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Abstract—It is a consensus in microarray analysis that identifying potential local patterns, characterized by coherent groups of genes

and conditions, may shed light on the discovery of previously undetectable biological cellular processes of genes, as well as

macroscopic phenotypes of related samples. In order to simultaneously cluster genes and conditions, we have previously developed a

fast coclustering algorithm, Minimum Sum-Squared Residue Coclustering (MSSRCC), which employs an alternating minimization

scheme and generates what we call coclusters in a “checkerboard” structure. In this paper, we propose specific strategies that enable

MSSRCC to escape poor local minima and resolve the degeneracy problem in partitional clustering algorithms. The strategies include

binormalization, deterministic spectral initialization, and incremental local search. We assess the effects of various strategies on both

synthetic gene expression data sets and real human cancer microarrays and provide empirical evidence that MSSRCC with the

proposed strategies performs better than existing coclustering and clustering algorithms. In particular, the combination of all the three

strategies leads to the best performance. Furthermore, we illustrate coherence of the resulting coclusters in a checkerboard structure,

where genes in a cocluster manifest the phenotype structure of corresponding specific samples and evaluate the enrichment of

functional annotations in Gene Ontology (GO).

Index Terms—Microarray analysis, coclustering, binormalization, deterministic spectral initialization, local search, gene ontology.
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1 INTRODUCTION

MICROARRAY technologies enable researchers to simulta-
neously measure the expression levels of thousands

of genes in a massively parallel manner [1]. The measure-
ments of a microarray experiment are usually summarized
in the form of a data matrix, called gene expression data
matrix, whose rows represent genes and columns represent
various specific experimental conditions such as different
samples, different time points, or different organisms. Each
entry of the matrix corresponds to a numeric representation
of the expression or activity of a particular gene under a
given experimental condition. Microarray techniques have
been extensively applied to diverse areas, where the main
purpose is to detect differential expression levels, discover
patterns, or predict classes of experimental conditions [2],
[3]. In addition to the enormous scientific potential of
microarrays in making biological inferences, microarrays
have been employed to investigate global gene expression
in human disease research, biomedical, pharmaceutical,
and clinical studies. In particular, human cancer research
has become one of the major applications of microarrays
and accounts for more than 80 percent of the microarray
publication on human disease to date [4]. Microarray
technology in cancer research has many potential uses such
as major insights into the genesis, progression, prognosis,

and response to therapy on the basis of gene expression
profiles [2], [5].

Various cluster analysis techniques have been applied to
microarrays and have been proven to be useful for
identifying biologically relevant groupings of genes and
samples [6], [7]. For example, Eisen et al. [8] used clustering
to identify groups of coregulated genes similarly expressed
across all samples, expecting clustered genes to participate
in similar cellular machinery or network, while Golub et al.
[9] and Alizadeh et al. [10] applied clustering to cluster
samples into homogeneous groups according to gene
expression profiles, expecting them to correspond to
particular macroscopic phenotypes. However, both ap-
proaches may fail to identify local patterns where subsets
of genes are coregulated and coexpressed only under
certain experimental conditions, and therefore, the discov-
ery of such local expression patterns may be the key to
uncovering many genetic pathways that are not apparent
otherwise [11]. In contrast, coclustering, or the simultaneous
clustering of genes and conditions, aims at finding such
local coherent patterns that better reflect biological reality.

Recently, Cho et al. [12] developed two residue-based
coclustering algorithms that simultaneously identify coclus-
ters with coherent values in both rows and columns via an
alternating k-means-like iterative algorithm, resulting in a
checkerboard structure. The first algorithm is based on the
partitioning model proposed by Hartigan [13] and captures
coclusters with constant values. The other, which we refer
to as Minimum Sum-Squared Residue Coclustering
(MSSRCC) algorithm, is based on the squared residue
formulated by Cheng and Church [14] and discovers
coclusters with coherent “trends,” as well as constant
values. Therefore, in this paper, we intend to provide
specific strategies that substantially enhance MSSRCC and
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also empirically demonstrate the advantage of the proposed
strategies. First, we investigate different data transforma-
tion methods such as column/row standardization (CS/
RS), double centering (DC), and binormalization (see
Section 3). Our experimental results reveal that the
“binormalization” scaling proposed by Livne and Golub
[15] leads to the best performance in the context of sample
accuracy. Second, we use a spectral relaxation of the
objective function used in MSSRCC—the singular vectors
of the gene expression matrix provide the relaxed solution.
Like ordinary k-means-type clustering algorithms, MSSRCC
suffers from the problems of being trapped in local minima
and generating empty clusters. We resolve both these
problems by adopting an incremental local search (LS)
strategy [16], where incremental moves of rows and
columns among clusters are taken in order to decrease the
objective function value.

To evaluate the performance of the proposed algo-
rithms, we first compare coclustering performance of
MSSRCC with other coclustering algorithms on publicly
available synthetic gene expression data sets, where we use
two external measures called average cocluster relevance and
average cocluster recovery (see Section 5). Furthermore, we
investigate in detail its performance in various settings on
publicly available human cancer microarray data sets in
the literature, including Colon cancer, Leukemia, Lung
cancer, and Mixed-Lineage Leukemia (MLL). We quantify
the sample clustering performance using an accuracy
measure (see Section 5). In most cases, we obtain better
sample clustering accuracy by using MSSRCC than by
using the ordinary one-way k-means algorithm. In parti-
cular, MSSRCC with the combination of binormalization,
spectral initialization (SI), and LS strategy results in the
best accuracy. In addition, we investigate the effectiveness
of hierarchical initialization on MSSRCC. It turns out that
average- or complete-linkage hierarchical clustering (HC)
initialization helps generate similar performance to that
with SI. We also assess gene clusters by illustrating
coherence of the resulting coclusters in a checkerboard
structure, where the genes in a cocluster manifest the
phenotype structure of the corresponding specific samples.
Then, we investigate how many informative discriminating
genes reported in the literature are clustered together.
Furthermore, we evaluate the enrichment of functional
annotations of the gene clusters in the context of gene
ontology (GO) [17] via DAVID [18], which is a functional
profiling tool publicly available on the Web.

The remainder of this paper is organized as follows:
Section 2 gives a brief survey of related work, focusing on
existing coclustering algorithms. Section 3 summarizes
MSSRCC and the proposed strategies, while Section 4
describes both the synthetic gene expression data sets and
the real human cancer microarray data sets. Section 5
presents detailed empirical results that substantiate the
usefulness of the proposed strategies for the MSSRCC
algorithm. Finally, we conclude with a brief summary and
directions for future work in Section 6.

2 RELATED WORK

A vast amount of work has been done on coclustering
algorithms in various contexts. For a taxonomic overview of
“two-mode clustering methods,” refer to the survey paper

by Mechelen et al. [19]. In addition, for a survey on the
application of coclustering to biological data analysis, see
the recent paper by Madeira and Oliveira [20]. Since the
detailed survey of existing coclustering algorithms is
beyond the scope of this paper, here, we briefly overview
some algorithms in chronological order.

One of the earliest coclustering formulations, block
clustering was introduced by Hartigan who called it “direct
clustering” [13], and it refers to the “simultaneous cluster-
ing” of both rows and columns of a data matrix [21].
Hartigan introduced various coclustering quality measures
and models, including the partitional model and gave a
greedy algorithm for a hierarchical coclustering model,
where the partitions of row and columns can be described
in a hierarchical manner by trees. Others have proposed
nonhierarchical partitional coclustering algorithms that
employ an alternating minimization scheme, which at-
tempts to minimize a given objective function with respect
to one variable while fixing the other, and vice versa,
instead of solving over two variables (see [22] for details).
For example, Gaul and Schader [23] introduced an alter-
nating exchange algorithm for two-mode data, Baier et al.
[24] developed two-mode (non-)overlapping additive clus-
tering, and Maurizio [25] proposed an alternating least
squares algorithm for the double k-means model. These
algorithms are similar to our proposed algorithm, MSSRCC,
in the sense that they employ an alternating optimization
scheme. They tend to capture coclusters with constant
values since their objectives optimize the partitioning model
proposed by Hartigan [13]. In this paper, we are more
interested in discovering coclusters with constant values, as
well as ones with coherent trends using MSSRCC, and
therefore, we omit a detailed discussion of these algorithms
and focus on other specific algorithms that are directly
related to our proposed approach.

