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ien
es,1 University Station, M/S C0500The University of TexasAustin, TX 78712-0233, USAE-mail: fhunt,reeberg�
s.utexas.eduAbstra
t. We formalized the DE2 hierar
hi
al, o

urren
e-oriented �-nite state ma
hine (FSM) language, and have developed a proof the-ory allowing the me
hani
al veri�
ation of FSM des
riptions. Using theACL2 fun
tional logi
, we have de�ned a syntax well-formedness pred-i
ate and a symboli
 simulator that de�nes the DE2 
y
le-based simu-lation semanti
s. DE2 is deeply embedded within ACL2, and the DE2language in
ludes an annotation fa
ility that 
an be used by programsthat manipulate DE2 des
riptions; this fa
ility may restri
t the use ofde�ned modules or it may provide other module information. The DE2user may write and prove the 
orre
tness of programs that generate DE2des
riptions. We have used DE2 to me
hani
ally verify 
omponents ofthe TRIPS mi
ropro
essor implementation.1 Introdu
tionWe present a formal des
ription of and proof me
hanism for the DE2 hierar
hi-
al, o

urren
e-oriented �nite state ma
hine (FSM) des
ription language, thatwe use to design and verify FSM-based designs or to optimize existing designs ina provably 
orre
t manner. This de�nition is primarily aimed at the representa-tion and veri�
ation of hardware 
ir
uits, but 
ould other areas su
h as proto
olsand software pro
esses. De�ning a hardware des
ription language (HDL) is diÆ-
ult be
ause of the many di�erent ways in whi
h it may be used; for example, aHDL may be used to spe
ify a simulation semanti
s, de�ne what 
ir
uits 
an bespe
i�ed, restri
t allowable names, enfor
e 
ir
uit inter
onne
t types, estimatepower 
onsumption, and provide layout or other manufa
turing information. Wehave formally des
ribed the DE2 language using the ACL2 logi
 [16℄, and wehave formally veri�ed DE2 des
riptions using the ACL2 theorem prover.DE2 is designed to permit the rigorous hierar
hi
al des
ription and hierar-
hi
al veri�
ation of �nite-state ma
hines (FSMs). We 
all our language DE2(Dual-Eval 2) be
ause of the two-pass approa
h that we employ for the languagere
ognizers and evaluators.DE2 is a
tually a general-purpose language for spe
-ifying FSMs; users may de�ne their own language primitives. We re
ognize validDE2 des
riptions with an ACL2 predi
ate that de�nes the permissible syntax,names, and hierar
hy, of valid des
riptions. The DE2 language also provides a



ri
h annotation language that 
an be used to enfor
e synta
ti
 and semanti
design restri
tions.We begin our presentation by listingDE2 language 
hara
teristi
s, 
ontrast-ing the DE2 language with other related e�orts, and presenting some DE2language examples. We present the de�nition of its simulation-based semanti
s.We 
on
lude by des
ribing how we use the DE2 language to verify 
ir
uits fromthe TRIPS mi
ropro
essor design [7℄.2 DE2 Language FeaturesThe development of DE2 required balan
ing many demands. In parti
ular, thedemand for hardware veri�
ation requires that it be as simple as possible toevaluate, translate, and extend. In this se
tion we list the resulting 
hara
teristi
sof DE2.{ Hierar
hi
al: A module is de�ned by 
onne
ting submodules. Cir
uits maybe de�ned in terms of modules that are small and easily veri�ed.{ O

urren
e-Oriented: Ea
h referen
e to a previously de�ned module orprimitive is 
alled an o

urren
e. All de�ned modules are de�ned as a se-quen
e of o

urren
es.{ Deep Embedding in ACL2: DE2 modules are represented as ACL2 
on-stants. Using the terminology de�ned by Boulton et al. [13℄, DE2 is deeplyembedded in the ACL2 language. This embedding allows us to write ACL2fun
tions whi
h simulate, analyze, generate, and manipulate DE2 modules.{ Annotation Me
hanisms: We use annotations to des
ribe elements of a
ir
uit whi
h are not de�ned by evaluation (e.g. layout information). InDE2,annotations are �rst 
lass obje
ts.{ Parameterized Finite Types: In DE2, every module input and outputis a bit ve
tor of parameterized length. When the lengths of all the inputsand outputs are known, we may appeal to BDD- and SAT-based te
hniquesfor veri�
ation.{ Two-pass Evaluation: A DE2 module is evaluated by twi
e interpretingits list of o

