
Which App Will You Use Next?
Collaborative Filtering with Interactional Context

Nagarajan Natarajan
∗

naga86@cs.utexas.edu
Dept. of Computer Science
University of Texas at Austin

Donghyuk Shin
∗

dshin@cs.utexas.edu
Dept. of Computer Science
University of Texas at Austin

Inderjit S. Dhillon
inderjit@cs.utexas.edu
Dept. of Computer Science
University of Texas at Austin

ABSTRACT
The application a smart phone user will launch next intu-
itively depends on the sequence of apps used recently. More
generally, when users interact with systems such as shop-
ping websites or online radio, they click on items that are
of interest in the current context. We call the sequence of
clicks made in the current session interactional context. It
is desirable for a recommender system to use the context
set by the user to update recommendations. Most current
context-aware recommender systems focus on a relatively
less dynamic representational context defined by attributes
such as season, location and tastes. In this paper, we study
the problem of collaborative filtering with interactional con-
text, where the goal is to make personalized and dynamic
recommendations to a user engaged in a session. To this
end, we propose the iConRank algorithm that works in two
stages. First, users are clustered by their transition behav-
ior (one-step Markov transition probabilities between items),
and cluster-level Markov models are computed. Then per-
sonalized PageRank is computed for a given user on the
corresponding cluster Markov graph, with a personalization
vector derived from the current context. We give an in-
terpretation of the second stage of the algorithm as adding
an appropriate context bias, in addition to click bias (or
rating bias), to a classical neighborhood-based collabora-
tive filtering model, where the neighborhood is determined
from a Markov graph. Experimental results on two real-
life datasets demonstrate the superior performance of our
algorithm, where we achieve at least 20% (up to 37%) im-
provement over competitive methods in the recall level at
top-20.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Information filtering

∗Equal contribution to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’13, October 12–16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2409-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2507157.2507186.

Keywords
Collaborative Filtering, Interactional Context, Markov Model,
Personalized PageRank, Context-Aware

1. INTRODUCTION
The problem of recommending an item to a user given

a sequence of items that the user recently interacted with
arises in many systems. The problem is best understood by
considering a smart phone user navigating through various
applications (apps) on the mobile device. Mobile apps are
often used in conjunction with other relevant apps. For ex-
ample, if a user launches the ‘contacts’ app, the next app
is likely to be the ‘mail’ or the ‘messages’ app. The cur-
rent context of the user can be characterized from recently
launched apps. Recommending the “right” app to use next
based on the context of the user’s actions would improve
user experience and multitasking efficiency.

Based on the classification presented in [8], we call the
context that arises from user’s activity within a session inter-
actional context. In contrast, most of the existing context-
aware recommender systems focus on representational con-
text, usually defined before the user interacts and provided
as attributes such as location, weather and interests [1].

The problem differs from traditional collaborative filter-
ing settings, such as the Netflix rating prediction problem,
in many respects. First, user interaction with items such
as apps is brief and repetitive in nature, whereas items like
movies are usually watched/rated once. Second, the user
feedback is inherently implicit in the form of item clicks, as
opposed to explicit feedback like ratings or comments. Ad-
ditionally, we have a temporal ordering of clicks within user
sessions. Third, recommendations must be made available
dynamically as the user interacts with the system. That is,
recommendations should be updated each time a user clicks
an item. Finally, we have the notion of interactional context
defined by the session in progress, to which the recommenda-
tions are targeted. It is desirable for a recommender system
to use the context set by the user to update its recommen-
dations. It might be tempting to relate the aspect to that
of online collaborative filtering systems [7], where systems
could use newly available ratings to recompute predictions.
However, there is a subtle difference. The interactional con-
text should help better zero in on the apps that the user
would launch next while she interacts with the system. It
is therefore necessary to treat the current session differently
from past sessions.

The problem is applicable in any setting where items are
generally used repeatedly, such as listening to tracks from

online music streaming services or browsing products in shop-
ping websites. If a user has been listening to a series of rock
music, she is more likely to prefer other rock music than
tracks from a different genre. Note that in such general
settings, the system should be able to recommend new or
unseen items to the user. In the next app prediction setting,
one could restrict the recommended apps to those that are
already installed in the user device, or even recommend new
apps that other users have used in similar context.1 A less
obvious but tangible benefit of predicting the next app is
that the predicted apps can be pre-loaded to reduce both
app launch latency and energy consumption [19].

In this paper, we propose a novel method, iConRank, for
collaborative filtering with interactional context. The fun-
damental observation is that we do not want to treat the
sequence of item clicks as raw counts, but as ordered tran-
sitions. We model users’ transition behavior between items
as a Markov chain, where transition probabilities are em-
pirically estimated. A single global Markov model would
fall short of capturing diverse transition patterns. On the
other hand, a fully personalized Markov model would suffer
from extreme sparsity of observed transitions. So, we seek
cluster-level Markov models, where the clusters themselves
are behavioral. That is, we cluster users by their sparse
one-step item transition probabilities and compute a rep-
resentative Markov model per behavioral cluster. We de-
velop our method by introducing a context bias to a classical
neighborhood-based collaborative filtering model. Our for-
mulation essentially leads to a personalized PageRank [10]
on a particular Markov graph, where the so-called “person-
alization” vector is derived from interactional context.

