Monocopy and Associative Algorithms in an Extended Lisp

by Eiichi Goto

Information Science Laboratory T '7‘!/0’5
Faculty of Science, University of Tokyo L),JN:TOKjO
Fpr. 197 4

First Manuscript May 16.. Rivised on May 31, 1974.

Abstract: An extension of Lisp called HLISP (for Hash-LISP) is describted.
Two features called monocopy and assoccomp (for Associative Computing)
and two data types H-molecules and associators are added to Lisp. The

monocopy feature creates H-molecules, which are rewrite protected and are

free of duplicatihg Eopies among H-molecules. H-molecules are like non-

atomic Lisp data in other respects. An associator is a Lisp cell which
associates an H-molecular key with a value of any data type. Associators

are like atom headers in other respects. Efficient algorithms for copy-

ing ordinary lisp data into H-molecules and for performing basic set

operations such as union with the number of steps required being propor-—
tional to the number of pertinent Lisp cells are given. In the assoccomp
feature, the value of prespecified functions is associatively retrieved
whenever the value has been evaluated before for the same function for

the same argument/s and if the value is remaining in the primary storage.

Otherwise it is evaluated as usual. Assoccomp provides a systematic
method for increasing the efficiency of some effective algorithms which=
are inefficient when evaluated by conventional methods. A non-paging
virtual memory scheme, énabling a collection of Lisp functions and H-
molecular data amounting to several times larger than the primary storage
capacity to be used in a single Lisp program, is presented. A hash coding
scheme with a dynamic garbage collection capability and some other
algorithms crucial for the implementation of HLISP are described in
detail.

Key words and phrases: Lisp, Hash Coding, Garbage Collection,

Associative Retrieval, Virtual Memory, Effective Algorithm, Efficient

Algerithm.
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§1. Introduction

At the 1973 Programming SjympOSium,(l Sato, Nozaki, Noshita and the

author proposed a hash coding scheme for lisp, which will be referred
to as monocopy lisp for convenience. In monocopy lisp, the entire free
; s e b

storage area was also to be used as a hashing area so as to eliminate

the creation of duplicating copies of S-expressions at a reasonable

operating speed without using extra storage space for hash tables. The 58

objectives of monocopy lisp were the saving of storage space and
acceleration of checking for equalities.

For example, consider the internal data structures created by the
following two lisp functioens:
bt[n;x;y]=[nil+cons[x;y];T+c0ns[bt[n—l;x;y];bt[n—l;x;y]]]

ct[n;x;y]=[ni1+cons[x;y];T+A[[z];cons[z;z]][ct[n—l;x;y}]].

ct[3;A;B]:| l] =
((a.B).(A.B).C):[LIc]

bt[3;A;Bl:

N\

ctl2;A;81:[1[1

((a.B).c):[1Ic]

s B ElB) A (a BBk

Fig.l1 A Binary Tree and Monocopy Structures =

Fig.l shows bt[3;A;B] and ctf3;A;B]. Although the two internal
structures are quite different, the two are regarded equal in lisp. :
Namely, equal{bt{n;A;B];ct[n;A;B]]=T for all integers n. Note that

5 S (2 n+l ! .
the recursive definition of egual( are referenced 2 -1 times during

the evaluation of the above equal. While bt[n;A;B] consists of 293
cells, ctfn;A;B] consists of n ecells {(n=3 in Fig.1). While thereiare
4 duplicating copies of the S-expression (A.B} and 2 copies of

((A.BY.CA.B)) iu bf3;48;B}, there is no duplication in ctf3ih:B].




In monocopy lisp, the creation of duplicating copies was to be
eliminated by modifying the system subroutine for cons; "so ‘that
bt[n;A;B] would have created the same identical structure as etini; B
would have. Thus, saving in storage from Zn—l cells down to n cells
would have resulted in this specific case. The resultant internal data
structure of the execution of monocopy lisp functions, bt[3;A;B},
cons[bt[2;A;B];C]] and cons[(A.B);C]] would have been as shown in Fig.1
fo the ripirel

The recursively defined equal was to be replaced by the non-recursive
basic function eq so that eq[bt[n;A;B];ct[n;A;B]]=T for all integers
n. Speeding up of at least a factor of 2n+1_1 would have resulted in

<

the evaluation of equal in this specific case.

In this paper, ideas incubated by monocopy lisp are further extended
and results of an actual implementation are given. Although the schemes
to be described would be applicable to other programming languages as
well, lisp is used as the base language for clarity and simplicity.

For convenience, the language to be described is called HLISP (for

Hash-Lisp). HLISP is an extension of LISP, which is a specific dialect

(2, (3

o
of lisp and is compatible with other lisps in its most essential

features. Unless stated otherwise, functions and terms are to be
5 . (2
understood as the same as in the Lisp 1.5 manual:".
Names of functions specific to HLISP shall start from the letter

"h'". This turns out to be a consistent convention, since no function in

Lisp L .5 starts from "h'.
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Definitions of the basic HLISP functions are given in 82 with simple
examples. An alphabetically ordered list:of HLISP functions is.also
given in the Appendix, which would serve as a short form manual.

In §3, a copy algorithm to'be used frequently in HLISP and fast
algorithms for basic set operations are described.

In 54, a system feature called assoccomp (for associative computing)

is presented. This feature is believed to give a reasonable compromise

between the choice whether a function is to be computed or the value is

to be retrieved from a table. This feature would provide a systematic

method for speeding up some recursive algorithms which are effective but
inefficient when evaluated by conventional methods.

An implementation of HLISP is described inm $§5 and a non-paging

virtual memory scheme is described in §6.

HLISP Objects and Basic Functions

wn
N
.

. In HLISP, the objects visible from the user are classified into the
following five types: L(for Lisp)-molecules, H(for Hash)-molecules,

associators, headers and basic integers as shown in Fig.2.