Cheng and Church [14] are considered to be the first to
apply coclustering, also called biclustering, to gene expres-
sion data. They proposed a greedy search heuristic to
generate biclusters that satisfy a certain homogeneity
constraint, called mean squared residue. The algorithm
produces one cocluster at a time using a low mean squared
residue (except the trivial case where all genes have constant
expression values) as the criterion for identifying a cocluster.
A sequence of node (i.e., row or column) deletions and
additions is applied to the original matrix, while the mean
squared residue of the cocluster is kept under a given
threshold. After each cocluster is produced, the elements of
the cocluster are replaced with random numbers, and then,
the same procedure is applied to the modified matrix to
generate another, possibly overlapping, cocluster until the
required number of coclusters is found. Unlike this method,
our algorithm finds all the coclusters simultaneously.

Since Cheng and Church [14], several similar approaches
have been taken within gene expression analysis [26], [27],
all of which basically utilize the definition of the mean
squared residue and try to enhance the original work. For
example, Yang et al. [26] point out that random number
replacements can interfere with the future discovery of
coclusters, especially ones that have overlap with the
discovered ones. They present an algorithm called FLexible
Overlapped biClustering (FLOC) that simultaneously pro-
duces k coclusters whose mean residues are all less than a
predefined constant. FLOC incrementally moves a row or
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column out of or into a cocluster depending on whether the
row or column is already included in that cocluster or not,
and this move is called an action. The idea of action is very
similar to our incremental LS strategy in coclustering (see
Section 3).

Kluger et al. [28] apply a spectral coclustering algorithm,
motivated by Dhillon’s bipartite formulation [29], on gene
expression data to produce a “checkerboard” structure. The
largest several left and right singular vectors of the
normalized gene expression matrix are computed and then
a final clustering step using k-means, and normalized cuts is
applied to the data projected onto the topmost singular
vectors. They incorporate different normalizations of genes
and conditions in the hope of discarding irrelevant constant
background noise. Similarly, we investigate the effect of
various data transformations to MSSRCC.

Dhillon et al. [30] propose an information-theoretic

coclustering algorithm that views a nonnegative matrix as

the estimate of a (scaled) empirical joint probability distribu-

tion of two discrete random variables and poses the

coclustering problem as an optimization problem in informa-

tion theory, where the optimal coclustering maximizes the

mutual information between the clustered random variables

subject to constraints on the number of row and column

clusters. This algorithm is restricted to nonnegative matrices,

but the algorithm is similar to our batch coclustering

algorithms with the main difference being the distance

measure and the reconstruction scheme. See [31] for recent

work that treats various distance measures in a unifying

framework.
Recently, Bleuler et al. [32] apply an evolutionary

algorithm (EA) to the biclustering formulation in [14] to

explore the search space of biclusters. They also implement

a LS method based on multiple node deletion and single

node deletion/addition in [14]. They apply simulated

annealing (SA) to overcome the local minima problem in

greedy search algorithms. The main intuition behind the

use of stochastic search techniques such as EA and SA is to

escape from local minima in order to produce better

coclusters than the greedy search algorithm of the original

work at the expense of increased computation time.

MSSRCC attempts to escape from local minima by inter-

weaving global batch updates with LS steps in a ping-pong

manner.

3 PROPOSED ALGORITHM

Notation. Upperase bold-faced letters likeAA denote matrices

and lowercase bold-faced letters like aa denote column

vectors. AAi� and AA�j denote row i and column j of matrix

AA, respectively. Aij (or aij) denotes the ði; jÞth element of

matrix AA, while ai denotes the ith element of vector aa.

Uppercase letters such as I and J denote the set of row

indices in a row cluster and the set of column indices in a

column cluster, respectively. The submatrix ofAA determined

by I and J is called a cocluster and denoted by AAIJ . kAAk
denotes the Frobenius norm of A (i.e., kAAk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j A

2
ij

q
). kaak1

denotes the L1-norm (i.e., kaak1 ¼
P

i jaij), while kaak2 denotes

the L2-norm (i.e., kaak2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

i a
2
i

p
).

3.1 Data Preprocessing

We use publicly available gene expression matrices, which
have already been preprocessed in various ways using
image analysis, expression quantization, normalization, and
screening out. The numerical values in each data set can be
very different. Therefore, we employ the following simple
preprocessing steps prior to applying our coclustering
algorithm.

3.1.1 Gene Selection

Typically, gene expression data sets contain thousands of
genes but a relatively small number of samples, often less
than a hundred. Moreover, many of the genes are noisy and
redundant, raising an issue of feature selection. Instead of
utilizing sophisticated feature selection algorithms, we
apply the following simple preprocessing steps usually
adopted in microarray experiments to detect differential
expression [33], [34], [35]: First, we threshold genes with a
predefined floor value and/or a predefined ceil value; then,
we filter out genes whose relative deviation ðjmax=minjÞ or
absolute deviation ðjmax�minjÞ is less than predefined
values, where max and min refer, respectively, to the
maximum and minimum expression levels for a particular
gene across all samples.

3.1.2 Data Transformation

Transformation of the raw data is considered one of the most
important steps for various data mining processes since the
variance of a variable will determine its importance in a
given model [36]. Recently, Wouters et al. [37] emphasize the
importance of appropriate weighting in the analysis of
microarray data, where they compare different transforma-
tion methods as the building blocks of three multivariate
projection methods. In addition, Kluger et al. [28] showed
that simultaneous L1 normalization of the rows and
columns of a positive matrix has consistent advantage over
other forms of rescaling of the raw data. Effective data
transformations for coclustering algorithms have not been
investigated thoroughly in prior work. Therefore, we
investigate the effectiveness of the following data transfor-
mation methods.

3.1.3 No Transformation (NT)

No centering or scaling is taken and the raw matrix is
directly input to MSSRCC. Therefore, a0ij ¼ aij, 8i and 8j.

3.1.4 Column/Row Standardization (CS/RS)

Column standardization is defined as

a0ij ¼
aij � �j
�j

;

for i ¼ 1; � � � ;m and j ¼ 1; � � � ; n, where �j ¼ 1
m

Pm
i¼1 aij, and

�2
j ¼ 1

m

Pm
i¼1ðaij � �jÞ

2. Row standardization is defined simi-
larly with �i ¼ 1

n

Pn
j¼1 aij, and �2

i ¼ 1
n

Pn
i¼1ðaij � �iÞ

2. Col-
umn standardization results in each column having zero
mean and unit variance and is also called “autoscaling” [38].
Through this standardization, the relative variation in
intensity is emphasized.
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3.1.5 Double Centering (DC)

DC is defined as

a0ij ¼ aij � �i � �j þ �ij;

for i ¼ 1; � � � ;m and j ¼ 1; � � � ; n, where

�ij ¼
1

mn

Xm
i¼1

Xn
j¼1

aij:

DC has become a classic technique for background

correction. Through this centering, the data matrix is

projected on a hyperplane that passes through the origin

and is orthogonal to the all-ones vector. It leads to a

reduction by one of the rank of the original matrix [37].