Our contributions are as follows:

• The problem of incorporating interactional context in col-
laborative filtering is relatively unexplored (See Section 2).
Though the setting is motivated from app launch patterns
of smart phone users, it is applicable in many click-based
interactive systems.
• We propose iConRank that makes personalized and dy-

namic recommendations given the current session. Rec-
ommendations are updated as the user interacts with the
system. We show that the quality of recommendations
made by our algorithm is superior to those of competitive
methods on two real-life datasets.
• Behavioral clustering of users allows the system to make

recommendations using past item transitions of a given
user as well as transitions from users with similar naviga-
tional patterns.
• Our method is scalable and can handle large problems

efficiently. The clustering stage of our algorithm is done
offline. Personalized PageRank can be computed in a scal-
able manner, as detailed in Section 4.3, which enables im-
plementation on devices with limited processing power.

The remainder of the paper is organized as follows. In
Section 2, we review some closely related work. We present
a formal description of the problem setting in Section 3. In
Section 4, we discuss important aspects of the problem that
need to be addressed, and develop our algorithm iConRank.
Experimental results on two real-life datasets are reported
in Section 5. We conclude in Section 6.

1
This choice is made when the recommender system is deployed. In

experiments, we evaluate with the latter option.

2. RELATED WORK
Traditional collaborative filtering techniques use a history

of item preferences by a set of users in order to recommend
items of interest to a given user. Commonly used classes of
methods are neighborhood-based and latent factor models.
Neighborhood-based methods involve computing a measure
of similarity between pairs of users or items, and obtaining
predictions by taking a weighted average of ratings of similar
users or items [17, 4]. Another family of model-based collab-
orative filtering algorithms is based on latent factor models
[12, 16], where user preferences are modeled as interactions
between unobserved user and item factors.

Previous research has shown that contextual information
can enhance the performance of recommender systems in
various applications. Based on the classification of con-
text introduced in [8], context can be distinguished into two
types: representational and interactional. The majority of
context-aware recommender systems have investigated the
use of representational context, such as time, location and
weather [1]. Some context-aware neighborhood-based mod-
els [5, 13] incorporate such contextual information in the
similarity measure between users. Another approach de-
scribed in [3] introduces item splitting, where item ratings
are split into two virtual items based on a given contextual
condition. The virtual items are used instead of the orig-
inal ones in different collaborative filtering algorithms and
a rating is predicted for the virtual item corresponding to
the current user’s context. The context-aware latent factor
model in [2] includes attribute-based context variables as
biases to appropriately learn the model parameters. In the
tensor factorization method proposed in [15], additional di-
mension for contextual information is added to the standard
user-item ratings matrix.

There has been limited work on recommender systems
that incorporate interactional context. Hariri, et. al [9] also
consider the problem of recommending the next track given
a sequence of tracks recently played. Each sequence of tracks
in a hand-compiled playlist database is first represented as
a sequence of latent topics (using topic modeling). Frequent
patterns of topics are discovered from the topic sequences us-
ing a pattern-mining algorithm. These sequential patterns
are then used to predict relevant topics given a user session.
The predicted topics are used to post-filter an initial ranking
produced by a traditional recommendation algorithm. The
method is applicable only when the number of topics is small
or the maximum length of a session is short. Enumerating
all possible sequences can be computationally infeasible oth-
erwise. Moreover, recommendations are not personalized as
sequential patterns are mined from the entire population. In
the domain of mobile application, recent work on predicting
app launch [19] uses both representational (location, time)
and interactional (app launch) context information to engi-
neer features. However, the approach in [19] uses only the
first app in a given session, which is considered as the trig-
ger. In contrast, our approach considers all apps launched
in the current session.

3. PROBLEM SETTING
Our problem setting is motivated by smart phone users

who exhibit patterns of interaction with the device through
mobile apps. The sequence of apps launched by a user de-
fines the interactional context of the user’s actions. Interac-
tional context arises from the user’s activity within a session

and is dynamic. The setting is applicable to any click-based
recommender system, where recommendations are updated
as the users click on an item (Youtube, Spotify, etc).

We refer to the sequence of items accessed by a user over a
certain contiguous period as a session. In practice, sessions
are defined based on the type of activity (e.g. articles read
by an online user when she is signed in). Note that we do not
consider any temporal aspects of the session, other than the
ordering of clicks. Existing context-aware recommender sys-
tems focus on attribute-based representational context that
is less dynamic and often fixed before the start of a session.
A given user may have specified a set of preferences globally,
but it is often the case that user preferences change between
sessions. The goal of this paper is to present recommenda-
tions to a given user based on her past sessions, sessions of
other users in the system and the current session in progress.
The key aspects of our problem setting are:
1. There are no explicit “likes” or “dislikes” of an item, un-

like the case of Netflix ratings. We want to come up with
a ranking of items that the user will click next in the
current session. Following the recommender systems lit-
erature, our setting relies on implicit feedback as against
the Netflix prize setting that uses explicit feedback.