HLISP L-(Lisp-) |H-(Hash-) Basic HO- {Hi-
Term Associator Header
Molecule [Moiecule Integer | Cell | Cell
Prime ,
Predicates [conspCx] |hconspOxlhassocp X3 headerppg| intp LA |hOppalhlp pa
Llsgbject? Yes No No Yes Yes Only for
atomCxl|| NIL NIL T T T System Use.
molecule [x] T T NIL NIL NIL Invisible
hp [x] NIL T T T 1 from HLISP
hdotp(x] NIL NIL T T NIL User.
car/cdr car cdr |-car cdr car cdr e et | car cdr
value/ key || —-- --- ——— - value key Vvalue Bl e e e
: ® 29 o ° ° :
DIAGRAMS e o2 ,-1 hO
7 UL 2 ¢ or
or .
A,B,X1A - hi
Examples of Diagrams
l_> ] ‘NI' and ‘L’
i e
Header of atom NIL: QNIL i °‘L’ are character objects.
Associator of (ENGLISH.I) : ”i ° ENGLISHI 1 o
Auseciator of oEmatetom = T B GERMAN| ICH

Fig.2 Classification of HLISP Objects, Predicates and Diagrams.




As indicated in the top two lines in Fig. 2, each type is respectively
identified by prime ﬁredicates consp, hconsp, hassocp, headerp, or intp.
For example, for L-molecular x, consp[x]=T and the values of the remain-
ing four predicates are NIL. The other two types, HO-cells and Hl-cells,

are invisible from the user. They represent inactive free storage cells

—_—

LISP makes use of L—molecqles, hegders, and,béfif_iﬂff§f£§”9“1y’
L-molecules are the same as non-atomic (molecular) data in other lisps.
Headers are functionally equivalent to atoﬁ headers of Lisp-1l.5.

Truth values of some other type predicates, atom[x], molecule[x]=
not[atom[x]], hp[x] and hdotp[x], are given in Fig. 2. Just like calling
HLISP objects x, for wh;ch atom[x]=T, simply atoms, we call objects x,
for which hp[x]=T, HP's or HP-objects. Similarly, we use the term
HDOTP's or HDOTP-objects.

Diagramming of data structures has been very helpful for understanding
the principles of lisp. We shall, therefore, diagram HLISP objects as
shown in Fig. 2. Except the inscription of small black circles for
identification of H-molecuvles, associaters and headers, the other
conventions of diagramming are the same as in Lisp-1.5. Note that since
headers represent LISP atoms, a header can either be diagrammed as a
header cell in case the internal data structure is to be shown or simply
as an atomic symbol in case there is no such need.

In the present version of HLISP, like in other lisps, the internal
representative of any HLISP object x is an integer, say i and we write
i=m[x] in terms of a function m (for machine). Eicept for basic
integers, i specifies an HLISP cell which actually consists of two
array clements, mecar[i] and medr[i]. Basic integers are represented by

non-existing array addresses. Actually in terms of system constants

=




maxh, module, minint=maxh+l, izero=maxhimodule and maxint=izerot+module-1,

i represents a basic integer i-izero, if minint<i<maxint. Hence,

izero=ml0], i.e., izero is the internal representative of the basic
integer 0. The system constaut,EEiiEleets Lthe maximum absolute
magnitude of basic integers which can be handled directly by the system.

Integers of greater magnitudes, rational fractions, floating point

qumbers. and so on are represented differently from basic integers and
they are to be handled by suitable HLISP functions or subroutinmes. Only
basic integers will be treated in this péper. The system constant maxh
specifies the maximum address of the arrays mcar and mcdr. Hence,

if i<maxh, i represents an HLISP object accompanying an HLISP cell.
For identifying the types of an HLISP cell, flag bits (actually the

sign bits) in the car and cdr parts of the cell are used as one would

imagine from the diagrams in Fig.2. Another method is given in 85.

H-molecules are similar to ordinary lisp cells (L-molecules) except

in the following points.

1. cons and functions containing cons (list append ete.) create L-

molecules but never H-molecules;

2. hcons, defined as the following, is the only basic function which

can create an H-molecule:
hcons[x;y]=[hp[x]A hp[y]+mhcons[x;y];T+cons[x;y]]-
A non-HP-object, i.e., an L-molecule, may or may not have a duplicating

L-molecular or H-molecular copy. On the other hand, an HP-object shall

never have a duplicating HP-object. If either x or y represents a non-

HP-object, the value of hcons[x;y] is an L-molecule as a result of cons

|
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to ensure no duplicating HP-object. Only if both x and y represent HP-



objects, the system functibn mhcons[x;y] gives an H-molecular value to
hcons[x;y]. The following gives an effeétive procedure for mhcons([x;y]:
Search through all HLISP cells for an H-molecule with address i, such
that m[xl=mcar[i] and m[y]chdt[i], If found i is the vesult, otherwise
take an inactive free storage cell, the jth say, make a new H-molecule
by the substitutions mcar[j]:=m[x], mcdr[j]:=m[y] and return j as the
result. Actually, the speed of the search through operation in this
procedure is improved by using a.EEEE_EEEEEE_EEDEEEA—WhiCh is described
in &§5.
hconsgp[x;y]=[hp[x]}‘hp[y]/\(hcons[x;y] is present)-
prog2[setq[*aside;hcons[x;y]];T];T>NIL]
This is the presence predicate for hcons[x;y]. 1In case hcons[x;y] is
present as an H-molecule, the value of *aside is set aside to
the already exsisting hcons{x;y]. hconspp neither cpeates a new H-
molecule nor a new L-molecule.
The car and cdr parts of an associator will be called respectively
the yg;gg\and key parts hereinafter so as to stress their meaning rather
than a specific implementation (cf. Fig.2). Any HP-object, say x, can

have at most one associator. If x has an associator, the content of

the key part of the associator is m[x]. Non HP-objects, i.e. L-molecules,

shall never have associators. Hence, the content of the key part of an

associator is necessarily an HP-object.

