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Machine Learning: Problems

Unsupervised Learning

Clustering: group a set of data objects

Co-clustering: simultaneously partition data objects & features

Matrix Approximation

SVD: low-rank approximation, minimizes Frobenius error
NNMA: low-rank non-negative approximation
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Machine Learning: Problems

Unsupervised Learning

Clustering: group a set of data objects

Co-clustering: simultaneously partition data objects & features

Matrix Approximation

SVD: low-rank approximation, minimizes Frobenius error
NNMA: low-rank non-negative approximation

Supervised Learning

Classification: k-nearest neighbor, SVMs, boosting, ...

Many classifiers rely on choice of distance measures

Kernel Learning: used in “kernelized” algorithms

Metric Learning: Information retrieval, Nearest neighbor searches
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Example: Clustering
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Goal: partition points into k clusters
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Example: K-Means Clustering
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Minimizes squared Euclidean distance from points to their cluster centroids

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences



Example: K-Means Clustering

Assumes a Gaussian noise model

Corresponds to squared Euclidean distance

What if a different noise model is assumed?

Poisson, multinomial, exponential, etc.

We will see: for every exponential family probability distribution, there
exists a corresponding generalized distance measure

Distribution Distance Measure

Spherical Gaussian Squared Euclidean Distance

Multinomial Kullback-Leibler Distance

Exponential Itakura-Saito Distance

Leads to generalizations of the k-means objective

Bregman divergences are the generalized distance measures
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Background

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences



Bregman Divergences: Definition

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)
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Bregman Divergences: Definition

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)
The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y x

ϕ(z)= 1
2
zT z

h(z)

Dϕ(x,y)= 1
2
‖x−y‖2

Squared Euclidean distance is a Bregman divergence
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Bregman Divergences: Definition

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)
The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y

x

Dϕ(x ,y)=x log x
y
−x+y

h(z)

ϕ(z)=z log z

Relative Entropy (or KL-divergence) is another Bregman divergence
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Bregman Divergences: Definition

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × relint(S) → R is defined as

Dϕ(x, y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y x

Dϕ(x ,y)= x
y
−log x

y
−1h(z)

ϕ(z)=− log z

Itakura-Saito Dist.(used in signal processing) is also a Bregman divergence
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Bregman Divergences: Properties

Dϕ(x, y) ≥ 0, and equals 0 iff x = y
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Bregman Divergences: Properties

Dϕ(x, y) ≥ 0, and equals 0 iff x = y

Not a metric (symmetry, triangle inequality do not hold)
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Bregman Divergences: Properties

Dϕ(x, y) ≥ 0, and equals 0 iff x = y

Not a metric (symmetry, triangle inequality do not hold)

Strictly convex in 1st argument, but (in general) not in 2nd
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Bregman Divergences: Properties

Dϕ(x, y) ≥ 0, and equals 0 iff x = y

Not a metric (symmetry, triangle inequality do not hold)

Strictly convex in 1st argument, but (in general) not in 2nd

Three-point property generalizes the “Law of cosines”:

Dϕ(x, y) = Dϕ(x, z) + Dϕ(z, y) − (x − z)T (∇ϕ(y) −∇ϕ(z))
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Projections

“Bregman projection” of y onto a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω, y)
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Projections

“Bregman projection” of y onto a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω, y)

y

PΩ(y)

Ω
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Projections

“Bregman projection” of y onto a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω, y)

y

x

PΩ(y)
Ω

Generalized Pythagorean Theorem:

Dϕ(x, y) ≥ Dϕ(x, PΩ(y)) + Dϕ(PΩ(y), y)

When Ω is an affine set, the above holds with equality
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Bregman’s original work

L. M. Bregman. “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming.” USSR Computational Mathematics and Physics,
7:200-217, 1967.

Problem:

min ϕ(x) subject to aT
i x = bi , i = 0, . . . ,m − 1

Bregman’s cyclic projection method:

Start with appropriate x(0). Compute x(t+1) to be the Bregman projection
of x(t) onto the i-th hyperplane (i = t mod m) for t = 0, 1, 2, . . .

Converges to globally optimal solution. This cyclic projection method
can be extended to halfspace and convex constraints, where each
projection is followed by a correction.