urren
es. This two-pass evaluation ne
essitates a level-order forthe 
ombination fun
tions.{ Representation of Internal State: This representation limits us to de-signing FSMs, but greatly simpli�es the design and veri�
ation of these ma-
hines.{ User-de�ned Primitive Modules: We allow users to de�ne primitivemodules, rather than requiring that primitive modules be built into the lan-guage.{ User-sele
table Libraries: Sets of primitives 
an be
ome libraries. Li-braries 
an be loaded into similar proje
ts, whi
h allows reuse of modulesand veri�
ation e�orts from past proje
ts.{ Veri�ed DE2 Language Generators: We 
an write ACL2 fun
tionswhi
h to DE2 modules. Sin
e the semanti
s of DE2 have been formalized in2



ACL2, these generation fun
tions 
an be shown to always generate 
orre
tDE2 
ode.{ Hierar
hi
al Veri�
ation:Our veri�
ation pro
ess involves verifying prop-erties of submodules and then using these properties to verify larger modulesbuilt from these submodules. This hierar
hi
al te
hnique allows us to avoidreasoning about the internals of 
omplex submodules.{ Books for Veri�
ation Support: We have de�ned a number of ACL2\books" to assist the veri�
ation of DE2 modules. When loaded into thetheorem prover, these books use the ACL2 semanti
s of DE2 to verify prop-erties ofDE2modules. We have used these books on a number of veri�
ationproje
ts, some of whi
h involve the veri�
ation of ACL2 fun
tions that gen-erate DE2 
ir
uits.3 Related WorkThe hardware veri�
ation 
ommunity has taken two approa
hes [13℄ to de�n-ing the semanti
s of 
ir
uits: shallow and deep embedding. Shallow embeddingde�nes the semanti
s of a 
ir
uit des
ription by translating it into some formallanguage. Deep embedding uses a formal language to de�ne the syntax and se-manti
s of a HDL by embedding its de�nition and representation into the formallanguage being used.The DE2 language presented here has been de�ned by deeply embedding itinside the ACL2 language, a primitive re
ursive fun
tional subset of Lisp [17℄.By embedding DE2 within ACL2, we are given a

ess to a theorem provingenvironment whi
h has su

essfully veri�ed large-s
ale hardware systems [8, 9℄.The formalization of the DE2 language is similar in style to the embeddingof the DUAL-EVAL HDL in NQTHM [11℄ and the DE language in ACL2 [10℄.The DE language is di�erent from DUAL-EVAL in that it permits user-de�nedprimitives, re-usable libraries, annotations, and 
ontains a di�erent stru
turingof data for state-holding elements. The DE2 language 
ontains the new featuresof DE, but also has a parameterized type system, a more sophisti
ated systemfor applying non user-de�ned primitives (implemented as ACL2 fun
tions), anda more automated veri�
ation system.In other hardware veri�
ation e�orts with ACL2, hardware des
riptions weretranslated dire
tly to ACL2 models in the style of shallow-embedding [8, 9℄.These e�orts do not permit the synta
ti
 analysis of the 
ir
uits so represented;that is, it is not possible to treat the 
ir
uit des
riptions as data so a programmay be used to analyze its suitability.Tom Melham used the HOL system [12℄ to deeply embed some elementsof a hardware des
ription language [12℄. Boyer and Hunt attempted to deeplyembed a subset of VHDL in the ACL2 logi
, but this spe
i�
ation grew tomore than 100 pages of formal mathemati
s, and its usefulness be
ame suspe
t.Deeply embedding a HDL into another language brings great analyti
al powerat the 
ost of having to manage all of the logi
al formalisms required|but theseformalisms represent the real 
omplexity that are inherit in su
h languages and3