2. Users may be interested in multiple categories of items,
but given the sequence of clicks made in the current ses-
sion, there is an added context bias that needs to be ac-
counted for. In general recommender systems, user bias
and item bias are accounted for whereas context bias is
either ignored or is not applicable.

We would like to emphasize here that though the first as-
pect in isolation is well-known in the recommender systems
community [14, 20], the second aspect has received little
attention [9].

3.1 The problem statement
The item recommendation problem in the Collaborative

Filtering with Interactional Context setting is formally stated
as follows. Given a history of sessions S of users U =
{u1, u2, . . . , u|U|} over a set of items I = {a1, a2, . . . , a|I|},
and a specific user u ∈ U with session in progress s =
〈ai1 , ai2 , . . . , ait〉, for some t ≥ 1, we want to recommend
the best candidate item ait+1 ∈ I. Note that we want the
recommendations to be (a) personalized to the user u, and
(b) relevant to the context of the session s. The classical
collaborative filtering systems (with implicit feedback) con-
sider a specific case of the problem where the current session
is ignored and the goal is to come up with a set of recom-
mendations based on the click history.

4. PROPOSED METHOD
In our problem setting, we work with implicit feedback in

the form of click sequences. A widely-used collaborative fil-
tering approach for implicit feedback data is to simply form a
user-item count matrix, where an entry represents the num-
ber of times2 a user has clicked on an item in the past. Any
of the collaborative filtering approaches for explicit feedback
such as matrix factorization or similarity-based methods can
then be applied on the count matrix. However, such a naive
approach is not appropriate for reasons manyfold. Most im-
portantly, we do not want to predict any exact rating —
we just need a ranking of relevant items. It is inherently

2
Or a monotonic function such as log of the count.

hard to gauge user preferences with clicks — lack of an es-
tablished scale like star ratings makes it tricky to compute
similarities between users or items. For a detailed discussion
of what prevents a direct use of algorithms designed for ex-
plicit feedback, see [14]. We will see later in the experiments
(Section 5) that collaborative filtering methods on the count
matrix perform poorly.

Some latent factor models for ratings data include biases
due to attribute-based context variables such as location to
appropriately learn the model parameters [2]. Other than
the absence of explicit feedback, such context-aware models
pose another immediate challenge — they rely on rating
instances for different settings of context variables to learn
the appropriate biases. In the case of interactional context,
it is not obvious how to succinctly define context variables
and obtain associated training examples. Also, it must be
efficient to update model parameters as the current session
progresses in order to provide dynamic recommendations.

In this section, we first describe how we model history in
the form of click sequences. Then, we derive our PageRank-
based method by incorporating interactional context in an
existing collaborative filtering framework. Finally, we present
our algorithm iConRank.

4.1 Modeling Implicit Feedback
The fundamental observation is that we do not want to

treat the session history as counts but as sequences instead.
A simple and effective way to model sequences is to use
Markov models. Ideally, we would want to know the proba-
bility of user clicking on an item given the current session.
To this end, we model the users as Markov. The set of items
I corresponds to the state space of the Markov model, and
the state transition probability Mij is the probability that
item j is clicked immediately after item i. From the sessions
data, we can estimate Mij as the fraction of times item j
appears immediately after item i, whenever i appears.

Typically, a given user does not have enough training data
to estimate |I| × |I| parameters of the Markov model. On
the other hand, we do not need to determine a personalized
Markov model for each user. The basic idea of collaborative
filtering is to combine preferences from “similar” users in
order to make recommendations for a given user. One naive
way to combine preferences in our setting is to use session
data of all users to determine a single global Markov model.
While the training data may be rich enough to estimate a
global model, it is less likely to be a good characterization of
the diverse transition behavior of users. The aforementioned
fully personalized and fully global models fall short, and
our approach is to use cluster-level Markov models. It is
reasonable to suppose that there are different clusters of
users exhibiting a common navigational pattern. To discover
behavioral clusters using session data, we need to find a
good representation of users, where users who have similar
transition patterns are “close” to each other than those that
are not.

4.1.1 Behavioral clustering
First, we note that the user-item count matrix itself can-

not be used for clustering — we want the clusters to indicate
how users click and not what users click. In particular, we
want a feature map Φu that encodes the fraction of times a
particular transition was made, rather than the number of
transitions. Let Φ : U → M, where M denotes the set of
row-stochastic matrices, i.e. M = {M ∈ R|I|×|I| : Mij ≥

Radiohead

The Beatles

Nine Inch Nails

Muse

Coldplay

Death Cab For Cutie

Pink Floyd

Depeche Mode

Placebo

Elliott Smith

The Cure

David Bowie

The Smiths

Britney Spears

RHCP

The Killers

Sigur Rós

Interpol
Björk

Metallica

(a) Cluster 1.

Radiohead

The Beatles

Nine Inch Nails

Muse

Coldplay

Death Cab For Cutie

Pink Floyd

Depeche Mode

Placebo

Elliott Smith

The Cure

David Bowie

The Smiths

Britney Spears

RHCP

The Killers

Sigur Rós

Interpol
Björk

Metallica

(b) Cluster 2.

Radiohead

The Beatles

Nine Inch Nails

Muse

Coldplay

Death Cab For Cutie

Pink Floyd

Depeche Mode

Placebo

Elliott Smith

The Cure

David Bowie

The Smiths

Britney Spears

RHCP

The Killers

Sigur Rós

Interpol
Björk

Metallica

(c) Cluster 3.

Figure 1: Behavioral clusters in lastfm dataset (see Section 5.1.2). We see how different clusters of users
move between the top-20 artists with the highest play counts in the training data. Thicker edges represent
higher transition probabilities. Cluster 1 users predominantly move between Muse, Metallica, David Bowie
and Sigur Rós. Cluster 2 users move between Radiohead and The Killers, and Interpol and Death Cab For
Cutie. Cluster 3 users are marked by transitions to Nine Inch Nails, Radiohead and Placebo.

0,
P
jMij = 1}. In particular, Φ(u) = M (u) where M (u)

denotes the one-step Markov transition probability matrix
estimated from the session history of user u. Now, we need
a distance measure to cluster users in the space of transition
probability matrices. An appropriate measure of distance
between two probability distributions is the KL-divergence
or the relative entropy. The KL-divergence dKL(x, y) be-
tween two p-dimensional probability distributions x and y is
defined as:

dKL(x, y) =

pX
i=1

xi log2

„
xi
yi

«
.

The distance between two users u and v is in turn defined
as:

d(u, v) =
1

|I|

|I|X
i=1

dKL(M
(u)
i· ,M

(v)
i·
´
. (1)

We have3 d(u, v) ≥ 0 since dKL(., .) ≥ 0 and d(u, v) =

0 ⇐⇒ M (u) = M (v). For the actual clustering step, we
optimize the k-means objective. The centroid of the cluster
πk is computed as

Mk =
1

|πk|
X
u∈πk

M (u), (2)

where |πk| denotes the number of users assigned to cluster
k. Note that Mk ∈M and we use Mk as the Markov model
for the kth cluster.

In Figure 1, we show4 three behavioral clusters discov-
ered in one of our experimental datasets consisting of logs
of artists played by users of an online radio station (see Sec-
tion 5.1.2). The clusters are computed using k-means with
the KL-divergence measure (1). Observe that different clus-
ters of users exhibit distinct navigational patterns among
the top-20 artists.

4.2 Incorporating interactional context
We motivate our approach from a classical memory-based

collaborative filtering model. Memory-based algorithms pre-
dict ratings for a given user based on past ratings of the
user and other users in the system [17, 4]. The neighbor-
hood models are a classical example, where the predicted
3
In practice, many of Mij ’s are 0, and to have a well-defined dKL(., .)

we add a relatively tiny value to all the entries of the transition ma-
trices.
4
For clarity, we only show the top-20 artists with the highest play

counts in the training data and omit edges whose transition proba-
bility is lower than a certain threshold.

rating of an item by a user is given by a weighted combina-
tion of “k-nearest neighbor” items (or users). The weights
are proportional to the “similarity” between items, which
is represented by the vector of observed user ratings. The
Pearson correlation coefficient and cosine similarity are two
commonly used similarity measures. The similarities be-
tween all item pairs are computed offline, and the predicted
rating r̂u,i for a user u and an item i is given by

r̂u,i = bu,i +
X

j∈N (i)

w(i, j)(ru,j − bu,j) (3)

where N (i) denotes the “neighborhood” set of item i. For
example, in the cosine similarity case, the top-k items with
highest cosine similarity with item i constitute N (i). Typ-
ically, a rating bias term bu,i is included to account for the
user bias (some users are predisposed to rate higher in gen-
eral) and item bias (some movies get higher ratings than
others). The weights are usually normalized for rating pre-
diction tasks.

Let us focus on the item recommendation problem in the
interactional context setting, where the knowledge of the
current session is available. First, we want to use the clus-
ter Markov models computed using (2) to learn a ranking of
items given the user u and the current session s. Second, we
want to incorporate interactional context in (3). In particu-
lar, we want to introduce a context bias term cu,i in addition
to the rating bias bu,i. In the implicit feedback setting, we
interpret bu,i as accounting for click bias rather than rating
bias. To this end, we want a scoring function fu,i using both
past sessions and current session s for the user u. Suitably
modifying (3), we have,

fu,i = bu,i + α
X

j∈N (i)

w(i, j)(fu,j − bu,j) + (1− α)cu,i (4)

where the nonnegative weight α controls the tradeoff be-
tween the current context and information from the past
sessions. Notice the recurrence nature of the above equation
— we want to estimate all user-item scores as the session
progresses, as against the context-aware model suggested in
[2] based on attribute-based context variables.

Define zu,i = fu,i − bu,i for all u ∈ U and i ∈ I, so that
we can remove the click bias from the equation resulting in
a simpler model:

zu,i = α
X

j∈N (i)

w(i, j)zu,j + (1− α)cu,i. (5)

From the graph corresponding to the Markov model with
transition probability matrix M , we set w(i, j) = Mji. This
gives an intuitive interpretation that items that tend to tran-
sition to i more often should receive higher similarity than
items that do not. Given the choice of w(i, j), N (i) corre-
sponds to items that are adjacent to i in the Markov graph.
Estimating cu,i using the click sequences can be hard and
expensive. However, it is easy to specify what items appear
in the current session s. We let cu,i = 1 if the item ai ap-
pears in s or 0 otherwise. Let cu denote the indicator vector
with ith entry equal to cu,i, and let the vector of item scores
for a given user u be zu. Rewriting (5) in matrix form:

zu = αMT zu + (1− α)cu

Letting 1 denote vector of all ones, and normalizing zu to
sum to 1, the above equation can be rewritten as:

zu = (αM + (1− α)1cTu)T zu (6)

The quantity zu is nothing but the personalized PageRank
vector for user u, using the graph M and personalization
vector cu. Thus we have an efficient way to estimate zu,i.
Recall that the click bias bu,i was obviated to compute cu.
So, the final score is given by fu,i = zu,i + bu,i. A standard
way to estimate click bias is to average the launch count of
item ai over users.5 However, a better choice would be to
use transition probabilities of item ait to other items, where
it is the index of the last item in s, since we focus on item

transitions. We find in our experiments that M
(u)
it,i

is an ef-
fective choice for click bias. The final score for the user-item
pair (u, i), given the current session s = 〈ai1 , ai2 , . . . , ait〉 is:

fu,i = zu,i +M
(u)
it,i
, (7)

where zu,i is the solution to (6).

4.3 iConRank Algorithm
We are now ready to give our algorithm iConRank for

recommending items in the collaborative filtering with in-
teractional context setting. Given a current session s =
〈ai1 , ai2 , . . . , ait〉 executed by a given user u, history of ses-
sions S for all users in U , and number of behavioral clusters
K, the iConRank algorithm is specified as follows:

1. (Offline step) Cluster U using the sessions history S into
K clusters by first forming the per-user transition matri-
ces and then using the k-means algorithm as described in
Section 4.1.1. Compute the corresponding Markov tran-
sition probabilities Mk for each cluster k ∈ [K] using (2).

2. Let π(u) denote the cluster to which user u belongs. Set
cu to be the normalized indicator vector of items appear-
ing in s. Compute the personalized PageRank zu by (6)
with M = Mπ(u) and current cu.

3. Compute scores fu,i, for all i 6= it using (7).
4. Rank the items using the computed scores, and return

the top-N items as recommendations for ait+1 .

A few remarks on iConRank algorithm are in order:

Efficiency: Note that the clustering step is done offline as
it is independent of current session s. Steps 2 through 4
are executed every time the user clicks, i.e. as session s
progresses, so that the recommendations can be updated.
Computing the personalized PageRank in Step 2 can be ex-
pensive if |I| is of the order of tens of thousands, even if the

5
Note that user bias need not be added, as we only need to rank

items.

matrices Mk are sparse. Scalability is even more of a concern
if the algorithm is to be implemented in real-time systems
with small processing capabilities like mobile phones. The
linearity property of personalized PageRank [10] stated be-
low can be exploited to implement Step 2 in a scalable way.
Let zu(v) denote the solution to (6) computed with the per-
sonalization vector cu = v. Then:

zu(βv1 + (1− β)v2) = βzu(v1) + (1− β)zu(v2)

for nonnegative β and distributions v1 and v2. We can pre-
compute zu(ei) for i = 1, 2, . . . , |I|, where ei denotes the
ith column of the identity matrix. Then, for a given session
s = 〈ai1 , ai2 , . . . , ait〉, and chosen cu = v we can compute
zu efficiently as:

zu(v) =

tX
j=1

vij . zu(eij)

It is easy to see why the above equality holds: Our choice
of cu = v is such that it is non-zero only in the positions
corresponding to items that appear in s, and is normalized
to sum to 1.

Cold-start: The algorithm can seamlessly deal with new
users. In particular, we can choose cu to be the uniform
distribution over items and use the global Markov model
instead of Mπ(u).

5. EXPERIMENTAL EVALUATION
In this section we present experimental results of our pro-

posed algorithm, iConRank, on two real-life datasets: Apps

and LastFM. We first give a detailed description of the two
datasets and the experimental setting. Next we compare
the recommendation performance of iConRank to a number
of other successful methods. We also evaluate the methods
on recommending existing and new items and study how
performance is influenced by current session length.

For testing, we measure the accuracy of recommending the
next item ait+1 , given the current session s = 〈ai1 , ai2 , . . . , ait〉
of a user. Thus, there is only one correct item for each test
case. A user is usually presented with a small list of rec-
ommended items. Therefore, we measure recall at top-N
(Recall@N) for N = 5, 10, 15, 20. For the sake of complete-
ness, we also report the ROC curve (recall vs. precision plot
up to N = 1, 000), which is the standard measure for com-
paring the recommendation qualities of different methods for
recommender systems. Recall and precision are measured in
the standard way for top-N recommendation tasks [6].

5.1 Dataset Description
The datasets used in this study consist of user event logs

with timestamps, where the events are launching mobile
apps or streaming tracks of an artist. Sessions are formed
from the user logs. We note that consecutive uses of the
same item are considered as a single interaction for methods
using sequences, including ours. However, launch counts are
retained for use by methods based on the user-item matrix.

Statistic Apps LastFM

of users 17,062 941
of items (apps/artists) 9,583 98,412
of training sessions 1,167,171 644,001
of testing sessions 459,899 95,038
Average session length 6.53 18.33
Median session length 3 7

Table 1: Statistics of Apps and LastFM datasets.

0.01% 0.1% 1% 10% 100%
0

20

40

60

80

100

% of items

%
 o

f
c
o
u

n
ts

Apps

LastFM

(a) Item count distribution
(most frequent item on the left).

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Session length x

P
r(

le
n
g
th

≥
 x

)

Apps

LastFM

(b) CDF of the length of
sessions.

Figure 2: Item count and session length distributions

for LastFM and Apps datasets.

Training data consists of all sessions before a chosen date.6

Table 1 shows relevant statistics of each dataset.

5.1.1 Apps Dataset
The Apps dataset is a proprietary dataset obtained from

a manufacturer of mobile devices. It consists of mobile app
usage patterns of smart phone users.7 The dataset spans
over a one year period and each log record consists of user,
timestamp information and one of the two events, app launch
and screen on/off. The screen on/off event is used as an
indicator of a new session, i.e., a new session is started when
the screen is on and the current session is ended when the
screen is off and at least one minute has elapsed.8 Figure
2(a) plots the distribution of item count, which corresponds
to launch count of apps. Apps in the horizontal axis are
ordered by their launch counts, with the most frequently
launched app on the left. We can see in Figure 2(a) that
top 1% of the most frequently launched apps cover about
85% of total launch counts. Figure 2(b) shows the CDF of
the length of sessions. About 87% of sessions have at most
length 10. Our statistics align with the findings in [18] that
interactions with smart phones are mostly brief.

5.1.2 LastFM Dataset
The LastFM (last.fm) dataset consists of listening habits

of about 1,000 users, where each log contains user, track,
artist and timestamp. It has been used in many studies [11,
20]. Here, the task is to recommend the next artist to listen
to. Unlike the Apps dataset, the LastFM dataset lacks any
explicit indication of start or end of a session. So, we mark
sessions by periods of inactivity. We end a session if there is
no other artist streamed within an hour from the last artist
and start a new one with the next artist.8 Listening to music
is a more time consuming activity than using a smart phone.
Furthermore, preference over artists is more diverse than
the apps case, where pre-installed apps are more commonly
used. These differences show up in Figure 2. Sessions in
LastFM tend to be longer and more diverse — about 50%
of sessions have at least length 10 and top 1% of the most
frequent artists cover only about 55% of total counts.

5.2 Results
We first analyze the behavioral clusters obtained. Then

we compare the performance of iConRank to baseline and
other context-aware collaborative filtering methods.

6
Date was chosen to maximize the number of users appearing in both

training and testing sets.
7
We emphasize that the data provided to us was highly anonymized

and contained only generic identifiers that cannot be correlated or
traced back to actual users.
8
Time lapses were tuned to achieve the most meaningful session

statistics.

Dataset Cluster Users nnz(Mk)
Session Length
Avg. Median

Apps

1 4,695 68,967 6.37 3
2 5,711 73,121 6.32 3
3 6,656 78,963 6.83 3

LastFM

1 327 1,733,056 19.15 7
2 320 1,500,913 18.55 7
3 294 1,227,933 17.01 7

Table 2: Statistics of clusters in Apps and LastFM datasets.

Cluster1 Cluster2 Cluster3

(contacts,phone) (phone,dialer) (phone,dialer)
(message,contacts) (search,browser) (1,phone)
(contacts,dialer) (mail,browser) (phone,2)
(settings,phone) (message,mail) (phone,3)
(data,settings) (calendar,mail) (4,phone)
(camera,photo) (browser,video) (5,phone)

(contacts,settings) (phone,browser) (message,mail)

Table 3: Most frequent app transitions of each cluster.

(Some apps in the dataset do not have names, so we refer

to them by numbers.)

5.2.1 Discovered clusters
We cluster the users as described in Section 4.1.1. In our

experiments, we set the number of clusters k = 3. We note
that there was no significant difference in terms of perfor-
mance with larger k. To help characterize each cluster, we
summarize some statistics of each cluster in Table 2. For the
Apps dataset, the first cluster is smaller than the other two,
but has longer sessions than the second cluster. The third
cluster has the largest nnz(Mk), i.e., number of nonzeros in
Mk or the number of unique transitions. For the LastFM

dataset, the clusters are of similar sizes, but the number of
unique transitions is relatively distinct.

For the Apps dataset, we report the most frequent tran-
sitions of each cluster in Table 3. As expected, transitions
occur between related apps, such as contacts and phones,
browser and search, etc., and it is apparent from Table 3
that each cluster represents a distinct type of app transi-
tion behavior. For example, users in the first cluster can be
viewed as power users who transition between apps like ‘set-
tings’, ‘data’ and ‘camera’. In contrast, the second cluster
has shorter sessions as reported in Table 2, and transitions
are concentrated on basic apps such as ‘browser’, ‘search’
and ‘calendar’. For the LastFM dataset, we visualize behav-
ioral patterns for each cluster in Figure 1 (see Section 4.1.1).

5.2.2 Performance Comparison
We compare iConRank to the following collaborative fil-

tering methods:
• NNCosNgbr: Non-Normalized Cosine Neighborhood [6] is

a neighborhood-based model using cosine similarity be-
tween items (represented as vectors of launch counts).
The score for item ai for a given user is calculated as
a weighted average of the k-nearest neighbor items of ai
as in (3), where we set k = 5 and use cosine similarity as
the weights.
• SVD(r): The scores are computed as R̂ = UΣV T ≈ A,

where A ∈ R|U|×|I| is the user-item count matrix, r is
the number of latent factors, U ∈ R|U|×r, V ∈ R|I|×r
are orthonormal matrices and Σ ∈ Rr×r is a diagonal
matrix of the top r singular values. Missing values of A
are typically set to zero. The method has been shown

(a) Apps dataset.

Method
Recall@N

N = 5 N = 10 N = 15 N = 20

NNCosNgbr 0.4301 0.5478 0.6167 0.6636
SVD 0.4574 0.5853 0.6480 0.6851

Markov 0.4592 0.5744 0.6370 0.6754
ContextNgbr 0.5266 0.6248 0.6739 0.7045

SeqPattern 0.5517 0.6451 0.6899 0.7223
iConRank 0.6701 0.7927 0.8386 0.8632

(b) LastFM dataset.

Method
Recall@N

N = 5 N = 10 N = 15 N = 20

NNCosNgbr 0.0691 0.1044 0.1328 0.1560
SVD 0.0810 0.1286 0.1633 0.1922

Markov 0.0631 0.0905 0.1113 0.1285
ContextNgbr 0.0597 0.0775 0.0884 0.0971

SeqPattern 0.0371 0.0536 0.0656 0.0748
iConRank 0.1277 0.1882 0.2304 0.2633

Table 4: Recall@N results on Apps and LastFM datasets for N = 5, 10, 15, 20. iConRank outperforms the other
methods in all cases, achieving 20% and 37% improvement in Recall@20 over the next best method on Apps

and LastFM datasets, respectively.

to achieve good performance in top-N recommendation
tasks [6].
• Markov: The recommended item at∗ depends on the last

item at in the current session via the global Markov model.
Formally, t∗ = argmaxjMtj , where M is the global tran-
sition probability matrix estimated from the sessions of
all users.
• ContextNgbr: Identical to NNCosNgbr except that the k-

nearest neighbors are computed from the set of items in
the current session. We use k = 5 (include all items in the
current session if its length is less than k).
• SeqPattern: Sequence mining algorithm used in [9].9 We

use the last 10 items as the user’s active session.
The last three methods are context-aware approaches that
consider user’s current session. We note that ranking items
by popularity (i.e. number of times an item is accessed in
the training phase), which is known to perform reasonably
well in recommendation tasks, does significantly worse in
our setting than the methods we compare here.

Table 4 reports the Recall@N of the methods on both
datasets for N = 5, 10, 15, 20. Our algorithm, iConRank, sig-
nificantly outperforms all other methods with impressive re-
call rates. It achieves the highest recall of 0.8632 for the Apps
dataset, which means the app ait+1 that a user will use has a
probability of about 86% to be ranked in the top-20 results
returned by iConRank. The next best performing method
for the Apps dataset is SeqPattern followed by ContextNgbr,
both of which use current context. However, they are the
two worst performing methods for the LastFM dataset. This
can be expected as the number of items is much larger than
in the Apps dataset. SeqPattern suffers from the sheer diver-
sity of artists and lack of adequate representative patterns
in the training data. Among the two collaborative filtering
based techniques, SVD performs better than NNCosNgbr in
both the datasets confirming the findings of [6].10 Surpris-
ingly, the simple Markov model performs better than col-
laborative filtering based methods for the Apps dataset, but
fails in the LastFM dataset conforming to our intuition that a
single global Markov model is not enough. In evaluating the
methods on the Apps dataset, the recommended candidate
apps for a given user can contain apps that are not installed
in the user’s device, which is consistent with the evaluation
on the LastFM dataset.11

9
[9] applies sequence mining on latent topics discovered from playlists,

but we mine sequence of items directly as we don’t have item features.
10

We tested SVD with various ranks r, and chose r = 200 for the Apps
dataset and r = 300 for the LastFM dataset. Higher ranks yielded only
marginal performance improvements.

11
The Apps dataset did not contain information about which apps are

installed in the user device.

The ROC curve (up to top-1,000 recommendations) is
given in Figure 3. iConRank generally achieves the highest
precision for any given recall. One exception is SeqPattern
which achieves slightly better recall (about 0.05 higher) at
top-1 for the Apps dataset. However, it immediately starts to
degrade in performance falling below iConRank for N > 1.
We further study the performance in different categories:
existing and new items. Specifically, evaluation is restricted
to items that appeared at least once in the training data
(“existing”) or those that were not seen in the training data
(“new”) for each user. The results are presented in Figure
4. We can see that iConRank not only performs well on ex-
isting items, but is also capable of recommending new items
to users significantly better than the rest.