Question: What role do Bregman divergences play in machine learning?
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Exponential Families of Distributions

Definition: A regular exponential family is a family of probability distributions
on R

d with density function parameterized by θ:

pψ(x |θ) = exp{xTθ − ψ(θ) − gψ(x)}

ψ is the so-called cumulant function, and is a convex function of Legendre type
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Exponential Families of Distributions

Definition: A regular exponential family is a family of probability distributions
on R

d with density function parameterized by θ:

pψ(x |θ) = exp{xTθ − ψ(θ) − gψ(x)}

ψ is the so-called cumulant function, and is a convex function of Legendre type

Example: spherical Gaussians parameterized by mean µ (& fixed variance σ):

p(x) =
1

√

(2πσ2)d
exp

{

−
1

2σ2
‖x − µ‖2

}

=
1

√

(2πσ2)d
exp

{

xT
( µ

σ2

)

−
σ2

2

( µ

σ2

)2

−
xTx

2σ2

}

Thus θ =
µ

σ2
, and ψ(θ) =

σ2

2
θ2
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Exponential Families of Distributions

Definition: A regular exponential family is a family of probability distributions
on R

d with density function parameterized by θ:

pψ(x |θ) = exp{xTθ − ψ(θ) − gψ(x)}

ψ is the so-called cumulant function, and is a convex function of Legendre type

Example: spherical Gaussians parameterized by mean µ (& fixed variance σ):

p(x) =
1

√

(2πσ2)d
exp

{

−
1

2σ2
‖x − µ‖2

}

=
1

√

(2πσ2)d
exp

{

xT
( µ

σ2

)

−
σ2

2

( µ

σ2

)2

−
xTx

2σ2

}

Thus θ =
µ

σ2
, and ψ(θ) =

σ2

2
θ2

Note: Gaussian distribution ←→ Squared Loss
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Example: Poisson Distribution

Poisson Distribution:

p(x) =
λx

x!
e−λ, x ∈ Z+

The Poisson Distribution is a member of the exponential family

Is there a Divergence associated with the Poisson Distribution?
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Example: Poisson Distribution

Poisson Distribution:

p(x) =
λx

x!
e−λ, x ∈ Z+

The Poisson Distribution is a member of the exponential family

Is there a Divergence associated with the Poisson Distribution?

YES — p(x) can be written as

p(x) = exp{−Dϕ(x , µ) − gϕ(x)},

where Dϕ is the Relative Entropy, i.e., Dϕ(x , µ) = x log
(

x
µ

)

− x + µ
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Example: Poisson Distribution

Poisson Distribution:

p(x) =
λx

x!
e−λ, x ∈ Z+

The Poisson Distribution is a member of the exponential family

Is there a Divergence associated with the Poisson Distribution?

YES — p(x) can be written as

p(x) = exp{−Dϕ(x , µ) − gϕ(x)},

where Dϕ is the Relative Entropy, i.e., Dϕ(x , µ) = x log
(

x
µ

)

− x + µ

Implication: Poisson distribution ←→ Relative Entropy
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Example: Exponential Distribution

Exponential Distribution:

p(x) = λ exp{−λx}

The Exponential Distribution is a member of the exponential family

Is there a Divergence associated with the Exponential Distribution?

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences



Example: Exponential Distribution

Exponential Distribution:

p(x) = λ exp{−λx}

The Exponential Distribution is a member of the exponential family

Is there a Divergence associated with the Exponential Distribution?

YES — p(x) can be written as

p(x) = exp{−Dϕ(x , µ) − h(x)},

where Dϕ is the Itakura-Saito Distance, i.e., Dϕ(x , µ) = x
µ
− log x

µ
− 1
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Example: Exponential Distribution

Exponential Distribution:

p(x) = λ exp{−λx}

The Exponential Distribution is a member of the exponential family

Is there a Divergence associated with the Exponential Distribution?