For an HP-object x, the value of a function hassoc[x] is the
associator of x. Similarly to hcons, the following gives an effective
procedure for hassoc[x]: Search through all HLISP cells for an associator

with address i such that m{x]=mecdr{i]. If Ffound i is the result,

otherwise take an inactive free storage cell, the jth say, make a new




associator by substitutions mcar[j]:=d0 and mcdr[j]:=m[x] and return j
as the result. Speeding up by hash coding is described in §5 and dO is
a system constant which stands for undefined values. The content of the
value part of an associator can be any HLISP object or d0:
dzeroplx]=[hdotp[x]/z(The value of x is dO, i.e., undefined)-T;T>NIL]

is the predicate to check for d0 valued HDOTP's. The pseudo function

dzero[x]=x, in value, sets the value of x to dO0 if x is an HDOTP,

otherwise it has no effect.

hassocpp[x]x[not[hdotp[x]]\/(associator‘of X absent)-=NIL;

setq[*asidejhassoc[z]]~ [dzerop[*aside] = 0;T ~1]]
This is the presence predicate for associator of x.

-

For an associator a, evaluation of set[a;v] sets v into the value

F

part of a. Conversely, hvalue[a] gives the value part of a as its value,

in case a is d0 valued, it is regarded as an error.

Headers are similar to associators. The above explanations of
associators all hold for headers as well by changing the word "associator"
into "header" and the function names hassoc/hassocp/hassocpp into

header/headerp/headerpp. HLISP utilizes headers for associating the

-

print names of literal atoms with its value (cf. header of NIL in Fig.2)

and for assoccomp to be described in §4. In this respect headers may be
termed system associators. In the present implementation of HLISP, header
is a pure system function and is not explicitly exposed to the user in
order to avoid possible confusions and conflicts between the system and
the user programs.

As an example of the use of associators, the data structure with

two associators in Fig.2 can be created by executing the following




LISP program (= stands for "define" and ===, for "the value 1473
makedic[x;y;u;v]=set[hassoc[hcons[x;y]];hcons[u;v]] === (MAKEDIC)
makcdiC[ENCLISH;I;GERMAN;ICH] === (GERMAN.ICH)
makedic[GERNAN;ICH;ENGLISH;I] e (ENGL1ISH T)

The content of this miniature dictionary can be retrieved associatively
in the following way:
readdic[x;y]=|

hconspp[x;y]+[onep[hassocpp[*aside]]+hﬁalue[*aside];T+NIL];T+NIL]

=== (READDIC)
readdic[ENGLISH;I]===(GERNAN.ICH), readdic [GERMAN;ICH] === (ENGLISH.TI)
readdic [ENGLISH;ICH] === NIL, readdic [ENGLISH;HE] ===.NIL.

Suppose the item introduced by
makedic [ENGLISH;YOU;GERMAN;DU] === (GERMAN.DU)

is to be cancelled for some reason. This is done in the following way:

deletedic[x;y]=dzero[hassoc[hcons[x;y]]]=== (DELETEDIC)
deletedic[ENGLISH;YOU] ===/ (ENCGLISH. YOuy, readdic[ENGLISH;YOU] === NIL.
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It would be worth noting that the effect of list structure altering

pseudo functions, rplaca, rplacd etc. must be prohibited from rewriting

HP-objects to ensure the duplicate copy free (or the monocopy) feature

of the HP-objects. In other words, H-molecular cells and the key part

of HDOTP's must be regarded as rewrite protected read only storage.

The garbage collector only are allowed to reclaim them into the inactive

free storage state. This rewrite protection feature has the the following

fringe benefit. rplaca and rplacd and their derivatives (nconc etc.) are

very useful for writing efficient algorithms. On the other hand, unexpected
alteration of data structures including S-expression programs often
causes program bugs which are difficult to locate. In HLISP, data not

to be rewritten can be represented as HP-objects. Unexpected data altera-—

tion would result in the printing of error messages and/or errorset
treatﬁentsr

F. Motoyoshi pointed out that type predicaté; hconsp, hassocp and
headerp can be defined in terms of the corresponding presence predicates
in the following way:
tac socp[x]=[hdotp[x]+[hassocpp[hkey[x]]+eq[*aside;x];T>NIL];T>NIL].

It is impossible, however, to express presence predicates in terms

of other functions except hnext[]. =

-11-=
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§3. Monocopy Algorithms
An important HLISP function hcopy can be defined as:
hcopy[x]=[hp[x]+x;T+hcons[hcopy[car[x]];hcopy[cdr[x]]]],

Egggzvgives an HP-object equal to X. One may use LISP to create some data

structures by using L-molecules for speed or for some other reason and

then switch to hcopied data so as to utilize the speed in checking

equalities among the data.

1f this hcopy were applied to the data structure etingA;Bls
consisting of n L-molecules, it would result in 2n+l—l recursive calls of

hcopy. Thus, the execution of hcopy would become impracticable even for

rather small value of n..

In order to remedy such a hazard the following function, rplach
("replace H'") could be uéed instead of hcopy.
rplach[x]=[hp[x]+x;T+hcons[rplaca[x;rplach[car[x]]];

rplacd[x;rplach[cdrij]]]].
This pseudo function would replace the contents of L-molecules in (the

sub-structures of) x by their "hcopies', so that the execution time for

any data structure X would be proportional to the number of L-molecules

in x. This replacement would be useful if such side effects were the

e

intention of the user. But if not, another hazard! This can be remedied

by keeping records of the replacements made during the execution of

rplach and by restoring the original data before completion. For machine

language implementations the system push down stack can be used for such

recording. In the following definition of hcopyl, a list, pds (for Push
Down Stack) is used instead.

hcopyl[x]=prog[[pds, result]; setq[result; eplachlifxl};

A [null[pds]*return{result]];

el




rplaca[car[pds]]; cadr[pds]]; rplacd[car[pds]; caddr([pds]];
setq[pds;cdédr[pds]];go[A]] |
rplachl{xj=prog[[];[hp[x]rreturn(x]];
setq[pds;cons[x;cons[cdr[x];cons{cdr{x];pds]]]];return]
hcons[rplaca[x;rplachl{car[x]]];rplacd([x;rplachlcdr{x]]]]]]
The execution time of hcoéyl is prbportional to the number of L-

molecules in x and there is no hazardous side effects any more.

The function eq[hcopyl[x]; hcopyl[y]] checks the equalily of x and
y, with the execution time being proportional to the number of L—molecules
in x and y-

We shall also make use of the following function which gives the
list of hcopied lisf elements as its result:
mapcarhcopy[x]=mapcar[x;function[hcopyl]]

=[nu11[x]+x;T+cons[hcopyl[car[x]];mapcarhcopy[cdr[x]]]].

We now discuss the application of the monocopy feature to the basic

(2

set operation union which is defined in Lisp=1.5 as:

union[a;b]=(aij)=[null[a]+b;member[car[a];b]+union[§dr[a];b];
T-cons[car[a];union[cdr{a]l;bl]]

member[x;y]=[null[y]+y;equal[x;car[y]]+T;T+member[x;cdr[y]]]

Given two lists a and b with Na and Nb elements, the execution time of_

union is proportional to Na-Nb, since Na~Nb references are made of equal

to check for the equality among the elements. In case many of the elements

are non-atomic(molecular), use of hcopied elements would greatly speed
up the equality checking operations.

Further improvements can be attained in case the elements are pre-
sorted. Note that the internal representatives of HP-objects establish

a perfect linear order, to be called H-order, among HP-objects. Now, let

-13-




align be a function which aligns the HP-objects in a given list in the
ascending H-order. For example, align[(Als, B3, (A.B)g);function[hltp]]=

(B (A.B)g, AlS) with suffices indicating the internal representatives

37
at the moment of evaluation of align. For align, the well-known sort-
merge algorithm is to be used, thch aligns n elements with the execution
time being proportioned to n.logzn in the worst case. If both elements
in lists a and b are aligned in the ascending H-order, union can be
realized as a merge algorithm, of which the execution time is proportional
to Na+Nb. Thus, we obtain the following algérithm with the predicate
hltp being given as a functional argument:
union[a;b]=merge[align[mapcarhcopy[a];function[hltp]];
align[m;pcarhcopy[b];function[hltp]];function[hltp]]
merge[a;b;p]=[ﬁull[a]+b;null[b]+a;
p[car[a];cartb]]+cons[car[a];merge[cdr[a];b;p]];
p{car[b];car[a]]+cons[car[b];merge[a;cdr[b];p]];-
Tocons[car[a];merge[cdr[a);cdr[b];pl]]
align[a;p]=[null[a]+a;T+car[sort[sort2[a;a;p];p]]]
sort[x;p]=[null[x]}fnull[cdr[x]]+x;
T+sort[cohs[merge[car[x];cadr[x];p];sort[cddr[x];p]];p]]
sortZ[x;y;p]=[null[cdr[y]]+list[x];p[car[x];cadr[y]]+sort2{x;cdr[y];p];
Tocons[sortl[x];sort2[cdr[y];cdry];pl]]
sortl[x]=[eq[x;y]+list[car[x]];T+cons[car[x];sortl[cdr[x]]]]
In case the given lists a and b are already aligned in the ascending H-
order} align is designed to give the result with the execution time being
proportional to Na+Nb. Note that the resultant list of merge is aligned
in the ascendiag H-order.

Thus, the execution times of this algorithm is proportional to

s

'
1
i
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. - - + . 5 -
the program and is proportional to Na lngNa Nb 1og2Nb in case pre

Na+N in case one can consistently use H-ovdered lists throughout

alignment is necessary.
The H-order may also be termed subjective or relative order, since
no objective or absolute order is specified by the user of union. The

H-order is also relative in that the specific H-order to be established

among HP-objects depends upon the entire state of the free storage.
Nevertheless, the monocopy feature with the rewrite protection mechanism
establishes a consistent H-order during the execution of an HILISP program,
and this is just what is needed for the present scheme.

When prealignments are needed, the following algorithm, of which
the execution time is always proportional to Na+Nb’ is more recomendable:
union[a;b]=X [[u];bindq[[u;remdup[u] ;NIL]][mapcar[append[a;b];

function[A[[v];hassoc[hcopy[v]]]]]
rémdup[w]=[null[w]+NIL;hva1ue[car[w]]+remdup[cdr[§3];
set[car[w];T]+cons[hkey[car[w]];remdup[cdr[w]]]].

An example: ((..A) is the associator of A. cf. print in Appendix)
union{ (A, (A.B)); 7B, (A.B))] ,
=remdup[((..A),(..(A.B)),(..B),(..(A.B)))]=(A,(A.B),B)

The initial argument to remdup is the list, u of associators of -
hcopied elements of append[a;b]. The values of the associators are
initially all NIL and are set to T when the pertinent elements are

enlisted in the result so as to remove duplicating enlistments.

Other basic set operations such as intersection[x;y]=X(]y,

setdifference[x;y]l=x/) 4y, subsetp([x;y]l=[xE&y>T;T>NIL], etc. can be

implemented similarly.

-15-
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§4. The Assoccomp (Associative Computing) Feature

This system feature of HLISP may best be explained by examples.

Many mathematical functions are characterized, defined or evaluated in
terms of recurrence formulas. These formulas can be directly translated
into lisp functions such as

(4.1) fb*[n]=[n=0+fb0;n=1+fbl;T+u[fb*[n—l];fb*[n—Z];n]] and

(4.2) c*[n3m]=[m=0>cO;m=n>c1;T>v[c*[o-1;n];e*[a-1;m-1];0;m]]. ‘

These algorithms are effective, i.e., the results are obtained eventually
for all integers npm>0, provided that u and v always yield some values
(symbolic or numerical) for given arguments. In the special cases
£b0=fbl=c0=cl=1, u[x;y;zl=v[x;y;z;wl=xty, (4.1) and (4.2) give Fibonacci
numbers fb[n] and binomial coefficients c[n;m] respectively. These
algorithms, however, are known toAbe notoriously inefficient. The reason

for this can be explained simply by the diagrams shown in Fig.3.

