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Overview of the Talk

• Levels of abstraction

• The use of logic for validating hardware

• FM9801

• Power Considerations

• Big Theorems

• Conclusion

1



  Hardware Verification & Big Theorems

     Warren A. Hunt, Jr.    UTexas, CS Dept

Levels of Abstraction
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• Different specification languages are used at different levels.
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The Verification Problem

• Different specification languages are used at each level.

− ISA: C, C++ models

−Architecture: Drawings, Charts, Graphs, Natural Language

−Microarchitectures: More diagrams, charts, etc.

−Register-transfer: VHDL, Verilog

−Netlist: VHDL, Verilog

−Transistor Schematic: “Stick diagrams”

− Layout: Colored Polygons

• The Size

− ISA models: hundreds of pages

−RTL models: thousands of pages

−Netlist models: millions of pages
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Modeling & Microprocessor Calculus

• At the transistor level, modeling with differential equations is appropriate.
∫ ∞
0 f(t) + δ(t − t1)dt + ag(t2) + . . .

−Using differential equations is far too detailed except for tiny circuits.

−Verification is done by simulation: “rectangle approximation.”

• Using general-purpose logic is microprocessor calculus.

−Example calculi: ACL2, HOL, PVS.

−Using microprocessor calculus requires direct interaction.

• Logics with algorithmic decision procedures: microprocessor algebra.

−Examples: Equivalence checking, model checking, symbolic simulation.

− Systems are generally “programmed” by a user, e.g., variable ordering.

• Microprocessor calculus examples: FM8501, FM8502, FM9001, FM9801, and
Motorola CAP DSP.

• Array verification is an application of microprocessor algebra.
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Microprocessor Correctness

• Microprocessor correctness is demonstrated by showing that some microar-
chitectural design (MA) implements its instruction-set architecture (ISA).

• This kind of verification is an application of microprocessor calculus.
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Correctness of Pipelined Microprocessors

• The verification of pipelined microprocessors requires a more sophisticated ab-
straction function because of: out-of-order execution, speculative execution,
exceptions and interrupts, and self-modifying programs.

• Burch and Dill proposed using the processor’s own flushing mechanism as the
abstraction function.
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• However, this verification approach does not work with interrupts.
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Problem with External Interrupts

• When receiving an external interrupt, modern microprocessors flush in-flight
work and take the interrupt.

Empty

Projection

Flush

MA

MA’

ISA

1

1

k

Projection

MA

MA’

0

0

ISA0

Flush

Flushing

k ISA Transitions

MA Transition

Pipeline

Interrupt
Transition

Interrupt
and

• The Burch and Dill approach does not permit an “empty” the machine flush.
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Correctness of Superscaler Microprocessors
Joint work with Jun Sawada

• The commutative diagram is the basis of our correctness criterion.

− For n-step MA state transitions, the initial and the final states are flushed.

− Let m be the number of instructions executed during the MA execution.

−We compare the n-step transition of the pipelined machine (MA)
to the m-step transition of the specification machine (ISA).

−Additionally, we assume the program does not modify itself.
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• This correctness criterion is applicable to out-of-order execution, speculative
execution, and internal exceptions, but not to interrupts.
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Superscaler Correctness Criterion with External Interrupts
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• Branching Behavior implies Multiple MA paths.

• For each MA path, there exists an ISA path that executes and interrupts the
same instructions as the MA does.

• This commutative diagram holds for corresponding ISA and MA paths.
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The FM9801 Microprocessor

• Our superscaler correctness criterion was used to verify the FM9801 micro-
processor defined in Sawada’s dissertation.

• The FM9801 microprocessor features:

−Out-of-order instruction issue & completion using Tomasulo’s algorithm.

−Out-of-order memory accesses.

− Speculative execution with branch prediction, where up to 11 instructions
may be in flight.

− Internal exceptions and an external interrupt.

• Formally specified in the ACL2 logic.

−The ISA (specification) and the microarchitecture(implementation).

−Early debugging by simulation using the ACL2 execution capability.

−Too complicated for a fully-automated verification.
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Block Diagram of FM9801 Implementation
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Microarchitecture and Instruction-Set Architecture

• The FM9801 is formally specified at two levels:

− Instruction-Set Architecture (ISA) is specified with about 900 lines and
about 30 functions.

– Non-pipelined.

– Executes exactly one instruction every step.

– Includes only the programmer visible states.

– Has 11 different classes of instructions.

−Microarchitecture (MA) is specified with 3300 lines and 170 functions.

– Pipelined.

– Clock cycle accurate model.

– All components are included, including a memory model and branch
prediction.

• The goal of verification is to show that the MA (implementation) and the
ISA (specification) always compute the same results.
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The FM9801 Verification
Mechanical proof done by Jun Sawada

• The entire microprocessor model has been verified with the ACL2 prover.

• Verification Steps

−Defined a suitable Intermediate Abstraction – The FM9801
MAETT

−Defined and Verified the Invariant Conditions

−Verified the Correctness Criterion

13
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Intermediate Abstraction MAETT

• The correctness criterion was not enough, we needed a mechanism to keep
track of instructions as they were processed.

• We introduced the MAETT (Micro-architectural Execution Trace Table) to
track the progress of instructions.

−Each row records the progress of each issued ISA instruction.

−Evolving columns of the MAETT resembles reservation table entries.
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• MAETT records a list of completed and in-flight instructions in program order.
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Structure of MAETT

• The MAETT is list where instructions appear in program order, which makes
it possible to definite properties as recursive predicates.

• The pre-ISA and post-ISA fields record the ideal ISA execution steps.
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Representation of Instructions

• The status of an instruction is represented with a structure:

ik.stg = ’(IFU) ← The current stage of instruction ik.
ik.specultv? = 1 ← Instruction ik is executed speculatively.
ik.tag ← Tag used in Tomasulo’s algorithm
ik.br-predict = 1 ← Branch prediction result.
ik.pre-ISA ← The ideal ISA state before executing ik.
ik.post-ISA ← The ideal ISA state after executing ik.

Defstructure INST {
bitp modified? ; // Modified by Self-Modifying Code?
bitp first-modified? ; // First Modified Instruction
bitp speculative? ; // Speculatively Executed?
bitp br-predict? ; // Branch Prediction Result
bitp exintr? ; // Externally Interrupted
word-p word ; // Instruction Word
stage-p stg ; // Current Stage
ROB-index-p tag ; // Tag used in Tomasulo’s Algorithm
ISA-state-p pre-ISA ; // Pre-ISA state
ISA-state-p post-ISA ;} // Post-ISA state
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Functions and Predicates on Instructions

• Various values of instructions are defined as functions and predicates.

−The program counter value before executing ik.
INST-pc(ik) = ik.pre-ISA.pc

−The memory state before executing ik.
INST-mem(ik) = ik.pre-ISA.mem

−The instruction word of ik.
INST-word(ik) = read-mem(INST-pc(ik), INST-mem(ik))

−The opcode of ik
INST-op(ik) = INST-word(ik).opcode

−And more..

• We defined 58 such functions and predicates for FM9801.

• Each of these embody a concept of an instruction.
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Functions and Predicates on the MAETT

• Functions that takes a MAETT as an argument.

− For instance, specifying that instruction i preceeds j can be written as a
recursive function with MT as an argument.

i precedes j in MT

• Basic theorems can the be proven about instruction flow in the MA.

−Transitivity and Antisymmetry of program order.

Theorem: INST-in-order-transitivity
((i precedes j in MT ) ∧(j precedes k in MT )) ∧ · · ·)

→ (i precedes k in MT )

Theorem: INST-in-order-p-total
((¬ (j precedes i in MT )) ∧ (i �= j ) ∧ · · ·)

→ (i precedes j in MT )
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Verification Steps

• Verification Steps

−Defining Intermediate Abstraction

−Define and Verify Invariant Conditions

−Verify the Correctness Criterion

19
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Defining Properties with the MAETT

• To prove our correctness property, we need to know a number of things about
our design. We specify such properties using the MAETT.

• For instance, instructions are dispatched and committed in order in the FM9801.

• To estabilish such a fact, we can define in-order-dispatch-commit-p(MT)
using recursion on the list of instructions, MT.trace = (i0 i1 · · · im).