YES — p(x) can be written as

p(x) = exp{−Dϕ(x , µ) − h(x)},

where Dϕ is the Itakura-Saito Distance, i.e., Dϕ(x , µ) = x
µ
− log x

µ
− 1

Implication: Exponential distribution ←→ Itakura-Saito Dist.
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Bregman Divergences and the Exponential Family

Theorem

Suppose that ϕ and ψ are conjugate Legendre functions. Let Dϕ be

the Bregman divergence associated with ϕ, and let pψ( · |θ) be a

member of the regular exponential family with cumulant function ψ.

Then

pψ(x |θ) = exp{−Dϕ(x, µ(θ)) − gϕ(x)},

where gϕ is a function uniquely determined by ϕ.

Thus there is unique Bregman divergence associated with every
member of the exponential family

Implication: Member of Exponential Family ←→ unique Bregman
Divergence.
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Machine Learning Applications
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Clustering with Bregman Divergences

Let a1, . . . , an be data vectors

Goal: Divide data into k disjoint partitions γ1, . . . , γk

Objective function for Bregman clustering:

min
γ1,...,γk

k
∑

h=1

∑

ai∈γh

Dϕ(ai , yh),

where yh is the representative of the h-th partition

Lemma. Arithmetic mean is the optimal representative for all Dϕ:

µh ≡
1

|γh|

∑

ai∈γh

ai = argmin
x

∑

ai∈γh

Dϕ(ai , x)

Reverse implication also holds

Algorithm: KMeans-type iterative re-partitioning algorithm
monotonically decreases objective
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Co-Clustering with Bregman Divergences

Let A = [a1, . . . , an] be an m × n data matrix

Goal: partition A into k row clusters and ℓ column clusters

How do we judge the quality of co-clustering?
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Co-Clustering with Bregman Divergences

Let A = [a1, . . . , an] be an m × n data matrix

Goal: partition A into k row clusters and ℓ column clusters

How do we judge the quality of co-clustering?

Use quality of “associated” matrix approximation

Associate matrix approximation using the Minimum Bregman
Information (MBI) principle

Objective: Find optimal co-clustering ↔ optimal MBI approximation
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Co-Clustering with Bregman Divergences

Let A = [a1, . . . , an] be an m × n data matrix

Goal: partition A into k row clusters and ℓ column clusters

How do we judge the quality of co-clustering?

Use quality of “associated” matrix approximation

Associate matrix approximation using the Minimum Bregman
Information (MBI) principle

Objective: Find optimal co-clustering ↔ optimal MBI approximation

Example: Information-Theoretic Co-Clustering

Measures approximation error using relative entropy
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Co-Clustering as Matrix Approximation
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Error of approximation vs. number of parameters

M = 5471, N = 300

NNMA approximation computed using Lee & Seung’s algorithm
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Co-Clustering as Matrix Approximation
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Error of approximation vs. number of parameters

M = 4303, N = 3891

NNMA approximation computed using Lee & Seung’s algorithm
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Co-Clustering Applied to Bioinformatics

Gene Expression Leukemia data

Matrix contains expression levels of genes in different tissue samples
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Co-Clustering Applied to Bioinformatics

Gene Expression Leukemia data

Matrix contains expression levels of genes in different tissue samples

Co-clustering recovers cancer samples & functionally related genes

10 20 30 40 50 60 70
  J02923_at
  M19722_at
  M33552_at
  M63138_at
  U89336_cds1_at
  X14046_at
  X16663_at
  X62055_at
  X95735_at
  X89109_s_at
  U19713_s_at
  L09209_s_at
  X64072_s_at
  M15395_at
  M21005_at
  M27891_at
  J03077_s_at
  M26311_s_at
  J03801_f_at
  M19045_f_at
  X14008_rna1_f_at
  M12886_at
  M13792_at
  M16279_at
  U14603_at
  U50743_at
  U23852_s_at
  U49835_s_at
  X00437_s_at
  X76223_s_at
  X00274_at
  M13560_s_at
  HG3576−HT3779_f_at
  M33600_f_at
  D88270_at
  M11722_at
  M92287_at
  U51240_at
  X67951_at
  X82240_rna1_at
  M28826_at
  U67171_at
  X03934_at
  X14975_at
  X69433_at

Tissue  Samples
G

en
es

−2 −1 0 1 2 3 4 5 6

(R1)

(R2)

(R4)

(R5)

(R6)