TNA > § b[2]->f blU] cl4: 0-—>c[3;0—>cl2;:0]
\¥/b[3]—-————%f bL1] fbli] | c[2;)——><[1;0]
\g/b[Z:l _--——éfb[O] . cfl: fl

fbC1] e[3;2—>c[2;0——>c[1;d]

\/EZ;Z] ef 178

Fig.3 Recursive References in the Evaluation of

a Fibonacci Number and a BiInOMIAL Coefficient. -
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Tﬁese diagrams show the recursive reference made by the functions for the
given argument/s. For example, fb{4] refers fb[3] and fb[2], fb[3]
refers fb[2] and fb[1l] and so on. For both fb and c the reference
diagrams are binary trees, ending at leaves where the values of the
functiou evaluate te 1. Since, fb and ¢ are defined so as to sum up the
1's on the leaves, there must be fb[n] and c[n;m] leaves respectively.
Since there are one less branches than leaves in any binary tree, the
total number of recursive references and their asympfotic forms for

large n and m=n/2 (which maximizes c for given n) are given respectively by
rfb[n]=2'fb[n]—l:0.894.(l.62)n+1, rc[n]=2-c[n;m]—1=2n 2//5;5.

These results are independent of the choice of functions u and v and of

the values fb0, fbl, cO and cl. Because of such exponential explosions

in the execution time, the recursive algorithms (4.1) and (4.2) are

regarded impractical and faster (recursive or non-recursive) algorithms,

such as
(4.3) > fbin]=8b3[1;151}, fb3[i;j;k]=[nii+j;T+fb3[i+l;j+k;j]],
are usually used instead. s
Such explosions are actually caused by the repeated evaluation of
the same function for the same argument/s, as in the cases of fb[2] and
c¢[2;1] in Fig.3. In hand calculations, the human computer would avoid
such repetions by memorizing the previous results. The assoccomp feat:re
may be regarded as a mechanized version of such a computational procedure.
The pseudc function assoccomp is syntactically the same as trace
and takes arbitrary number of function names as its arguments. It may be
regarded as an instruction for the systém to tabulate functions and make
use of the tabulated values whenever possible. Actually, execution of
assoccomp[fb;c] === (FB C) sets an assoccomp flag on the definitions of

-

fb and ¢, similariy to the case of trace[fb;c] === (FB C).
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fn case of a traced function, the system would print "THE ARGUMENT
OF FB IS 2" upon entering the evaluation of fb[2], and would print
"pHE VALUE OF FB IS 2" upon completion. The assoccomp works similarly.
Upon eantering the evaluationrof fb[2]‘the system makes an associative
search for whether fb[2] has be evaluated before. If this is the case
the previous result is retrieved. Otherwise the system evaluates fb[2]
by making use of the effective procedure (4.1) and stores the information
necessary for possible future retrieval upon completion. For assoccomped

n argument function g, the system upon entering the evaluation of g with

- o
=<

actual (evaled) arguments a3 5 e anh, first makes k=hcopY{(g*, alx’ i

* x
a a )}]}. Headers are used in assoccomp for associative retrieval.

n-1 ;
Namely, the system next does the following:

[Oﬂep[headefpp[k]]*hvalue[*aside];zerop[headerpp[k]]+error[
$$$CYCLIC DEFINITION ASSOCCOMPS ] ; T-rset [header [k];applyls; (2, » _._an*)]]

Note that programming errors caused by cyclic definitions, such as

fb[n]=[n§1+l;T+fb[n]+f[n—l]] (fb[n] in the definition of fblnl]),

are detected by making use of d0 valued headers.
Thus, the assoccomp feature would remedy the exponential time
explosion hazards often encountered in recursive algorithms such as

(4.1) and (4.2). Actually in the Fibonacci case, fh[n] on the present

HLISP system, the first evaluation of fb[20], which has to compute

£5(19)s ELIIBE ... fb[1] and fb[0], was made 200 times faster and re-

evaluations of fb[20], 4000 times faster by using assoccomp. These figures

will be further improved by level ups to be made in the systenm, especially

-

by those in the hash coding subroutine.
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In the binomial case (4.2), the assoccomp feature would also have

the following merits in comparison to other methods. Firstly, the use

of the close form formula c[n;m]=n-(n-1)-..(n-m+1l)/mt for m<n/2 could

yield very large intermediate results and a sophisticated multiprecision
arithmetic functions or subfqutines would be needed, while there is no

such need in assoccomped (4.2). Secondly, in many application of the binomial

coefficients many different coefficients would be used repeatedly. The

assoccomp would soon provide a complete table for all such coefficients.

A. Nozaki suggested that for many numbers in combinatorics, Stirling's
number and the partition number for example, no closed form formulas are
known and they are to be computed by recurrence formulas. The assoccomp
scheme would be useful in such cases.

The assoccomp scheme should not be regarded as a universal remedy
for speeding up any arbitrary computations. First of all for many basic
operations, it would be faster to compute rather ;han trying to retrieve
the previous results. In the present HLISP, therefore, assoccomp on
basic built in functions are all neglected. For user defined functions,
it is the programmer's prerogative to select the functions to be
assoccomped for the best result.

There can be a storage explosion hazard in the assoccomp scheme,
since headers used in the scheme consumes free storage. In the present -~
HLISP, in case the ordinary garbage collector (GBC) faiis to reclaim
enough free storage space, a subroutine called the grand garbage collector
(GGBC) is called for. GGBC cancels all headers used in assoccomp and

return them to the free storage. When this takes place, the assoccomped

functions are computed according to the effective but not necessarily

-

efficient original algorithm. If there is a reasonable space in the
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storage, the headers of the frequently used assoccomped functions would

be reconstructed and the system would soon regain the speed. If there

is not enough space for assoccomp headers; the computation would proceed .

mainly by using the effective (but inefficient) original algorithm.
Methods used for reduciﬁg the volume of mathematical tables would

also apply to assoccomp. For example, the following definition for

c[n;m] would halve the storage requirements, in mOSt cases, by subjecting

d only to assoccomp.

c[n;m]=[m<n-m>d[n;m] ;T>d[n;n-m], d[n;m]=[m=0+1;T+c[n-13m]+d[n-13m-1]].