3.1.6 Binormalization (NBIN)

Livne and Golub [15] present iterative algorithms (called

BIN for a square matrix and NBIN for a rectangle matrix)

for scaling all the rows and columns of a square (rectangle)

matrix to have unit (same) L2-norm. Binormalization of a

rectangular matrix through NBIN results in
Pn

j¼1 a
0
ij

2 ¼ n
for i ¼ 1; � � � ;m and

Pm
i¼1 a

0
ij

2 ¼ m for j ¼ 1; � � � ; n. The

effect is a bisphericalization, where the rows, as well as

the columns are forced to lie on hyperspheres with radii
ffiffiffi
n
p

and
ffiffiffiffiffi
m
p

, respectively.
An early study on preprocessing can be found in

Harshman and Lundy [39]. Recently, Bro and Smilde [40]

and Smilde et al. [41] discuss a number of important

features of the common preprocessing steps of centering

and scaling, focusing on a two-way bilinear data analysis

and generalizing the results to a multiway data analysis.

3.2 Minimum Sum-Squared Residue Coclustering

Let the data matrix AA 2 IRm�n be partitioned into k row

clusters and ‘ column clusters. The residue of an element aij

in cocluster, i.e., i 2 I and j 2 J , is defined as

hij ¼ aij � aiJ � aIj þ aIJ ;

where aiJ ¼ 1
jJ j
P

j2J aij is the mean of the entries in row i

whose column indices are in J , aIj ¼ 1
jIj
P

i2I aij is the mean

of the entries in column j whose row indices are in I, and

aIJ ¼ 1
jIj�jJ j

P
i2I;j2J aij is the mean of all entries in the

cocluster.
We now show how to write the residue in a compact

manner. Assume row-cluster r ð1 � r � kÞ has mr rows, soPk
r¼1 mr ¼ m. Similarly, column-cluster c ð1 � c � ‘Þ has

nc columns, so
P‘

c¼1 nc ¼ n. Then, we define a row cluster

indicator matrix, RR 2 IRm�k and a column cluster indicator

matrix, CC 2 IRn�‘ as follows: The column r of RR has

mr nonzeros, each of which is equal to m�1=2
r , and the

nonzeros of CC are defined similarly. Without loss of

generality, we assume that the rows and the columns that

belong to a particular cluster are contiguous. Then, the

matrix RR has the form

RR ¼

m
�1=2
1 0 � � � 0

m
�1=2
1 0 � � � 0

..

.
0 � � � 0

m
�1=2
1 0 � � � 0

0 m
�1=2
2 � � � 0

0 m
�1=2
2 � � � 0

..

. ..
.

� � � ..
.

0 0 � � � m
�1=2
k

..

. ..
.

� � � ..
.

0 0 � � � m
�1=2
k

2
66666666666666666664

3
77777777777777777775

;

where the first column has m1 nonzeros, the second column
has m2 nonzeros, and the last (i.e., kth) column has
mk nonzeros. Matrix CC has a similar structure. Therefore,
kRR�rk2

1 ¼ mr and kCC�ck2
1 ¼ nc. Note that RR and CC are column

orthonormal matrices since the columns of RR and CC are
clearly orthogonal and kRR�rk2 ¼ 1 and kCC�ck2 ¼ 1. Then, the
residue matrix, HH ¼ ½hij�m�n, can be written as

HH ¼ ðII �RRRRT ÞAAðII � CCCCT Þ
¼ AA� Â̂A;

where Â̂A ¼ RRRRTAAþAACCCCT �RRRRTAACCCCT . The minimum
squared residue coclustering objective is to find row
clusters I and column clusters J such that kHHk2 ¼P

I;J

P
i2I;j2J h

2
ij is minimized. However, finding globally

optimal coclusters that minimize this residue is an NP-hard
problem. Cheng and Church [14] show the NP-hardness of
this problem by constructing a reduction from the balanced
complete bipartite subgraph problem in [42].

Cho et al. [12] propose an alternating iterative algorithm
that monotonically decreases the objective function and
converges to a local minimum. Algorithm 1 describes the
batch update algorithm, MSSRCC. The algorithm begins
with the initialization of the indicator matrices RR and CC

based on initial clustering indicator vectors � and � (step
(INIT)). Notice that initial row and column clusterings are
taken as inputs of MSSRCC since there are various ways to
obtain initial clusterings. In this paper, we will investigate
the effectiveness of five different initializations: random
initialization (RI), SI, and three HC initializations (See Table 1
and Section 5.1). Each iteration involves finding the closest
row (column) cluster prototype, given by a row (column) of
AAR ðAACÞ, for each row (column) of AAP and setting its row
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TABLE 1
Summary of Computational Complexity of Various Steps

m = no. of rows, n = no. of columns, k = no. of row clusters, ‘ = no. of
column clusters, t = no. of batch iterations, i = no. of row LS steps, and
j = no. of column LS steps.



(column) cluster accordingly (step (RB) for every row and
step (CB) for every column, respectively). The matrices AAR,
AAC , and AAP are defined in Algorithm 1. Meanwhile, the row
(column) clustering is stored in the form of the row (column)
clustering indicator vector � ð�Þ, where �ðiÞ ¼ r implies that
row i is in row cluster r; likewise, �ðjÞ ¼ c implies that
column j is in column cluster c. The algorithm iterates until
the decrease in objective function becomes smaller than the
specified tolerance factor � . Monotonic decrease of the
objective function is proven in [12].

Algorithm 1: Minimum squared-sum residue coclustering

algorithm (batch update only)

MSSRCCðAA; k; ‘; �; �Þ
Input: Data matrix AA 2 IRm�n, number of row clusters k,

number of column clusters ‘, and clustering indicator

vectors � 2 f1; � � � ; kgm�1 and � 2 f1; � � � ; ‘gn�1

Output: Clustering indicator vectors � and �

begin

Initialize RR 2 IRm�k and CC 2 IRn�‘ based on the initial

cluster assignment of � and � ðINIT Þ
�  10�3kAAk2; {Adjustable parameter}

newobj kðII �RRRRT ÞAAðII � CCCCT Þk2

oldobj newobjþ � þ 1

while joldobj� newobjj > � do

AAP  AAðII � CCCCT Þ; AAR  RRTAAP

for 1 � i � m do

�ðiÞ  arg min
1�r�k

kAAP
i� �m�1=2

r AAR
r�k

2 ðRBÞ
end

RR Update using �

AAP  ðII �RRRRT ÞAA; AAC  AAPCC

for 1 � j � n do

�ðjÞ  arg min
1�c�‘

kAAP
�j � n�1=2

c AAC
�ck

2 ðCBÞ
end

CC  Update using �

oldobj newobj

newobj kðII �RRRRT ÞAAðII � CCCCT Þk2

end

end

The batch update algorithm (Algorithm 1) can get stuck
in qualitatively poor local minima. Hence, the batch
algorithm and an incremental LS algorithm (Algorithm 2)
are alternatively invoked, as illustrated in Fig. 1. As we will
demonstrate in Section 5, this “ping-pong” strategy yields
qualitatively superior results.

Algorithm 2: Column LS step.

CLðAA;RR;CC; ‘; �Þ
Input: Data matrix AA 2 IRm�n, Clustering indicator

matrices RR 2 IRm�k and CC 2 IRn�l, number of

column clusters ‘, and column clustering indicator

vector � 2 f1; � � � ; ‘gn�1

Output: Column clustering indicator vector � and

corresponding matrix CC

begin

�  10�6kAAk2; {Adjustable parameter}
�AA RRTAA

for 1 � j � n do

for 1 � c0 � ‘, c0 6¼ �ðjÞ ¼ c do

�jðc0Þ  Update using formula (4.14) in [12]

end

end

ðj�; c�Þ  arg maxðj;cÞ �jðcÞ
if �j� > � then

�ðj�Þ  c�

end

CC  Update using �

end

3.3 Spectral Initialization (SI)

In this section, we describe a principled initialization
scheme for MSSRCC. In minimizing the original objective
function, the strong structural constraints on the cluster
indicator matrices RR and CC make it a difficult problem. If
we relax these constraints to just seek column orthogonal
matrices RR and CC, i.e., RRTRR ¼ IIk and CCTCC ¼ II‘, then the
minimization is dramatically eased.

Let AA ¼ UU��VV T be the singular value decomposition
(SVD) of AA. Then, it is a classical result that AAs ¼ UUs��sVV

T
s is

the best rank-s approximation to a matrix AA with respect to
the Frobenius norm [43]. Based on this fact, it can be shown
that one solution of the relaxed problem is given by RR ¼ UUk

and CC ¼ VV ‘, leading to

Â̂A ¼ RRRRTAAþAACCCCT �RRRRTAACCCCT

¼ UUkUU
T
k AAþAAVV ‘VV

T
‘ � UUkUU

T
k AAVV ‘VV

T
‘

¼ AAk þAA‘ �AAkVV ‘VV
T
‘

¼ AAs; where s ¼ maxðk; ‘Þ:

Note that the relaxation shown above allows us to obtain a
lower bound of �2

sþ1 þ � � � þ �2
rankðAAÞ on the value of the

objective function kHHk2. Due to their global nature,
spectral techniques seem to offer an ability for superior
initializations. After obtaining a relaxed solution, we have
to obtain a good coclustering. There are many ways to
obtain a coclustering from the singular vectors. For
example, we can cluster the rows of UUk and VV ‘ using
k-means and then obtain row and column clusters as done
in [29]. Particularly, Yu and Shi [44] suggest a principled
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Fig. 1. The overall structure of ping-pong strategy. RB and CB stand for
row batch update and column batch update in Algorithm 1, respectively.
RL and CL stand for row local search and column local search,
respectively.



postprocessing heuristic for minimizing normalized cuts,
where eigenvectors (normalized to be L2-norm 1) are
rotated to obtain a discrete near-global optimal solution.
Their goal is to find the 0-1 partition matrix that is closest
to the eigenvectors of the given weight matrix. The
method consists of the following two steps: 1) eigende-
composition and orthonormal transformation for finding
global optima in the relaxed continuous domain and
2) bilinear iterations for finding a discrete solution closest
to continuous optima. In step 1, the first k leading
eigenvectors are used to generate all optima for optimal
k-way partitioning. In step 2, alternating minimization
iterates between nonmaximum suppression to find the
optimal discrete solution (i.e., set 1 for an optimal discrete
cluster and set 0 for remaining clusters) and SVD to find
the optimal orthonormal transform. These steps recover
the rotation that aligns the columns of the partition matrix
with those of the rotated eigenvector matrix that is closest
in squared Frobenius norm (see [44] for details). Since the
method generates a deterministic solution and guarantees
the near-global optimum, we adapt it to get a discrete
clustering solution for each dimension from the left and
right singular vectors, respectively. The performance
comparison between this SI and RI is discussed in Section 5
(also, see Table 1 for computational complexity). It turns
out that this approach—first run spectral clustering to get
an initial coclustering and then refine the result using the
coclustering algorithm—results in a better coclustering of
the data.

3.4 Incremental Local Search (LS)

In the experiments, we observe that Algorithm 1 makes
large changes to the objective function value in its initial
iterations, thereafter achieving smaller changes. Once the
batch algorithm converges, it might suffer from two
problems: qualitatively poor local minimum and presence
of empty clusters. An effective technique to address these
issues is to incorporate an incremental LS strategy [16] into
the standard batch algorithm. A single step of row/column
incremental LS looks for the single row/column move that
maximizes the change of objective function value. Algo-
rithm 2 describes a single column LS step, where �jðc0Þ
keeps track of the change of objective function value by
moving column j from cluster c ¼ �ðjÞ to cluster c0 6¼ c
(refer to [12] for derivation of update formulation and
efficient implementation details). Furthermore, we can take
a finite sequence (say, 20) of such moves (i.e., the chain of
LSs) until the moves improve the objective function value.
Such a LS strategy has been shown to be effective in
escaping poor local minima resulting from the batch
algorithm and avoiding empty clusters in both ordinary
one-way k-means [16] and the minimum sum-squared
coclustering algorithms [12]. Note that moving a row or
column from its current cluster to an empty cluster always
leads to a decrease in the objective function (assuming
nondegeneracy) and guarantees that no cluster is empty
(see supplementary material for the proof, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.70268).

In Fig. 1, we summarize the overall structure of the ping-
pong strategy. It consists of two main algorithm steps, one
for the row and/or column batch update (upper box) and the

other for the row and/or column LS (lower box). Basically,
one ping-pong iteration (outer loop) performs batch updates
followed by LS updates (see Table 1 for complexity of
various steps). Notice that we can start with either row batch
update or column batch update and other variations are
possible (see supplementary material, which can be found
on the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TCBB.2007.70268, for other
possible variations).

4 DESCRIPTION OF DATA SETS

To validate the performance of the proposed algorithm, we
consider both synthetic and real gene expression data sets
as follows:

4.1 Synthetic Gene Expression Data Sets

Recently, Preli�c et al. [45] evaluate the performance of five
prominent coclustering algorithms and provide synthetic
gene expression data sets. Based on Madeira and Oliveira
[20], they consider: 1) two types of cocluster concepts,
coclusters with constant values (i.e., constant coclusters)
and coclusters with coherent values over the conditions
(i.e., additive coclusters) and 2) two types of cocluster
structures, nonoverlapping coclusters, and overlapping
coclusters. Each data matrix contains 10 nonoverlapping
implanted coclusters, and each cocluster extends over
10 genes and 5 conditions, therefore, its dimension is 100
� 50. Furthermore, to study the effect of noise, they
consider various noise levels and generate 10 input matrices
for each considered noise level (see supplementary material
in [45]). Since MSSRCC generates nonoverlapping exhaus-
tive coclusters, we use only the data matrices with
nonoverlapping additive coclusters in our experiments.

4.2 Real Gene Expression Data Sets

We target four human cancer microarray data sets and their
various gene subsets. The microarray data sets are
summarized in Table 2, and the details are explained
below. Note that all the arrays were originally generated
using Affymetrix technology.

4.2.1 Colon Cancer

Alon et al. [46] selected only the genes ðm ¼ 2;000Þ with
highest minimal intensity across the samples and placed
them in order of descending minimal intensity from a
total of 6,500 human genes. The samples ðn ¼ 62Þ consist
of tumorous (40 samples) and normal (22 samples) colon
tissues. Note that the raw gene expression matrix contains
no negative values and only 1,909 unique expressed
sequence tags (ESTs) exist among 2,000 genes because
some ESTs are repeated. We first reduced the genes to
1,096 genes by removing genes with jmax=minj < 15 and
jmax�minj < 500, see Table 2 for details. Further, the
gene expression values were transformed by taking the
base-10 logarithm.

4.2.2 Leukemia

Golub et al. [9] used gene expression levels ðm ¼ 7; 129Þ
along samples ðn ¼ 72Þ suffering from leukemia. Each
sample belongs to either acute lymphoblastic leukemia
(ALL, 47 samples) or acute myeloid leukemia (AML,
25 samples). Following the preprocessing steps in [35], we
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first thresholded genes by using a floor of 100 and ceiling
of 16,000 and then further screened out genes with
jmax=minj < 5 and jmax�minj < 500, leaving a total of
3,571 genes.

4.2.3 Lung Cancer

Gordon et al. [47] provided human tissue samples ðn ¼ 181Þ
consisting of malignant pleural mesothelioma (MPM,
31 samples) and adenocarcinoma (ADCA, 150 samples
with 139 patient tumors and 11 duplicates) of the lung. Each
sample is described by 12,533 genes (m ¼ 12;533). For our
experiment, we screened out genes by fixing jmax=minj < 5
and varying absolute deviation value so that the resulting
dimension is reduced to 1/5th of the original dimension,
leaving a total of 2,401 genes with jmax�minj � 600.

4.2.4 MLL Data Set

Armstrong et al. [48] obtained gene expression values ðm ¼
12;582Þ over all samples ðn ¼ 72Þ. Each sample was
diagnosed by pathologists as one of the three types of
leukemia: ALL (24 samples), AML (28 samples), and MLL
(20 samples). We applied the same preprocessing step used
for the Lung data set (i.e., fixing jmax=minj < 5 and
adjusting absolute deviation filter in order to reduce the
gene size to 1/5th of the original size), leaving a total of
2,474 genes with jmax�minj � 5;500.

After the simple relative and absolute thresholding, we
obtain a reduced number of genes from each data set,
given in the last row in Table 2. We will refer to the data
sets with these reduced gene sets as the reduced gene
subsets. In addition, various gene subsets of Colon cancer,
Leukemia, and MLL have been identified in the literature
to have discriminating capability among the specific
cancer types considered in this paper. These gene subsets
were selected from either an individual platform or cross-
platform combinations using various feature selection
algorithms (see supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.70268, for
details). We collect these gene subsets and also generate
new gene subsets by either intersection or union of the
related subsets. We will refer to these gene sets as the
selected gene subsets to emphasize that these genes were
selected using more sophisticated feature selection meth-
ods. We prepare these discriminative gene subsets
because 1) less computation time is required with smaller

dimensional data, 2) more stable and reliable clustering

can be obtained with less noisy and more coherent data,

and 3) clustering performance can be evaluated with their

discriminating and separating capabilities. By utilizing the

selected discriminating gene subsets, we intend to find

the best performing strategy for MSSRCC and then

evaluate the gene clustering quality of the reduced gene

subsets in Table 2 with the best strategy.

5 EXPERIMENTAL RESULTS

We implement the proposed algorithms in C++, perform all

experiments on a workstation (Linux, Intel Pentium

2.53 GHz, 1 Gbyte of main memory), and generate figures

using MATLAB. As specified in Algorithms 1 and 2, � is

adjustable, and one might use other values to adjust

convergence speed. In the experiments, we fix � ¼
10�3kAAk2 for the batch updates and � ¼ 10�6kAAk2 for the

LS steps. Note that � for the batch updates should be larger

than that for the LS steps to proceed with the ping-pong

strategy. Algorithm 1 generates 10 � 10 (i.e., k ¼ 10 and

l ¼ 10) coclusters for the synthetic data sets within 5 seconds

and 100 � 2 (i.e., k ¼ 100 and l ¼ 2) or 100 � 3 (i.e., k ¼ 100

and l ¼ 3) coclusters within 5 	 20 seconds for all the data

sets. However, SVD for the SI and the LS take additional

time.
We evaluate gene cluster quality using the following

external evaluation measure, average cocluster relevance (see

[45] for details) defined as

S�GðM;MoptÞ ¼
1

jMj
X

ðG;CÞ2M
max

ðGopt;CoptÞ2Mopt

jG \Goptj
jG [Goptj

;

where M denotes the coclusters from a coclustering

algorithm, and Mopt is the set of implanted coclusters, each

of which contains a gene set G (or Gopt) and a condition set

C (or Copt). This score reflects to what extent the generated

coclusters represent true coclusters in the gene dimension.

Similarly, average cocluster recovery is defined as S�GðMopt;MÞ
and quantifies how well each of the true coclusters is

recovered by the corresponding coclustering algorithm.

Both scores take a maximum value of 1, if M ¼Mopt.
In addition, we assess sample clustering quality accord-

ing to a priori assigned class labels using the external

evaluation measure, accuracy, defined as

CHO AND DHILLON: COCLUSTERING OF HUMAN CANCER MICROARRAYS USING MINIMUM SUM-SQUARED RESIDUE COCLUSTERING 391

TABLE 2
Description of Microarray Data Sets Used in Our Experiments



accuracyð%Þ ¼ 1

T

X‘
i¼1

ti

 !
� 100;

where T denotes the total number of samples, ‘ denotes the

number of sample clusters, and ti denotes the number of
samples correctly clustered into sample class i. We first
form a confusion matrix whose ði; jÞth entry gives the

number of samples in cluster i that belong to the true class j.
Each ti is a diagonal element of the corresponding

confusion matrix whose cluster labels are permuted so that
the sum of diagonal elements is maximized.

Since we usually do not have prior knowledge about
which genes are relevant, we adopt other criteria to
evaluate gene clustering. We visualize the coherence of
genes in some gene clusters using checkerboard plots and
evaluate the gene clusters by checking how many well-
known discriminating genes in the literature are clustered
together. In addition, we assess the enrichment of GO
biological functional categories in some gene clusters via
DAVID [18].

In the upcoming sections, we evaluate the performance

of the various preprocessing schemes (i.e., NT, RS/CS, DC,
and NBIN), the initialization schemes (i.e., RI and SI), and
LS. See Sections 3.1, 3.3, and 3.4 for details.

5.1 Comparison of Coclustering Algorithms

For the comparison study, we utilize the synthetic gene
expression data sets (having nonoverlapping additive

coclusters) and the “Biclustering Analysis Toolbox (Bi-
cAT),” which implements the following coclustering algo-
rithms: Cheng and Church’s (CC) algorithm, Samba, Order
Preserving Submatrix Algorithm (OPSM); Iterative Signa-
ture Algorithm (ISA); xMotif; and BiMax (see [45] for a
detailed discussion of each algorithm).

We partition the synthetic data sets into 10 � 10 coclus-
ters using MSSRCC with the proposed strategies and as
done in [45], the scores are averaged over the 10 input
matrices at each corresponding noise level. Fig. 2 compares
the performance of our proposed strategies with several
existing coclustering algorithms. With SI, we are able to
recover all the 10 implanted coclusters over all the
considered noise levels (thus, further algorithmic steps are
not necessary after SI). However, without SI, MSSRCC fails
to capture all the coclusters like other coclustering algo-
rithms (except BiMax). For example, MSSRCC with RI
shows the worst performance (see Fig. 2b and Fig. 2d), and
its performance decreases as noise increases. However, it
still generates better performance than other coclustering
algorithms such as CC, OPSM, and xMotif (see Fig. 2a and
Fig. 2c). In summary, we have the following:

1. SI itself obtains perfect recovery.
2. In general, LS itself improves the overall performance.
3. MSSRCC with NBIN leads to better performance at

increasing noise levels.
4. MSSRCC with RI results in better performance with

either NBIN or LS and best with both NBIN and LS.

We observe in our experiments that MSSRCC with RS
and MSSRCC with NBIN give comparable performance
(see supplementary material, which can be found on the
Computer Society Digital Library at http://doi.ieeecom-
putersociety.org/10.1109/TCBB.2007.70268). However, we
emphasize in Fig. 2 the performance of MSSRCC with
NBIN, because it results in a good performance in general
on both synthetic and real gene expression data sets.
Furthermore, we summarize the effect of data transforma-
tion on the CC algorithm in Fig. 3. CS and RS are
beneficial for CC and result in better performance than
CC without data transformation in Fig. 2. Interestingly,
NBIN and DC hardly improve the performance of CC,
and they do not seem to be appropriate for CC.
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Fig. 2. Effect of noise on coclustering algorithms: (a) and (b) average
cocluster relevance and (c) and (d) average cocluster recovery. Plots (a)
and (c) are reproduced based on that in [45] for comparison with the
performance of MSSRCC as shown in (b) and (d). Note that standard
deviations of performance with MSSRCC are shown in plots (b) and (d).
Abbrevations: RI is for random initialization, SI is for spectral
initializations, NBIN is for binormalization, and LS is for local search.