(T−ALL) (AML) (B−ALL)

(R3)

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences



Learning Over Matrix Inputs

Many problems in machine learning require optimization over
symmetric matrices

Kernel learning: find a kernel matrix that satisfies a set of constraints

Support vector machines
Semi-supervised graph clustering via kernels

Distance metric learning: find a Mahalanobis distance metric

Information retrieval
k-Nearest neighbor classification
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Learning Over Matrix Inputs

Many problems in machine learning require optimization over
symmetric matrices

Kernel learning: find a kernel matrix that satisfies a set of constraints

Support vector machines
Semi-supervised graph clustering via kernels

Distance metric learning: find a Mahalanobis distance metric

Information retrieval
k-Nearest neighbor classification

Bregman divergences can be naturally extended to matrix-valued inputs
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Bregman Matrix Divergences

Let

H: space of N × N Hermitian matrices
λ : H → R

N be the eigenvalue map
ϕ : R

N → R be a convex function of Legendre type
ϕ̂ = ϕ ◦ λ

Define

Dϕ̂(A, B) = ϕ̂(X ) − ϕ̂(Y ) − trace((∇ϕ̂(Y ))∗(X − Y ))

Squared Frobenius norm: ϕ̂(X ) = ‖X‖2
F . Then

Dϕ̂(X , Y ) =
1

2
‖X − Y ‖2

F

Used in many nearness problems
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Bregman Matrix Divergences

von Neumann Divergence: For X º 0, ϕ̂(X ) = trace(X log X ). Then

Dϕ̂(X , Y ) = trace(X log X − X log Y − X + Y )

also called quantum relative entropy
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Bregman Matrix Divergences

von Neumann Divergence: For X º 0, ϕ̂(X ) = trace(X log X ). Then

Dϕ̂(X , Y ) = trace(X log X − X log Y − X + Y )

also called quantum relative entropy

LogDet divergence: For X ≻ 0, ϕ̂(X ) = − log det X . Then

Dϕ̂(X , Y ) = trace(XY−1) − log det(XY−1) − N

Interesting Connection: The differential relative entropy between two
equal-mean Gaussians with covariance matrices X and Y EXACTLY
equals the LogDet divergence between X and Y
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Low-Rank Kernel Learning

Learn a low-rank spd matrix that satisfies given constraints:

min
K

Dϕ̂(K , K0)

subject to trace(KAi ) ≤ bi , 1 ≤ i ≤ c

rank(K ) ≤ r

K º 0
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Low-Rank Kernel Learning

Learn a low-rank spd matrix that satisfies given constraints:

min
K

Dϕ̂(K , K0)

subject to trace(KAi ) ≤ bi , 1 ≤ i ≤ c

rank(K ) ≤ r

K º 0

Problem is non-convex due to rank constraint
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Preserving Range Space

Lemma

Suppose ϕ is separable, i.e., ϕ(x) =
∑

i ϕs(xi ). Let the spectral

decompositions of X and Y be X = VΛV T and Y = UΘUT . Then

Dϕ̂(X , Y ) =
∑

i

∑

j

(vT
i uj)

2Dϕs (λi , θj).

Example: LogDet Divergence can be written as

DLogDet(X , Y ) =
∑

i

∑

j

(vT
i uj)

2

(

λi

θj

− log
λi

θj

− 1

)

Corollary 1: DvN(X , Y ) finite iff range(X ) ⊆ range(Y )

Corollary 2: DLogDet(X , Y ) finite iff range(X ) = range(Y )
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Low-Rank Kernel Learning

Implication: rank(K ) ≤ rank(K0) for vN-divergence and
rank(K ) = rank(K0) for LogDet divergence

Adapt Bregman’s algorithm to solve the problem

min
K

Dϕ̂(K , K0)

subject to trace(KAi ) ≤ bi , 1 ≤ i ≤ c

Algorithm works on factored forms of the kernel matrix

Bregman projections onto a rank-one constraint can be computed in
O(r2) time for both divergences
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Details

LogDet divergence

Projection can be easily computed in closed-form
Iterate is updated using Sherman-Morrison formula
Requires O(r2) Cholesky decomposition of I + αxxT

von Neumann divergence

Projection computed by custom non-linear solver with quadratic
convergence
Iterate is updated using eigenvalue decomposition of I + αxxT