• Using this predicate, we can establish instruction ordering properties.

Theorem: INST-in-order-dispatched-undispatched
(dispatched-p (i) ∧ (¬ dispatched-p (j )) ∧ · · ·)

→ (i precedes j in MT )

Theorem: INST-in-order-commit-uncommit
(committed-p (i) ∧(¬ committed-p (j )) ∧ · · ·)

→ (i precedes j in MT )
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Examples of Correct Intermediate Values

• The instruction fetch unit(IFU) fetches and stores instructions.

• The field, word, of the IFU stores the instruction word.

• The function INST-word(i) represents the correct instruction word for i.

• The correctness of the intermediate value is represented as:

(i.specultv? = 1 ∧ ¬INST-fetch-error-detected-p(i) ∧ · · ·)
⇒ MA.IFU.word = INST-word(i).

• The predicate MT-INST-inv(MT,MA) checks all instructions in MT have
correct intermediate values in MA.

− It is defined to be a collection of equalities similar to the one above.
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List of Invariant Properties

• We defined invariant properties in 20 predicates.

• Invariants are local properties that can be verified independently of each other.

# Property Name Brief Description
0 weak-invariants: A well-formedness predicate for a MAETT.
1 pc-match-p: Correct state of the program counter.
2 SRF-match-p: Correct state of the special register file.
3 RF-match-p: Correct state of the general register file.
4 mem-match-p: Correct state of the memory.
5 no-speculative-commit-p: No speculatively executed instruction commits.
6 MT-inst-invariants: Valid intermediate data values in the pipeline.
7 correct-speculation-p: Instructions following a mis-predicted branch are speculatively exe-

cuted.
8 correct-exintr-p: Externally interrupted instructions retire immediately.
9 in-order-dispatch-commit-p: Instructions dispatch and commit in program order.

10 in-order-DQ-p: The dispatch queue is a FIFO queue.
11 in-order-ROB-p: The re-order buffer is a FIFO queue.
12 no-stage-conflict: No structural conflict at pipeline stages.
13 no-robe-conflict: No structural conflict in the re-order buffer.
14 in-order-LSU-inst-p: Certain orders are preserved for instructions in the load-store unit.
15 consistent-RS-p: Reservation stations keep track of instruction dependencies.
16 consistent-reg-tbl-p: The register reference table keeps track of the newest instruction that

updates each general register.
17 consistent-sreg-tbl-p: The register reference table keeps track of the newest instruction that

updates each special register.
18 consistent-MA-p: The conjunction of miscellaneous conditions.
19 misc-invariants: The conjunction of miscellaneous conditions.
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Invariant Verification

• We prove the validity of all the invariants listed on the previous slide by
induction.

• Base Case: Initial pipeline flushed states satisfy inv.

flushed?(MA0) ⇒ inv(MT0,MA0)

• Induction Step: If inv is true for the current state, it is true for the next
state, given that no self-modifying code is executed,

inv(MTn,MAn) ⇒ inv(MTn+1,MAn+1) ∨ MT-CMI-p(MTn+1)

−where predicate MT-CMI-p(MT) is true if self-modifying code is executed
and committed.

• Therefore, invariant inv(MT,MA) is true for all reachable states, as long as
no self-modifying code is executed.

flushed?(MA0) ⇒ inv(MTn,MAn) ∨ MT-CMI-p(MTn)
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Pictorial Proof of the Correctness Criterion
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Proof Decomposition

• Temporal Decomposition

−The correctness criterion involves n-step MA state transitions.

−The verification of an invariant involves a single step analysis.

−Avoiding the direct verification of the criterion reduces the cost.

• Spatial Decomposition

− Invariant proof is divided into the proof of many properties.

−Each property is related to a few components in the entire architecture.

−Verifying properties individually reduces the cost.

• Because of the one-step invariants, we could use DUAL-EVAL to implement
the FM9801.
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Hierarchy of FM9801 Verification Scripts
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The Cost of the Verification

• The FM9801 is verified exclusively using the ACL2 theorem prover.

• The proof script can be re-certified in few hours.

• It seems to scale well with respect to the machine size.

Type of ACL2 Script ACL2 Script Size CPU Time to Certify

Definitions of ISA and MA 140 KBytes 14 minutes
MAETT modeling 55 KBytes 6 minutes
Definitions of Our Invariant 89 KBytes 7 minutes
Proof of Shared Lemmas 481 KBytes 58 minutes
Proof of Our Invariant 1034 KBytes 211 minutes
Proof of Criterion 37 KBytes 11 minutes

Verified Machine Machine Spec Total Verification

Small Example Machine 13 KBytes 169 KBytes
Pipelined Design presented in CAV ’97 78 KBytes 757 KBytes
FM9801 140 KBytes 1909 KBytes

• It would be very interesting to see how much of the invariant proof effort
could be automated with algorithmic proof techniques.

−The invariants properties are of the form: AXp.
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Detected Design Faults

• We simulated the machine before starting the formal verification and elimi-
nated most of the bugs.

• Found 12 bugs and 2 glitches during the formal verification process.

−Bugs are design faults that cause visible incorrect behaviors.

−Glitches may not cause visible wrong behaviors.

– One of the glitches may have caused performance degradation.

−All bugs were found during the verification of the invariants.

• Bugs were found in

−Branch predictor (Leads to incorrect speculative execution.)

−Decoder

−Reservation station

− Load-Store Unit

−Multiply Unit
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Combined Power & Functional Specifications

• The power density of microprocessor
is now first-order problem.

• We are finding ways to trade power
for performance on small circuit ele-
ments.

−Greater use of asynchronous and
self-timed circuits.

−Circuits with different number of
clock cycles.

• We have initiated a research program
to combine functional and power spec-
ifications into a single language.

• Functional circuit verification will now
require knowing the voltage as well
as the netlist.
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Hardware Verification Theorems Are Large

• Hardware design theorems may be the largest theorems ever proven.

−The microprocessor correctness statements require more than 100 pages
to state.

−The correctness statement for some of the arrays we have verified require
more than 1000 pages to state.

• When it is possible to use proof, the payback is great.

− It is clear what is known.

− It is much faster than simulation.
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Hardware Verification Requires Yet Larger Theorems

• Theorems involving computer hardware (and software) are enormous.

−Recent IBM Power 4 (Regatta) design:

– 170,000,000 transistors,

– 30,000 pages of RTL, and

– ISA simulator is 100s of pages.

• Goal: to prove the correctness of designs the size of Power 4.

−Will require support of many branches of computing science:

– New theories, new algorithms, and new data representations;

– Visualization of proofs, automated counter examples generation;

– Networks of fault-tolerant computing (proof) systems;

– Architectural, operating system, and database support; and

– Development of hardware and software theory libraries.

• This goal will necessarily involve group cooperation.
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Conclusion

• Hardware verification is technically challenging – designers create research
problems for us much faster than we can solve them.

• We need to be able to prove theorems that are four to five orders of magnitude
larger than those we now prove just to match what is currently being built.

• There are many PhD dissertations waiting for interested students.

• Hardware verification is important – it is often the least costly method to
establish correctness.

−Comparing equations is cheaper than comparing simulations of equations.

− Functional verification is more than 30% of an industrial design effort.

−Hardware verification provides a means to reduce cost while increasing
coverage.

• The beauty of mathematics is that it can scale to meet these needs.
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Further Reading
−Microprocessor Verification, (editor) special issue of “Formal Methods

in Systems Design,” Kluwer Academic Publishers, March 2002.

− “Verifying the FM9801 Microarchitecture,” with Jun Sawada, in IEEE
Micro, IEEE Press, pp. 47–55, May-June, 1999.

− “Formal Analysis of the Motorola CAP DSP,” with Bishop C. Brock, in
Industrial-Strength Formal Methods, edited by Mike Hinchey and Jonathan
Bowen, Springer-Verlag, 1999.

− “The DUAL-EVAL Hardware Description Language and Its Use in the For-
mal Specification and Verification of the FM9001 Microprocessor,” with
Bishop C. Brock, in Formal Methods in Systems Design, Volume 11,
pp. 71–105, Kluwer Academic Publishers, 1997.
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