in their asso
iated analysis and simulation systems. To make su
h an embeddinguseful, a serious e�ort needs has to be made to ensure an absolute e
onomy of
omplexity, and there needs to libraries that ease the use of su
h an embedding.A signi�
ant amount of work has fo
used on the use of fun
tional program-ming languages to simply the writing of HDL-based des
riptions. Mary Sheeranhas developed the language Lava [1℄ and she has used it to design fast multi-pliers [2℄. The strengths of Lava is its fa
ilities to write programs that generatehardware|similar to the ACL2 programs we write to generateDE2 des
riptions|and its ability to embed layout information in the Lava language|similar toannotations in DE2. The Lava implementation does not in
lude an asso
iatedreasoning system, but a user 
an appeal to SAT pro
edures to 
ompare one Lavades
ription against another des
ription.Our re
ent veri�
ation methodology, whi
h 
ombines a SAT-based de
isionpro
edure with theorem proving, was partially inspired by the work at Intel 
om-bining symboli
 traje
tory evaluation with theorem proving. This work makesuse of the fun
tional languages Lifted-FL [4℄ and, most re
ently, reFLe
t [3℄.Some of the ways DE2 di�ers from these languages in
lude its simpler seman-ti
s (e.g. two pass evaluation), its simple syntax, its 
lose 
orresponden
e to asubset of Verilog, and its embedding within a general-purpose theorem prover.4 ExampleThe use of the DE2 language is similar to the use of other hardware des
riptionlanguages. Cir
uits are spe
i�ed in a hierar
hi
al manner, and the synta
ti
 formof the hierar
hi
al 
ir
uit des
ription also de�nes the hierar
hi
al stru
ture of ades
ription's asso
iated state. Here we give an example of a DE2 
ir
uit spe
i-�
ation, and des
ribe some of the restri
tions imposed by the DE2 language.Our DE2 language de�nition is a tremendous abstra
tion of this physi
alreality. The DE2 language de�nes �nite-state ma
hines by permitting a user tode�ne primitive elements. For this se
tion, we assume the de�nition of Boolean
onne
tives and state-holding elements have already been given. Issues su
h as
lo
king, wire delay, ra
e 
onditions, power distribution, and heat, have beenlargely ignored.Informally, theDE2 language hierar
hi
ally de�nes Mealy ma
hines: the out-puts and next state of every module is a fun
tion of its inputs and internal state.By su

essively repeating the evaluation of an identi�ed FSM, the DE2 system
an be used to emulate typi
al �nite-state ma
hine operation. DE2 languagede�nitions are written with a Lisp-style syntax using the Lisp syntax permit-ted for writing 
onstant expressions; that is, modules de�nitions are representedas Lisp data, and they are not Lisp fun
tion de�nitions, ma
ros, or other su
h
onstru
ts. We �rst give an example of several 
ombinational 
ir
uits, wherewe exhibit some of the restri
tions our evaluation approa
h imposes. Later weexhibit a sequential 
ir
uit. 4
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hemati
 of an A

umulator4.1 Combinational ModulesConsider the 
ir
uit shown in Figure 1. In DE2, this 
ir
uit is represented asfollows.(a

umulator(params width)(outs (out width))(ins (in width) (load 1))(wires (adder-out width) (mux-out width))(sts reg)(labels (out 'data) (in 'data) (adder-out 'data)(mux-out 'data) (load '
ontrol))(o

s(reg (out) (register width 'data) (mux-out))(adder (adder-out) (bufn width 'data) ((bv-adder width in out)))(mux (mux-out) (bufn width 'data) ((bv-if load in adder-out)))))A module is identi�ed by its name, in this 
ase a

umulator. Ea
h moduleis 
omposed of a set of key-value pairs whose entries depend on the type of themodule. All modules have parameters, inputs, states, and outputs lists, identi�edby params, ins, sts, and outs, respe
tively. This module also has a labelsentry, whi
h is an annotation. Annotations are not required, but 
an be used toenable optimizations, assist veri�
ation, or provide information to other tools.In this 
ase, we use the labels annotation, along with a stati
 