Reading of files (drums or disks) would provide another interesting
example. Let file[x] pe a pure function of which the value is the S-
expression read from the file from the entry specified by x. The
assoccomp feature applied to file would bring the most frequently and
recently used data into the high speed storage enabling them to be accessed
faster upon reuse. :

Among numerous other possibilities, application to association lists
would be worth noting. Association list schemes, provided by functioﬁs
assoc[x;a] and pairlis[x;y;a] or the similar, are frequently used‘in
lisp programs, including the Lisp-1.5 system itself. The §§§éggggg
applied to assoc or the similar would provide a logically consistent
scheme for speeding up the retrieval of data from association lists.

This would be particularly efficient when the association list is deep.
It would be interesting to apply this scheme to the A-list of Lisp=1.5

and to compare and evaluate the performances.
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§5. An Implementation of HLISP

The most crucial feature of HLISP consists in the hash coding
scheme for accelerating the storage search procedures. Besides the flag
bit method (ef. Fig.2), L-molecules caa be identified by separating the
storage areas. Namely, in‘terms of a system constant minh, x is an L-
cell (L-molecule), if m[x]=i<minh, otherwise x is an HP-object. Inflexi-
bility in the number of L- and H-cells available to the user is the draw-
back of this method. It seems impossible to shift the value of minh
dynamically during the execution of HLISP programs, especially if the
H-order feature (cf. §3) is to be used. Nevertheless, this method was
employed in the first version of HLISP and will also be explain here
because of its simplicity.

The scheme employed is essentially a rehashing method. 1t makes
use of two types of inactive cells HO and H1 (cf.- Fig.2) to allow for
dynamical cancellations invoked by the GBC (garbageicollector)-

HO-cells are inactive cells without conflict and Hl-cells are
those with conflict, i.e., cells which has been reclaimed by GBC which
had been active cells in conflict. The following gives an algorithm
for mhcons (ecf. §2). &
mhcons[x;y]=prog[[i;j;k];i:=hashcons[x;y;k];

A [hOp[il+go(D];hlp[il>go[B];eqhconsp[x;y;ilsreturn[i]];
i:=rehash[i;k];go[A];

B ji=t

C j:=rehash[j;k];[hOp[j]>go[D];eqhconsp[x;y;j]l>return[jl];go[C];

D mcar[i]:=m[x];mcdr[i]:=m[y];nh0=nh0—l;[nhQith*gbc[]];return[i]]

eqhconsp[x;y;i]=hconsp[i] \(mcar[i]=m[x])/\(mcdr[i]=m[y])
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, where hashcons maps the twoe HP's,.x.and v, onto.the Heavea (i.e., i

such that minh<i<maxh);

rehash maps 1 in H-area onto H-area with the maximum periodicity, i.e., the

period is equal to the size of the H-area, nhash=maxh-minh+l and k is a

variable of which the value is initialized by hashcons and advanced by rehash

in order to improve the clustering characteristics.

The followings are the simplest hashing andrrehashing functions with
rather poor clustering characteristic because of negligence of k:
hashcons[x;y;k]=remainder[m[x]+m[y];nhash]+minh
rehash[i;k]=[i=maxh+minp;T+i+l]
The speed and other performances critically depend upon the choice of
these functions. The best choice, however, largely depends on the
repertoire and the relative speeds of the machine instructions.
hassoc and header can be implemented similarly to mhcons. For

hassoc, hashcons in mhcons is to be replaced by hashassoc[x;k] which

maps x onto the H-area; egqhconsp, by
eqhassocp[x;ij=hassocp[i]/\(hkgy[i]=m[x]) and the line starting from D,
by substitutions described in §2. As seen from mhcons, Hl-cells can be
reused but they can not serve as terminals of the rehashing cycle. Only
HO-cells serve as terminals. Hence, the average length 'of hash-rehash

cycle is 1/pO=nhash/nh0, where nh0 is the number of HO-cells and pO is

their fraction among H-cells. When nhO becomes less than a system
constant, mhO=minp0O-:-nh0, with minp0=0.2 in the present HLISP, GBC is
called .so as to preserve the speed of the hashing process by keeping

1/p0<5.0.

The GBC proceeds in the following steps. The effect of GBC on L-
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molecules are the same as in other lisps.

Gl. Mark (as in other lisps) ‘all cells referred from active system
registers, from the system pushdown stack and from non-dO-valued
HDOTP's.

G2. Change all unmarked H-cells (including HO and Hl-cells) into HO-cells.

G3. Unmark all H-cells.

G4. Execute the following, which changes HO-cells in conflict into Hl-cells.

hOtohl[]=prog[{*hnext;i];

A [null[hnext[]]»return[NIL]];i:=hashall[*hnext;k];
B [i=*hnext—-go[A];hOp[i]»>sethl[i]];i:=rehash[i;k];go[B]]

, where hashall[j;k] gives the hash number of HP-object j and

sethl[i] changes the HQO-cell i into an Hl-cell.

G5. A step to be added in 86 to improve performance.

G6. Call GGBC if the number of HO-cells reclaimeg is insuffieient. .

An important feature of this dynamic hash coding scheme consist in
the fact that the fraction of Hl-cells pl does not grcocw beyond a certain
limit which is about 0.16 in the present system. This was first verified
by simulation and a more detailed analysis will be given in a separate

-

report(a. Thus, about 64% of H-cells are available as active cells

and about 36% are reserved for the hashing process. The actual saving

in storage space effected by the monocopy feature is about 30 to 40%

depending upon the nature of the program. Thus, this saving is approximately

offset by the hashing overheads.

A few comments would be sufficient for the rest of implementation.