Fig. 3. Effect of data transformation on the CC algorithm: (a) average

cocluster relevance and (b) average cocluster recovery. Abbreviations:

CS/RS is for column/row standardization, DC is for double centering,

and NBIN is for binormalization.



5.2 Evaluation of Sample Clustering

We utilize all the selected gene subsets in order to find out
the best combination of the strategies proposed in Section 3:
for NBIN, two initializations (RI and SI), two algorithms
(k-means and MSSRCC), and two update strategies (without
LS and with LS) and for the five data transformations, NT,
RS/CS, DC and NBIN, two initializations (RI and SI), two
algorithms (k-means and MSSRCC), and two update
strategies (with/without LS). Consequently, we have a total
of 40 different combinations of the strategies.

Fig. 4 summarizes the accuracy values of all the
40 combinations, each of which is averaged over all the
selected gene subsets. The average accuracy varies with the
individual strategy as follows: RI and SI achieve 90.98 per-
cent and 94.10 percent of accuracy, respectively; NT, RS, CS,
DC, and NBIN obtain 90.25 percent, 91.74 percent, 93.64 per-
cent, 91.56 percent, and 95.51 percent, respectively; k-means

and MSSRCC lead to 90.95 percent and 94.13 percent,
respectively; and without-LS and with-LS result in 91.82 per-
cent and 93.26 percent, respectively. Interestingly, DC only
gives a slightly better accuracy than NT, even though DC is
widely used in various algorithms [28], [49], [36]. More

interestingly, the combination of NT, RI, and k-means
without LS gives the worst accuracy of 84.29 percent and
the combination of NBIN, SI, MSSRCC, with LS obtains the
best accuracy of 97.43 percent. In summary, we obtain a
good accuracy with an individual strategy, NBIN, SI, or
MSSRCC, and better accuracy with combination of these
strategies than an individual strategy. The best performing
combination is to employ all the four strategies.

In order to verify the effectiveness of the best performing
strategy on larger dimensional data sets, we perform
further experiments with the data sets in Table 2, which
performs better than k-means algorithm in the previous
experiments. Here, fixing NBIN and MSSRCC, we evaluate
performance of initialization and LS strategies varying the
number of gene clusters from 1 to 100. Fig. 5 illustrates the
initial and final average accuracies with different strategies.
Each strategy performs differently on different data sets.
However, in general, SI contributes more to the improve-
ment of accuracy than LS, and SI itself does give better
initial accuracy than RI in addition to better final accuracy.
In addition, for most cases, we obtain smaller standard
deviations with LS than without LS. All the empirical
results support the necessity of the combination of NBIN,
SI, and MSSRCC with LS to get the best accuracy.

Finally, in Table 3, we summarize the average sample
clustering performance (with the best performing combina-
tion, i.e., MSSRCC with NBIN, SI, and LS) for the reduced
gene subsets in Table 2, and the selected gene subsets
whose details are given in the supplementary material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2007.70268. We observe that accuracy values for the
reduced gene subsets (second column in Table 3) are
significantly worse than these for the corresponding
selected gene subsets (third column in Table 3). We ascribe
this result to the difference in data preprocessing: the
reduced gene subsets are obtained using unsupervised
heuristics (i.e., relative and absolute deviation thresholds),
while the selected gene subsets were carefully selected
using specific feature selection techniques. The result also
supports the observation that most genes individually do
not offer good discriminative ability, but small subsets of
genes together lead to better discriminative information for
clustering as well for classification [33], [48], [50], [51]. It is
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Fig. 4. Average sample clustering accuracy for all the selected
discriminating gene subsets: (a) RI and (b) SI. For the cases using
k-means algorithm, the accuracy is averaged over 1,000 random runs.
Abbreviations: NT is for number of transformations, CS/RS is for
column/row standardization, DC is for double centering, NBIN is for
binormalization, and LS is for local search. See supplementary material,
which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2007.70268, for the de-
tailed performance of each strategy on the individual data sets.

Fig. 5. Average sample clustering accuracy using MSSRCC with NBIN for the data sets in Table 2. The average and standard deviation values are
obtained over 100 gene clusters ranging from 1 to 100. Abbreviations: NBIN is for binormalization, RI/SI is for random/spectral initialization, and LS is
for local search.



therefore desirable to employ sophisticated dimensionality
reduction techniques to keep such small subsets of genes.

5.3 MSSRCC Improves Hierarchical Clustering

HC itself has been reported to generate worse clustering
results for gene expression data than other common
clustering algorithms such as k-means [52], [53], [54].
However, HC is popular in analyzing genomic data,
because of the early availability of free clustering and
visualization software (see Eisen et al. [8]). Moreover, HC
has been successfully applied as an initialization for other
clustering algorithms [52], [55], [56]. In this paper, we
extensively apply this idea (i.e., HC as a specific initializa-
tion for other clustering algorithms) to MSSRCC and
evaluate its effectiveness on performance of MSSRCC. For
this experiment, we consider HC algorithms with correla-
tion-based distance metric and three variants using simple,
complete, and average linkage algorithms. We utilize the
CLUSTERDATA function in MATLAB to generate 100 seeds
(i.e., the number of gene clusters is varied from 1 to 100) for
each data set in Table 2, fixing the number of sample
clusters to the number of true classes.

It has been observed that single-linkage HC suffers from
outliers and chaining effect, performs poorly among the
three linkages, and even shows worse performance than
k-means with RI [52], [54], [56], [57]. Our experimental
results in Fig. 6 are consistent with this observation.
Interestingly, all the initial clusterings with single-linkage
are not improved by MSSRCC without LS (see the first two
bars in each plot in Fig. 6). In our experiments, the single-
linkage initialization happens to generate initial singleton
sample clusters as follows: Colon results in sample 13,

Leukemia results in sample 18, and MLL results in
sample 21 and sample 26. In addition, the single-linkage
initialization results in two samples of Lung data set,
sample 64 and sample 107, being put into one cluster. Since
a singleton cluster is a trivial case whose residue value is
zero, as discussed in [12], no points move to initial singleton
clusters during the batch update. Therefore, initial singleton
clusters still remain intact after the batch update. However,
the chain of the LS strategy helps other points in moving to
singleton clusters and eventually improves the clustering
(see the third bar in each plot in Fig. 6).

In general, both the average- and the complete-linkage
initializations do not generate initial singleton clusters.
Accordingly, they start with a better initial clustering than
the single-linkage initialization. Their initial clustering is
improved using MSSRCC without LS and further improved
with LS. Therefore, either average- or complete-linkage
hierarchical initialization followed by MSSRCC is a desirable
strategy (note that Gibbons and Roth [54] concluded that the
complete-linkage is the only appropriate HC method to
analyze microarray experiments). It is also worth mention-
ing that MSSRCC with hierarchical initialization obtains
deterministic clustering results like our deterministic SI. We
summarize accuracies with different strategies as follows:
for Colon, 85.02 
 4.23 percent (with average-linkage HC þ
LS) versus 85.73
 4.72 percent (with SIþ LS); for Leukemia,
91.47
 6.76 percent (with complete-linkage HCþ LS) versus
93.14
 5.23 percent (with SI þ LS); for Lung Cancer, 99.45

0.06 percent (with average-linkage HC þ LS) versus 99.69 

0.27 percent (with SI þ LS); and for MLL, 72.11 
 5.56
percent (with complete-linkage HC þ LS) versus 93.40 

0.93 percent (with SI þ LS). Notice that even though
MSSRCC can correct initial cluster assignments brought up
by HC, the final assignments are not better than (but
comparable to) those from SI followed by MSSRCC.

5.4 Evaluation of Gene Clusters

In this section, we evaluate the quality of some gene clusters
obtained using MSSRCC with the best performing strategy.
Here, we focus on some gene clusters that are frequently
clustered together with high sample cluster accuracy and
whose expression levels are clearly distinguished from
other clusters. All the other gene clusters not shown in
Figs. 7, 8, 9, and 10 can be found at the supplementary
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TABLE 3
Comparison of the Average Sample Clustering Accuracy with

the Best Performing Strategy

Note that selected gene subsets of Lung cancer are not available in the
literature.

Fig. 6. Average sample clustering accuracy using MSSRCC with NBIN and HC initialization. The average and standard deviation values are obtained
over 100 gene clusters ranging from 1 to 100. Abbreviations: HC is for hierarchical clustering, Single/Complete/Average is for single/complete/
average linkage, and LS is for local search.



material, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TCBB.2007.70268.

5.4.1 Gene Clusters in the Colon Cancer Data Set

Fig. 7 illustrates the pseudocolor image of the 3 �
2 coclusters of Colon cancer and the corresponding mean

expression level errorbars. As mentioned in [46], the

ribosomal genes are partly upregulated in tumor samples

(i.e., red vertical stripes) and comparatively downregulated

in normal samples (i.e., blue vertical stripes) of Colon

cancer. The (mean) expression levels clearly illustrate that

MSSRCC captures homogeneous gene expression patterns.

Among 29 distinct ribosomal genes in the reduced gene set

of 1,096 genes, seven ribosomal genes reside in (CO-13), and

13 others reside in (CO-84). As in [46], we observe that the

ribosomal protein genes are partially upregulated in the

colon tumor tissues. In particular, (CO-20) contains six

genes selected in either [33] or [50], and Fig. 7 illustrates that

those six discriminative genes are differently expressed:

upregulated in normal samples but downregulated in

tumor samples. A similar pattern is observed in [50].

5.4.2 Gene Clusters in Leukemia Data Set

Fig. 8 shows 3 � 2 coclusters of Leukemia, each of which

contains a subset of genes that are highly expressed (i.e.,

yellow or red vertical stripes) in either ALL or AML

samples. For example, the genes in (LE-38) are partly but

highly expressed in ALL samples, while the genes in (LE-

61) and (LE-82) are highly expressed in AML samples.

Each of the three gene clusters contains many discrimi-

nating genes in [33], [58], and [9]: (LE-38) contains six

discriminative genes, (LE-61) contains six discriminative

genes, and (LE-82) contains seven discriminative genes. In

addition, see supplementary material, which can be found

on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TCBB.2007.70268, for

other discriminating gene clusters.
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Fig. 7. Six exemplary coclusters of Colon cancer. The GenBank
reference ID for each gene is listed on the right side of the plot. To
distinguish the repeated ESTs, “(a number)” is assigned after the
GenBank reference. The mean expression level of all genes in each
gene cluster is shown in the corresponding errorbar plot. The gene
clusters (CO-13), (CO-20), and (CO-84) contain 18, 7, and 17 genes,
respectively. The sample clusters (Normal) and (Tumor) contain 26 and
36 samples, respectively, where eight samples are incorrectly clustered
(i.e., Accuracy ¼ ð54=62Þ � 100 ¼ 87:1 percentÞ.

Fig. 8. Six exemplary coclusters of Leukemia. The Affymetrix probe set ID

for each gene is listed on the right side of the plot. The mean expression

level of all genes in each gene cluster is shown in the corresponding

errorbar plot. The gene clusters (LE-38), (LE-61), and (LE-82) contain 37,

25, and 23 genes, respectively. The sample clusters (ALL) and (AML)

contain 40 and 32 samples, respectively, where nine samples are

incorrectly clustered (i.e., Accuracy ¼ ð63=72Þ � 100 ¼ 87:5 percent).



5.4.3 Gene Clusters in Lung Cancer Data Set

Fig. 9 shows 2 � 2 coclusters of Lung cancer. (LU-03) and

(LU-08) depict a ribosomal gene cluster and an immuno-

globulin-related gene cluster, respectively. Among 84 ribo-

somal genes in the reduced gene set, 68 ribosomal genes

reside in (LU-03). (LU-03) also contains some genes related

to cellular metabolism or cell growth such as 1288_s_at

(EEF1A1), 36587_at (EEF2), 35175_f_at (EEF1A2), and

35748_at (EEF1B2). These clusters are consistent with the

ribosomal clusters in [46] and [59]. Further, there are

95 immunoglobulin-related genes in the original data set,

and 37 genes are left after preprocessing. Immunoglobulin-

related genes have been a main target in immunology

society because of their influence on the development of

various tumors and interaction with oncogenes or tumor

suppressor genes. Some recent studies on their relationship

to lung cancer are reported in [60] and [61]. We observe that

(LU-08) contains 21 immunoglobulin-related genes, which

are relatively downregulated in MPM samples and upre-

gulated in ADCA samples. This observation is consistent

with the four immunoglobulin-related genes in the list of

the top 20 differently expressed genes for lung ADCA in

[62] and the four immunoglobulin-related genes in [63].

Still, several other clusters consist of major dominant genes

in each cluster (see supplementary material, which can be

found on the Computer Society Digital Library at http://

doi.ieee computersociety.org/10.1109/TCBB.2007.70268).

5.4.4 Gene Clusters in MLL Data Set

Fig. 10 depicts 3 � 3 coclusters of MLL. It clearly illustrates

the coherent gene expression level of each cluster, where a

group of genes is correlated with a group of samples. In

other words, the genes in a same gene cluster are over- or

underexpressed over only a part of samples, which result in

bright or dark vertical stripes in a cocluster. For example,

the genes in (ML-47) and (ML-91) are overexpressed in ALL

samples, while the genes in (ML-89) are overexpressed in

AML samples and highly overexpressed in MLL samples. In

particular, (ML-47) contains four discriminating genes in

[48], (ML-91) contains five discriminating genes, and (ML-

89) includes 10 MLL-discriminating genes. Several other

gene clusters having a dominant gene in each cluster are

discovered and listed in supplementary material, which can

be found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TCBB.2007.70268.

These demonstrate that MSSRCC has a capability to capture

coherent genes.
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Fig. 9. Four exemplary coclusters of Lung cancer. The Affymetrix probe set ID for each gene is listed on the right side of the plot. The mean

expression level of all genes in each gene cluster is shown in the corresponding errorbar plot. The gene clusters (LU-03) and (LU-08) contain 111

and 35 genes, respectively. However, only 40 among 111 genes in (LU-03) are shown in the plot. The sample clusters (MPM) and (ADCA) contain

30 and 151, where only one sample is incorrectly clustered (i.e., Accuracy ¼ ð150=151Þ � 100 ¼ 99:4 percent).



5.4.5 Analysis of Biological Annotation Enrichment

The aim of this analysis is to assess the statistical

significance of the interesting gene clusters, i.e., the
enrichment of functional annotations. We identify GO

“biological process” categories with significantly enriched

gene numbers in each gene set with respect to the
corresponding reference gene set of the reduced gene

subsets in Table 2. Here, we focus on the same gene

clusters that we investigate previously, since they recover

the main block-structures associated with different cancer
types. However, one might find other significant gene

clusters by investigating all the gene clusters and built-in

genome or Affy chip background.

Among many publicly available functional profiling

tools, we utilize the DAVID software [18]. DAVID adopts

Fisher Exact Test to measure the gene enrichment in

annotation terms (refer to [64] for comparison of

statistical tests for detecting significant changes of gene

expression). Fisher Exact p-value for gene-enrichment

analysis ranges from 0 to 1, where a Fisher Exact p-value

of 0 represents perfect enrichment. Usually, categories

with Fisher Exact p-value < 0:05 are considered statisti-

cally significant. Due to space limitation, we list only the

first five enriched categories (sorted by p-value) for each

gene cluster considered in Table 4. All the categories

listed in Table 4 have p-value < 0:05, and the following

GO biological process categories are dominantly enriched

in each gene cluster: biosynthesis and metabolism in both

(CO-13) and (CO-84); response and catabolism in (LE-38);

regulation, transcription, and response in (LE-61); catabo-

lism and metabolism in (LE-82); biosynthesis and meta-

bolism in (LU-03); response and antigen in (LU-08);

development in (ML-47); and response in (ML-89).

Remaining categories and further biological interpretation

are available in the supplementary material, which can be

found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TCBB.2007.70268.

6 CONCLUSIONS AND FUTURE WORK

Motivated by the observation that sets of genes that are

similarly regulated across samples have related functions,

we employ a fast coclustering algorithm to simultaneously

discover those subsets of both genes and samples that are

correlated. Our coclustering algorithm, MSSRCC, partitions

both genes and samples based on expression profiles, thus

all coclusters from our algorithm uncover a so-called

nonoverlapping “checkerboard” structure.
We propose specific strategies to enhance the perfor-

mance of MSSRCC. We compare its performance with other
coclustering algorithms on two synthetic gene expression
data sets. In addition, the strength of the proposed algorithm
is demonstrated on four publicly available human cancer
microarray data sets: Colon cancer, Leukemia, Lung cancer,
and MLL. We evaluate the sample clustering of each data set
using the external measure of accuracy. Our empirical results
demonstrate that an individual strategy (i.e., NBIN, SI,
MSSRCC, or LS) contributes toward better accuracy for most
of the gene sets that we consider. A combination of these
strategies gives better accuracy than an individual strategy.
In particular, the best combination is to employ NBIN, SI,
and MSSRCC with LS together.

We find that complete-linkage or average-linkage HC

initialization start with better initial and end with better final

clustering than both single-linkage HC and RI. MSSRCC can

correct initial cluster assignments brought up by HC, and the

final clustering is comparable to that from SI.

We also assess the gene clustering quality by visualizing

the coherence of genes in some coclusters in checkerboard

plots and observe that the selected coherent coclusters

contain many discriminative genes identified in the litera-

ture. Furthermore, we evaluate functional enrichment of

gene clusters according to major biological processes in GO.

In addition, MSSRCC prevents empty clusters by means

of the LS strategy; discovers coclusters with coherent

expression profiles, resulting in “checkerboard” patterns,

many of which contain the discriminative genes previously

identified in the literature; and produces very stable sample

CHO AND DHILLON: COCLUSTERING OF HUMAN CANCER MICROARRAYS USING MINIMUM SUM-SQUARED RESIDUE COCLUSTERING 397

Fig. 10. Six exemplary coclusters of MLL. The Affymetrix probe set ID for
each gene is listed on the right side of the plot. The mean expression
level of all genes in each gene cluster is shown in the corresponding
errorbar plot. The gene clusters (ML-47), (ML-89), and (ML-91) contain
20, 32, and 16 genes, respectively. The sample clusters (AML), (MLL),
and (ALL) contain 25, 23, and 24 samples, where five samples are
incorrectly clustered (i.e., Accuracy ¼ ð67=72Þ � 100 ¼ 93:1 percent).



clustering even with substantial variation in the number of

gene clusters.
Finally, we list some avenues to be explored in the

future. We observe that the performance of MSSRCC is best

with the selected discriminative gene subsets. Further, little

overlap of the identified genes in the literature suggests that

there may exist multiple other gene sets that have similar or

better discriminative capability. These observations rein-

force the importance of feature quality and the need for

sophisticated feature selection algorithms. We may vary the

number of gene clusters to generate finer clusters for

researchers to look at; however, it would be better if we can

estimate the optimal number of gene/sample clusters.

Currently, MSSRCC produces nonoverlapping coclusters,

and we plan to enhance our coclustering algorithm to

generate overlapping or soft coclusters.

398 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 3, JULY-SEPTEMBER 2008

TABLE 4
Enrichment of the GO Biological Process Categories in Gene Clusters

For each cluster, only the first five enriched categories sorted by Fisher Exact p-value using DAVID are listed. Percentage refers to the percentage of
unique DAVID genes in the list associated with a particular annotation term.



7 SUPPLEMENTARY INFORMATION

The coclustering source code in C++ is available under the
terms of the GNU Public License (GPL) from our Website.1

All the gene lists of the selected genes and the list of
100 gene clusters for each data set are also available.
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[22] I. Csiszár and G. Tusnády, “Information Geometry and Alternat-
ing Minimization Procedure,” Statistics and Decisions, supplemen-
tal issue, vol. 1, pp. 205-237, 1984.

[23] W. Gaul and M. Schader, “A New Algorithm for Two-Mode
Clustering,” Data Analysis and Information Systems, H. Hermann
and W. Polasek, eds., pp. 15-23, Springer, 1996.

[24] D. Baier, W. Gaul, and M. Schader, “Two-Mode Overlapping
Clustering with Applications to Simultaneous Benefit Segmenta-
tion and Market Structuring,” Classification and Knowledge Organi-
zation: Recent Advances and Applications, R. Klar and O. Opitz, eds.,
pp. 557-566, Springer, 1997.

[25] V. Maurizio, “Double k-means Clustering for Simultaneous
Classification of Objects and Variables,” Advances in Classification
and Data Analysis, S. Borra, R. Rocci, M. Vichi, and
M. Schader, eds., pp. 43-52, Springer, 2001.

[26] J. Yang, H. Wang, W. Wang, and P. Yu, “Enhanced Biclustering on
Expression Data,” Proc. Third IEEE Symp. Bioinformatics and
BioEngineering (BIBE ’03), pp. 321-327, 2003.

[27] J. Yang, W. Wang, H. Wang, and P. Yu, “�-Clusters: Capturing
Subspace Correlation in a Large Data Set,” Proc. 18th IEEE Int’l
Conf. Data Eng. (ICDE ’02), pp. 517-528, 2002.

[28] Y. Kluger, R. Basri, J.T. Chang, and M. Gerstein, “Spectral
Biclustering of Microarray Data: Coclustering of Genes and
Conditions,” Genome Research, vol. 13, no. 4, pp. 703-716, 2003.

[29] I.S. Dhillon, “Co-Clustering Documents and Words Using
Bipartite Spectral Graph Partitioning,” Proc. Seventh ACM Int’l
Conf. Knowledge Discovery and Data Mining (SIGKDD ’01), pp. 269-
274, 2001.

[30] I.S. Dhillon, S. Mallela, and D.S. Modha, “Information-Theoretic
Co-Clustering,” Proc. Ninth ACM Int’l Conf. Knowledge Discovery
and Data Mining (SIGKDD ’03), pp. 89-98, 2003.

[31] A. Banerjee, I.S. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha, “A
Generalized Maximum Entropy Approach to Bregman Co-
Clustering and Matrix Approximation,” J. Machine Learning
Research, vol. 8, pp. 1919-1986, 2007.

[32] S. Bleuler, A. Preli�c, and E. Zitzler, “An EA Framework for
Biclustering of Gene Expression Data,” Proc. Sixth Congress on
Evolutionary Computation (CEC ’04), pp. 166-173, 2004.

[33] T.H. Bø and I. Jonassen, “New Feature Subset Selection
Procedures for Classification of Expression Profiles,” Genome
Biology, vol. 3, no. 4, 2002.
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