A desirable property of our algorithm is that it is able
to make more accurate recommendations as more items are
observed in a given session. We examine how iConRank per-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Recall

P
re

c
is

io
n

NNCosNgbr

SVD

Markov

ContextNgbr

SeqPattern

iConRank

(a) Apps dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Recall

P
re

c
is

io
n

NNCosNgbr

SVD

Markov

ContextNgbr

SeqPattern

iConRank

(b) LastFM dataset.

Figure 3: ROC curve for Apps and LastFM datasets
up to top-1,000 recommendations. iConRank achieves
highest precision-recall rates.

Existing New Existing New
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll@
2

0

Apps LastFM

Markov

ContextNgbr

SeqPattern

iConRank

Figure 4: Recall@20 for existing and new items.
iConRank performs the best in all cases.

2 4 6 8 10 12 14 16 18 20
0.75

0.8

0.85

0.9

0.95

Session length t

R
e
c
a
ll@

2
0

2 4 6 8 10 12 14 16 18 20
0.3

0.35

0.4

0.45

0.5

Apps

LastFM

Figure 5: Recall@20 of different session lengths.
Performance increases as the session length in-
creases showing that iConRank effectively captures
the current context.

forms as more of the current session is revealed. In par-
ticular, we measure Recall@20 when t (length of s) varies
as shown in Figure 5. As the session length increases, Re-
call@20 also increases for both datasets, illustrating that
iConRank effectively captures the current context of the ses-
sion. Especially, the performance greatly increases after ob-
serving just two items in a given session. However, we also
find that recall rates can drop when t becomes very large
(not shown in the figure) — the personalization vector tends
to a uniform distribution and context ceases to have rele-
vance. In practice, most of the sessions are short as shown
in Figure 2(b).

6. CONCLUSIONS
In this paper we have considered the problem of collab-

orative filtering with interactional context to recommend
potential items of interest to a user already engaged in a
session, using past sessions of the user and of other users.
We are given implicit feedback in the form of clicks and a
session that establishes the current context of a user. Our
problem setting differs from the traditional setting of collab-
orative filtering in crucial respects. We propose iConRank,
a novel method that is motivated by introducing ‘context
bias’ in the neighborhood-based model. Our formulation es-
sentially leads to the personalized PageRank, where context
is captured by the personalization vector. Experimental re-
sults on real-life datasets demonstrate that our algorithm
achieves superior recommendation performance illustrating
its ability to capture the context of a given session.

As part of future work, we plan to study how to combine
both interactional context and representational context such

as location and time. Exploring other collaborative and con-
tent filtering methods to incorporate interactional context
are promising research directions.

7. ACKNOWLEDGMENTS
This research was supported by NSF grant CCF-1117055.

8. REFERENCES
[1] L. Baltrunas. Context-aware collaborative filtering

recommender systems. PhD thesis, Free University of
Bozen-Bolzano, 2011.

[2] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization
techniques for context aware recommendation. In ACM
RecSys, pages 301–304, 2011.

[3] L. Baltrunas and F. Ricci. Context-based splitting of item
ratings in collaborative filtering. In ACM RecSys, pages
245–248, 2009.

[4] R. M. Bell and Y. Koren. Scalable collaborative filtering
with jointly derived neighborhood interpolation weights. In
ICDM, pages 43–52, 2007.

[5] A. Chen. Context-aware collaborative filtering system:
predicting the user’s preferences in ubiquitous computing.
In CHI EA, pages 1110–1111, 2005.

[6] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-N recommendation tasks.
In ACM RecSys, pages 39–46, 2010.

[7] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and
W. Nejdl. Real-time top-N recommendation in social
streams. In ACM RecSys, pages 59–66, 2012.

[8] P. Dourish. What we talk about when we talk about
context. Personal and Ubiquitous Computing, 8(1):19–30,
2004.

[9] N. Hariri, B. Mobasher, and R. Burke. Context-aware
music recommendation based on latent topic sequential
patterns. In ACM RecSys, pages 131–138, 2012.

[10] T. H. Haveliwala. Topic-sensitive PageRank: a
context-sensitive ranking algorithm for web search. IEEE
Trans. on Knowl. and Data Eng., 15(4):784–796, 2003.

[11] B. Hidasi and D. Tikk. Fast ALS-based tensor factorization
for context-aware recommendation from implicit feedback.
In ECML PKDD, pages 67–82, 2012.

[12] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In IJCAI, pages 688–693, 1999.

[13] R. Hu, W. Dou, and J. Liu. A context-aware collaborative
filtering approach for service recommendation. In CSC,
pages 148–155, 2012.

[14] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering
for implicit feedback datasets. In ICDM, pages 263–272,
2008.

[15] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: N-dimensional tensor
factorization for context-aware collaborative filtering. In
ACM RecSys, pages 79–86, 2010.

[16] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, 2009.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW, pages 285–295, 2001.

[18] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and
P. Kortum. LiveLab: measuring wireless networks and
smartphone users in the field. SIGMETRICS Performance
Evaluation Review, 38(3):15–20, 2011.

[19] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast
app launching for mobile devices using predictive user
context. In MobiSys, pages 113–126, 2012.

[20] D. Yang, T. Chen, W. Zhang, Q. Lu, and Y. Yu. Local
implicit feedback mining for music recommendation. In
ACM RecSys, pages 91–98, 2012.