he
ker, to ensurethat we do not use a data wire when a 
ontrol wire was expe
ted or vi
e versa.Annotations 
an also be used to represent layout information or other physi
alattributes { a user may de�ne their own annotations.A module will also in
lude o

urren
es whi
h de�ne the relationship betweenits inputs, outputs, and internal modules. Ea
h o

urren
e 
onsists of a unique5



o

urren
e name, a list of outputs, a module referen
e 
ombined with its pa-rameter list, and a list of inputs. For example, the �rst o

urren
e in the aboveexample is named reg. The reg o

urren
e 
onsists of an instan
e of a registermodule with the parameter width, input mux-out, and output out. The fa
t thereg o

urs in the a

umulator module's sts list denotes that it is a state-holding o

urren
e. Ea
h input 
onsists of an ACL2 expression of the inputsand internal \wires" of the module. Our primitive simulation-based evaluatoronly de�nes a �nite list of ACL2 fun
tions (e.g. bv-adder and bv-if) for use insu
h an expression.The DE2 language evaluation semanti
s de�ne the outputs of a module asa fun
tion of its inputs and internal state. The next state of a module is also afun
tion of a module's inputs and internal state. Evaluation is dis
rete; that is,there is an impli
it notion of time whi
h is broken into dis
rete steps.Module evaluation begins by binding input values to a module's inputs, andbinding state values to a module's states. Ea
h o

urren
e is then evaluated inthe order of its appearan
e. An o

urren
e is evaluated by binding its inputsand state to the spe
i�ed arguments and then evaluating the referen
e itself. Forthe module de�ned above, the o

urren
e reg is evaluated �rst; the output ofa register depends only on its internal state, not its inputs. After the value ofmux-out is determined by evaluating the mux o

urren
e then internal state ofthe reg o

urren
e is updated.In Se
tion 6.1 we present some properties of this example whi
h we haveproven me
hani
ally. Using the ACL2 theorem prover, we prove that for anydata-path width a LOAD of A (i.e. load is high, in is A) followed by an ADDof B (i.e. load is low, in is B) produ
es the addition of A and B.4.2 PrimitivesA primitive module, 
orresponding to a hardware 
omponent built-in to a syn-thesis tool, has a de�nition in DE2 that a non-primitive module. The di�eren
ebetween a primitive module is that rather than being de�ned in terms of o

ur-ren
es of submodules, a primitive module is de�ned by lisp fun
tions a

essedthrough lambda modules. A lambda module has formals 
orresponding to theo

urren
e's list of parameters followed by the o

urren
e's list of inputs. Thelambda module evaluates to a list with its �rst element being the state of thelambda module followed by its outputs. For example, the following is a de�nitionof the primitive modules bufn, whi
h is a submodule of our a

umulator.(bufn(type primitive)(params n sig-type)(outs (q n))(ins (x n))(labels (q sig-type) (x sig-type))(o

s (st (q)((lambda (x) (list 'nil x)))(x)))) 6



The bufnmodule instantiates a single lambdamodule. Sin
e the bufnmodulehas no state, this lambda expression evaluates to a list whose �rst element isnil. The output of the bufn module, whi
h 
orresponds to the se
ond elementof the list, is equal to its input. The other primitive found in our a

umulatorexample, register, is de�ned as follows.(register(type primitive)(params width sig-type)(outs (q width))(ins (d width))(sts st)(st-de
ls (st width))(labels (q sig-type) (d sig-type))(o

s(st (q)((lambda (width st d) (list d st)) width)(st d))))The register example shows how a state-holding primitive is de�ned in DE2.The state of the register module is a

essed through a lambda module namedst, whi
h turns the impli
it input and output of state into an expli
it input andoutput. The lambda module returns its input d as the next state and its statest as its output. Note that the registermodule also has a new �eld st-de
ls,whi
h de
lares that the state element st is a bit-ve
tor of length width. Thisde
laration is not a requirement of DE2 modules, but enables the later use ofde
ision pro
edures.5 The DE2 EvaluatorThe de�nition of the DE2 evaluator is 
omposed of two groups, ea
h 
ontainingtwo mutually re
ursive fun
tions. These four fun
tions implement the entirehierar
hi
al evaluation of the outputs and next-state values for any well-formedhierar
hi
al FSM de�ned using the DE2 language, ex
ept for the evaluation ofthe lambda and ACL2 (primitive) expressions. This set of fun
tions was designedwith a number of di�erent goals in mind, so design de
isions were made toattempt to implement the desired properties while keeping the size of the systemas small as possible.The DE2 language 
an be thought of as having two parts: primitive opera-tions and inter
onne
t. We have de�ned di�erent primitive evaluators, dependingon our needs. The primitive evaluator we use for veri�
ation of gate-like primi-tives interprets su
h primitive modules by applying ordinary Boolean operations.If we are interested in the fan-out of a set of signals, we use a di�erent primitiveevaluator. If we want to generate a 
ount of the number of and type of primitivemodules required to implement a referen
ed module, we use a primitive evalu-ator that 
olle
ts that information from every primitive en
ountered during anevaluation pass { note that this does not just 
ount the number of de�ned mod-ules, but it 
ounts the number of every kind of modules required to realize the7



FSM being evaluated. If we want to 
ompute a 
rude delay or power estimate,we use other primitive evaluators.The semanti
 evaluation of a DE2 design pro
eeds by binding a
tual (eval-uated) parameters (both inputs and 
urrent states) to the formal parameters ofthe module to be evaluated; this in turn 
auses the evaluation of ea
h submodule.This pro
ess is repeated re
ursively until a primitive module is en
ountered, andthe spe
i�ed primitive evaluator is 
alled after binding the ne
essary arguments.This part of the evaluation 
an be thought of as performing all of the \wiring";values are \routed" to appropriate modules and results are 
olle
ted and passedalong to other modules or be
ome primary outputs. This set of de�nitions is
omposed of four (two groups of) fun
tions (given below), and these fun
tions
ontain an argument that permits di�erent primitive evaluators to be used.The following four fun
tions 
ompletely de�ne the evaluation of a netlist ofmodules, no matter whi
h type of primitive evaluation is spe
i�ed. The fun
tionspresented in this se
tion 
onstitute the entire de�nition of the simulator forthe DE2 language. This de�nition is small enough to allow us to reason withit me
hani
ally, yet it is ri
h enough to permit the de�nition of a variety ofevaluators. The se fun
tion evaluates a module and returns its primary outputsas a fun
tion of its inputs. The de fun
tion evaluates a module and returnsits next state; this state will be stru
turally identi
al to the module's 
urrentstate, but with updated values. Both se and de have sibling fun
tions, se-o

and de-o

 respe
tively, that iterate through ea
h sub-module referen
ed in thebody of a module de�nition. We present the se{de evaluator fun
tions to make
lear the importan
e we pla
e on making the de�nition 
ompa
t.The se and de fun
tions both have a flg argument that permits the sele
tionof a spe
i�
 primitive evaluator. The fn argument identi�es the module name ofa module to evaluate; its de�nition should be found in the netlist. The ins andst arguments provide the primary inputs and the 
urrent state of the module fnto be evaluated. The params argument allows for parameterized modules; thatis, it is possible to de�ne modules with wire and state sizes that are determinedby this parameter. The env argument permits 
on�guration or test informationdeep to be passed deep into the evaluation pro
ess.The se-o

 fun
tion evaluates ea
h o

urren
e and returns an environmentthat in
ludes values for all internal signals. The se fun
tion returns a list ofoutputs by �ltering the desired outputs from this environment. To 
ompute theoutputs as fun
tions of the inputs, only a single pass is required.(defun se (flg fn params ins st env netlist)(if (
onsp fn);; Primitive Evaluation.(
dr (flg-eval-lambda-expr flg fn params ins env));; Evaluate submodules.(let ((module (asso
-eq fn netlist)))(if (atom module)nil(let-names(m-params m-ins m-outs m-sts m-o

s)8



(m-body module)(let*((new-env (add-pairlist m-params params nil))(new-env (add-pairlist (strip-
ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso
-eq-netlist fn netlist)))(asso
-eq-list-vals(strip-
ars m-outs)(se-o