Requires O(r2) update using fast multipole method

Largest problem size handled: n = 20, 000 with r = 16

Useful for learning low-rank kernels for support vector machines,
semi-supervised clustering, etc.
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Information-Theoretic Metric Learning

Problem: Learn a Mahalanobis metric

dX (y1, y2) = (y1 − y2)
TX (y1 − y2)

that satisfies given pairwise distance constraints

The following problems are equivalent:

Metric Learning Kernel Learning

minX KL(p(y; µ, X )‖p(y; µ, I )) minK Dϕ̂(K , K0)
s.t. dX (yi , yj) ≤ U, (i , j) ∈ S ≡ s.t. trace(KAi ) ≤ bi

dX (yi , yj) ≥ L, (i , j) ∈ D rank(K ) ≤ r

X º 0 K º 0

where the connection is that K0 = Y TY , K = Y TXY and r = m

Note that K0 and K are low-rank when n > m
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Challenges

Algorithms

Bregman’s method is simple, but suffers from slow convergence

Interior point methods?

Numerical stability?
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Challenges

Algorithms

Bregman’s method is simple, but suffers from slow convergence

Interior point methods?

Numerical stability?

Choosing an appropriate Bregman Divergence

Noise models are not always available

How to choose the best Bregman divergence?
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What Bregman Divergence to use?

NNMA approximation: A ≈ VH

Some divergences might preserve sparsity better than others

V H V H
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank 5                                         Rank 10

S
pa

rs
ity

 (
ba

r)
 a

nd
 H

oy
er

’s
 m

ea
su

re
 (

lin
e)

The Sparsity of NNMA Solutions for Relative Entropy and Frobenius Norm

Sparsity Frob
Sparsity KL
Hoyer’s KL
Hoyer’s Frob

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences



References

Clustering

“Clustering with Bregman Divergences”, A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Journal of Machine Learning
Research, vol. 6, pages 1705-1749, October 2005.

“A Generalized Maximum Entropy Approach to Bregman Co-Clustering and Matrix Approximations”, A. Banerjee, I. S. Dhillon, J.
Ghosh, S. Merugu, and D. S. Modha. ACM Conference on Knowledge Discovery and Data Mining(KDD), pages 509-514, August
2004.

“Co-clustering of Human Cancer Microarrays using Minimum Squared Residue Co-clustering”, H. Cho and I. S. Dhillon. submitted
for publication, 2006.

“Differential Entropic Clustering of Multivariate Gaussians”, J. V. Davis and I. S. Dhillon. Neural Information Processing Systems
Conference (NIPS), December 2006.

NNMA

“Generalized Nonnegative Matrix Approximations with Bregman Divergences”, I. S. Dhillon and S. Sra. Neural Information
Processing Systems Conference (NIPS), pages 283-290, Vancouver Canada, December 2005.

“Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem”, D. Kim, S. Sra, and I. S. Dhillon.
SIAM International Conference on Data Mining, April 2007.

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences



References

Kernel & Metric Learning

“Learning Low-Rank Kernel Matrices”, B. Kulis, M. A. Sustik, and I. S. Dhillon. International Conference on Machine Learning
(ICML), pages 505-512, July 2006.

“Matrix Exponentiated Gradient Updates for Online Learning and Bregman Projection”, K. Tsuda, G. Ratsch, and M. Warmuth.
Journal of Machine Learning Research, vol. 6, pages 995-1018, December 2004.

“Information-Theoretic Metric Learning”, J. V. Davis, B. Kulis, S. Sra, and I. S. Dhillon. Neural Information Processing Systems
Workshop on Learning to Compare Examples, 2006.

Classification

“Logistic Regression, AdaBoost and Bregman Distances”, M. Collins, R. Schapire, and Y. Singer. Machine Learning, vol. 48, pages
253-285, 2000.

Expository Article

“Matrix Nearness Problems using Bregman Divergences”, I. S. Dhillon and J. A. Tropp, To appear in SIAM Journal on Matrix
Analysis and its Applications, 2007.

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences


