup.org/onlinepubs/9699919799/

Below is a simple C program to look at the C sizeof operator, and to associate those sizes
with the machine HW/SW.

//

// sizeof-types.c

// cs340d

//

// Created by SMS on 1/23/2021.

//

#include <stdio.h> // needed for printf function

#include <stdlib.h>

#include <errno.h>

#include <sys/utsname.h> // needed for uname function
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int main(int argc, const char *argv[], char *env[]) {

//

// insert code here...

// Code from Stackoverflow for system call to uame:

// https://stackoverflow.com/questions/3596310/c-how-to-use-the-function-uname

//

struct utsname buffer;

errno = 0;

if (uname(&buffer) != 0) {

perror("uname");

exit(EXIT_FAILURE);

}

printf("\nMachine information\n");

printf("system name = %s\n", buffer.sysname);

printf("node name = %s\n", buffer.nodename);

printf("release = %s\n", buffer.release);

printf("version = %s\n", buffer.version);

printf("machine = %s\n", buffer.machine);

#ifdef _GNU_SOURCE

printf("domain name = %s\n", buffer.domainname);

#endif

//

// Basic C types

//

printf("\nBasic C type-specifiers and storage allocation\n");

printf("sizeof(%s) is: %lu bytes.\n", "void ", sizeof(void));

printf("sizeof(%s) is: %lu bytes.\n", "char ", sizeof(char));

printf("sizeof(%s) is: %lu bytes.\n", "char *", sizeof(char *));

printf("sizeof(%s) is: %lu bytes.\n", "short", sizeof(short));

printf("sizeof(%s) is: %lu bytes.\n", "int ", sizeof(int));

printf("sizeof(%s) is: %lu bytes.\n", "long ", sizeof(long));

printf("sizeof(%s) is: %lu bytes.\n", "unsigned char ", sizeof(unsigned char));

printf("sizeof(%s) is: %lu bytes.\n", "unsigned short", sizeof(unsigned short));

printf("sizeof(%s) is: %lu bytes.\n", "unsigned int ", sizeof(unsigned int));

printf("sizeof(%s) is: %lu bytes.\n", "unsigned long ", sizeof(unsigned long));

printf("sizeof(%s) is: %lu bytes.\n", "float ", sizeof(float));

printf("sizeof(%s) is: %lu bytes.\n", "double", sizeof(double));

printf("sizeof(%s) is: %lu bytes.\n", "long double", sizeof(long double));

//
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// Some macOS (Darwin?) types

//

printf("\nmacOS (Darwin) type-specifiers and storage allocation\n");

printf("sizeof(%s) is: %lu bytes.\n", "size_t" , sizeof(size_t));

printf("sizeof(%s) is: %lu bytes.\n", "long long" , sizeof(long long));

printf("sizeof(%s) is: %lu bytes.\n", "fpos_t" , sizeof(fpos_t));

printf("sizeof(%s) is: %lu bytes.\n", "off_t" , sizeof(off_t));

printf("\n");

return EXIT_SUCCESS;

}

2.6 C Library Character

Here we list some of the C-library character recognizer functions. Such system supplied
functions might be helpful for some of the C programming assignments in this course. But
it would be more helpful for each student to write their own versions of these recognizer
functions to become familiar with coding at this basic level.

#include <ctype.h>

int isalnum(int c);

int isalpha(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

int isascii(int c);

int isblank(int c);

2.7 Locale Information

To gather information about the Locale being used, type

[hunt:~] % locale

LANG="en_US.UTF-8"

LC_COLLATE="en_US.UTF-8"

LC_CTYPE="en_US.UTF-8"

LC_MESSAGES="en_US.UTF-8"

LC_MONETARY="en_US.UTF-8"

LC_NUMERIC="en_US.UTF-8"

LC_TIME="en_US.UTF-8"

LC_ALL=
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This is what I see on my Apple MacOS system.

As of January, 2021, 96.1% of Web traffic is in Unicode (UTF-8). More specific information
can be found on the “w3techs.com” website.

https://w3techs.com/technologies/details/en-utf8/all/all

The website https://www.fileformat.info/infor/unicode/utf8.htm contains a short descrip-
tion of UTF-8, and it relation to Unicode.

For the rest of this lecture, I will assume that we are considering with files containing only
ASCII characters.

2.8 Machine Language

Here we will discuss y86 machine-language programs.

2.9 Word Count Example

Here we will introduce the Unix "wc" command. wc is a simple command used to return
information about the contents of a file.

On FreeBSD, Linux, and MacOS systems, one can type wc at the command line to get a
count of the number of lines, words, and characters in a file.

% wc

should print three natural numbers followed by a file name. This something like:

<lines> <words> <characters> <filename>

is printed for each <filename> processed (passed in as an command-line argument). If no
<filename> is given, stdin is used by default.

The simplest thing reported by wc is the number of characters (really bytes) in a file.
Generally, this is the same number of characters reported by the wc command – unless
there is a Locale issue.

Some Locale setting recognize multi-byte characters; thus, the number of characters re-
ported can be less than the number of bytes comprising a file, in this case.

One of the course laboratories will ask students to write a “mywc” program that functions
very much like the widely available wc program.

2.10 Example Result of wc

When wc is run on the previous slide set, we get:

[hunt:~] % wc c-intro.org

312 1039 7342 c-intro.org

[hunt:~] % ls -l c-intro.org

-rw-r--r-- 1 hunt hunt 7342 Jan 16 19:33 c-intro.org

This show 312 lines, 1039 words, and 7342 characters. This confirms that the number of
characters reported is the same as the file length.
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2.11 Number of Lines wc Reports

Given an ASCII file, the number of lines is exactly the number of ^J (0xa) characters (bytes)
in a file.

In FreeBSD and Linux, the ^J is the line separator.

In MacOS X, ^J is the line separator.

Some Windows programs still use ^M^J as the line separator.

2.12 Number of Words wc Reports

This can be a bit subtle; it depends on what characters are considered to separate words.

Words are counted as character groups separated by white-space characters.

There are the "obvious" separators: <Beginning of File>, <End of File>, <TAB>,
<SPACE>, and <LF>.

But, what about the other control characters? It appears that <CR> is also recognized as
a word separator. Are there others?

2.13 Do Some Investigation

Before you attempt to implement your mywc program (for Laboratory 0), do some investi-
gation.

What are the separator characters?

With your editor, can you create a file with all 128 ASCII characters?

In fact, can you create a file without a <LF> character?

2.14 Debugging and Verification

How can you compare the output of two programs?

Of course, you can run both programs and direct their output to different files, and then:

diff –brief wc-output.txt mywc-output.txt

Can you arrange that a large number of files can be tried and all of the results compared?

Can you write a program that takes two function pointers and a file descriptor (fd) and
returns 1 if the two functions produce all the same outputs for identical input?

test-equiv( &f1(), &f2(), fd ) // where ‘‘fd’’ is a file descriptor

Does successful completion of the above mean the two functions (or program) are equivalent?
If yes, why? If no, what is missing that is required for such a claim?

What is the difference between debugging and verification?

What is the difference between verification and validation?

2.15 Eliding Comments

In Laboratory 0, you are asked to implement the "-C" option that elides one-line, C-language
comments before counting characters, lines, and words in a file.

The specification is given as: sed ’s://.*$::g’ | wc <options>
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2.16 C Language Assertions

Here we describe a (partial) method to annotate C-language code with assertions. We
will use the assert statement, which is actually a macro and may be removed/disabled at
compile time using the -DNDEBUG flag.

Consider using the tolower library function. It’s manual entry on my 2020 Macbook Air
running MacOS 10.15.7 shows as:

TOLOWER(3) BSD Library Functions Manual TOLOWER(3)

NAME

tolower, tolower_l -- upper case to lower case letter conversion

LIBRARY

Standard C Library (libc, -lc)

SYNOPSIS

#include <ctype.h>

int

tolower(int c);

#include <ctype.h>

#include <xlocale.h>

int

tolower_l(int c, locale_t loc);

DESCRIPTION

The tolower() function converts an upper-case letter to the corresponding

lower-case letter. The argument must be representable as an unsigned char

or the value of EOF.

Although the tolower() function uses the current locale, the tolower_l()

function may be passed a locale directly. See xlocale(3) for more informa-

tion.

RETURN VALUES

If the argument is an upper-case letter, the tolower() function returns the

corresponding lower-case letter if there is one; otherwise, the argument is

returned unchanged.

COMPATIBILITY

The 4.4BSD extension of accepting arguments outside of the range of the

unsigned char type in locales with large character sets is considered obso-

lete and may not be supported in future releases. The towlower() function

should be used instead.
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SEE ALSO

ctype(3), islower(3), towlower(3), xlocale(3)

STANDARDS

The tolower() function conforms to ISO/IEC 9899:1990 (‘‘ISO C90’’).

BSD July 17, 2005 BSD

This library function replaces an upper-case character with a lower-case character. Given
that this function concerns characters, we might wonder why it has a int input and output
type.

int tolower(int c);

(Note, we do not discuss the location dependent argument.)

Normally, one would use it without thinking, such as:

int c, ch;

ch = tolower( c );

But, what should we know about arguments that can be provided to this library function?
Why doesn’t this function require a char type? Possibly, because of the second sentence
which indicates that the input must be an unsigned char or EOF, which is generally defined
as: (-1).

So, as programmers, we should be suspicious, and program defensively. Let’s modify (an-
notate) the code above to indicate what we expect to be true about the variable c upon
entry. Let’s confirm that the input is an ASCII character or (-1).

int c, ch;

assert( isascii( c ) || c == EOF );

ch = tolower( c );

Is this good enough? What about an output condition? What should the output condition
include?

int c, ch;

assert( isascii( c ) || c == EOF );

ch = tolower( c );

assert( isascii( ch ) || ch == EOF ); // OK, we want to know this

assert( islower( ch ) || ch == EOF ); // And, we want to know this as well

assert( ? ); // Can we say something about the correctness of ‘‘tolower’’?

Can we write a C-language specification that is (hopefully) different than the implementa-
tion that “speaks” to the correct functioning of the “islower” library function?
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2.17 C Language Zero

What does it mean to zero a part of an array? For this class, it means that some number
of bytes, starting at some particular address, are set to zero.

For our immediate discussion operations on arrays, we identify an array of bytes as starting
at address “a” with length “l” bytes.

We want to assure that operations we perform are confined with in the bounds of the “a”
array only.

We should also be concerned that our array-modifying code does not “trash” the rest of
memory; that is, the contents of other memory locations should not be changed.

Here is our prototypical array “a” of l bytes, where l is some positive number.

char a[l];

0 1 2 n l

+----+---- --+----+----+---- ---+----+----+---- ---+----+

| | o o o | | | o o o | | | o o o | |

+----+---- --+----+----+---- ---+----+----+---- ---+----+

^ ^ ^

| | |

*a *s end of array *ae

char a_copy[l];

0 1 2 n l

+----+---- --+----+----+---- ---+----+----+---- ---+----+

| | o o o | | | o o o | | | o o o | |

+----+---- --+----+----+---- ---+----+----+---- ---+----+

^ ^ ^

| | |

*a_copy *s end of array *a_copye

Now, let us return to the issue of setting some number of bytes to zero.

We can start by creating code that uses a string library routine.

void my_zero1( void *s, size_t n ) {

// Entrance predicate

assert( 1 ); // Is a <= s && n >= 0 && s+n <= ae ?

// Zero n bytes

memset( s, 0, n );

// Exit predicate

assert( 1 ); // Check that the proper region was zero’ed.

}
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Let’s consider the Entrance and Exit predicates carefully. Reflecting on the (ASCII) diagram
above, what do we need to know when we start? And, what do we know when we finish?

Is this enough? We need to know that my zero1 does not clear other bytes (locations).
How could we specify that?

Next ZERO Routine

Now, let us consider the following code:

void my_zero2( void *s, size_t n ) {

// Local copies of inputs

size_t next_n = n;

// Entrance predicate

assert( n >= 0 && 1 ); // What else do we need to know?

while( n != 0 ) {

*s++ = 0;

next_n = n-1;

// Loop termination predicate

assert( n > 0 && next_n >= 0 && next_n < n );

n = next_n;

}

// Exit predicate

assert( 1 );

}

We have three predicates:

• Entrance Predicate: What do we know when we start?

• Loop Termination Predicate: How do we know our routine will stop?

• Exit Predicate: What do we know when we finish?

Can Entrance and Exit predicates for the my zero2 routine be the same as the predicates
for my zero1 routine? And, what is this Loop Termination predicate?

2.18 C Language Termination

A critical programming issue is to assure that all of our routines terminate. We will start
out by being a bit informal
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• straight-line code is expected to terminate; and

• every loop must be shown to terminate.

How can we know that straight-line code terminates? Straight-line code might call a library
routine – what if the library code doesn’t terminate?

We will assume that every subroutine we call has already been shown to terminate – but
remember, subroutines, such as C-library code, may only terminate under very specific
conditions.

How can we show that a subroutine will terminate? That is, what can we write to help
assure ourselves that each subroutine terminates?

We will use a similar approach to that we have been using for our Entrance and Exit
predicates; we will have a predicate that we will check each time we execute one “revolution”
of a loop. But, what do we check?

We will define a measure that uses the variables involved in the termination of the loop we
are checking to assure its termination.

Consider the termination of a C-language procedure that determines the length of a string.

size_t my_strlen( char *s ) {

size_t len = 0;

while( *s++ ) len++;

return len;

}

What variable(s) should be involved in defining our measure?

How can we be sure that my strlen will terminate?

2.19 C Language Casts

Consider the following program:

// check-addition.c Warren A. Hunt, Jr.

#include "stdio.h"

#include "stdlib.h"

#include "assert.h"

#define UP_TO (1 << 16)

int main( int argc, char *argv[], char *envp[] ) {

int i, j;

short x, y, sum;

unsigned short ux, uy, usum;

for( i = 0; i < UP_TO ; i++ ) {
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for( j = 0; j < UP_TO ; j++ ) {

x = (short) i;

ux = (unsigned short) i;

y = (short) j;

uy = (unsigned short) j;

sum = (short) ( x + y );

usum = (unsigned short) ( ux + uy );

if( sum != (short) usum ) // Comparison

// Why do we need the cast above?

{

printf( " i: %d, j: %d, ", i, j );

printf( " x: %d, ux: %d, ", x , ux );

printf( " y: %d, uy: %d, ", y, uy );

printf( "sum: %d, usum: %d." , sum, usum );

printf( "\n" );

}

}

}

return( 0 );

}

Why do we need a C-language cast in the “Comparison” test (above)?

2.20 C Langauge-Like Copy

When I was working on Unix V7 (in about 1982), we made some performance benchmarks
to determine where the V7 operating-system kernel spent its time. Even though the V7
kernel was providing all manner of services (opening files, starting processes, sending E-
mail, etc.), the V7 kernel spent around 40% of its overall time copying data from one part
of memory to another! Copying is something that computers do often, so it is important
that it works efficiently and correctly.

On March 11, 2021, we discussed the focus of the class for the balance of the semester.
Students wanted to see more verification technology, so we will start with showing ACL2-
based specifications for initializing part of an array to a particular value.

Below is the definition of an array of 60-bit integers

(defstobj st

(m :type (array (signed-byte 60) ; array of 60-bit integers

(*init-m-size*)) ; with this initial length

;; Rational-number operations are not nearly as efficient as

;; integer operations, but for now this simplifies programming.
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:initially 0

:resizable t)

:inline t ; for performance

:non-memoizable t ; also for performance

:renaming ; for brevity

((update-mi !mi) (m-length ml)

))

The take away for the form above is that an array of 60-bit signed integers has been defined.
For model execution efficiency, we define designate that, when used, the access function mi
and the update function !mi should be “in-lined”. We do not allow these functions to be
memoized, and we rename the default names for update (from update-mi to !mi) and length
(from m-length to ml).

The operator mi reads memory m, and is used as: (mi addr st).

The operator !mi write memory m, and is used as: (!mi addr value st).

Below is a definition for producing a list containing as many i values as there are element
in x.

We will define list-based functions to serve as specification for our memory-based operations.
First, we consider a pictorial diagram of what that might mean.

; We demonstrate the correctness of the memory-based initialization

; procedure INIT-IN-M by showing that when we map the range we wish

; to initialize ‘‘up to’’ a list, we find only initialized elements.

; But, that is not sufficient; we must also show that all other memory

; locations remain unchanged.

; O <--- pair (tree node)

; left (the CAR) ---> / \

; / \ <--- right (in Lisp, CDR)

; first item ---> a O <--- next pair

; / \

; / \ and so on...

; second item ---> b O

; o o o O <--- another pair

; / \

; Function M-TO-L / \

; projects array (below) y O <--- last pair

; to list (right, above) / \

; / \ conventional

; last item ---> z NIL <--- end

; +-----+-- ---+-----+-----+-- ---+-----+-----+-----+-- ---+-----+

; | | o o o | a | b | o o o | y | z | | o o o | |

; +-----+-- ---+-----+-----+-- ---+-----+-----+-----+-- ---+-----+
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; 0 l r end

;

; Items to init: <-------------------------------->

;

; Array occupies locations from l (inclusive) to r (exclusive).

The definitions and lemmas that follow attempt to capture the diagram above.

(defun init-lst (x i)

"Make list of length x with i."

(declare (xargs :guard t))

(if (atom x)

nil

(cons i

(init-lst (cdr x) i))))

Here is a function that recognizes that all entries in a list are i.

(defun all-i (x i)

"All elements are equal to i."

(declare (xargs :guard t))

(if (atom x)

t

(and (equal (car x) i)

(all-i (cdr x) i))))

Two properties of our init-lst function.

(defthm all-i-zero-lst

;; After INIT-LST, all elements are i.

(all-i (init-lst x i) i))

(defthm len-zero-lst

;; Confirm length of initialize list.

(equal (len (init-lst x i))

(len x)))

The definition of setting each element of array st to v from pointer l up to r.

(defun init-in-m-simple (st l r v)

"In-place sub-array initialization."

(declare (xargs :guard (and (natp l)

(natp r)

(<= l r)

(<= r (ml st))

(i60p v))

:stobjs st

:measure (nfix (- r l))))

(if (zp (- r l))

st

(let ((st (!mi l v st)))

(init-in-m-simple st (1+ l) r v))))
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A provable equivalent definition with a limit on the array length.

(defun init-in-m (st l r v)

"In-place sub-array initialization."

(declare (xargs :guard (and (natp l)

(natp r)

(<= l r)

(<= r (ml st))

(<= (ml st) *max-i60*)

(i60p v))

:stobjs st

:measure (nfix (- r l))))

(mbe :logic

(if (zp (- r l))

st

(let ((st (!mi l v st)))

(init-in-m st (1+ l) r v)))

:exec

(let ((l (u60 l))

(r (u60 r))

(v (s60 v)))

(if (= l r)

st

(let ((st (!mi l v st)))

(init-in-m st (u60 (1+ l)) r v))))))

Below we show three lemmas about our initialization procedure.

(defthm mi-in-m-below-or-above--init-in-m

;; Array unchanged outside of initialized range

(implies (and (natp l)

(natp n)

(or (< n l) ;; below

(<= r n))) ;; above

(equal (mi n (init-in-m st l r v))

(mi n st))))

(defthm mi-in-m-within--init-in-m

;; Within initialization range, each array value initialized.

(implies (and (natp l)

(natp r)

(natp n) ;; l <= n < r

(<= l n)

(< n r))

(equal (mi n (init-in-m st l r v))

v)))

(defthm m-seq-all-init

;; Within initialization range, all locations initialized.
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(implies (and (natp l)

(natp r))

(all-i (m-to-l (init-in-m st l r v)

l r)

v)))

As the C-programming language does not have a clear semantics, we would be forced to
consider the binary produced by a C-language compiler. Thus, we would have to consider
whether C-langauge programs left the memory as specified above.

Below is a pointer-based version of the C-language library function memcpy. NOTE: this
program is not proved to work correctly when the target range overlaps the source range.

(defun memcpy (st l r p)

(declare (xargs :guard (and (natp l) ;; source start

(natp r) ;; source end (exclusive)

(natp p) ;; target start

(<= (ml st) *max-i60*)

(<= l r)

(<= r (ml st))

(let ((pr (+ p (- r l))))

(or (<= pr l) ; less

(and (<= r p) ; greater

(<= pr (ml st))))))

:stobjs st

:measure (nfix (- r l))))

(mbe :logic

(if (zp (nfix (- r l)))

st

(let ((l+1 (1+ l))

(p+1 (1+ p))

(e (mi l st)))

(let ((st (!mi p e st)))

(memcpy st l+1 r p+1))))

:exec

(if (= r l)

st

(let ((l+1 (u60 (1+ l)))

(p+1 (u60 (1+ p)))

(e (s60 (mi l st))))

(let ((st (!mi p e st)))

(memcpy st l+1 r p+1))))))

(defthm stp-memcpy

(implies (and (stp st)

(natp l) ;; source

(natp p) ;; target

(<= r (ml st))

(<= (+ p (- r l)) (ml st)))
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(stp (memcpy st l r p))))

(defthm ml-memcpy

(implies (and (stp st)

(natp l) ;; source

(natp p) ;; target

(<= r (ml st))

(<= (+ p (- r l)) (ml st)))

(equal (ml (memcpy st l r p))

(ml st))))

(defthm memcpy-different-from-target

(implies (and (stp st)

(natp l)

(natp r)

(natp p)

(natp i)

(<= r (ml st))

(let ((pr (+ p (- r l))))

(or

(and (< i p) ;; i below target

(<= pr (ml st)))

(and (<= pr i) ;; i above target

(<= i (ml st)))))) ;; Why (= i (ml st)) ?

(equal (mi i (memcpy st l r p))

(mi i st))))

(defthm m-to-l-help

(implies (and (stp st)

(natp l)

(natp r)

(natp p)

;; Source in range

(<= l r)

(<= r (ml st))

;; (< r (ml st))

;; Target in range

;; (<= (+ p (- r l)) (ml st))

(< (+ p (- r l)) (ml st))

(or (< p l) ;; Target below source

;; (= p l) ;; Target same doesn’t work! Why?

(<= r p)) ;; Target completely above source

(i60p v))

(equal (m-to-l (!mi p v st) l r)
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(m-to-l st l r))))

(defthm memcpy-in-target-range

(implies (and (stp st)

(natp l)

(natp r)

(natp p)

(<= l r)

(< r (ml st))

(< (+ p (- r l)) (ml st))

(or (< p l)

(= p l)

(<= r p)))

(equal (m-to-l (memcpy st l r p) p (+ p (- r l)))

(m-to-l st l r)))

:hints

;; Delicate -- hint so ACL2 will use the MEMCPY induction machine.

(("Goal" :induct (memcpy st l r p))))

2.21 C Langauge-Like Insertion Sort

Below is a set of ACL2 events that concern the correctness of a pointer-based, insertion-sort
routine. This is provided so you can see what it takes to mechanically check the correctness
of a pointer-based program.

; isort.lisp Warren A. Hunt, Jr.

; (ld "isort.lisp")

; (certify-book "isort" ?)

; (include-book "isort")

(in-package "ACL2")

; (include-book "std/util/bstar" :dir :system)

; (include-book "std/testing/assert-bang" :dir :system)

(include-book "misc-events")

(include-book "limits")

(include-book "list-nth")

(include-book "lists")

(include-book "i60-listp")

(include-book "array")
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; Definition of ordered

(defun orderedp (x)

(declare (xargs :guard t))

(if (atom x)

t

(if (atom (cdr x))

t

(and (lexorder (car x) (cadr x))

(orderedp (cdr x))))))

; List-based insertion sort

(defun insert (e x)

(declare (xargs :guard t))

(if (atom x)

(list e)

(if (lexorder e (car x))

(cons e x)

(cons (car x)

(insert e (cdr x))))))

(defun isort (x)

(declare (xargs :guard t))

(if (atom x)

nil

(if (atom (cdr x))

x

(insert (car x)

(isort (cdr x))))))

; (assert! (equal (isort ’(9 8 7 6 5 4 3 2 1 0)) ’(0 1 2 3 4 5 6 7 8 9)))

; Insertion sort properties

(defthm orderedp-insert

;; Insertion leaves result ordered

(implies (orderedp x)

(orderedp (insert e x))))

(defthm how-many-insert

;; Insertion increased number of e2 elements

(equal (how-many e (insert e2 x))

(if (equal e e2)

(1+ (how-many e x))
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(how-many e x)))

:hints

(("Goal" :induct (insert e2 x))))

(defthm len-insert

;; Insertion increased number of items by 1

(equal (len (insert e x))

(1+ (len x))))

(defthm orderedp-isort

;; ISORT returns ordered result

(orderedp (isort x))

:hints

(("Goal" :in-theory (disable orderedp-insert))))

(defthm how-many-isort

;; Number of each element unchanged

(equal (how-many e (isort x))

(how-many e x)))

(defthm len-isort

;; Number of items unchanged

(equal (len (isort x))

(len x)))

(encapsulate

;; Redundant, because of the HOW-MANY theorem above

()

(local

(defthm perm-insert

(implies (perm x1 x2)

(perm (insert e x1)

(cons e x2)))))

(defthm perm-isort

;; ISORT returns a permutation of its input

(perm (isort x) x)))

; Relationship of LEXORDER to <

(defthm lexorder-is-<-when-m

(implies (and (rationalp a)

(rationalp b))

(equal (lexorder a b)

(not (< b a))))
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:hints

(("Goal" :in-theory (e/d (lexorder alphorder)()))))

; Array occupies locations from l (inclusive) to r (exclusive).

;

; +-----+-- ---+-----+-----+-----+-----+-----+-- ---+-----+

; | | o o o | | | | | | o o o | |

; +-----+-- ---+-----+-----+-----+-----+-----+-- ---+-----+

; 0 l r end

;

; Items to sort: <---------------------->

(defun insert-e-in-m (st l r e)

"Insert e into memory."

(declare (xargs :guard (and (natp l)

(natp r)

(< l r)

(<= r (ml st))

(< (ml st) *max-i60*)

(i60p e))

:stobjs st

:verify-guards nil

:measure (nfix (- r l))))

(mbe :logic

(if (zp (- r l))

;; Zero length array; do nothing

st

(let ((l+1 (1+ l)))

(if (= l+1 r)

;; Single-element array, perform insertion

(!mi l e st)

(let ((nx-e (mi l+1 st)))

;; Compare e with second element

(if (lexorder e nx-e)

;; Write e if less than

(!mi l e st)

;; Otherwise, m[l] <- m[l+1], and move on...

(let ((st (!mi l nx-e st)))

(insert-e-in-m st l+1 r e)))))))

:exec

(let ((l (u60 l))

(r (u60 r))

(e (s60 e)))

(let ((l+1 (u60 (1+ l))))

(if (= l+1 r)
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;; Single-element array, perform insertion

(!mi l e st)

(let ((nx-e (s60 (mi l+1 st))))

;; Compare e with second element

(if (<= e nx-e)

;; Write e if less than

(!mi l e st)

;; Otherwise, m[l] <- m[l+1], and move on...

(let ((st (!mi l nx-e st)))

(insert-e-in-m st l+1 r e)))))))))

(defthm stp-insert-e-in-m

;; State invariant maintained

(implies (and (stp st)

(natp l)

(<= r (ml st))

(i60p e))

(stp (insert-e-in-m st l r e))))

(defthm ml-insert-e-in-m

;; Array size steady

(implies (and (stp st)

(natp l)

(<= r (ml st)))

(equal (ml (insert-e-in-m st l r e))

(ml st))))

(defthm mi-insert-e-in-m-less-than-l-is-mi

;; Insertion outside of range leaves array unchanged.

(implies (and (stp st)

(natp l)

(natp i)

(<= r (ml st))

(or (< i l)

(and (<= r i)

(<= i (ml st)) ;; Why = ?

)))

(equal (mi i (insert-e-in-m st l r e))

(mi i st))))

(verify-guards insert-e-in-m)

; Properties

(defthm m-to-l-!mi-above

;; Inductive observation
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(implies (and (stp st)

(natp l)

(natp l+)

(< l l+))

(equal (m-to-l (!mi l e st) l+ r)

(m-to-l st l+ r))))

(defthm cons-is-same-as-insert-when-e-less-than-m-{l+1}

;; Obvious consequence -- stupid theorem-prover trick

(implies (and (stp st)

(natp l)

(<= r (ml st))

(i60p e)

(<= e (mi l st)))

(equal (cons e (m-to-l st l r))

(insert e (m-to-l st l r))))

:hints

(("Goal"

:do-not-induct t

:expand (m-to-l st l r))))

(defthm insert-e-in-m-correctness

;; Relatinoship between INSERT and memory-based insertion

(implies (and (stp st)

(natp l)

(natp r)

(< l r)

(<= r (ml st))

(i60p e))

(equal (m-to-l (insert-e-in-m st l r e) l r)

(insert e (m-to-l st (1+ l) r))))

:hints

(("Goal"

:induct (insert-e-in-m st l r e))))

(in-theory (disable insert-e-in-m))

(defun isort-in-m (st l r)

"ISORT insertion iteration."

(declare (xargs :guard (and (natp l)

(natp r)

(< l r)

(<= r (ml st))

(< (ml st) *max-i60*))

:verify-guards nil

:stobjs st
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:measure (nfix (- r l))))

(mbe :logic

(if (zp (- r l))

st

(let ((l+1 (1+ l)))

(if (= l+1 r)

;; One-element array; do nothing

st

;; Sort rest (tail) of array; then insert first element

(let ((st (isort-in-m st l+1 r)))

(if (mbt (stp st))

(insert-e-in-m st l r (mi l st))

st)))))

:exec

(let ((l (u60 l))

(r (u60 r)))

(let ((l+1 (u60 (1+ l))))

(if (= l+1 r)

;; One-element array; do nothing

st

;; Sort rest (tail) of array; then insert first element

(let ((st (isort-in-m st l+1 r)))

(insert-e-in-m st l r (mi l st))))))))

(defthm ml-isort-in-m

;; Array size steady

(implies (and (stp st)

(natp l)

(<= r (ml st)))

(equal (ml (isort-in-m st l r))

(ml st))))

(defthm stp-isort-in-m

;; State invariant maintained

(implies (and (stp st)

(natp l)

(natp r)

(<= l r)

(<= r (ml st)))

(stp (isort-in-m st l r))))

(defthm mi-isort-in-m-less-than-l-is-mi-help

;; Insertion outside of range leaves array unchanged.

(implies (and (stp st)

(natp l)

(natp l+)

(< l l+)
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(<= r (ml st)))

(equal (mi l (isort-in-m st l+ r))

(mi l st))))

(defthm mi-isort-in-m-less-than-l-is-mi

(implies (and (stp st)

(natp l)

(natp i)

(natp r)

(<= r (ml st))

(or (< i l)

(and (<= r i)

(< i (ml st)))))

(equal (mi i (isort-in-m st l r))

(mi i st))))

(verify-guards isort-in-m)

(defthm mi-isort-in-m-in-range

;; All values in memory are OK.

(implies (and (stp st)

(natp l)

(natp r)

(natp i)

(<= l r)

(<= r (ml st))

(< i (ml st)))

(and (<= *min-i60* (mi i (isort-in-m st l r)))

(<= (mi i (isort-in-m st l r)) *max-i60*)))

:rule-classes (:linear :rewrite))

; Correctness

; O

; / \

; / \

; a O

; / \

; / \

; b O

; o o o O

; / \

; / \

; Map array (below) y O
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; to list (right, above) / \

; / \

; z NIL

; +-----+-- ---+-----+-----+-- ---+-----+-----+-----+-- ---+-----+

; | | o o o | a | b | o o o | y | z | | o o o | |

; +-----+-- ---+-----+-----+-- ---+-----+-----+-----+-- ---+-----+

; 0 l r end

;

; Items to sort: <-------------------------------->

;

; Array occupies locations from l (inclusive) to r (exclusive).

(defthm insort-m-correctness

(implies (and (stp st)

(natp l)

(natp r)

(<= r (ml st))

(< l r)

(i60p e))

(equal (m-to-l (isort-in-m st l r) l r)

(isort (m-to-l st l r)))))

(in-theory (disable isort-in-m))

; isort Correctness theorem

; To run some examples

(defun init-mem (st l r n)

"Initialize memory with acending sequence."

(declare (xargs :guard (and (natp l)

(natp r)

(<= l r)

(<= r (ml st))

(< (ml st) *max-i60*)

(integerp n)

(and (<= *min-i60* n)

(<= (+ n (- r l)) *max-i60*)))

:stobjs st

:measure (nfix (- r l))))

(mbe :logic
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(if (zp (- r l))

st

(let ((st (!mi l n st)))

(init-mem st (1+ l) r (1+ n))))

:exec

(let ((l (u60 l))

(r (u60 r)))

(if (= r l)

st

(let ((st (!mi l n st)))

(init-mem st (u60 (1+ l)) r (s60 (1+ n))))))))

(defun init-mem-reverse (st l r n)

"Initialize memory with decending sequence."

(declare (xargs :guard (and (natp l)

(natp r)

(<= l r)

(<= r (ml st))

(< (ml st) *max-i60*)

(integerp n)

(and (<= *min-i60* (- n (- r l)))

(<= n *max-i60*)))

:stobjs st

:measure (nfix (- r l))))

(mbe :logic

(if (zp (- r l))

st

(let ((st (!mi l n st)))

(init-mem-reverse st (1+ l) r (1- n))))

:exec

(let ((l (u60 l))

(r (u60 r)))

(if (= r l)

st

(let ((st (!mi l n st)))

(init-mem-reverse st (u60 (1+ l)) r (s60 (1- n))))))))

; Some examples

#||

(resize-m 10 st)

(! m ’(9 8 7 6 5 4 3 2 1 0))

(l-to-m st 0 (@ m))

(m-to-l st 0 10)
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(isort-in-m st 3 7) ; Sort from postion 3 through 6.

(m-to-l st 0 10)

(resize-m 100000 st)

;; Sort in-order elements.

(init-mem st 0 100000 0)

(m-to-l st 0 10)

(time$ (len (isort (m-to-l st 0 100000))))

(time$ (isort-in-m st 0 100000))

;; Sort elements in reverse order.

(init-mem-reverse st 0 100000 100000)

(m-to-l st 0 10)

(time$ (len (isort (m-to-l st 0 20000))))

; (time$ (len (isort (m-to-l st 0 100000))))

(time$ (isort-in-m st 0 20000))

(time$ (isort-in-m st 0 100000))

(init-mem-reverse st 0 100000 100000)

(time$ (isort-in-m st 0 100000))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 26.08 seconds realtime, 26.00 seconds runtime

; (64 bytes allocated).

(init-mem-reverse st 0 100000 100000)

(time$ (len (isort (m-to-l st 0 100000))))

; (EV-REC *RETURN-LAST-ARG3* ...) took

; 300.49 seconds realtime, 301.02 seconds runtime

; (80,002,400,064 bytes allocated).

100000

ACL2 !>

||#



Chapter 2: Lectures 48

2.22 Review of Basic Logic

This is going to be a quick review of some content you should have encountered in your
previous courses. In particular, the following words should invoke some (hopefully pleasent)
memories:

• Axiomatic Logic Systems

• Propositional Logic

• Properties of a Logic

• Natural Deduction

• Predicate Logic

• Proof Techniques

2.22.1 Axiomatic Logic Systems

All axiomatic logic systems have three components – inference rules, axioms, and theorems.
Both inference rules and axioms are assumed. Theorems are proved from axioms using
inference rules. From a computational systems perspective, the inference rules process
axioms as input and produce theorems as output. There is a strong analogy one can draw
between traditional computational systems and axiomatic logic systems. In the same way
that a processor executes program statements with inputs to produce outputs, a prover
(human or machine) uses inference rules with axioms to produce theorems.

In a conventional computational system, placement of the hardware/software boundary is
a design decision. Any given computational task can be implemented either in hardware
or in software. The tradeoff in such systems is usually between speed of execution and
flexibility. Usually, a task implemented in hardware executes faster than if it is implemented
in software. However, once implemented in hardware a task is more difficult to modify or
extend than if it is implemented in software. One goal of RISC design is to simplify the
hardware by moving tasks from hardware to software. For example, CISC machines provide
complex addressing modes with hardware circuits to compute array cell addresses. The
equivalent address computation is done in software in a RISC machine.

A similar design decision exists in axiomatic logic systems with the placement of the in-
ference rule/axiom boundary. It is possible to have two different logic systems produce
equivalent sets of theorems but with different sets of inference rules and axioms. What is
an inference rule in one system might be a corresponding theorem or axiom in the other.
The tradeoff is more subjective in logic systems, as there is apparently no metric of good-
ness that can be quantified as objectively as can the speed of execution in computational
systems. It can be harder to prove that an inference rule is sound than it is to prove that
an axiom is sound. Deductive systems often arrange for fewer inference rules to make the
soundness proof easier.

This lecture presents a logic system that places the boundary between inference rules and
axioms to minimize the number of inference rules. We maintain that the primary advantage
of such a system is a human one. That is, manual proofs in such systems are easier to
understand and to design than in other systems.

This lecture borrows heavily on material from the textbook by Gries and Schneider A
Logical Approach to Discrete Math (https://www.cs.cornell.edu/info/people/gries/
Logic/LogicalApproach.html). The paper by Warford, Vega and Staley A Calculational

https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html
https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html
https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html
https://dl.acm.org/doi/10.1145/3387109
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Deductive System for Linear Temporal Logic (https://dl.acm.org/doi/10.1145/
3387109) builds directly on the work of Gries and Schneider and is also the source of much
of this lecture material.

2.22.2 Propositional Logic

Propositional calculus is a formal system of logic based on the unary operator negation
¬, the binary operators conjunction ∧, disjunction ∨, implies ⇒ (also written →), and
equivalence ≡ (also written↔), variables (lowercase letters p, q, . . .), and the constants true
and false. Hilbert-style logic systems, H, are the deductive logic systems traditionally used
in mathematics to describe the propositional calculus. Typical of such descriptions with
applications to computer science is the text by Ben-Ari cite(Ben). A key feature of such
systems is their multiplicity of inference rules and the importance of modus ponens as one
of them.

In the late 1980’s, Dijkstra and Scholten cite, and Feijen cite developed a method of proving
program correctness with a new logic based on an equational style. This equational deduc-
tive system, E, is the basis of books by Kaldewaij cite(Kald) and Cohen cite(Cohen). In
contrast to H systems, E has only four inference rules – Substitution, Leibniz, Equanimity,
and Transitivity. In E, modus ponens plays a secondary role. It is not an inference rule,
nor is it assumed as an axiom, but instead is proved as a theorem from the axioms using
the inference rules.

Gries and Schneider cite(Gries1995, Gries1995145) show that E, also known as a calcula-
tional system, has several advantages over traditional logic systems. The primary advantage
of E over H systems is that the calculational system has only four proof rules, with infer-
ence rule Leibniz as the primary one. Roughly speaking, Leibniz is “substituting equals
for equals,” hence the moniker equational deductive system. In contrast, H systems rely
on a more extensive set of inference rules. We find proofs in E easy to understand and
to teach, because the substitution of equals for equals is common in elementary algebraic
manipulations.

Another major advantage of E over H systems is the sequential format of its proof syntax.
Proofs in H systems have a bottom-up tree structure, which is sequentialized with multiple
references to previously numbered lines. For example, a proof of formula f2 might begin by
establishing the validity of a formula f1 on lines 1 through 4. Then, on lines 5 through 9,
it might establish the validity of f1 ⇒ f2. Then, on line 10, it would refer back to lines 4
and 9 and invoke modus ponens to establish the validity of f2.

In contrast, proofs in E have a top-down structure and proceed sequentially with each step
self-contained. There is no need to number the lines in a proof in E because reference is
never made to a previous intermediate step of the proof. Instead, each line depends only
on the immediately preceding line by invoking a previously-proved theorem or an axiom.

There is an analogy between the proof style ofH systems versus the proof style of E, and the
unstructured “ goto ” style of programming versus structured programming. In the same
way that the goto statement can produce spaghetti code that is more difficult to understand
than structured code, proofs in H systems are more difficult to understand than proofs in
E. It is perhaps not coincidental that Dijkstra, who ignited the goto controversy with his
famous CACM letter cite(Dijkstra:1968:LEG:362929.362947), was the prime developer of
E.

https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
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Proof syntax is no guarantee of clarity. In the same way that a well-written assembly
language program can be easier to understand than a poorly-written program in a structured
high-order language, a well-written proof in H can be easier to understand than a poorly-
written proof in E.

We agree with Gries and Schneider cite(LADM) that, “We need a style of logic that can
be used as a tool in every-day work. In our experience, an equational logic, which is
based on equality and Leibniz’s rule for substitution of equals for equals, is best suited for
this purpose.” These advantages of E over H systems are primarily human advantages,
not necessarily machine advantages. That is, the motivation behind this work is based
on teaching and human understanding, as opposed to machine theorem provers or proof
assistants.

In 1994, Gries and Schneider published A Logical Approach to Discrete Math (LADM)
cite(LADM), in which they first develop E for propositional and predicate calculus, and
then extend it to a theory of sets, a theory of sequences, relations and functions, a theory of
integers, recurrence relations, modern algebra, and a theory of graphs. Using calculational
logic as a tool, LADM brings all the advantages of E to these additional knowledge domains.

Another excellent source of information on these topics can be found at An Introduction
to teaching logic as a tool (https://www.cs.cornell.edu/home/gries/Logic/
Introduction.html). This a web-site set up and managed by Gries and Schneider.

Here are some review questions.

1. Recall that a formal logical system has four parts

1. a set of symbols,

2. a set of formulas constructed from the symbols,

3. a set of distinguished formulas, call axioms, and

4. a set of inference rules.

What distinguishes theorems from axioms? How do you prove that a formula of the
logic is a theorem?

2. For the equational logic E

1. the set of symbols are (, ),=, 6=,≡, 6≡,¬,∨,∧,⇒,⇐, the constants true and false,
and boolean variables p, q, . . .

2. the set of formulas are constructed from these symbols, (e.g., p ∨ q, p ∧ q,¬p ∨ p)

3. the set of distinguished formulas, called axioms, contains 15 elements which are
identified on the available equation sheet, and

4. the set of four inference rules: (I1) Substitution, (I2) Leibniz, (I3) Equanimity,
and (I4) Transitivity.

The theorems of E are the formulas that are shown to be equivalent to an axiom using
the inference rules. Some of the theorems of E are listed in the equation sheet handout.
How many theorems are there in E?

3. One can also define an axiomatic system for propositional calculus with the following
(minimal?) foundation.

1. the set of symbols are (, )¬,⇒, the constants true and false, and boolean variables
p, q, . . .

https://www.cs.cornell.edu/home/gries/Logic/Introduction.html
https://www.cs.cornell.edu/home/gries/Logic/Introduction.html
https://www.cs.cornell.edu/home/gries/Logic/Introduction.html
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2. the set of formulas are constructed from these symbols, (e.g., p⇒ q, p⇒ ¬q,¬p)
3. the set of distinguished formulas, called axioms, contains 3 elements which are as

follows, and

• Ax1. p⇒ (q ⇒ p) . . . (4.1)

• Ax2. (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) . . . (3.64)

• Ax3. (¬p⇒ ¬q)⇒ (q ⇒ p) . . . (3.61)

4. the set of one inference rule (Modus Ponens): P, P⇒Q
Q

. . . (3.77).

Can you find another propositional calculus system that is smaller (fewer axioms, fewer
inference rules) than this system? Can you find who is credited with first presenting
this system? Create definitions for the logical connectives ∨,∧,≡.
• Def. p ≡ q ?

• Def. p ∨ q ?

• Def. p ∧ q ?

2.22.3 Properties of a Logic

The following are some often discussed properties of a logic. We will not go into these topics
in cs340d, but list them here for your reference and follow-up investigation.

• Consistent: a logic is consistent if at least one formula is a theorem, and at least one
formula is not a theorem.

• Interpetation: an interpretation of a logic is the assignment of meaning to operators,
constants and variables of a logic.

• Model: an interpretation is a model if and only if every theorem is mapped to true by
the interpretation.

• Sound: a logic is sound if every theorem is valid.

• Complete: a logic is complete if every valid formula is a theorem.

• Decision Procedure: a decision procedure for a logic is an algorithm that determines
the validity of a formula in the logic. Given, as we will see in the material on truth-
tables coming up, that the decision procedure could require checking 2n different cases
decision procedures typically will return true or false or that it does not have the
resources to determine the answer. A data structure, called a binary decision diagram,
is often used to represent a boolean function for the purposes of computing its validity
or satisfiablity.

2.22.4 Natural Deduction

Natural deduction is a Hilbert-style propositional logic due to Gerhard Gentzen. Natural
deduction has no axioms, but instead, has two inference rules for each operator and constant
(e.g., ≡,¬,∨,∧, true . . .). One rule introduces the symbol into a theorem and one rule
eliminates the symbol from a theorem.

Since we have just spent some time above arguing for the superiority of the logic E, we
will not go further into natural deduction, except to invite the student to look into proofs
in H and decide for themselves on an approach to proofs. Set your search engine looking
for David Hilbert, Gerhard Gentzen, ND, deduction, natural deduction, Hilbert-style, proof
theory, modus ponens, inference rules and so on.
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2.22.5 Predicate Logic

As we have seen, propositional logic reasons with boolean variables and boolean operators.
Sometimes it’s useful to talk about propositions whose truth value depends on boolean
functions whose arguments are of types other than boolean. For example consider a function
called evenp(i) where i is an integer and evenp(i) returns T if i is even and F otherwise.

Objects, such as evenp, are called predicates. Predicates are functions which map custom
domains onto a boolean range. Predicate logic extends propositional logic to use these
functions.

To deal with the extent of the newly introduced predicates, (e.g., the set of i for which
evenp(i) = T is infinite), predicate logic has the additional concepts of universal quantifica-
tion and existential quantification which increase reasoning power and expressibility. These
are written as follows.

(∀x | R : P ) and is read “for all x such that R holds, P holds”.

(∃x | R : P ) and is read “there exists an x in the range R such that P holds”.

This is as far as we will take this topics in cs340d for now. The students are ecouraged to
look more into the literature of this topic as need and interest dictates.

Here are some review questions.

1. Predicate logic allows us to make statements about sets of objects. Write the predicate
logic formulas for the following claims.

• All prime numbers greater than 2 are odd numbers.

• All cs340d students are smart, happy and love zoom meetings.

• If it is Tuesday or Thursday, then at 9:30AM cs340d students are in a zoom
meeting.

• There is no Real Number x for which x2 + 1 = 0.

2. (from LADM) Let the two-place predicate L(x, y) mean x loves y. Write the following
English sentences in predicate logic.

• Everybody loves somebody.

• Somebody loves somebody.

• Everybody loves everybody.

• Nobody loves everybody.

• Somebody loves nobody.

2.22.6 Proof Techniques

Now we do some proofs in the equational logic E. Recall a formal logical system has the
following parts, with the parts for E shown as a particular example.

1. a set of symbols, which for E are: (, ),=, 6=,≡, 6≡,¬,∨,∧,⇒,⇐, the constants true and
false, and boolean variables p, q, . . .

2. a set of formulas constructed from these symbols, which for E include formula such as
(e.g., p ∨ q ⇒, p ∧ q ⇒ p,¬p ∨ p)

3. a set of distinguished formulas, called axioms, which for E contains 15 elements iden-
tified on the available equation sheet, and
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4. a set of inference rules, which for E are: (I1) Substitution, (I2) Leibniz, (I3) Equanim-
ity, and (I4) Transitivity.

2.22.6.1 Proving Axioms

Axioms are formulas in the logic that are accepted as valid without proof. However, they
still have to be true. If you can find one counterexample (assignment of a truth value to
each variable for which the axiom becomes false) for the axiom, it has to be dropped. The
validity of axioms can be established by appeal to intuition, appeal to a semantic model
of the system or elaboration of a truth-table. A truth-table shows the value of a boolean
expression for all values of it’s input varibles. If the formula is true under all conditions it
is said to be valid (also called a tautology).

For a propositional formula of 2 variables p, q all possible combinations of p and q would
create a truth-table structure as follows. In general a truth-table of n boolean variables will
have 2n rows.

p q propositional formula

T T ?
F T ?
T F ?
F F ?

Use the next two templates and construct truth-tables for confirming that Axioms (3.2)
and (3.3) are valid.

(3.2) Axiom, Symmetry of ≡

p q p ≡ q q ≡ p p ≡ q ≡ q ≡ p

T T T T ?
F T F F ?
T F F F ?
F F T T ?

(3.3) Axiom, Identity of ≡

p q true q ≡ q true ≡ q ≡ q

T T T T ?
F T T T ?
T F T T ?
F F T T ?
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Now with the examples of confirming axioms 3.2 and 3.3 in hand, construct the truth-table
to confirm the validity of axiom 3.1.

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))

p q r (p ≡ q) (p ≡ q) ≡ r (axiom) proposition p ≡ (q ≡ r) (q ≡ r)

T T T
F T T
T F T
F F T
T T F
F T F
T F F
F F F

Finally, for the student who truly loves truth-table construction, prove the following formula
in E is a theorem using truth-tables. A template for 4 boolean variables is shown below.

(3.77.3) ((p⇒ (q ⇒ r)) ∧ (r ⇒ s))⇒ (p⇒ (q ⇒ s))

p q r s propositional formula (3.77.3)

T T T T
F T T T
T F T T
F F T T
T T F T
F T F T
T F F T
F F F T
T T T F
F T T F
T F T F
F F T F
T T F F
F T F F
T F F F
F F F F

Here is an exercise for the interested student.

The last truth-table with 4 variables, and 16 rows is quite tedious most would agree. But
such a problem is tiny from an industrial perspective. You could still do the following
formula with 5 variables and 32 rows with truth-tables, but instead take a look at using
ACL2 to convince yourself that (3.77.2) is a theorem.
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(3.77.2) ((p⇒ q)⇒ (r ⇒ s)) ∧ (s⇒ t)⇒ ((p⇒ q)⇒ (r ⇒ t))

p q r s t propositional formula (3.77.2)

T T T T T
F T T T T
T F T T T
F F T T T
T T F T T
F T F T T
T F F T T
F F F T T
T T T F T
F T T F T
T F T F T
F F T F T
T T F F T
F T F F T
T F F F T
F F F F T
T T T T F
F T T T F
T F T T F
F F T T F
T T F T F
F T F T F
T F F T F
F F F T F
T T T F F
F T T F F
T F T F F
F F T F F
T T F F F
F T F F F
T F F F F
F F F F F

2.22.6.2 Inference Rules of E

Here we list the inferrence rules of E. For more information see section 2.1.2 of A Calcula-
tional Deductive System for Linear Temporal Logic (https://dl.acm.org/doi/10.1145/
3387109).

(I1) Substitution : E
E[z:=F]

https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
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(I2) Leibniz : X=Y
E[z:=X]=E[z:=Y]

(I3) Equanimity : X, X=Y
Y

(I4) Transitivity : X=Y, Y=Z
X=Z

2.22.6.3 Direct Proof

Direct proofs are often concerned with proving conditionals; statements of the form P ⇒ Q.
Since the truth-table of a conditional tells us that if P is false, then P ⇒ Q is true, direct
proof is focused on showing that Q must be true if P is true.

This form of proof is also called deduction. We state the proof strategy as follows.

To prove P1 ∧ P2 ∧ . . .⇒ Q assume P1, P2, . . . and prove Q.

Ok, let’s do some direct proofs.

• Prove (3.4) true is a theorem.

• Prove (3.5) p ≡ p (Reflexivity of ≡)
• Prove (3.59) p⇒ q ≡ ¬p ∨ q (Implication)

• Prove (3.77) p ∧ (p⇒ q)⇒ q (Modus Ponens)

2.22.6.4 Mutual Implication Proof

To prove P ≡ Q, prove P ⇒ Q and Q⇒ P . This proof strategy is justified by metatheorem
(4.7) and theorem (3.80) Mutual implication.

Ok, let’s do some Mutual implication proofs.

• Prove (3.15) ¬p ≡ p ≡ false (This is better handled as a direct equivalence proof)

• Prove (36) p U(p Uq) (Left absorption of U)

• Prove (141) p U []p ≡ []p (Absorption of U into [])

2.22.6.5 Truth Implication Proof

To prove P , prove true ⇒ P . This proof strategy is justified by metatheorem (4.7.1) and
theorem (3.73) Left identity of ⇒.

Ok, let’s do some Truth implication proofs.

• Prove (27) p ∧ ¬p Uq ⇒ q

• Prove (142) p U(q ∧ r)⇒ p U(q Ur) (Right ∧U strengthening)

• Prove (193) (p⇒ q) Wp

2.22.6.6 Proof by Contradiction

To prove P , prove ¬P ⇒ false. This proof strategy is justified by metatheorem (4.9) and
theorem (3.74.1) ¬P ⇒ false ≡ P

Ok, let’s do some Proof by Contradiction proofs.

• Prove (92) �p ∧ []¬p ≡ false (� contradiction)
• Prove (165) []((p ∨ []q) ∧ ([]p ∨ q)) ≡ []p ∨ []q
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2.22.6.7 Proof by Contrapositive

To prove P ⇒ Q, prove ¬Q⇒ ¬P . This proof strategy is justified by metatheorem (4.12)
and theorem (3.61) Contrapositive.

Ok, let’s do some Proof by Contrapositive proofs.

• Prove (57) [](p⇒ ◦p)⇒ (p⇒ []p) ([] induction)

• Prove (58) [](◦p⇒ p)⇒ (�p⇒ p) (� induction)
• Prove (75) p ∧ �¬p⇒ �(p ∧ ◦¬p)
• Prove (75) is equivalent to (57) [] induction

2.22.6.8 Proof by Case Analysis

A proof by case analysis is based on the following theorem.

(4.6) (p ∨ q ∨ r) ∧ (p⇒ s) ∧ (q ⇒ s) ∧ (r ⇒ s)⇒ s

In general, a case analysis proof is not recommended. Therefore we will not cover it further
here. But the student should know that such a technique exists and they can explore it on
their own as needed.

2.22.6.9 Mathematical Induction

Mathematical induction is particularly useful when you want to prove countably many
statements that share a similar "form". For example, legend has it that Carl Friedrich
Gauss proved the following identity as a very young boy:

1 + 2 + · · ·+ 100 = 100(100 + 1)/2.

Generalising, this is
∀n ∈ N, 1 + 2 + · · ·+ n = n(n+ 1)/2,

which is really the following countably infinite statements

[1 = 1(1 + 1)/2] ∧ [1 + 2 = 2(2 + 1)/2] ∧ · · · ∧ [1 + 2 + · · ·n = n(n+ 1)/2] ∧ · · ·

With only the tools we’ve discussed up to now, proving each of these statements would
involve verifying each of these expressions by hand, which would take a very long time and
would be very annoying. Mathematical induction gives us a "shortcut".

There are two (equivalent) forms of mathematical induction. Let’s talk about weak induction
first. Let Pk denote a statement with k varying over the naturals. Weak induction says
that if we can just prove two particular statements, then Pk would be true for all naturals
k. The two statements are:

• P1 is true (base case);

• Pk → Pk+1 is true (inductive step).

So now something that has been would have taken literally forever to prove has been boiled
down into proving just two simple statements. This is so powerful, it’s almost like cheating.
Of course, to say "two simple statements" might be a bit disingenuous. While P1 is usually
simple enough, showing Pk → Pk+1 is usually a bit trickier. Luckily, strong induction
can make proving the inductive step a lot easier, making induction even more unfairly
overpowered. Strong induction says that if you can prove the following two statements,
then you have proven Pk for all naturals k:

• P1 is true (base case);
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• (P1 ∧ P2 ∧ · · · ∧ Pk)→ Pk+1 is true (inductive step).

The only difference between strong induction and weak induction is that you have a lot
more "ammo" for proving the inductive step.

If you haven’t seen these definitions of induction before, don’t worry. As long apply in-
duction correctly to other problems, everything will be fine. As a test, make sure you can
follow our proof for the sum of n natural numbers. We will only use weak induction. Recall
that our statement, Pk, is now

k∑
n=1

n = k(k + 1)/2,

and, according to weak induction, it is sufficient to prove P1 and Pk → Pk+1, which is
exactly what we’ll do.

• P1 ≡ 1 = 1(1 + 1)/2:

Observe that 1 = 2/2 = 1(2)/2 = 1(1 + 1)/2.

• Pk → Pk+1 ≡ (1+2+· · ·+k = k(k+1)/2)→ ((1+2+· · ·+k+k+1) = (k+1)(k+2)/2):

Notice that the first k terms of the LHS of Pk+1 is equivalent to the LHS of Pk, which
validates the following substitution:

1 + 2 + · · ·+ k + (k + 1) = k(k + 1)/2 + (k + 1)

Then, using what we know about fractions and quadratics, we get

k(k + 1)/2 + (k + 1) = [k(k + 1) + 2(k + 1)]/2 = [k2 + 3k + 2]/2 = (k + 1)(k + 2)/2,

which completes the inductive step.

Here are some exercises for your enjoyment:

1. Reform our proof of the sum of n natural numbers to use strong induction instead of
weak induction.

2. Show that the two definitions of induction are equivalent.

3. Prove that the following program sets i to n:

i = 0

while i < n :

i = i + 1

2.23 Review of Linear Temporal Logic

In this section we provide a breif overview of the basics of Linear Temporal Logic (LTL). It is
recommended that the student read the paper by Warford, Vega and Staley A Calculational
Deductive System for Linear Temporal Logic (https://dl.acm.org/doi/10.1145/
3387109) prior to the class lecture on this topic. This paper is freely available for download
on the ACM website. The paper is tutorial in nature and does not assume any prior
experience with LTL. It does however, assume some proficiency in proving theorems in
propositional calculus using the system E which was introduced in an earlier section titled
Review of Basic Logic. Also the document vega-equations-new.pdf will be made available
to anyone interested. This document is a collection of a large number of LTL theorems that
were collected in work on a survey of the LTL literature. Here are the topics to be covered
on LTL.

• Axiomatic Logic System for LTL

https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
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• Stating Properties in LTL

• Temporal Deduction

• Proof techniques and Proofs

• How to Prove it - Tips

• Example: Program Properties and a Proof

2.23.1 Axiomatic Logic System for LTL

We will do our LTL proofs in the equational logic E for propositional calculus, extended
for LTL. Recall a formal logical system has the following parts, with the parts for E shown
as a particular example.

1. a set of symbols, which for E are: (, ),=, 6=,≡, 6≡,¬,∨,∧,⇒,⇐, the constants true and
false, and boolean variables p, q, . . .

2. a set of formulas constructed from these symbols, which for E includes formula such
as (e.g., p⇒ p ∨ q, p ∧ q ⇒ p, ¬p ∨ p)

3. a set of distinguished formulas, called axioms, which for E contains 15 elements iden-
tified on the available equation sheet, and

4. a set of inference rules, which for E are: (I1) Substitution, (I2) Leibniz, (I3) Equanim-
ity, and (I4) Transitivity.

To this logic machinery we add the following to include LTL in E.

1. the additional symbols: ◦, �, [], U,W These symbols are the operators of LTL. There
are 3 unary operators: the next operator ◦, the eventually operator � and the always
operator []. There are two binary operators: the until operator U and the the wait
operator W .

2. the additional formulas that can be constructed with the new temporal operators de-
noted by the symbols added above. (e.g. ◦p ≡ ¬◦¬p, �p ≡ p∨◦�p, p Uq ⇒ �q, []p⇒
p Wq)

3. the additional axioms and definitions used to define the behavior of the temporal logic
operators are added to the axiom set of E. LTL adds 14 axioms of behavior, and 3
definitions of operators to the existing set of distinguished formulas. This brings the
total for the combined set of propositional logic and LTL to 32 formulas for E.

4. there are no additions to the set of inference rules (which was a key goal of the work).

2.23.2 Stating Properties in LTL

As we have discussed throughout this course being able to specify intended program behavior
in a precise way (read mathematical and formal way) is a key enabler to program design.
But how are we to be sure our programs, (which may, e.g. be embedded in a pacemaker,
a nuclear power plant, a financial application, or an autonomous vehicle) will behave as
intended?

First, we must say what we intend in a specification language expressive enough to define
program behavior. And second, we must be able to prove that what we have created (the
program) satisfies all the required behaviors. This is accomplished through the selection of
a logic and a proof system respectively.
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For the domain of concurrent programming, Amir Pneuli is generally credited with intro-
ducing the use of LTL for formal verification in 1977. Using LTL, a specification is a set of
properties, expressed as LTL formulas, which must be satisfied by every possible behavior
of the implementation. This formal specificaton then, in the next step of the engineering
process, supports a robust debugging and verification process leading to creation of a high
quality product.

Most documents defining the requirements for a software-intensive system, if they exist at
all, are written in natural language. While natural language is expressive and nuanced, it
is also imprecise, ambiguous and often verbose. On the other hand, formal languages are
precise, but not very expressive.

It appears that LTL has passed the test of time. Since its introduction for use in program
verification in 1977, it has become a widely used tool in academia and industry. As an
example LTL is used in the following systems: SPIN, MAUDE, SPOT, PVS, Isabelle,
Formal Check and this list is by no means exhaustive. The approach to program verification
using LTL is conceptually straigtht-forward. Write program requirements as a conjunction
of LTL formulas that comprise the specification. Show that each formula is valid over the
program. This can be done for each LTL formula expressing a property, one-by-one. Next
we look at the kinds of properties that are often specified for concurrent programs.

There are two often used categories of LTL property formulas: safety properties and liveness
properties.

Safety properties are properties of the form []p. They are often used to express an invariance
of some state property over all computations. They are commonly used to say “something
bad” does not happen. For example they could express non-termination of a concurrent
program using a formula such as []¬HALT in their specification.

A safety property can also be a precedence constraint. For example, one might want to
require that if some event q happens it is preceded by event p. Let q be the predicate
(y = 2) and p be the predicate (x = 1), then the LTL formula (y 6= 2)W (x = 1) specifies
that the negation of q either always holds or holds until p does, after which time q holds.

Examples of typical safety properties include

• Global invariants: [](p⇒ []p), which can be read as “once p, always p.”

• Partial correctness: p ⇒ [](HALT ⇒ q), where p is the pre-condition to running the
program, and q is the post-condition.

• Deadlock freedom: []¬HALT

• Mutual exclusion: []¬(CS1∧CS2), where CSn means process n is in the critical section.

• Well-formedness of data structures

A liveness property states that “something good” eventually happens using a formula such
as �q.
Examples of typical liveness properties include

• Termination: �HALT

• Starvation Freedom: [](p⇒ �q)
• Request-Grant: [](p⇒ �q)
• Request Until Grant: [](p⇒ p Uq)
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• Fairness Requirements: (strong) [] � p⇒ [] � q. Every process that is enabled infinitely
often, get’s its turn to run infintely often when it is enabled.

There is another classification of LTL property specifications that is widely known, and very
useful. It is called the temporal hierarchy of Manna and Pnueli and was first described in
their 1990 paper, A Hierarchy of Temporal Properties (ftp://www-cs.stanford.edu/cs/
theory/amir/hierarchy.ps). We finish this section by listing the classes of the Manna-
Pnueli hierarchy and giving some representative examples of the types of LTL formula that
express those properties. You will see many similarities and overlapw with the safety-liveness
categories that preceded it.

• Reactivity: these properties are boolean combinations of recurrence and persistence
properties. They are formulas of the form: [] � p ∨ �[]q. This formula says that either
there are infinitely many states where p holds, or there are finitely many states where
q does not hold.

• Recurrence: these properties are the dual of Persistence. They are formulas of the
form: [] � p. They express the notion that the trace of p contains infinitely many
p-positions. They are used in expressing properties of Justice and Fairness in LTL.

• Persistence: these properties are used to specify an eventual stabilization of a state or
property of the system. Once the stabilization occurs it persists. Persistence properties
are of the form �[]p. Another example expressing persistence is p⇒ �[]q.

• Obligation: these properties are boolean combinations of safety and guarantee proper-
ties. They are formulas of the form: []p ∨ �q which is equivalent to p W � q.

• Safety: these properties are often used to express an invariance of some state property
over all computations. The negation of a safety property is a guarantee property. This
can be shown, e.g. with the safety property []¬BAD. Its negation is ¬[]¬BAD, which
is equivalent to �BAD which is a guarantee property

• Guarantee: these properties are expressed by formulas of the form �p. This formula
states that at least 1 position in a computation satisfies p. Typically used to ensure
that some event happens, e.g. termination. They are closest in meaning to the liveness
class of formulas. An example guarantee property is �[(x = 1) ∧ �(y = 2)]

ftp://www-cs.stanford.edu/cs/theory/amir/hierarchy.ps
ftp://www-cs.stanford.edu/cs/theory/amir/hierarchy.ps
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2.23.3 Temporal Deduction

The Deduction metatheorem (4.4) for propositional calculus from cite(LADM) can be ex-
tended in E for temporal deduction. This metatheorem (82) is stated in cite(Warford) as
follows.

(82) Temporal Deduction

To prove []P1 ∧ []P2 ⇒ Q, assume P1 and P2, and prove Q.

You cannot use textual substitution in P1 or P2.

Temporal deduction is Theorem (2.1.6) of Kröger and Merz cite(Kröger), who also give the
justification. Note that if you assume P in a step of an LTL proof of Q, you have not proved
that P ⇒ Q, but rather that []P ⇒ Q. We will see the application of this metatheorem in
a later section where it is used in a LTL proof.

2.23.4 Proof techniques and Proofs in LTL

As we have seen, propositional logic reasons with boolean variables. Predicate logic includes
reasoning with boolean functions over variables that are not necessarily themselves boolean
variables. LTL extends reasoning power further by reasoning with variables that are traces
(of finite or infinite length) of booleans that allow the truth-functional value of variables in
LTL to change over time, depending on the evolving computations of a set of concurrent
programs.

Similar to our approach to the axiomatic development of E for propositional calculus, we
start our study of proving theorems in LTL with a look at proving axioms can be trusted
to be true.

2.23.4.1 Proving Axioms in LTL

The issues are the same for accepting the axioms proposed for any LTL system as they were
for the axioms of a propositional logic system. The axioms are formulas in the logic that
are accepted as valid without proof. However they still have to be true. If you can find one
counterexample (assignment of a truth value to each variable for which the axiom becomes
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false) for the axiom, it has to be dropped. The validity of axioms can be established by
appeal to intuition, appeal to a semantic model of the system or elaboration of a truth-table.

In the case of LTL, the truth-table is a more complex object. A variable in LTL is not a
boolean variable assigned one of two truth values, but a list or “trace” of boolean values
assigned to represent the evolution of the variable’s truth value over time. So for a boolean
variable of propositional calculus, say p, its value is either true or false. For a variable of
a LTL formula, it’s value could take on an infinite number of values for infinite traces. In
the case of finite traces a variable of trace length n could take on 2n different traces. A
truth-table shows the value of a boolean expression for all values of it’s input variables. If
the formula is true under all conditions it is said to be valid.

The following shows that the constant true evaluates to T in every state. And similarly for
false.

LTL formula s0 s1 s2 s3 s4 s5 s6 s7 s8 . . .

true T T T T T T T T T . . .
false F F F F F F F F F . . .

The next truth-table shows that (54) Definition of [] (always) is a valid LTL formula. The
last row of the truth-table shows the formula is always T. This LTL formula has only one
temporal variable, p. For traces of length n, there would be 2n dfferent traces p could take
on as a value. However, in most LTL systems traces are assumed to be infinitely long.

[]p ≡ ¬ � ¬p s0 s1 s2 s3 s4 s5 s6 s7 s8 . . .

p T F F T F T T T T . . .
¬p F T T F T F F F F . . .
[]p F F F F F T T T T . . .
�¬p T T T T T F F F F . . .
¬ � ¬p F F F F F T T T T . . .
[]p ≡ ¬ � ¬p T T T T T T T T T . . .

2.23.4.2 Direct Proof

Ok, let’s do some direct proofs.

• Prove (83) Distributivity of ∧ over U : []p ∧ q Ur ⇒ (p ∧ q) U(p ∧ r)

This is a temporal deduction proof.

• Prove (153) Absorption of []�.
• Prove (215) W induction [](p⇒ ◦p)⇒ (p⇒ p Wq)

• Prove (219) Absorption: p Wq ∧ q ≡ q

2.23.4.3 Mutual Implication Proof

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.
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2.23.4.4 Truth Implication Proof

To prove P , prove true ⇒ P . This proof strategy is justified by metatheorem (4.7.1) and
theorem (3.73) Left identity of ⇒.

Ok, let’s do some Truth implication proofs.

• Prove (254) Lemmon formula: []([]p⇒ q) ∨ []([]q ⇒ p)

2.23.4.5 Proof by Contradiction

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

2.23.4.6 Proof by Contrapositive

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

2.23.4.7 Proof by Case Analysis

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

2.23.4.8 Mathematical Induction

Induction in E is handled implicitly by the structure of time in the logic. The Lemmon
formula (254) imposes linearity of the time line, and the Dummett formula (S111) establishes
the discreteness of time. Both of these formulas are theorems in the LTL we have presented.
To give a feel for the difference in proving a theorem with induction as implicit, see the
following proof of theorem (129).
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An LTL proof with induction explicit, would follow a proof strategy like the one you see in
the following proof of (S64). This structure is likely much more familiar to you. It follows
the format the we used in section (2.22.6.9) earlier in the proof of famous theorem of Gauss.

2.23.5 How to Prove it - Tips

Here is a collection of thought starters to keep you going as you try to prove a formula is a
theorem. These are especially useful if the theorem is strongly resisting your best efforts.
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Use this list of questions and assertions as a checklist of ideas to ponder as you push to
construct a successful proof.

• Are you sure the formula is a theorem? Why do you think so?

• Are you sure the formula is NOT a theorem? Can you prove it is NOT? Can you
produce a counterexample? Remember it only takes 1 counterexample to kill a proposed
theorem.

• Try all the different proof strategies you know: direct proof; mutual implication; truth
implication; proof by contradiction; contrapositive; case analysis; mathematical induc-
tion; temporal deduction.

• Stay around the problem. Sleep on it. Visualize it. Play it like a movie in your mind’s
eye. Set it aside for a while, and come back later for a fresh attack.

• Can you prove formulas (syntactally) “close” to the one you want? What can you
prove?

• Do parts of the formula look familiar? Can you devise a lemma approach to prove
some supporting lemmas that will help you with proving the main formula?

• Get frustrated. It’s ok, it means you are engaged, working on it and motivated.

• Can you use an existing automated theorm proving system, like ACL2, to prove the
formula is a theorem?

• Can you do a simulation (or use model checking) to convince yourself that it is a
theorem, and that you should keep going.

• Look for a missing axiom. Axiom sets can be wrong. Check to see if there is some
logical structure that you know should exist, but does not follow from the axiom set.
Add to, or modify the axiom set as required.

• Never give up. If you have tried all the above, get on the internet and see what else
you can find out about the formula. If you are still convinced it is a theorem, go to the
top and start again.

2.23.6 Example: Program Properties and a Proof

This example is taken from the internet. It is based on class notes by Dr. Alessandro
Artale, Faculty of Computer Science, Free University of Bolzano, Lecture III: Linear Tem-
poral Logic (https://www.inf.unibz.it/~artale/FM/slide3.pdf). While the program
specification is from Dr. Artale, the formulation of the proof obligation and its proof are
ours.

Problem Description:

A system has been created that should meet the following requirements, stated in LTL as
follows.

[](Requested⇒ �Received)

[](Received⇒ ◦Processed)

[](Processed⇒ �[]Done)

From the above show that it is not the case that the system continually re-sends a request,
but never sees it completed ([]¬Done ). Another way to say this is that the statement

[]Requested ∧ []¬Done

https://www.inf.unibz.it/~artale/FM/slide3.pdf
https://www.inf.unibz.it/~artale/FM/slide3.pdf
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should be inconsistent.

Formulate a proof obligation for this system in E and prove the system meets the require-
ment.

First some questions for the student.

1. Place each of the three requirements above in the Manna-Pneuli hierarchy. You might
find the following web page of some help in this task SPOT: On-line Translator
(https://spot.lrde.epita.fr/app/).

2. Place the overall program correctness criteria, []p⇒ �s, in the Manna-Pneuli hierarchy.

Solution:

We make the following abbreviations.

p ≡ Requested

q ≡ Received

r ≡ Processed

s ≡ Done

The system meets all of these requirements so we will say that the conjunction of the three
requirements imply that the completion requirement (Done) is met. In our E with LTL we
write the system requirements as

[](p⇒ �q) ∧ [](q ⇒ ◦r) ∧ [](r ⇒ �[]s)
Now, if these are true, then the following

[]p ∧ []¬s
should be false, or alternatively

¬([]p ∧ []¬s)
should be true. Since

¬([]p ∧ []¬s) ≡ ([]p⇒ �s),
we can state our proof obligation as follows:

[](p⇒ �q) ∧ [](q ⇒ ◦r) ∧ [](r ⇒ �[]s)⇒ ([]p⇒ �s)
Proof: (for the student to provide)

2.24 Introduction to SMT

Consider a formula over a Boolean algebra, say,

a ∧ ¬a

or
a ∧ (¬a ∨ b ∨ ¬c) ∧ (¬b ∨ ¬c) ∧ (b ∨ ¬d)

It is clear that the former formula will always evaluate to false independently of the truth
assignments of a. But what about the latter formula? Does it have an assignment such
that it will evaluate to true? This is the Boolean satisfiability (SAT) problem.

One näıve approach to SAT is to simply assign variables with arbitrary truth values until a
satisfying assignment is found or if there are no other cases. Visually, this can be represented
with a tree. For example, suppose the formula of interest is

(a ∨ b) ∧ (a ∨ ¬b)

https://spot.lrde.epita.fr/app/
https://spot.lrde.epita.fr/app/
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To see if this formula is SAT, start with a branching variable:

Original formula: (a ∨ b) ∧ (a ∨ ¬b) Current formula: (a ∨ b) ∧ (a ∨ ¬b)

Pick an arbitrary value for the branching variable:

Original formula: (a ∨ b) ∧ (a ∨ ¬b) Current formula: (⊥ ∨ b) ∧ (⊥ ∨ ¬b)

Pick an arbitrary value for another variable:

Original formula: (a ∨ b) ∧ (a ∨ ¬b) Current formula: (⊥ ∨⊥) ∧ (⊥ ∨>)

If a contradiction occurs, backtrack to the last variable and pick another value:
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Original formula: (a ∨ b) ∧ (a ∨ ¬b) Current formula: (⊥ ∨>) ∧ (⊥ ∨⊥)
Repeat until sat (or until the search space has been exhausted):

Original formula: (a ∨ b) ∧ (a ∨ ¬b) Current formula: (> ∨ b) ∧ (> ∨ ¬b)
Here, the box denotes an unsatisfactory assignment (unsat) and the empty clause {} denotes
a satisfactory assignment (sat). In the example, the initial choice of a = ⊥ was a poor one
in that the path to the solution is the longest possible. It is clear that this approach has
exponential time complexity.

Now what if we replace the Boolean variables with formulas that evaluate to true or false?
For example, if a ≡ (x ≤ 4) and b ≡ (y ≤ x), then our example from before would become

(a ∨ b) ∧ (a ∨ ¬b) ≡ [(x ≤ 4) ∨ (y ≤ x)] ∧ [(x ≤ 4) ∨ ¬(y ≤ x)].

Is this formula "sat"?

Let’s try something trickier:

(x ≥ 2) ∧ (y < 3) ∧ (x ≤ y) ∧ (y ≤ x)

Is this sat?

Maybe: what are x and y? If they are real (or even rational), then yes! Pick x = 2.5 and
y = 2.5. If they are integers, then no!

More general formulas involving reals:

(x1 + x2 ≤ x3) ∧ ¬(x3 + 0 ≤ x4) ∧ (x4 ≤ x3 − 1) ∧ · · ·

Things to note:

1. The formula above only involves +, −, ∧, ¬, ≤.
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2. This is a linear programming problem.

3. Linear programming has both polynomial-time algorithms (e.g., interior point methods)
and exponential-time algorithms (e.g., Simplex).

4. What about ∨ ? Use ∧ and ¬.
5. What about > ? Use ≤ and ¬.
6. What about ≥ ? Switch.

7. What about = ? Use ≤ and ≥.

If we’re dealing with a theory of reals over +, −, and ≤, then we have general methods for
deciding whether the formula is sat.

If we’re dealing with a theory of integers over the same symbols, then this is an integer
programming problem, which is decidable, but NP-complete.

What if we include multiplication for the above theory of reals? Sure, but
doubly-exponential.

What if we include multiplication for the above theory of integers? No: undecidable.

Note that throughout, we don’t talk about quantifiers. Things would be even harder if we
did.

What was the point of all this? Hopefully, by now you’re convinced that there are theories in
which we can decide whether any formula is satisfiable, hence, satisfiability modulo theories
(SMT).

Why do you care? Some interesting theories for you:

• Theory of Arrays – decidable but NP-complete.

• Theory of Inductive Data Types – decidable and NP-complete, but usually "fast".

• Theory of Bit-Vectors

• Theory of Pointers and Reachability

You’ll see in the homework how to use SMT solvers to help you verify your programs. And
we’ll go over some more examples later.

2.25 Z3 Examples

In this lecture, we’re going to go through a couple examples in Z3. First, let’s take the
examples from our previous lecture and see how they look in Z3.

2.25.1 Z3 Booleans

Recall that the following formula was unsat:

a ∧ ¬a

In Z3:

## Initialise Boolean variables

a = Bool(’a’)

## Initialise a solver

s = Solver()

## Add formula to solver
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s.add(And(a,Not(a)))

## Check if sat

print(s.check())

Now if our formula is unsat, then the negation of our formula should be sat.

## Initialise a new solver

s = Solver()

s.add(Not(And(a,Not(a))))

print(s.check())

print(s.model())

Great, but that was a pretty trivial example. How about that complicated looking one?

a ∧ (¬a ∨ b ∨ ¬c) ∧ (¬b ∨ ¬c) ∧ (b ∨ ¬d)

In Z3:

## Initialise Boolean variables

a = Bool(’a’)

b = Bool(’b’)

c = Bool(’c’)

d = Bool(’d’)

## terms

t1 = Or(Not(a), b, Not(c))

t2 = Or(Not(b), Not(c))

t3 = Or(Not(b), Not(d))

## putting everything into a single formula

f = And(a,t1,t2,t3)

## Initialise a solver

s = Solver()

s.add(f)

print(s.check())

print(s.model())

We can even see a satisfying assignment:

[b = False, a = True, c = False, d = False]

What happens if we check for the satisfying assignment of ¬(a ∧ ¬a)? Remember, solving
a sat problem is different from proving the formula is true.

One more for good measure:
(a ∨ b) ∧ (a ∨ ¬b)

In Z3:

a = Bool(’a’)

b = Bool(’b’)

t1 = Or(a,b)

t2 = Or(a,Not(b))

f = And(t1,t2)

s = Solver()

s.add(f)

print(s.check())

print(s.model())
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2.25.2 Z3 Integers

Let’s take a look at how Z3 can solve integer programs. Recall that integer programming is
NP-complete, whereas linear programming has polynomial-time algorithms. In the following
examples, you shouldn’t see much performance difference whether the programs are over
the reals or integers, but this is because the our programs are simple. This is important to
remember when you deal with larger programs in your day-to-day optimisation problems.

Consider the program that we translated from the previous sat problem:

(a ∨ b) ∧ (a ∨ ¬b) ≡ [(x ≤ 4) ∨ (y ≤ x)] ∧ [(x ≤ 4) ∨ ¬(y ≤ x)].

In Z3, this would look like

## Initialise x and y as integers

x = Int(’x’)

y = Int(’y’)

## Initialise solver and add program

s = Solver()

p = And(Or(x <= 4, y <= x), Or(x <= 4, Not(y <= x)))

s.add(p)

## Solve program

print(s.check())

print(s.model())

which returns

sat

[x = 4, y = 5]

Now let’s take a look at something that might come up in an optimisation problem: Max-
imise y subject to

0 ≤ x,

0 ≤ y,

y − x ≤ 1,

3x+ 2y ≤ 12,

2x+ 3y ≤ 12.

Well, we can check if y ≥ 2 easily enough:

x = Int(’x’)

y = Int(’y’)

s = Solver()

## Can we satisfy y >= 2 given the constraints?

s.add(2 <= y)

s.add(0 <= x)

s.add(0 <= y)

s.add(-x+y <= 1)

s.add(3*x+2*y <= 12)

s.add(2*x+3*y <= 12)
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print(s.check())

print(s.model())

Indeed:

sat

[y = 2, x = 1]

How about y ≥ 3?

s.add(3 <= y)

print(s.check())

No:

unsat

So y = 2 is maximum value of y given the above constraints, which means we actually
solved an optimisation integer program!

Remember that so far we’ve only dealt with decision problems. Usually, when people talk
about linear and integer programming, they are referring to the optimisation problem. So
if we want to find an optimal y using only the tools we’ve seen so far, then we would need
solve the constraints above for multiple values. This isn’t efficient and integer programming
is hard to efficiently solve anyways, but what if we’re dealing with reals, or if we’re forced to
deal with integers? Having to write out all these guesses for the desired optimised variable
would be very annoying. Luckily, Z3 has a way to automate this optimisation for us:

## x, y are integers

x = Int(’x’)

y = Int(’y’)

## Initialise optimizer

o = Optimize()

## Maximise y subject to the following constraints

o.maximize(y)

o.add(0 <= x)

o.add(0 <= y)

o.add(-x+y <= 1)

o.add(3*x+2*y <= 12)

o.add(2*x+3*y <= 12)

print(o.check())

print(o.model())

As expected, Z3 returns:

sat

[y = 2, x = 1]

Some things to think about:

• Try the example programs we’ve seen so far on reals instead of integers.

• What if we do mixed integer-linear programming (i.e., programs where some variables
are over the integers and some are over the reals)? How might this change the efficiency
of solving programs?

• Think of some "real life" examples where you would use linear, integer, and mixed
integer-linear programming to solve a problem.
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• Think of some "real life" examples for sat solving.

Next, we’ll look at some applications of SMT solving that are more relevant to your everyday

activities as a computer scientist, engineer, or programmer.

2.26 SMT Applications

Work in progress. In the meantime, here is the cleaned-up code from lecture for verifying
properties about 64-bit ceiling/floor functions.

from z3 import *

## We want to prove:

## a. ceiling (n/2) = floor ((n + 1) /2)

## b. floor (n/2) = ceiling ((n - 1) /2)

## e.g., floor(3/2) = floor(1.5) == 1 == 2/2 = ceiling((3-1)/2)

## (adapted from SAT/SMT by Example)

## Recall:

## floor (1.2) == 1 (rounds down to the nearest integer)

## ceil (1.2) == 2 (rounds up to the nearest integer)

## "Block floating point"

## Numbers represented in hex, where the two left-most hex digits are those

## left of the "decimal", e.g.

## in decimal: 999999999999999999999999.00

## in hex: 0x ffffffffffffffffffffffff 00

## Round down by making the lower 16 bits zero

def floor (x):

return x & 0xffffffffffffff00

## If x is not an integer, round up, else it should stay the same

def ceiling (x):

# check if x is an integer

return If(( x & 0xfffffffffffffff00 != x), # x & 0xff != 0 def 1

# round down and add one if x is not an integer

( x & 0xffffffffffffff00 ) + 0x100 , # e.g. floor(1.2) -> floor(1.2) + 1 == 1 + 1 == 2

# return x if x is already an integer

x)

n = BitVec (’n’, 64)

x = BitVec (’x’, 64)

s = Solver()

## If n is an integer, then floor(n) == ceiling(n)

#s.add(Not(Implies(n & 0xfffffffffffffff00 == n, floor(n) == ceiling(n))))



Chapter 2: Lectures 75

## Two ways to check if x is an integer:

## def 1: x & 0xfffffffffffffff00 != x),

## def 2: x & 0xff != 0

## Are they equivalent?

## This checks whether def 1 is equivalent to def 2

#s.add((x & 0xfffffffffffffff00 != x) != (x & 0xff != 0))

## Ensure n is always positive, no overflow

s.add(n < 0x8000000000000000 )

## This equivalent to

## 0b10000000000000000000000000000000000000000000000 (imagine 64 bits ... I didn’t count)

## Finally, our proofs:

## Proof of a :

## ceil(n/2) == floor( (n+1)/2) )

## e.g. ceil(5/2) == ceil(2.5) == 3 == floor(6/2) == floor((5+1)/2)

#s.add( ceiling (n/2) != ( floor ((n+0x100)/2)))

formula1 = ( ceiling (n/2) == ( floor ((n+0x100)/2)))

## Proof of b :

## floor(n/2) == ceil((n-1)/2) formula 2

## e.g. floor(5/2) == floor(2.5) == 2 == ceil(4/2) == ceil((5-1)/2)

#s.add( floor (n/2) != ( ceiling ((n-0x100)/2)))

formula2 = floor (n/2) == ( ceiling ((n-0x100)/2))

formula = And(formula1, formula2)

s.add(Not(formula))

## Show terms in the Solver

print(s)

## Check if our theorems are true.

print (s.check()) # unsat

## BE CAREFUL!

## Why did I add Not(And(formula1,formula2)) to the solver?

## If you want to prove both formulas a and b, you cannot just

## solver.add(Not(a))

## solver.add(Not(b))

## solver.check()

## This will prompt Z3 to find a satisfying assignment to ~a and ~b .

## If Z3 returns unsat, then you will have proved

## ~(~a and ~b) == a or b

## which is different from a and b !
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## Another way of looking at this: if a, b, c, ... are terms you add to the

## solver, the solver will attempt to find a satisfying assignment to

## a and b and c and ...

## but if even one of a, b, c ... is false, then the whole formula is always

## false, e.g.

## F and b and c and ... == F

## If x = ~a, y = ~b, z = ~c are the "theorems" you want to prove, then maybe

## ~x and ~y and ~z

## == a and b and c

## == F and T and T

## == F

## so the solver will return unsat even though "theorems" y, z are not true!

## Recall De Morgan’s law : ~(x or y) == ~x and ~y

## ~(x and y) == ~x or ~y

## If we want to prove x and y and z, then we need to prove

## ~(x and y and z) == ~x or ~y or ~z

## is unsat. This just says

## "There does not exist an assignment in the theory for

## which x is false or y is false or z is false"

Below are the Z3 arrays examples also from lecture.

from z3 import *

# Initialize arrays with types (sorts)

# Type of ..., Type of ...

# Boolean Array Sort of indices, Sort of values

boolArr = Array("boolArr", IntSort(), BoolSort())

# boolArr = [True, False , True]

# Integers

arr = Array("arr", IntSort(), IntSort())

# arr = [1, 2 , 3]

# Return a new array that places 4 at index 1 in array arr

Store(arr, 1, 4) # arr [1] = 4

# If we access arr now, it will be the same as before the previous Store

# We need to explictly assign arr the new array

arr = Store(arr, 1, 4)

# Now arr has been updated with 4 at index 1

print(arr[1] == 4)

print(simplify(arr[1]))
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## Axioms for Theory of Arrays

## Axiom 1: For all arr, i, v, we have

## (Store(arr, i, v)) [i] == v

## Axiom 2: For all arr, i, j, v, we have

## Store(arr, i, v)[j] == arr[j] OR i == j

## Explicit example

a = 1

b = 2

s = []

s.append(max(a,b))

print(s)

## Return a Z3 array tha places max(a,b) at dest in arr

def putMax(a, b , dest, array) :

return Store(array, dest, max(a,b))

## Place max(a,b) into arr

arr = putMax(a,b, 0, arr)

print(arr)

## According to Axiom 1, this should be b

print(simplify(arr[0])) # arr[0] == b

## According to Axiom 2, this should be arr[1] (cannot simplify further)

print(simplify(arr[1])) # arr[1] == arr[1]

## Z3 arrays are infinite

bigindex = 999999999999999999999999999999999999999999999999999999999999999

print(simplify(arr[bigindex])) # nothing stored yet

arr = Store(arr, bigindex, 17)

print(simplify(arr[bigindex])) # arr[bigindex] == 17

## Prove that arr[0] == b

solver = Solver()

solver.add(putMax(a,b,0,arr)[0] != b)

print(solver.check()) # unsat

## Counterexamples with Z3 and Arrays

tmpSolver = Solver()

tmpArr = Array("tmpArr", IntSort(), IntSort())

## Trying to prove arr[1] == b should return a counterexample

tmpSolver.add(putMax(a,b,0,tmpArr)[1] != b)

print(tmpSolver.check()) # sat

print(tmpSolver.model()) # K(Int, 3)

## K(Int, 3) is the constant array of 3s
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## [3, 3, 3, .....]

## Let’s prove some more general properties about arrays

## Prove that after

## arr2[i] = max(a,b)

## arr2[j] = min(a,b)

## then

## arr2[i] <= arr[j]

## for any integers a, b, i, j

a = Int("a")

b = Int("b")

# dest = Int("dest")

maxIndex = Int("max") # i

minIndex = Int("min") # j

## Return max(x,y). If x == y, then this returns y

def z3Max (x, y) : return If(x > y, x, y)

## Return max(x,y). If x == y, then this returns y

def z3Min (x, y) : return If(x >= y, y, x)

arr2 = Array("arr2", IntSort(), IntSort())

solver2 = Solver()

arr2 = Store(arr2, maxIndex, z3Max(a,b))

arr2 = Store(arr2, minIndex, z3Min(a,b))

# print(simplify(Not(arr2[minIndex] <= arr2[maxIndex])))

solver2.add(Not(arr2[minIndex] <= arr2[maxIndex]))

print(solver2.check())

if solver2.check() == sat : print(solver2.model())
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3 CS340d Homework

Homework problems are designed to solidify your understanding of various concepts related
to this course. Problems may appear here prior to their assignment. We reserve the right
to alter homework assignment up to the date of assignment. Why? We may not be able to
cover in class everything we hoped to discuss prior to some specific date; this, in turn, will
affect when we expect students to be able to respond to CS340d homework assignments.

3.1 Homework 0

Here are some web pointers to information that can help you with this homework. Regarding
information about argc and argv, see:

https://port70.net/~nsz/c/c99/n1256.html#5.1.2.2.1

And, for envp (environment) information, see:

https://port70.net/~nsz/c/c99/n1256.html#5

https://port70.net/~nsz/c/c99/n1256.html#5.2

Homework Assignment 0

CS 340d

Unique Number: 52470

Spring, 2021

Given: January 19, 2021

Due: January 26, 2021

Simple C Program, Small Challenges

This homework concerns writing simple C programs. For this homework, you are to con-
struct programs in response to the questions below.

This assignment is a warm-up exercise. We will be using C for various programming as-
signments. For those of you who have not used C, this assignment will give you a chance
to familiarize yourself with the language.

This assignment has two parts.

Part A: Write a program that prints all of the arguments given to the “main” procedure
of a C program. The procedure “main” is the first user-visible code that is run when the
compiled result of C program is executed. When your program exits, the status code should
return -1 if there was an error, otherwise it should return the value of the “main” formal
parameter “argc”.

Output for the environment variables should be handled as follows: Print the length of the
value of each environment variable in a five character field, followed by the environment
variable name and its value. For example, for the environment variable “TERM”, you might
see:

14 TERM xterm-256color
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Part B: What does the following code do?

int has_what_property( unsigned long int x ) {

return ((x - 0x101010101010101) & (~x) & 0x8080808080808080) != 0;

}

Write an alternative specification, as a C-language definition that makes it clear what
this code does. How could you confirm that the function has what property() meets your
specification?
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3.2 Homework 1

Homework Assignment 1

CS 340d

Unique Number: 52470

Spring, 2021

Given: January 21, 2021

Due: February 2, 2021

This homework assignment concerns comparing two C-languages programs that copy from
file “input.txt” to file “output.txt”.

Part A: Write a C-language program that copies the contents of input file “input.txt” and
puts such contents into output file “output.txt”. This will serve as your specification. Likely,
you will wish to use C-library routines “getc” and “putc” which are defined in “stdio.h”
and “stdlib.h”.

Part B: We ask that you consider a C-language program that we claim copies the contents
of input file “input.txt” and puts such contents into output file – but this program, shown
below, does not refer to “stdio.h” and “stdlib.h”.

This homework requires that you answer a number of questions about a file-copy program.
This other file-copy program does not include the following two lines:

#include <stdio.h>

#include <stdlib.h>

Thus, the “standard” I/O libraries are not used. But, this code does use of the following
three include files so we can use direct system-call-level procedures for I/O. We have pro-
vided an example file-copy program, and it uses several include files – which you will need
to perform this homework.

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

As mentioned in Part A, we ask that you first write a file copy program using typical C-
language library calls. This is your specification program. Your second program will be the
result of modifying, if necessary, the copy program given below.

Part C: How can you compare the operation of these two programs to confirm that the pro-
gram below works properly? Are there scenarios where the code below functions differently
than your specification copy code? How can you convince a potential user of the copy code
(below) performs exactly the same function as the code you created to satisfy Part A?

Part D: You must write a one- or two-page description (in ASCII only) of what had to be
done to accomplish your task. For instance, how does the code below deal with the loss of
the C-library functions? How did you confirm your program’s correct operation?

You may find it useful to look at the include files: You can use the C-compiler itself to see
the contents of the file the compiler will actually compile by:

gcc -E <c-program-file>.c
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It is important that you explain why your code is correct. How can you establish the
correctness of your solution? To start with, what is your specification?

For your writeup, we are not interested in formatting; thus, your writeup will actually be
in the form of a C-language comment.

Note – everything in the file that you submit for this homework should be in ASCII. How
can you check this? Is there a utility that can be used to confirm the “ASCII-ness” of your
submission? Explain how you can guarantee that your submission is in ASCII only?

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

int cp(const char *from, const char *to)

{

// Original "cp" example taken from Stack Overflow:

// https://stackoverflow.com/questions/2180079/how-can-i-copy-a-file-on-unix-using-c

// Code then modified to eliminate the use of goto. Was this done correctly?

// Note the lack of references to library include files <stdio.h> and <stdlib.h> .

@strong{Question 1} What does the C-language "const" keyword mean?

// Why is it used?

int fd_to;

int fd_from;

char buf[4096];

@strong{Q1(a):} Why this size? How should this array be positioned?

ssize_t nread;

int saved_errno;

// Open input file

fd_from = open(from, O_RDONLY);

// If file open error, exit here

if (fd_from < 0)

return -11;

// Open output file

fd_to = open(to, O_WRONLY | O_CREAT | O_EXCL, 0666);

if (fd_to < 0)

{
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// The exit code idiom just below is repeated three times...

saved_errno = errno;

close(fd_from);

if (fd_to >= 0)

close(fd_to);

// This way, the output file open return code is made

// available, and not (likely successful) error code for

// closing the input file.

@strong{Question 2} // Has something been lost? Is there a reason we

// would want to see the input file return code?

errno = saved_errno;

return -12;

}

while (nread = read(fd_from, buf, sizeof buf), nread > 0)

// While content is successful read, do:

{

char *out_ptr = buf;

ssize_t nwritten;

do {

nwritten = write(fd_to, out_ptr, nread);

if (nwritten >= 0)

{

nread -= nwritten;

out_ptr += nwritten;

}

// Check if error return code means the system call was

// interrupted by a signal. If so, continue; otherwise,

// quit.

@strong{Question 3} // This is a bit subtle -- can you explain the

// reason for this?

else if (errno != EINTR)

{

// Exit...

saved_errno = errno;

// Again, closing the input file, but reporting a file

// write problem.

close(fd_from);

if (fd_to >= 0)
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close(fd_to);

errno = saved_errno;

return -13;

}

} while (nread > 0);

}

if (nread <= 0)

// When no characters are read or there is a read call error,

// then close the output file and then close the input file.

{

if (close(fd_to) < 0)

{

fd_to = -1;

// Exit...

saved_errno = errno;

// Close the input file.

close(fd_from);

if (fd_to >= 0)

close(fd_to);

// Depart with -14 status code.

errno = saved_errno;

return -14;

}

close(fd_from);

/* Success! */

return 0;

}

else {

// Executing this code seems like a compiler error.

@strong{Question 4} // Can this program ever return a -15 status?

return -15;

}

}

// To reduce the complexity of file name parsing, etc., I have

// ‘‘hard-coded’’ the input and output file names. For your Homework

// #1 solution, you are welcome to do the same -- here, the input file

// is named ‘‘input.txt’’ and the output file is named ‘‘output.txt’’.

// This prevents a whole collection of potential problems with
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// improper file names, buffer overruns, etc.

int main( int argc, char *argv[], char *env[] ) {

char *input_file = "input.txt";

char *output_file = "output.txt";

int cp_status = 0;

cp_status = cp( input_file, output_file );

return( cp_status );

}
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3.3 Homework 2

Homework Assignment 2

CS 340d

Unique Number: 52470

Spring, 2021

Given: January 28, 2021

Due: February 9, 2021

This homework concerns C-language types and predicates. Below are some diagrams. You
must define a corresponding C-language type declaration for each diagram. Later there
are some problems about type specifications. Remember to respect the organization of the
fields within the structures – lower addresses are lower down on the page.

For problems 1, 2, 3, 4, and 5, write down a C type specification for the data structure
shown or described. Abbreviations used:

c - char s - short w - int l - long p - pointer # - no specification

<- 16 ->

1. +---+---+

| s | n

+---+---+

...

+---+---+

| s | 1

+---+---+

| s | 0

+---+---+

Assume n has been defined using #define macro.

2. Define a C-language struct and a union for the following diagram.

<------------ 64 bits ---------->

+---+---+---+---+---+---+---+---+

| l |

+---+---+---+---+---+---+---+---+

| c | # | s | w |

+---+---+---+---+---+---+---+---+

| p --> l |

+---+---+---+---+---+---+---+---+

3. Define a type declaration for a pointer to an array of elements of the type in 2.

4. Define a type declaration for a linked-list of integers.

5. <------------ 64 bits ----------> Field names

+---+---+---+---+---+---+---+---+

| l | r

+---+---+---+---+---+---+---+---+

| l | l
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+---+---+---+---+---+---+---+---+

| p | nx

+---+---+---+---+---+---+---+---+

Define a type, using “typedef” named “struct range”, of the structure above, where “p” is
a pointer to the type of the object above. When defining such a structure, name it “range”
with field names “nx”, “l”, and “r” – and finally, with (type) name “range t”.

6. Given:

int a[] = { 3, 5, 8, 4, 2, 6, 7 };

what is:

a[*a + *(a + 4)] == ?

7. What is the difference between type definitions a and b (just below):

a. int (*months)[12]

b. int *months[12]

c. Draw a diagram that exhibits the two types above.

8. Diagram (meaning, draw a diagram like in problem 2), the following types:

a: char *x

b: char *x()

c: char (*x())

d: char (*x())[]

e: char (*(*x())[])

f: char (*(*x())[])()

9. Is a freebie...

10. Define a subroutine that takes two “long” integer arguments, and uses “malloc” to
allocate space for one structured object of the kind in problem 5 (above). The “p” field
should be set to NULL, and this subroutine should return the address of the structure
allocated.

The problems above are each worth one point. The next problem is worth ten points.

11. Consider a representation of a set that involves ranges of values on the number line.
Our number line admits ranges from -2^63 to 2^63-1, inclusive. Here is an example repre-
sentation for a set that includes a range from -20 to -10 (inclusive), 7, 9 to 11 (inclusive).

<------------ 64 bits ----------> Field names

+---+---+---+---+---+---+---+---+

| 11 | r

+---+---+---+---+---+---+---+---+

| 9 | l

+---+---+---+---+---+---+---+---+

| NULL | nx

+---+---+---+---+---+---+---+---+

7 6 5 4 3 2 1 0 byte offset

^

|

+-------+

|
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+---+---+---+---+---+---+---+---+ |

| 7 | |

+---+---+---+---+---+---+---+---+ |

| 7 | |

+---+---+---+---+---+---+---+---+ |

| * >------------ | >-----+

+---+---+---+---+---+---+---+---+

^

|

+-------+

|

+---+---+---+---+---+---+---+---+ |

| -10 | |

+---+---+---+---+---+---+---+---+ |

| -20 | |

+---+---+---+---+---+---+---+---+ |

| * >------------ | >-----+

+---+---+---+---+---+---+---+---+

^

|

Beginning of list >--------+

Given a list of pairs of numbers (each appearing on a separate line), create an ordered,
compressed representation for the specified set. For example, the set above might have
been specified (in a file) as:

-14 -10

7 7

11 10

9 10

-20 -12

Write a program that reads such a file and stores these contents as a linked list where each
“struct range” is created through a call of “malloc”. After reading the input file, your
program should "clean" the data structure so that it is ordered (sorted) and so there are
no range overlaps (between input pairs). For instance if the input file contained

2 3

4 5

7 10

9 14

then the final result should be

2 5

7 14

You are asked to write a C-language predicate that recognizes when the input is well-
formed. Somewhere in your program, before you print the output, you should include
an assert statement that calls your well-formed, compressed-element-recognizer predicate.
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Finally, you need to print out the ranges, just like the example above, from smallest to
largest.

We will run your program on inputs different than those in the example given just above.
We will check to see that your program rejects improper inputs. In other words, you should
have a predicate that recognizes valid input values. Identify this predicate in your code.

Before you start, the first thing to do is to think. Is the input well-formed? How would you
determine this? Can you write a predicate that rejects ill-formed input files? What should
you do when your input predicate recognizes malformed input? Overall, we are asking that
you produce three predicates:

• a predicate that recognizes well-formed input,

• a predicate that recognizes well-formed data structure, and

• a predicate that recognizes an ordered version of data structure, which will be used
with the predicate just above.

OK, once you believe you have a good input file, can you read the input into the data
structure diagrammed above, and then print it out so that it exactly matched the input?
Remember to define a predicate for the data structure above. Why would you do this?
Answer: to help make sure that you read the input correctly. This should be available by
way of the -c command-line flag option.

Finally, you need to compress overlapping ranges and order the cells of your data. Once
done, you should print out the compressed ranges in order – from the most negative value
to the most positive value – by printing two numbers per line for all (compressed) ranges.
And, again, you should have a predicate that recognized an ordered version of the data
structure above.

The program takes one command line argument – the file name – and can it should tolerate
the “-c” argument to regurgitate its input as text.

The class TA will post corrections and turn-in instructions on Canvas.
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3.4 Homework 3

Homework Assignment 3

CS 340d

Unique Number: 52470

Spring, 2021

Given: February 4, 2021

Due: March 2, 2021

This assignment concerns using the C-language standard library macro assert to write pre-
conditions and post-conditions for various C-language standard library functions.

For each library function listed below, write the most complete pre-condition and post-
condition you can. See the class lecture notes section titled C Lanugage Assertions for an
example.

1. int isspace(int c)

This is very much like the example given in the class notes.

2. size t strlen(char *cs)

This function takes a pointer to a string and returns the length. Does the length include
the final (terminating) zero?

3. int strncmp(char *cs, char *ct, int n)

This requires recognizing strings. Note also, that the comparison may terminate prior to
reaching the nth character.

4. char *getenv(const char *name)

What is the return type? If you attended class, this should be straightforward, but involve
some work.

5. long atol(const char *s)

The atol has an Interesting pre-condition.

6. Explain why we chose to break a check for upper-case characters into the disjunction of
three range checks (see just below).

int check_upper_char_2( char ch ) {

// Upper-case character?

return( ’A’ <= ch && ch <= ’I’ || ’J’ <= ch && ch <= ’R’

|| ’S’ <= ch && ch <= ’Z’ );

}

For extra credit, consider writing a predicate that recognizes a well-formed input first
argument for the function printf, where the printf call has exactly two arguments.

For the string (first) argument given printf, you should generate additional C-language
code (using the format string) that checks that the two arguments (arg1 and arg2) are well
formed. The amount of extra credit is only bounded by your enthusiasm, accuracy,and
quality of your answer.

Thus, you are given a call that looks like:

char format_str = "<format string for arg1 and arg2>"
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printf( format_str, arg1, arg2 );

Your result should be something like:

int analyze_format_str_arg1_arg2( char *fmtstr, void arg1, void arg2 );

// Prior to the printf, we perform an entry check...

assert( analyze_format_str_arg1_arg2( format_str, arg1, arg2 ) );

// And, then, we call the ‘‘printf’’ procedure...

printf( format_str, arg1, arg2 );
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3.5 Homework 4

Homework Assignment 4

CS 340d

Unique Number: 52470

Spring, 2021

Given: February 11, 2021

Due: March 9, 2021

This homework concerns implementing the first three items of Lab #1: command-line
processing, reading initial y86 memory contents from a file, and writing memory contents
to a file. See See Section 4.2 [Lab 1 y86 Simulator], page 107, for details.
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3.6 Homework 5

Homework Assignment 5

CS 340d

Unique Number: 52470

Spring, 2021

Given: March 4, 2021

Due: March 30, 2021

This homework involves specifying the pre- and post-conditions for two C-library memory
copy routines, memcpy and memmove. In addition, you are asked to implement your own
versions, my memcpy and my memmove, that perform exactly the same functions as the
corresponding C-library procedures.

memcpy( char* s, char *ct, size t n) is a memory copy routine that expects the source
(pointed to by ct) and the target (pointed to by s) ranges to be completely disjoint from each
other. Write entrance and exit predicates for memcpy; that is, write an assert statement
that would precede a call to memcpy and an assert statement that would execute just after
the memcpy procedure returns.

memmove( char* s, char *ct, size t n) is a memory copy routine that allows the source
range (from ct to ct+n) and destination range (from s to s+n) to overlap. This kind of
copy is subtle because of how one copies when the target range overlaps the source range.
Write entrance and exit predicates for memmove; that is, write an assert statement that
would precede a call to memmove and an assert statement that would execute just after
the memmove procedure returns.

This is the hard part of this assignment. Implement your own versions of memcpy and
memmove; your routines should be called my memcpy and my memmove, and they should
take exactly the same arguments as their corresponding C-library procedures.

For each loop in your my memcpy and my memmove routines, define a measure that de-
creases with each iteration – your loop(s) should iterate n times, copying one byte with each
iteration.

The structure of your memory copy routines should be as follows.

void *my_memcpy( char *s, char *ct, size_t n ) {

assert(

// Everything you need to know upon entrance to this

// routine. This will be the same as the entrance

// predicate you wrote for using memcpy.

);

// Your code, including your measure and loop termination assertion.

assert(

// Everything you need to know upon exit from this

// routine. This will be the same as the exit
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// predicate you wrote for using memcpy.

);

}

and

void *my_memmove( char *s, char *ct, size_t n ) {

assert(

// Everything you need to know upon entrance to this

// routine. This will be the same as the entrance

// predicate you wrote for using memmove.

);

// Your code, including your measure and loop termination assertion.

// Hint: For this procedure, you may need to have more than one loop;

// thus, you need a proper measure for each loop you define.

assert(

// Everything you need to know upon exit from this

// routine. This will be the same as the exit

// predicate you wrote for using memmove.

);

}

Note, this assignment, done well, will require very careful work and a good bit of time.
In fact, this assignment will count as two homework grades; extra time is being given to
complete this assignment.

The entrance and exit assertion approach mentioned above is what Microsoft did to improve
the quality and reliability of the Windows operating system. I heard through the grapevine
that Windows operating-system subroutines were five to ten pages in length, and often the
input and exit assertions far exceeded the amount of code that was to be executed.

We will test the correctness of your implementation extensively, so it is important that your
code is correct. In addition, in an ASCII-only comment should be included in the same file
where your implementations for my memcpy and my memmove reside. In your comment,
you are to explain why you believe your assert statements will never fire, why your code
will terminate, and why your code is correct. Your comment should be provided in the form
of a single C-language comment; it should be at least 90 lines but not more than 120 lines
in length.
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3.7 Homework 6

Homework Assignment 6

CS 340d

Unique Number: 52470

Spring, 2021

Given: March 25, 2021

Due: April 6, 2021

There are two parts to this assignment.

Part A:

Write a C-language, insertion-sort program that operates in-situ. Your program must in-
clude pre- and post-conditions. Please write your insertion sort with two routines:

insert -- inserts one item into a growing array

isort -- sorts an array of numbers by repeatedly inserting

one item into an already sorted (sub-) list.

Also, demonstrate measures that decreases as these procedures execute. Below is a C-
language template for your code.

// A Very Simple C Program

#include "stdio.h"

int array[100000];

void insert( int a[], unsigned int l, unsigned int r, int v ) {

// Preconditions

// Insert first item of sub-array into (ordered) remainder of array;

// show decreasing measure

// Postconditions

}

void isort( int a[], unsigned int l, unsigned int r ) {

// Preconditions

// A loop that repeatedly calls insert; show decreasing measure

// Postconditions
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}

int main()

{

isort( array, 30, 999 ); // Example call

printf( "Sub-Array Sorted!\n" );

}

Please include instructions for compiling (e.g., “gcc isort.c”) and running a test on your
solution to the problem above. Here is an example of the input format expected:

./a.out -a [2, 1, 4, 3]

By running your insertion sort program (“./a.out”), it should return

[1, 2, 3, 4]

Part B:

This portion of the assignment is to ensure you are familiar with the Python 3 enviornment.
Why? We will use Python as our interface to the Z3 SMT system. Z3 can decide many
conjectures that are helpful to confirm when programming. To get you ready to use Z3, we
provide some problems.

1. Get a Python environment set up. What this looks like is up to

you, but remember that we will be running all your programs on UTCS

machines by simply invoking "python3 foo.py" where "foo.py" is your

program. To get started, write a program that writes "I understand

that all programs I write will be graded and tested on UTCS

machines." to the terminal.

2. The l1 (read "ell one") norm of a vector x := [x1 x2 ... xn]

computes the sum of the absolute values of the vector, i.e.,

l1([x1 x2 ... xn]) = |x1| + |x2| + ... + |xn|

Write a function that computes the l1 norm of a vector and answer the

following questions based on your function:

(a) What is the domain (inputs) of your function?

(b) What is the range (outputs) of your function?

(c) Is your function correct? How do you know?

3. Suppose now all xi are valued 0 or 1. We then call x a

bitvector. Let H denote the l1 norm for bitvectors.

Write a function that takes an integer and computes H on its binary

representation.

(a) What is the domain (inputs) of your function?

(b) What is the range (outputs) of your function?

(c) Input a value outside of the domain of H to your function. What

happens?
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(d) Is your function correct? How do you know?

4. If you haven’t already, SSH into the UTCS department machines.

Launch the Python 3 shell by typing "python3" and run the following

commands:

>>> from z3 import *

>>> p = Bool(’p’)

>>> q = Bool(’q’)

>>> s = Solver()

>>> s.add(Not(And(p,q)) != Or(Not(p), Not(q)))

>>> s.check()

(a) What is returned after the last command?

(b) What does that mean? Write a few words about what you think

just happened.

5. Place all your programs (questions 1-4) in a single .py file and

ensure that they execute in the order the questions are given.

Answer the questions as comments in the .py file. For question 2

and 3, the program should prompt the user to input a list of

numbers and a single number, respectively, e.g.,

>>> I understand that all programs I write will be graded and tested on UTCS machines.

>>> Provide a list of numbers:

1 2 3

>>> 6

>>> Provide a single number:

2

>>> 1

>>> <question 4 output here ... etc.>
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3.8 Homework 7

Homework Assignment 7

CS 340d

Unique Number: 52470

Spring, 2021

Given: April 6, 2021

Due: April 20, 2021

This homework involves specifying the pre- and post-conditions for some routines in the
Class Assembler. Our y86 class assembler is available from the Piazza website that concerns
our CS340d class.

For information about our Class Assembler, please read the C-style comments at the be-
ginning of the Class Assembler file.

This assignment concerns creating a file that contains various pre- and post-conditions.
Calls to these pre- and post-conditions have been included in the Class Assembler. In the
Class Assembler, there is a C-language-style “#include” statement where you are expected
to specialize a filename so it contains your UTEID (embedded as a part of the filename).

The file you are being asked to update is reproduced below. A link for the class assembler
can be found on the top-level web page for our class. Please download it and the associated
file named student uteid.h. For this homework, your task is to finish the work that was
started in this file.

You will turn in a new file named student uteid.h, where the five characters uteid have
been replaced with your personal uteid.
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3.9 Homework 8

Homework Assignment 8

CS 340d

Unique Number: 52470

Spring, 2021

Given: April 15, 2021

Due: April 27, 2021

CS 340d

Assignment 08

1. Recall from the last assignment, we defined the l1 norm for bitvectors.

Suppose we further restrict our domain to 32-bit integers, i.e.,

x := [x1 ... x32]

Remember from your previous courses that there are lots cool hacks that you can

do with bitvectors. Given that x is 32-bit, the following funny looking code

computes H(x):

def H(x) :

x = (x & 0x55555555) + ((x >> 1) & 0x55555555)

x = (x & 0x33333333) + ((x >> 2) & 0x33333333)

x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f)

x = (x & 0x00ff00ff) + ((x >> 8) & 0x00ff00ff)

x = (x & 0x0000ffff) + ((x >> 16) & 0x0000ffff)

return x

(a) Explain what the above code does by adding comments to each line. How does it

compute the l1 norm for 32-bit strings?

(b) Write pre- and post-conditions for this function in the form of assert statements.

2. Hypothetically, let’s say you have two friends, Jan and Amanda, with whom you

are completing this assignment. Jan and Amanda are very smart; before they even

saw the code in question 1, they came up with the following code that they

claim computes H for 32-bit integers:

## Jan’s function

def JanH(x) :

x = x - ((x >> 1) & 0x55555555)

x = (x & 0x33333333) + ((x >> 2) & 0x33333333)
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x = (x + (x >> 4)) & 0x0f0f0f0f

x = x + (x >> 8)

x = x + (x >> 16)

x = x + (x >> 32)

x = x & 0x7f

return x

## Amanda’s function

def AmandaH(x) :

x = x - ((x >> 1) & 0x55555555)

x = (x & 0x33333333) + ((x >> 2) & 0x33333333)

x = (((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) & 0xffffffff) >> 22

return x

Unfortunately, you suspect one of these functions is buggy, but you don’t know

whose. Moreover, since Jan and Amanda are so smart, you don’t want to accuse

their code of being wrong unless you have proof of a bug. You need to find a

counterexample (i.e., some input on which the function is wrong).

(a) One way to find a counterexample would be to compare both JanH(x) and

AmandaH(x) to H(x) for all 32-bit integers x. Try this. Does anything

unexpected happen?

(b) Use Z3 to help you figure out whose function is buggy and give a

counterexample as proof.

(c) Use Z3 to help you debug the buggy function and fix it.

(Hint: find out on which inputs the buggy function and H(x) differ, then

compare the outputs in binary.)

(d) Use Z3 to show that the once buggy function is now correct after the fix.

Let’s not think about the metaphysical consequences of Jan and Amanda reading

question 2.

3. Below is some code to get you started. Write a Python comment to explain

your use of Z3, e.g., how you used it in Question 2, why what you did in

Question 2 proved what was desired, whether you found Z3 useful, if you would

use it in other scenarios, etc.

from z3 import *
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def H(x) :

x = (x & 0x55555555) + ((x >> 1) & 0x55555555)

x = (x & 0x33333333) + ((x >> 2) & 0x33333333)

x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f)

x = (x & 0x00ff00ff) + ((x >> 8) & 0x00ff00ff)

x = (x & 0x0000ffff) + ((x >> 16) & 0x0000ffff)

return x

def JanH(x) :

x = x - ((x >> 1) & 0x55555555)

x = (x & 0x33333333) + ((x >> 2) & 0x33333333)

x = (x + (x >> 4)) & 0x0f0f0f0f

x = x + (x >> 8)

x = x + (x >> 16)

x = x + (x >> 32)

x = x & 0x7f

return x

def AmandaH(x) :

x = x - ((x >> 1) & 0x55555555)

x = (x & 0x33333333) + ((x >> 2) & 0x33333333)

x = (((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) & 0xffffffff) >> 22

return x
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3.10 Homework 9

Homework Assignment 9

CS 340d

Unique Number: 52470

Spring, 2021

Given: April 22, 2021

Due: May 6, 2021

cs340d

Assignment 09

1. Use Z3 to prove the following theorem:

((p -> q) -> (r -> s)) & (s ->t) -> ((p -> q) -> (r -> t))

See propositional formula 3.77.2 (p.g. 55 in the notes)

2. Use Z3’s theory of arrays to write a memcpy() program with the same

specification as in Assignment 5. Then write a Z3 "post-condition" that returns

unsat if the copy was successful and correct. Explain why your "memcopy"

function terminates. You do not need to write a pre-condition or use assert

statements, but you may if you wish. Below is some code to get started.

from z3 import *

## Store n data into memory at address

## Written recursively since "Store" returns a new Array

def store(data, address, n, mem) :

if (n == 0) :

return mem

else :

return store(data[1:], address + 1, n - 1, Store(mem, address, data[0]))

## Copy n "bytes" of data from address source to address dest in the memory model mem

def copy(source, dest, n, mem) :

if (n == 0) :

return mem

else :

return store( source + 1, dest + 1, n - 1, Store(mem, dest, mem[source]))

## Writes a formula to solver that is unsat iff the copy is correct (think post-condition)

def copyOK(source, dest, n, mem, solver) :

return 0
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## Initialise a Z3 array which will be our memory model

mem = Array("mem", IntSort(), IntSort())

## Initialise a solver

s = Solver()

## Some test "bytes"

data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

## store 10 "bytes" of data into mem starting at

mem = store(data, 0, 10, mem)

## copy 10 "bytes" of data from address 0 to address 20

# mem = copy(0, 20, 10, mem)

## Write a Z3 formula to solver s that returns unsat iff the copy was

## successful and correct.

# copyOK(0, 20, 10, mem, s)

## Check if the copy was successful

ch = s.check()

print(ch)

## Print out a counterexample if the copy was unsuccessful

if ch == sat : print(s.model())
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4 CS340d Laboratories

Laboratories (labs) are designed to enhance and deepen your understanding of specific
material. During the course of this semester, there will be four labs. These labs build upon
each other – so it’s very important that you develop and submit the work identified for each
lab.

The purpose of these laboratories is to make you familiar with the debugging process – by
developing some of the basic debugging tools and then using them to debug some programs.
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4.1 Lab 0 mywc

Laboratory 0

CS 340d

Unique Number: 52470

Spring, 2021

Given: January 28, 2021

Due: February 11, 2021

This laboratory concerns duplicating much of the functionality of the Unix "wc" command.
In addition, this laboratory requires adding additional functionality.

General Comment

Before we describe this laboratory assignment, we describe our philosophy for all labora-
tory assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements are
generally specified using natural language. To this point in your education, most program-
ming assignments have included some description of what program you should write. Then,
you are expected to interpret the requirments, specifications and other supplied documen-
tation to produce a conforming result. It requires tremendous care and expert knowledge
to write a precise description of any computation in a natural language – it is certainly
beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our programs, but that would require
us to teach mathematics for most of semester. As a community of software developers, this
approach would be extremely valuable, where it can be deployed, but it is not a mature
discipline. Even so, we will sometimes refer to programs that can be specified formally.

Unfortunately, we will not write formal (mathematical) specifications for your programming
assignments. Instead, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level commands. The running of these commands and their outputs will serve as
executable simulators. Note, in this class, we will not concern ourselves with Windows
behavior, but if you get this assignment to work with Windows also, that could be worth
extra credit.

Laboratory Requirements

This laboratory involves duplicating the functionality of the "wc" command, including the
command-line arguments "-c", "-l", "-w", but not the "-m" option, as your solution needs
to work only on byte-oriented input streams or files. Note, your program should also work
on binary files. You should name your "wc" command "mywc".

Here, we include some typical text that might help. The number of characters returned
should be equal to the length of the file or input. The number of lines should be equal to
the number of line feed characters contained in the file. The number of words should be
equal to the groups of characters separate by spaces, tabs, line feeds, and carriage returns.
You should read the "wc" manual entry carefully.

But, the real specification of "mywc" is what the Linux version of "wc" does on the de-
partmental Linux computers. This Linux program is your executable specification for this
laboratory. Extra credit may be awarded if you find a discrepancy of some kind in the
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Linux, FreeBSD, or MacOS commands. What is a discrepancy? Absolutely any input file
or stream that caused your "mywc" version to produce a correct result that is different
than the UTCS Linux computers. Now, if you can argue to the class that even though your
implementation is inconsistent with the UTCS Linux result, that your result is correct –
then you may have found a real bug! Bugs of this kind are always worth extra credit.

In addition, your "mywc" program, when given the "-C" (the uppercase "C") option, should
eliminate the remainder single-line C-language comment strings. As an example, when using
the "-C" option, the lines:

Some example text // to be deleted

but not from this line.

should be processed as if your "mywc" program received:

Some example text

but not from this line.

Note, the final space character on the first line remains – and needs to be included in the
character count your "mywc" returns.

When the "-C" option is given, your character and word count should not include the
elided characters and words. In file, single-line, C-language-style comments start with the
string "//" (two "/" characters) and extend to the end of the line. However, the end-of-line
(<LF>) characters should not be elided. So, really, your specification is:

sed ’s://.*$::g’ | wc <options>

For more "sed" details", see: http://www.grymoire.com/Unix/Sed.html and see:
http://sed.sourceforge.net/sed1line.txt . There are many more documents describing the
regular-expression language. Note, we may study regular expressions in more depth later
in the semester. So this is a good warm up exercise for that.

Laboratory Documentation

Finally, you need to include in your solution program a 60-line to 90-line comment as a
C-language comment that begins with a line containing only "/*" and ends with a line con-
taining only "*/" that describes your "mywc" command. This description should be in the
(approximate) format of a typical FreeBSD/Linux/MacOS manual entry. This description
is a writing assignment associated with this laboratory – all of the laboratories in this class
include a write-up of some kind. Remember, you are taking a class with a writing flag, and
this kind of summary will be required for all of the class laboratory assignments.

Grading

You laboratory will be graded as with the following weights:

70% - Functioning of your "mywc" implementation as specified above 30% - Written de-
scription of your "wc" command.

Be careful with what you write. We will be grading the functioning of your program on
several hundred files. And, we will carefully read your documentation, looking for problems
(grammar, spelling, run-on sentences, tense agreement, etc.) – errors will lower your grade.

Turn-in

Prior to the due date, we will post submission instructions.
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4.2 Lab 1 y86 Simulator

Laboratory 1

CS 340d

Unique Number: 52470

Spring, 2021

Given: February 11, 2021

Due: March 11, 2021

This laboratory concerns implementing a simulator for y86 binary programs. The "General
Comment" section (just below) is the same as it was in Lab 0; we repeat it in hopes that our
comments about writing accurate specifications is beginning to seep into your consciousness.

General Comment

Before we describe this laboratory assignment, we describe our philosophy for all labora-
tory assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements are
generally specified using natural language. To this point in your education, most program-
ming assignments have included some description of what program you should write. Then,
you are expected to interpret the requirments, specifications and other supplied documen-
tation to produce a conforming result. It requires tremendous care and expert knowledge
to write a precise description of any computation in a natural language – it is certainly
beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our programs, but that would require
us to teach mathematics for most of semester. As a community of software developers, this
approach would be extremely valuable, where it can be deployed, but it is not a mature
discipline. Even so, we will sometimes refer to programs that can be specified formally.

Unfortunately, we will not write formal (mathematical) specifications for your programming
assignments. Instead, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level commands. The running of these commands and their outputs will serve as
executable simulators. Note, in this class, we will not concern ourselves with Windows
behavior, but if you get this assignment to work with Windows also, that could be worth
extra credit.

Laboratory Requirements

This laboratory involves implementing a binary-level simulator (emulator, interpreter) for
the y86 computer model that was discussed in your CS429 class. We will simplify this
assignment by truncating all memory addresses to 24-bits when accessing a byte array that
we will use for the y86 memory; thus, an array of 2^24 bytes will be used for the simulated
memory.

There are four parts to this assignment. Two of them are straight forward; they concern
reading a file with the initial contents of memory and writing the contents of memory to
a file. The third part concerns reading the command-line arguments for the initial RIP.
These three parts are straightforward; you should do this immediately.

You can check whether your reader (memory fill) routine and your writer (memory dump)
routine work correctly by creating test files, and seeing that your writer produces an equiv-
alent output to your input.
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The fourth part involves writing a y86 simulator so as to execute y86 binary programs.

The y86 class simulator, that each of you will write, involves four steps:

• Reading command-line arguments

• Initializing y86 simulator memory

• Running the y86 simulator

• Printing the contents of non-zero y86 memory locations

The first thing to do is to implement the command-line argument parser; see the source
outline for additional details.

The second thing to do is to implement the memory-dump routine (writer).

The third thing to do is to implement the memory-fill routine (reader).

After you are sure that the three items above work perfectly, you can turn your attention
to your y86 binary-program simulator.

We will be providing additional information about this part of the laboratory. We will
review the code skeleton given below in class.

Laboratory Documentation

Finally, you need to include in your solution program file a 90-line to 120-line comment as
a C-language comment that begins with a line containing only "/*" and ends with a line
containing only "*/" that describes your "y86" command. This description should be in the
(approximate) format of a typical FreeBSD/Linux/MacOS manual entry. This description
is a writing assignment associated with this laboratory – all of the laboratories in this class
include a write-up of some kind. Remember, you are taking a class with a writing flag, and
this kind of summary will be required for all of the class laboratory assignments.

Grading

You laboratory will be graded as with the following weights:

70% - The functioning of your "y86" implementation. 30% - The written description of
your "y86" simulator.

Be careful with what you write. We will be grading the functioning of your program on
multiple input files. And, we will carefully read your documentation, looking for problems
(grammar, spelling, run-on sentences, tense agreement, etc.) – errors will lower your grade.

Turn-in

Prior to the due date, we will post submission instructions.

****************************************************************

Remember: Look for bugs!!!

****************************************************************

// y86.c For UT CS340d, by Warren A. Hunt, Jr.

// Version 0.4, March 4, 2021

#include "stdio.h"
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#include "stdlib.h"

#include "ctype.h"

#include "assert.h"

#include "string.h"

// Some Constants

#define NUM_OF_REGS (15)

#define NUM_OF_BYTES (1 << 24)

#define MEM_ADDR_MASK (NUM_OF_BYTES - 1)

#define MS_HALT (1)

#define MS_ILLEGAL (2)

#define MS_DECODE_REG_ERROR (3)

// Here is the structure of the y86 interpreter state.

struct y86 {

long int rgf[ NUM_OF_REGS ]; // The register file

long int rip; // The instruction pointer, should this be unsigned?

int zf; // The zero flag

int sf; // The sign flag

int of; // The overflow flag

char mem[ NUM_OF_BYTES ]; // The memory, just the first 2^24 bytes, should mem be unsigned?

int ms; // The model state

};

struct y86 st; // Declare the y86 state

// Forward procedure references

char y86_mem_read( struct y86 *stp, long addr );

void y86_mem_write( struct y86 *stp, long addr, char byte );

void y86_clear( struct y86 *stp ) {

// Clear the y86 state

long i;

// Clear register file

for( i = 0; i < NUM_OF_REGS ; i++ )

stp->rgf[ i ] = 0;

// Clear RIP

stp->rip = 0;
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// Clear Flags

stp->zf = 0;

stp->sf = 0;

stp->of = 0;

// Clear Memory

for( i = 0; i < NUM_OF_BYTES ; i++ )

stp->mem[ i ] = 0;

// Clear the y86 model state

stp->ms = 0;

}

void y86_print_registers( struct y86 *stp, FILE *output_stream ) {

// Print register file

int i;

for( i = 0; i < NUM_OF_REGS ; i++ )

fprintf( output_stream, "R%d: %ld\n", i, stp->rgf[ i ] );

// Print RIP

fprintf( output_stream, "RIP: %ld\n", stp->rip );

// Print Flags

fprintf( output_stream, "Zero: %d, Sign: %d, Overflow: %d\n",

stp->zf, stp->sf, stp->of );

// Print y86 model state

fprintf( output_stream, "Model state: %d\n", stp->ms );

}

void y86_print_memory( struct y86 *stp, FILE *output_stream,

long int start, long int end ) {

// Print Memory

int i;

for( i = start; i < end ; i++ )

fprintf( output_stream, "Mem[%d]: %d\n", i, stp->mem[ i ] );

}

#define MAX_INPUT_LINE_LEN (30)

void y86_file_read( struct y86 *stp, FILE *input_stream ) {

// Read an input file, which is a list of input pairs formated as follows:

// Each <address_i> is a natural number, 0..2^24-1, inclusive

// Each <value_i> is a natural number, 0..255, inclusive

// Memory address will be monotonically increasing, with no duplicates.
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// 012345... Column numbers; this line is not part of the input file.

// (

// (<address_0> <value_0>)

// (<address_1> <value_1>)

// (<address_5> <value_5>)

// (<address_9> <value_9>)

// ...

// (<address_n> <value_n>)

// )

// No input lines should contain an <address>-<value> pair where

// <value> is 0. Actually, the format above doesn’t requre line

// breaks, but having this input format is exactly the output format

// -- so it is easy to confirm that the file reading and printing

// routines work correctly.

// Question: What if a pair with <address_7> is specified two or more times?

// Answer: Present error, and stop. Note, with our format, we won’t be able

// to tell if an address is set to zero more than once.

// Read the input file into the memory.

char buf[MAX_INPUT_LINE_LEN]; // Line buffer

char junk[MAX_INPUT_LINE_LEN];

char *ans; // Answer pointer

int nargs; // Number of arguments

unsigned long addr = 0;

unsigned int byte = 0;

// The largest 64-bit address is: 18446744073709551616

// The largest 8-bit value is: 255

// thus, the longest input line is:

// 012345... Column numbers; this line is not part of the input file.

// (18446744073709551616 255)

// Read and check first line of input

ans = fgets( buf, MAX_INPUT_LINE_LEN, input_stream );

assert( ans != NULL && ans == buf );

// printf( "1: %s", ans ); // To be deleted...

assert( ~strncmp( "(\n", ans, 3 ) );

// Read second line of input, remember the read includes the <lf>

ans = fgets( buf, MAX_INPUT_LINE_LEN, input_stream );
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while( ans != NULL && ans == buf && strnlen( ans, 5 ) > 3 ) {

assert( strnlen( buf, MAX_INPUT_LINE_LEN ) <= MAX_INPUT_LINE_LEN );

// Read address-value pair...

// Need code here!!!

// Read

ans = fgets( buf, MAX_INPUT_LINE_LEN, input_stream );

}

assert( ~strncmp( ")\n", ans, 3 ) );

}

void y86_file_write( struct y86 *stp, FILE *output_stream ) {

// Output the final memory in the same format as the input fomat,

// but only non-zero memory values should be written

long i;

fprintf( output_stream, "(\n" );

for( i = 0; i < NUM_OF_BYTES; i++ ) {

if ( stp->mem[ i ] != 0 )

fprintf( output_stream, " (%lu %u)\n", i, (unsigned char) stp->mem[ i ] );

}

fprintf( output_stream, ")\n" );

}

// START of y86 simulator definition

char y86_mem_read( struct y86 *stp, long int addr ) {

// Read y86 memory

unsigned long u_addr = addr;

return( stp->mem[ ( u_addr & MEM_ADDR_MASK ) ] );

}

void y86_mem_write( struct y86 *stp, long int addr, char byte ) {

// Write y86 memory

unsigned long u_addr = addr;

stp->mem[ ( u_addr & MEM_ADDR_MASK ) ] = byte;

}

long int y86_mem_read_64( struct y86 *stp, long int addr ) {

// Read y86 memory

unsigned long u_addr = addr;

char byte0 = y86_mem_read( stp, u_addr );
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char byte1 = y86_mem_read( stp, u_addr + 1 );

char byte2 = y86_mem_read( stp, u_addr + 2 );

char byte3 = y86_mem_read( stp, u_addr + 3 );

char byte4 = y86_mem_read( stp, u_addr + 4 );

char byte5 = y86_mem_read( stp, u_addr + 5 );

char byte6 = y86_mem_read( stp, u_addr + 6 );

char byte7 = y86_mem_read( stp, u_addr + 7 );

long int quadword = ( byte0 ||

byte1 << 8 ||

byte2 << 16 ||

byte3 << 24 ||

(long int) byte4 << 32 || // Strange warning

(long int) byte5 << 40 ||

(long int) byte6 << 48 ||

(long int) byte7 << 56 );

return( quadword );

}

void y86_step( struct y86 *stp ) {

// Get first byte of instruction to simulate

unsigned long rip = (unsigned long) stp->rip;

unsigned char byte_at_pc = (unsigned char) y86_mem_read( stp, rip );

unsigned char reg_byte = 0;

unsigned char reg_byte_a = 0;

unsigned char reg_byte_b = 0;

// Much to complete below!!!

switch( byte_at_pc ) {

// Halt

case 0: stp->ms = MS_HALT; break;

// NOP

case 16: stp->rip = stp->rip + 1; break;

// RRMovL

case 32:

stp->rip = stp->rip + 1;

reg_byte = y86_mem_read( stp, stp->rip );

reg_byte_a = (reg_byte >> 4) & 0xF;

reg_byte_b = reg_byte & 0xF;
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// Test for some stuff...

if( reg_byte_a == 15 || reg_byte_b == 15 ) {

stp->ms = MS_DECODE_REG_ERROR;

break;}

stp->rip = stp->rip + 1;

// Do the work!

stp->rgf[ reg_byte_b ] = stp->rgf[ reg_byte_a ];

break;

// IRMovL

case 48:

break;

//RMMovL

case 64:

break;

// MRMovL

case 80:

break;

// Arithmetic operations

case 96: // Add

break;

case 97: // Sub

break;

case 112: // Jump

stp->rip = 0; // The new PC, whatever it should be...

break;

case 128: // Conditional move ...

break;

// ...

case 144: // Subroutine Call

break;

default:

stp->ms = MS_ILLEGAL;

printf( "Very strange instruction.\n" );

break;
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}

}

void y86( struct y86 *stp, size_t cnt ) {

// Check if time remaining

if ( cnt == 0 ) return;

// Check if error set

if ( stp->ms ) return;

// Execute one instruction

y86_step( stp );

y86( stp, cnt - 1 );

}

int main( int argc, char *argv[], char *envp[] ) {

// assert( main_args_p( argc, argv, envp ) );

size_t n = 0; // Should be set by the ‘‘-count’’ command-line argument

// Think about what other command-line arguments one might need.

// For instance, is an initial RIP needed?

// The size of the y86 state

// printf("Overall size of y86 state is: %ld.\n", sizeof( st ) );

long int variable;

printf( "Size of LONG INT is: %ld.\n", sizeof( variable ) );

y86_clear( &st ); // Clear the y86 state.

// Initialize the memory.

// st.mem[ 13 ] = 3;

// st.mem[ 18 ] = 8;

// y86_mem_write( &st, (unsigned long) 4611686018427387905, 1 );

// y86_mem_write( &st, (unsigned long) 4611686018427387906, 2 );

y86_file_read( &st, stdin ); // Fill memory

// y86, <n>

y86( &st, 2 ); // Run y86 interpreter on <n> instructions...

// char *str = "a\n";

// printf( "Length of ‘‘%s’’ is: %ld.\n", str, strnlen( str, 10 ) );
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// printf( "EOF: %d.\n", EOF );

y86_print_registers( &st, stdout );

fprintf( stdout, "\n" );

y86_print_memory( &st, stdout, 0, 32 );

// Print all of the memory

// y86_file_write( &st, stdout ); // Print memory

return( st.ms );

}
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4.3 Lab 2 y86 Debugger

Laboratory 2

CS 340d

Unique Number: 52470

Spring, 2021

Given: March 22, 2021

Due: April 20, 2021

This laboratory concerns implementing a debugger addition to your y86 simulator. The
"General Comment" section (just below) is the same as it was in Lab 0; we repeat it in
hopes that our comments about writing accurate specifications is beginning to seep into
your consciousness.

General Comment

Before we describe this laboratory assignment, we describe our philosophy for all labora-
tory assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements are
generally specified using natural language. To this point in your education, most program-
ming assignments have included some description of what program you should write. Then,
you are expected to interpret the requirments, specifications and other supplied documen-
tation to produce a conforming result. It requires tremendous care and expert knowledge
to write a precise description of any computation in a natural language – it is certainly
beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our programs, but that would require
us to teach mathematics for most of semester. As a community of software developers, this
approach would be extremely valuable, where it can be deployed, but it is not a mature
discipline. Even so, we will sometimes refer to programs that can be specified formally.

Unfortunately, we will not write formal (mathematical) specifications for your programming
assignments. Instead, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level commands. The running of these commands and their outputs will serve as
executable simulators. Note, in this class, we will not concern ourselves with Windows
behavior, but if you get this assignment to work with Windows also, that could be worth
extra credit.

Laboratory Requirements

This laboratory involves implementing a binary-level debugger extension to your simulator
(emulator, interpreter) for the y86 computer model that was discussed in your CS429 class.

There are two parts to this assignment: (Part 1) to write a test program that exercises
every y86 instruction provided by your y86 simulator, and (Part 2) to implement various
y86, binary-level debugging commands. The class y86 simulator (version 0.5) provides a
template for every instruction that must be implemented.

Your test program should follow the same format as before (with the address-value pairs in
decimal), but to make your program readable, you should also include comments for each
instruction. For example,

(
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(<address_0> <value_0>) ; e.g., irmovl 5, rbx

(<address_1> <value_1>)

...

(<address_n> <value_n>)

)

Of course, your simulator should ignore these comments. You should also give a brief
description of what your program does. For a more complete description of how instructions
are encoded in memory, see Computer Systems: A Programmer’s Perspective (CSAPP),
Third Edition.

Lab 1 assignment was hard, and this was reflected in the submissions. Some Lab 1 submis-
sions didn’t even provide implementations for all of the instructions! Obviously, we need
a better result if you are going to use your simulators to debug y86 binary-level programs!
We don’t want to be debugging our simulators when we are trying to find subtle bugs in
y86 binary-level programs.

Part 1 is due two weeks from the assignment date. Part 2 is due four weeks from the
assignment date. We will test your Part 1 submission much more thoroughly than we did
for Lab 1. You will resubmit Part 1 with Part 2 in four weeks from the assignment date.

Part 2 involves adding commands to your simulator so it can be controlled from the com-
mand line. To make this possible, the first update you need to make to your simulator is
to implement the “-avf” address-value-file argument. This command-line flag requires an
associated filename “<avf filename>.avf” argument, such as:

--avf <av_filename>.avf

Such an “avf” (address-value-file) argument contains the initial memory contents for your
y86-binary simulator. Thus, your simulator will not accept its initial memory content from
standard-in, but from the filename specified.

Your simulator will now become interactive. It will accept the following commands:

a <a> ; Set address to natural number: <a>

b <n> ; Print <n> address-byte values (<addr> <byte>) starting at address <a>

q <n> ; Print <n> address-quad values (<addr> <qword>) starting at address <a>

i ; Print all registers, flags, the :RIP values

e <n> ; Execute <n> y86 instructions

Note, the (separate) a command sets the address for the next (or repeated) use of the b
and q commands. Using these commands, you will be able to exercise your simulator with
various test programs, and you will use these commands to debug binary programs.

Adding the following commands will might it easier to use your simulator, but they are not
required.

a <a> ; Set address to natural number: <a> [Same as above]

p ; Set y86 simulator value :RIP to <a>

r <n> ; Set y86 simulator register <a> to <n> (where <a> < 15)

B <v> ; Write natural number memory byte <v> at <a>

Q <v> ; Write natural number memory quad-word <v> at <a>

To help you debug your simulator, we will provide the CS340d Class Assembler. The Class
Assembler, provided by Alec Perry, is described in Homework #7. It will help you to do
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Homework #7 as soon as possible as it involves the very Assembler that will generate code
for your simulator. Here is some example input for the Class Assembler:

initialize:

irmovq 1024 %rsp # Initialize :RSP

irmovq 1 %rdx # Constant 1

operands:

irmovq 20 %rax # Number to add

pushq %rax # Push on stack

irmovq 13 %rax # Second number to add

pushq %rax # Push on stack

code-to-fetch-add-store:

popq %rcx # Get second number

popq %rbx # Get first number

# addl :rbx :rcx # Specification

loop:

rrmovq %rcx %rax # Copy

andq %rax %rax # Number zero?

equal-then-exit:

je store-answer # If so, finished

add-1-sub-1:

addq %rdx %rbx # Add 1 to first number

subq %rdx %rcx # Subtract 1 from second number

jmp loop # Repeat

store-answer: # Finished

pushq %rbx # Push answer on stack

halt

Below is a sample execution of your simulator using the commands above. First, the call:

% y86_sim --avf <y86_assembler>.avf

Once started, then your simulator should accept the commands above so you can run the
code just loaded into your y86 simulator. Here is an example interactive session; the lines
that start with “>” characters are output from your simulator.

./y86_sim --avf <y86_assembler>.avf

i

> ((:RIP 0)

> (:RAX 0 :RBX 0 :RCX 0 :RDX 0

> :RDI 0 :RSI 0 :RBP 0 :RSP 0

> :R08 0 :R09 0 :R10 0 :R11 0

> :R12 0 :R13 0 :R14 0)

> (:F-ZF 0 :F-SF 0 :F-OF 0)

> (:MR-STATUS 0))

a 0

> 0
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e 6

> 6

i

> ((:RIP 44)

> (:RAX 13 :RBX 0 :RCX 0 :RDX 1

> :RDI 0 :RSI 0 :RBP 0 :RSP 1008

> :R08 0 :R09 0 :R10 0 :R11 0

> :R12 0 :R13 0 :R14 0

> (:F-ZF 0 :F-SF 0 :F-OF 0)

> (:MR-STATUS 0))

a 1008

> 1008

q 2

> ((:ADDRESS 1008 :QWORD-VALUE 13)

> (:ADDRESS 1016 :QWORD-VALUE 20))

... And so on...

Laboratory Documentation

Finally, you need to include in your solution program file a 90-line to 120-line comment as
a C-language comment that begins with a line containing only "/*" and ends with a line
containing only "*/" that describes your "y86" command and describes how to use your
simulator.

This description should be in the (approximate) format of a typical FreeBSD/Linux/MacOS
manual entry. This description is a writing assignment associated with this laboratory – all
of the laboratories in this class include a write-up of some kind. Remember, you are taking
a class with a writing flag, and this kind of summary will be required for all of the class
laboratory assignments.

When turning in your lab, make sure that your documentation addresses how to use your
simulator.

Grading

You laboratory will be graded as two parts with the following weights:

Part 1:

70% - The correct functioning of your "y86" binary-level simulator

and a test program.

30% - The written description of your "y86" binary-level simulator,

and why your test program is thorough.

Part 2:

70% - The functioning of your "y86" debugger commands

30% - The written description of your "y86" debugger commands

Be careful with what you write. We will be grading the functioning of your program on
multiple input files. And, we will carefully read your documentation, looking for problems
(grammar, spelling, run-on sentences, tense agreement, etc.) – errors will lower your grade.
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Turn-in

Prior to the due date, we will post submission instructions.
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4.4 Lab 3 y86 Debugging

Laboratory 3

CS 340d

Unique Number: 52470

Spring, 2021

Given: April 20, 2021

Due: May 4, 2021

This laboratory concerns using your y86 simulator and your y86 debugger to debug some
y86 binary code.

The "General Comment" section (just below) is the same as it was in Lab 0; we repeat it
in hopes that our comments about writing accurate specifications is beginning to seep into
your consciousness.

General Comment

Before we describe this laboratory assignment, we describe our philosophy for all labora-
tory assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements are
generally specified using natural language. To this point in your education, most program-
ming assignments have included some description of what program you should write. Then,
you are expected to interpret the requirments, specifications and other supplied documen-
tation to produce a conforming result. It requires tremendous care and expert knowledge
to write a precise description of any computation in a natural language – it is certainly
beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our programs, but that would require
us to teach mathematics for most of semester. As a community of software developers, this
approach would be extremely valuable, where it can be deployed, but it is not a mature
discipline. Even so, we will sometimes refer to programs that can be specified formally.

Unfortunately, we will not write formal (mathematical) specifications for your programming
assignments. Instead, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level commands. The running of these commands and their outputs will serve as
executable simulators. Note, in this class, we will not concern ourselves with Windows
behavior, but if you get this assignment to work with Windows also, that could be worth
extra credit.

Laboratory Requirements

This laboratory requires you to reverse-engineer and debug y86 binary programs, and de-
termine whether they work properly. These programs are given at the end of this Lab
assignment.

For each program, you are asked to reverse-engineer the y86 “binary” code into y86 assem-
bler. And, for each program, you are asked to describe what function the binary program
provides and how one uses the binary program. If there is a bug in any of these programs,
you should provide a fix. You should provide example usage for each program. Note, the
first program starts at zero. The second program does not start at zero, but very close to
its start, it initializes the stack pointer.
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Laboratory Documentation

Finally, you need to describe what each program does, and what fixes, if any, were required
to get it to work properly. For each program you reverse engineer, and fix as required,
you should describe your observations in a 60-line comment as a C-language comment that
begins with a line containing only "/*" and ends with a line containing only "*/" that
describes your use of your commands and what each program does.

Your description of each program and what it does should be in the (approximate) format
of a typical FreeBSD/Linux/MacOS manual entry. This description is a writing assignment
associated with this laboratory – all of the laboratories in this class include a write-up of
some kind. Remember, you are taking a class with a writing flag, and this kind of summary
will be required for all of the class laboratory assignments.

Grading

You laboratory will be graded as two parts with the following weights:

70% - The correct functioning of your y86 binary programs, with fixes,

if required. And, please provide a test program for each program.

30% - The written description of what each y86 binary program does, and

your process of bug discovery and repair.

Be careful with what you write. We will be grading the functioning of your program on
multiple input files. And, we will carefully read your documentation, looking for problems
(grammar, spelling, run-on sentences, tense agreement, etc.) – remember, errors may lower
your grade.

Turn-in

Prior to the due date, we will post submission instructions.

Binary Programs

Below are some binary programs to reverse engineer. Note, there is a bug in the second
program; hopefully, you can find it and fix it.

It will probably be helpful to reverse-engineer this into assembler, and get the class assem-
bler to produce this exact binary. Then, you will have source code that will be easier to
understand.

Program 1:

(

(0 99)

(2 48)

(3 242)

(4 9)

(12 99)

(13 102)

(14 48)

(15 241)

(16 1)

(24 97)

(25 22)

(26 96)
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(27 32)

(28 96)

(29 98)

(30 118)

(31 26)

)

Program 2:

(

(0 160)

(1 95)

(2 32)

(3 69)

(4 160)

(5 63)

(6 160)

(7 111)

(8 80)

(9 83)

(10 8)

(18 99)

(20 98)

(21 51)

(22 113)

(23 96)

(31 48)

(32 240)

(33 1)

(41 32)

(42 49)

(43 97)

(44 1)

(45 115)

(46 96)

(54 160)

(55 31)

(56 128)

(65 176)

(66 31)

(67 32)

(68 6)

(69 48)

(70 241)

(71 2)

(79 97)

(80 19)

(81 160)
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(82 63)

(83 128)

(92 176)

(93 31)

(94 96)

(95 96)

(96 176)

(97 111)

(98 176)

(99 63)

(100 32)

(101 84)

(102 176)

(103 95)

(104 144)

(112 48)

(113 244)

(115 32)

(122 32)

(123 69)

(124 48)

(125 240)

(126 3)

(134 160)

(135 15)

(136 128)

(145 176)

(146 63)

)
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