 flg m-o

s new-env new-netlist))))))))(defun se-o

 (flg o

s env netlist)(if (atom o

s) ;; Any more o

urren
es?env;; Evaluate spe
ifi
 o

urren
e.(let-names(o-name o-outs o-
all o-ins)(
ar o

s)(se-o

 flg (
dr o

s)(add-pairlist(o-outs-names o-outs)(flg-eval-listflg (parse-output-listo-outs(se flg (o-
all-fn o-
all)(flg-eval-list flg(o-
all-params o-
all)env)o-ins o-name env netlist))env)env)netlist))))Similarly, the fun
tions de and de-o

 perform the next-state 
omputationfor a module evaluation; given values for the primary inputs and a stru
turedstate argument, these two fun
tions 
ompute the next state of a spe
i�ed module.This result state is stru
tured isomorphi
ally to its input's state. Note thatthe de�nition of de 
ontains a referen
e to the fun
tion se-o

; this referen
e
omputes the value of all internal signals for the module whose next state isbeing 
omputed. This 
all to se-o

 represents the �rst of two passes througha module des
ription when DE is 
omputing the next state.(defun de (flg fn params ins st env netlist)(if (
onsp fn)(
ar (flg-eval-lambda-expr flg fn params ins env))(let ((module (asso
-eq fn netlist)))(if (atom module) 9



nil(let-names(m-params m-ins m-sts m-o

s) (m-body module)(let*((new-env (add-pairlist m-params params nil))(new-env (add-pairlist (strip-
ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso
-eq-netlist fn netlist))(new-env (se-o

 flg m-o

s new-env new-netlist)))(asso
-eq-list-valsm-sts(de-o

 flg m-o

s new-env new-netlist))))))))(defun de-o

 (flg o

s env netlist)(if (atom o

s)env(let-names(o-name o-
all o-ins) (
ar o

s)(de-o

 flg (
dr o

s)(
ons(
onso-name(de flg (o-
all-fn o-
all)(flg-eval-list flg (o-
all-params o-
all) env)o-ins o-name env netlist))env)netlist))))This 
ompletes the entire de�nition of the DE2 evaluation semanti
s. This
lique of fun
tions is used for all di�erent evaluators; the spe
i�
 kind of eval-uation is determined by the flg input. We have proved a number of lemmasthat help to automate the analysis DE2 modules. These lemmas allow us tohierar
hi
ally verify FSMs represented as DE2 modules. We have also de�nedfun
tions that repeatedly referen
e these fun
tions so we 
an simulate a DE2design through any number of 
y
les.An important aspe
t of this language semanti
s is its brevity; it is formal, andit provides a semanti
s for any FSM de�ned using the DE2 language. Then, byusing the ACL2 theorem prover, we 
an me
hani
ally and hierar
hi
ally verifyproperties about any system de�ned using the DE2 language.6 Our Use of the DE2 SystemHaving an evaluator for DE2 written in ACL2 enables many forms of veri�
a-tion. In Figure 2 we illustrate our veri�
ation system, whi
h is built around theDE2 language. 10
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Fig. 2. An overview of the DE2 veri�
ation systemWe typi
ally use the DE2 veri�
ation system to verify Verilog designs. Thesedesigns are denoted in the upper left of Figure 2. Currently, the subset of Ver-ilog in
ludes arrays of wires (bit ve
tors), instantiations of modules, assignmentstatements, and a number of basi
 primitives (e.g. &, ?: and |). We also allowthe instantiation of memory (array) modules and vendor-de�ned primitives.We have built a translator that translates a Verilog des
ription into an equiv-alent DE2 des
ription. Our translator parses the Verilog sour
e text into a Lispexpression, and then an ACL2 program 
onverts this Lisp expression into aDE2des
ription.We have also built a translator that 
onverts a DE2 netlist into a 
y
le-a

urate ACL2 model. This translator also an ACL2 proof that the DE2 de-s
ription is equivalent to the me
hani
al produ
ed ACL2 model. The pro
ess oftranslating a DE2 des
ription into its 
orresponding ACL2 model may in
lude
one-of-in
uen
e redu
tions; an ACL2 fun
tion is 
reated for ea
h module's out-put and irrelevant parts of the initial design are removed. This translator allowsus to enjoy both the advantages of a shallow embedding (e.g. straightforwardveri�
ation) and the advantages of a deep embedding (e.g. syntax resemblingVerilog).We start with an informal spe
i�
ation of the design in the form of Englishdo
uments, 
harts, graphs, C-models, and test 
ode whi
h is represented in theupper right of Figure 2. This information is 
onverted manually into a formalACL2 spe
i�
ation. Using the ACL2 theorem prover, these spe
i�
ations aresimpli�ed into a number of invariants and equivalen
e properties. If these prop-erties are simple enough to be proven by our SAT-based de
ision pro
edure,we prove them automati
ally; otherwise, we simplify su
h 
onje
tures using the11



ACL2 theorem prover until we 
an again appeal to some automated de
isionpro
edure.We also use our system to verify sets of DE2 des
riptions. This is a

om-plished by writing ACL2 fun
tions that generate DE2 des
riptions, and thenproving that these fun
tions always produ
e 
ir
uits that satisfy their ACL2spe
i�
ations.Sin
e DE2 des
riptions are represented as ACL2 
onstants, fun
tions thattransform DE2 des
riptions 
an be veri�ed using the ACL2 theorem prover.By 
onverting from Verilog to DE2 and from DE2 to ba
k into Verilog, we
an use DE2 as an intermediate language to perform veri�ed optimizations.Another use of this feature involves performing redu
tions or optimizations onDE2 spe
i�
ations prior to veri�
ation. For example, one 
an use a de
isionpro
edure to determine that two DE2 
ir
uits are equivalent and then use thisfa
t to avoid verifying properties of a less 
leanly stru
tured des
ription.We 
an also build stati
 analysis tools, su
h as extended type 
he
kers, inDE2 by using annotations. In DE2, annotations are �rst-
lass obje
ts (i.e. an-notations are not embedded in 
omments). Therefore an annotation, su
h as thelabels annotation in Se
tion 4, is parsed as easily as any 
ore language features.Su
h stati
 
he
kers, sin
e they are written in ACL2, 
an be analyzed and 
analso assist in the veri�
ation of DE2 des
riptions. Furthermore, annotations 
anbe used to embed information into a DE2 des
ription to assist with synthesis.6.1 Veri�
ation ExampleTo verify the DE2 
ir
uit in Se
tion 4, we �rst generate an ACL2 model whi
his equivalent to the DE2 
ir
uit. The following theorems, whi
h are provenautomati
ally by a proof generated by our translator, prove that the ACL2fun
tions a

umulator-next-st and a

umulator-out produ
e the next stateand the out output of the a

umulator module.(defthm a

umulator-de-rewrite(implies (a

umulator-& netlist)(equal (de flg 'a

umulatorparams in-exprs st-expr env netlist)(let ((st (flg-eval-expr flg st-expr env))(in (get-nth-value 0 flg in-exprs env))(load (get-nth-value 1 flg in-exprs env))(width (nth 0 params)))(a

umulator-next-st st width in load)))))(defthm a

umulator-se-rewrite(implies (a

umulator-& netlist)(equal (se flg 'a

umulatorparams in-exprs st-expr env netlist)(let ((st (flg-eval-expr flg st-expr env)))(list (a

umulator-out st))))))12



We now 
an prove properties about the ACL2 model using the ACL2 theoremprover. For example, 
onsider the following theorem:(thm(let* ((state1 (a

umulator-next-st state0 width A (LOAD)))(state2 (a

umulator-next-st state1 width B (ADD))))(equal (a

umulator-out state2) (bv-adder width a b))))In this theorem, state1 is the state of our a

umulator after an arbitraryLOAD instru
tion (i.e. the load input to the a

umulator is high), and state2is the state after following this LOAD with an ADD instru
tion (i.e. the loadinput is low). The theorem then states that the output of the a

umulator isthe addition of ea
h 
y
les' inputs. We proved this theorem using the ACL2theorem prover for any width a

umulator. If we 
hoose a spe
i�
 width (e.g.a 32-bit a

umulator), then this theorem 
an be proven automati
ally with ourSAT-based de
ision pro
edure.6.2 Verifying Components of the TRIPS Pro
essorWe are using our veri�
ation system to verify 
omponents of the TRIPS pro
es-sor. The TRIPS mi
ropro
essor is a prototype next-generation pro
essor beingdesigned by a joint e�ort between the University of Texas and IBM [7℄. Onenovel aspe
t of the TRIPS mi
ropro
essor is that its memory is broken up intofour pie
es; ea
h pie
e of memory has a separate 
a
he and Load Store Queue(LSQ). We plan to verify the LSQ design, based on the design des
ribed inSethumadhavan et al [6℄, using our veri�
ation system. We have already veri�edproperties of its Data Status Network (DSN) 
omponent.The DSN hardware provides the 
ommuni
ation and bu�ering between fourLSQ instan
es. Its design 
onsists of 584 lines of Verilog 
ode (in
luding around200 lines of 
omments), whi
h we 
ompile into a 427-lineDE2 des
ription (withno 
omments). We use our verifying 
ompiler to translate this DE2 des
riptioninto an ACL2 model and then prove the equivalen
e of the DE2 des
riptionand its ACL2 spe
i�
ation. Using a mixture of theorem proving and a SAT-based de
ision pro
edure, we have proved properties that relate the output ofthe four DSN instan
es, 
ommuni
ating with ea
h other over multiple 
y
les, tothe output of a simpli�ed ma
hine; this simpli�ed ma
hine spe
i�es the outputthat would be immediately produ
ed if the 
ommuni
ation were instantaneous.7 Con
lusionThe de�nition of the DE2 language provides a user with a hierar
hi
al lan-guage for spe
ifying FSMs. By deeply embedding the de�nition of DE2 withinthe ACL2 fun
tional logi
, we have provided a proof theory for verifying DE2module des
riptions with respe
t to a number of primitive interpretations. Theextensible stru
ture of the DE2 language and its general-purpose annotation13



language allow a user to embed other types of information, su
h as a mod-ule's size, spe
i�
ation, layout, power requirements, and signal types. Instead ofjust verifying large netlists, we often 
ompare netlists or transform one netlistinto another netlist in a provable 
orre
t manner. We have extended the ACL2theorem-proving system with a SAT pro
edure that 
an provide 
ounter ex-amples. We also have proved the 
orre
tness of fun
tions that automati
allygenerate 
ir
uits; this 
an greatly redu
e the amount of DE2 module de�nitionswritten by a user.We believe that the design of DE2 more 
losely ful�lls the needs of modernhardware design and spe
i�
ation better than more traditional HDLs. The in-
reasing demands pla
ed on hardware or FSM spe
i�
ation languages is presentlybeing served by embedding all kinds of extra information in the form of 
om-ments into a traditional HDL. This pro
ess for
es non-standard, non-portableuse of HDLs, and prevents there from being a single design des
ription that
an be a

essed by all pre- and post-sili
on development tools. We believe thatDE2 is the �rst formal attempt to integrate disparate design data into a singleformalism. We believe future design systems should in
lude similar features.The DE2 language, annotation system, and semanti
s provide a user witha uniform means of spe
ifying and verifying a wide variety of both fun
tionaland extrinsi
 properties. We 
ontinue to expand the size and type of designsthat we have veri�ed. In the future, we want to use DE2 to 
apture existingdesign elements to ease the reuse problem. Typi
ally, in an industrial design
ow, when a previously designed and veri�ed design element is used in a newdesign, the veri�
ation has to be 
ompletely redone. Our ability to spe
ify andverify modules in a hierar
hi
al manner permits the reuse of prior veri�
ations,and perhaps this veri�
ation reuse is the real key. Being able to reuse the designand the e�ort required to validate it will greatly redu
e the e�ort of reusingpreviously designed modules.Referen
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