As indicated in the appendix, similarly to Lisp—1.6(3, the present HLISP

(2

does not use the A-list of Lisp-1.5 . The BCP (Binding contex pointer?)
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mechanism in Lisp-1.6 is not used either for the sake of speed and
simplicity, which is rather essential for virtualizing the pushdown stack
to be described in §6. The two features in which the use of the A-list
is essential in Lisp-1.5 are treated as in the following. Optional
freezing is used for quoting functional arguments and a single variable
“fexpr is reserved for FEXPR's (cf. Appendix). The library functions

syntax or scompile would give warnings to appearance of unfrozen free

variables in functional arguments and to the use of the variable *fexpr
in places other than in the definition of FEXPR's. The header of an atom

does not have a P-{(Property-) list (cf. Fig.2). P-list functions (attrib,

prop., get, remprop) are implemented similarly to makedic, readdic and

-

deletedic of §2, but the system does not make use of them for the sake
of.speed. Each SUBR or FSUBR is given a unique code number, which is
used as an index of a computed goto jump (in FORTRAN terminology) for
deciphering it in a single step. EXPR's are identified by LAMBDA or
LABEL and FEXPR's, by FEXPR. 1In case of pure interpretafion, SUBR- and
FSUBR-name atoms are supposed to have the corresponding code numbers in
their value parts. syntax would give warnings to the use‘of these unames
as A- or prog-variables. scompile would tramnslate these names iﬁto the
code numbers and would make various short cuts. The form (EQ (CAR X)
(QUOTE PLUS)) would be scompiled into (-9503(-9499 X) (-9466 PLUS)), which
short cuts three references to the array mcar (cf. Fig.2). In case

idiomatic combinations of basic functions, such as eqq, atomcar, eqqgcar

(eq with the lst argument quoted and the 2nd argument cared), etc., are
built in, the form above would be scompiled into (-9570 PLUS X).
ELISP is fully coded in FORTRAN for the sake of machine independence.

Hand recompiling of the object codes was very rewarding for a small
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machine with a poorly optimized compiler (in FACOM 270/20 with 16 KW of
16 bit words, the speed was doubled and code length, halved)- For a
larger machine with an optimized compiler, (FACOM-230/75 with 192 KW of

36 bit words), hand recompiling was havdly meaningful.

§6. A Non Paging Virtual Memory Scheme in HLISP

By virtual memory in this section, it is meant schemes, logically
invisible from the user, which utilize the secondary storage (drum or
disc to be called “"file'" hereinafter) as an extension of the primary
"

storage (core or IC, to be called "core" hereinafter). Core pagin
g paging

schemes, occasionally regarded synonymous to virtual memories, will not

be considered here.

Virtualization of the system pushdown stack is simple and almost

trivial. When the stack in the core overflows, the stack is "pushed

down'" halfways in the core and the bottom half is saved in the file.

When the stack in the core underflows (or is over—popuped) , the bottom

half of the stack in core is restored from file. The only parameter the
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system designer has to select is the size of the stack to be placed in
core so as to keep the file read/write overhead times below a reasonable
level. 1KW would be sufficient in most cases.

Storége for H-molecules is virtualized in the following way: An HDOTP
i called a FILEP if the value part contains a special number called the
file address. Actually in terms of system constants maxf and ﬁinf=maxint+l,
a system predicate filep is defined as:
filep[x]=hdotp[x]/\(minfimcar[x]imaxf).

A file address represents the (direct or indirect) address in the
file, where an H-molecule has been filed, in a S-expression format, by the
GGBC. Whenever a FILEP is evaled (by the eval part of the system or by
hvalue), the H—molecuie corresponding to the file address is reconstructed
in core and the value part of the FILEP is replaced by a pointer to the ﬁ—
molecule.reconstructed. This file address and the pointer are registered
in a table called the "file record", which is used ‘to prevent the GGBC from
spending anecessary file space and time in repetitively refiling the same

H-molecule. (Note that the contents of H-molecules are never altered.)

The GGBC, called from the last step G6. of GBC, proceeds in the
following steps:

GGl. Cancel all headers used in assoccomp (cf. 84).

GG2. For each item in the file record, exchange the file address and the
content of the car part of Fhe H—molecﬁle.

GG3. Replace the value parts of HDOTP's and values in the pushdown stack
by the file addresses, if the values represent H-molecules with file
addresses in the car parts. This step efficiently refiles H-
molecules which have been filed before.

GG4. Restore the car parts of H-molecules from the file record.

D6
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CGS5. Cantel allifilerécards:

GG6. File H-molecules in the value parts of HDOTP's and in the pushdown
stack and replace them by the corresponding file addresses. This
step creates new files of H-molecules which have not been filed
before.

CG7. Call GBC. If still not enough HO-cells are reclaimed the execution
of the HLISP program is terminated.

GS5. In the fifth step G5. in GBC, items in the file record with pointers
to HO- or Hl-cells are (and must be) cancelled.

Since sequential addressing is sufficient for the functioning of file
records, they are stored in the file with a small buffer in core.

In order to fully utilize the virtual-memory scheme, the standard
definitions of functions or library functions are loaded in the file
together with the HLISP system. When a d0-valued atom is evaled or hvalued,
the system searches for a standard definition in the file. If found, the
definition is written in the core as an HP. (If unfound, an error.) The

standard definition of define or scompile gives hcopied results.

The virtual memory has enabled the use of collection of functions
amounting to several times larger than the free storage capacity in a single

f

HLISP program without any difficﬁlty or complexity at a reasonable operating
speeds). This would be meaningful for application areas of lisp, wherein
programms become very large to obtain results of any significance whatsoever.
The monocopy and the rewrite protected features of H-molecules are
essential for the present virtual memory scheme. Design of a logically
consistent and reasonably efficient virtual memory scheme for lisp data

subjected to arbitrary use of rplaca and rplacd (L-molecules in HLISP

term) seems to be an open problem within the author's knowledge.
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In the present HLISP, if the L-molecular data explodes during the
execution of a program, the program has to be revised. Making hcopies of

some L-molecular data not subjected to rplaca or rplacd would work in some

cases.

The present GGBC takes all conceivable measures to reclaim the
greatest number of free storage cells in a single stage. It may be a
better strategy to break it down into three stages as follows and proceed
to the next stage only if it fails to reclaim enough HO-cells: The lst
the refiling (GG2-4.), the 2nd the new filing (GG6.) and the 3rd the

cancellation of assoccomp headers (CGL:) stagesy:
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§7. Concluding Remarks

Hash Coding is practiced in many language processors, including
1isp(6, for matching strings of symbols in identifiers. HLISP may be
regarded as a straightforward extension of such practices.

Use of the simplest possible data structure--the binary trees—-
and the ability to define or bootstrap the system in terms of a very
few basic functions are the characteristic features of lisp. 1In order
to comply with this philosophy of lisp, the binary association of keys
with values has begn employed in HLISP because it seems to be the
simplest. “1f shoula be possible to efficiently represent more complex

(7

associative structures, such as those used in LEAP for example, in
terms of binary trees and binary associators.

The present HLISP" functions do not allow for circular list (loop
or ring) arguments. Endless recursion would result in most cases as
in many lisp functions. Generalization of the present HLISP scheme to
treat more general types of internal data structures in a logically
consistent manner would be an interesting theme.

The author would like to thank Messrs. M. Terashima, Y. Kanada,
F. Motoyoshi, T. Gunji and K.AIshihata of the graduate school of the

Faculty of Science, University of Tokyo for implementing and testing

out the present HLISP system.
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APPENDIX

The following is the list of basic HLISP functions and LISP
functions subjected to extension or modification in RLTSE.
apply[fn;x] The third argument (A-list) of Lisp-1.5 is deleted, since
the present HLISP does not use an A-1ist, similarly to Lisp—1.6.
soccomp [ {3 e fn] flg e fn arve function namest "©f 847
atom[x] associators are regarded as atoms. c¢f. Fig:.2
Eigg[x;y;z]=apply[list[LAMBDA;x;y];z]. X must represeat a list of
HDOTP's, v a forw and z a list of HLISP objects. 1If lIist -z 18
shorter than list x, z is regarded as if there were extra list
elements NIL. Associators and headers are treated equally.
E}Egg[x;y;z] Same as bind except in that y is quoted.
bindq[(A,B,C);plus[a;b;c];(1,2,3)] is the same as
M [asbsclsplusfasb;cl]l[1;2;3]=6
These functions are used to A-bind the values of HDOTP's resulting
from the evaluation of x with elements of zi during the evaluation
of form y. The former values of the HDOTP's are restored (from
the pushdown stack) upon completion.
car[x], cdr[x] x must be a molecule, otherwise an error. Unlike in

Lisp 1.5 car and cdr ecan not go beyond (atom) headers and

associators. To go beyond, use hkey, hvalue or dzerop instead.

cons[x;y] x and y can be any HLISP-object. The result is always an

L-molecule.

consp[x] Type predicate for IL-molecultes. ef. Fig 2.

w
(]

dzero[x], dzerop[x] Undefine and predicate for undefined. ek

eval{e] The second argument is deleted for the same reason as in apply.
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Eﬂ[x;y]=[m[x]=m[y]+T;T+NIL] Checks equality of internal representatives.
gggg;[X;y]=[hp[X]f\hp[y]+eq[x;y];atom[X]i/atom[y]+N1L;
equal[car[x];caf[y]]+equal[cdr[x];cdr[y]];T»NIL]

In case both x and y are HP's, equal reduces to non-recursive eq
by virtue of the first cénditional.

fexpr FEXPR's are defined as in the following example for or.
define[[[or;fexpr{[null[*fexpr]-NIL;eval[car[*fexpr]]>T;

T»apply[or;cdr[*fexpr]]]]]}]

Namely, fexpr[<form>] is syntactically regarded as a <function> and
the value of *fexpr is A-bound to the unevaled list of arguments.
ek, 8. g

£3nction[fn;xl; s xn] Xys o5 X (optional) are the names of free
variables in the functional argument fn to be frozen. cf. §5.

hassoc[x]/hassocp[x]/hassocpp[x] )creater/type predi;ate/presence predicate

hcons[x;y]/hconsp[x]/hconspp[x;y]ffor associators, H-molecules

header[x]/headerp[x]/headerpp(x] fand headers. ef. 87 and Fig. 2,

hcopy[x], hcopyl[x] <cf. §3.

hdotg]x]=hassoc[x]\!Leader[x] ef. Fig.2.
hkey[x]=[hdotp[x]>(key part of x);T*error[HKEY]]

Extracts the kéy part of HPOTP's. c¢f. Fig.2.
hltp[x;yl=[m[x]<m[y]-T;T>NIL]
Similar to lessp. It works on internal representatives. For
basic integers, the result is the same as lessp.
hnext[]=%*hnext in value. Advances the value of *hnext to the next H-
molecule, associator or header in storage. All existing headers
except NIL, for example, are printed out by executing: prog[[*hnext];

-

A [null[hnext[]]»return[NIL];headerp[*hnext]=print[*hnext]];go[A]].

hplx] ek Fic.2.
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hvalue[x] Extracts the value of HDOTP's.  cf. §2 and Fig.Z.

m[x]=(Internal representative of x). Is used to express system
Fanctions in Miexpressions. oef: 527,

mapcarhcopy[x] cf. §3.

printfx}, printl[{x] Print with or without line termination.
The key part of headers are printed as the p-name of literal atoms
in other lisps. Associators, L-molecules and H-molecules are

printed as in the following examples:

print[hassoﬁ[hpons[ENGLISH;I]]] prints (..(ENGLISH.1)) with dots;
print[cons[ENGLISH;I]j prints ( ENGLISH . I ) with extra blanks;
print [hcons[ENGLISH;I]] prints (ENGLISH.I) without extra blanks.
Eglégg[x;y], rplacd[x;y] x must be an L-molecule, otherwise an error.
y can be any HLISP object. cf. §2.
set[x;yl=y in value. x must be an HDOTP. y can be any HLISP objecf.

In HLISP set and cset; setq and csetq are synonyms. cf. §2.
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