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Abstract

The problem of visualizing high-dimensional data that has been categorized into various classes
is considered. The goal in visualizing is to quickly absorb inter-class and intra-class relationships.
Towards this end, class-preserving projections of the multidimensional data onto two-dimensional
planes, which can be displayed on a computer screen, are introduced. These class-preserving
projections maintain the high-dimensional class structure, and are closely related to Fisher’s lin-
ear discriminants. By displaying sequences of such two-dimensional projections and by moving
continuously from one projection to the next, an illusion of smooth motion through a multidimen-
sional display can be created. Such sequences are called class tours. Furthermore, class-similarity
graphs are overlaid on the two-dimensional projections to capture the distance relationships in
the original high-dimensional space.

The above visualization tools are illustrated on the classical Iris plant data, the ISOLET
spoken letter data, and the PENDIGITS on-line handwriting data set. It is shown how the visual
examination of the data can uncover latent class relationships.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Classi>cation and clustering are central tools in machine learning and data mining,
and are used in a variety of applications such as fraud detection, signal processing,
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time-series analysis and optical character recognition. Classi>cation is the problem of
assigning class labels to unlabeled data items given a collection of labeled data items,
while clustering refers to the problem of assigning class labels to data items where
no prior labeling is known. The Yahoo! hierarchy of the World-Wide Web is a prime
example of the value of such class labelings (www.yahoo.com). There are many other
examples where class labels are either assigned manually to the data items or obtained
using clustering methods such as k-means or vector quantization (Duda et al., 2000;
Hartigan, 1975; Gray and NeuhoF, 1998). In this paper, we will assume that class
labels are assigned to each data item and will not worry where the labeling comes
from. Hence, we will use the terms clustering and classi>cation interchangeably, unless
explicitly stated otherwise.

The assignment of class labels to individual data items conveys limited information.
Indeed, as recognized in Gnanadesikan et al. (1982, p. 269):

The use of any clustering method necessarily confronts the user with a set of
‘clusters’ whether or not such clusters are meaningful. Thus, from a data-analytic
viewpoint, there is a crucial need for procedures that facilitate the interpretation
of the results and enable a sifting of useful >ndings from less important ones
and even methodological artifacts. Formal tests for the statistical signi>cance of
clusters have been proposed but informal more data-oriented methods that make
fewer assumptions are also needed.

Information visualization is one such eFective and informal procedure. In this paper we
propose a scheme for visually understanding inter-class and intra-class relationships. In
addition to the existence of class labels for data items, we will assume that the data
is embedded in high-dimensional Euclidean space Rd, and that proximity in Rd im-
plies similarity. The data may naturally occur in this form, or vector-space models
of the underlying data may be constructed, for example, voice, images or text docu-
ments may be treated as vectors in a multidimensional feature space, see (Fanty and
Cole, 1991; AlimoIglu and Alpaydin, 1996; Flickner et al., 1995; Salton and McGill,
1983).

Our main aim in this paper is to visually understand the spatial relationships between
various classes in order to answer questions such as:

1. how well-separated are diFerent classes?
2. what classes are similar or dissimilar to each other?
3. what kind of surface separates various classes, for example, are the classes linearly

separable?
4. how coherent or well-formed is a given class?

Answers to these questions can enable the data analyst to infer inter-class relationships
that may not be part of the given classi>cation. Additionally, visualization can help
in gauging the quality of the classi>cation and quality of the feature space. Discovery
of interesting class relationships in such a visual examination can help in designing
better algorithms and in better feature selection. We can term this visual process as

http://www.yahoo.com
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visual discriminant analysis. More concretely, such an analysis would be useful while
designing a classi>er in a “pre-classi>cation” phase, or in evaluating the quality of
clusters in a “post-clustering” phase, where classi>cation and clustering refer to the
classical machine learning problems mentioned above.

In order to achieve the above objectives for large data sets that are becoming
increasingly common, we believe the user must have access to a real-time, interac-
tive visualization toolbox. The visualization system should allow the user to com-
pute diFerent local and global views of the data “on the My”, and allow seamless
transitions between the various views. Thus, an overriding demand on our visualiza-
tion algorithms is that they be computationally eNcient in order to support such a
system.

In view of the above goals, we propose the use of carefully chosen two-dimensional
projections to display the data, augmenting them with similarity graphs and motion
graphics. In more detail, the following are our main contributions in this paper.

1. Class-preserving projections and class-eigenvector plots are our main tools for vi-
sual explorations. Class-preserving projections and their generalizations, class-
eigenvector plots, are linear projections of the data onto two-dimensional planes that
attempt to preserve the inter-class structure present in the original multidimensional
space Rd.

The idea of projecting high-dimensional data to lower dimensions is an old trick
that has been pro>tably exploited in many applications, see, for example, principal
components analysis (PCA) (Duda et al., 2000), projection pursuit (Friedman and
Tukey, 1974; Huber, 1985), Kohonen’s self-organizing maps (SOM) (Kohonen, 1995)
and multidimensional scaling (MDS) (Kruskal, 1964, 1977). For visualization pur-
poses, two-dimensional projections based on principal components, canonical correla-
tions and data sphering were considered in Hurley and Buja (1990). Later, Cook et al.
(1993, 1995) also incorporated projections based on projection pursuit. The non-linear
Kohonen self-organizing maps were used for visualization in Mao and Jain (1995),
Kraaijveld et al. (1995), Vesanto (1999). A detailed review of visualization schemes
for high-dimensional data is given in Grinstein et al. (1995). However, most existing
visualization schemes present only global projections of the data with the SOM and
MDS providing exactly one global view. Moreover, the non-linear SOM and MDS
projections and the linear PCA projections are computationally expensive, especially
when the data is high-dimensional and sparse.

In contrast, our projections oFer an entire library of local and global views to the
user, and are extremely eNcient to compute. Our most expensive methods are the
class-eigenvector plots which require computation of the two leading singular vectors of
a d×k matrix, where d is the dimensionality of the data and k is the number of clusters.
In comparison, PCA requires singular vector computations on the entire data set (a d×n
matrix where n is the number of data points), which has a computational complexity
of O(d2n). Typically n is much larger than k as can be seen from two sample data
sets we will use later in this paper. In the isolated letter speech recognition (ISOLET)
speech recognition data set, k = 26, n= 7797 and d= 617, while in the PENDIGITS
example k = 10, n = 10992 and d = 16. The non-linear SOM and MDS projections
are even more expensive to compute than PCA. Our superior eNciency is essential for
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interactive visualization and has allowed us to build a real-time visualization software
toolbox where many local and global projections can be computed on the My. Also
note that PCA and MDS are often unable to visually discriminate between classes as
they do not even use the class labels.

Our class-preserving projections and class-eigenvector plots con>ne visualizations to
an informative (k − 1)-dimensional subspace of the data. Since these plots are rel-
atively cheap to compute, an important question is: what is the quality of data ap-
proximation achieved by our projection schemes? It turns out that class-eigenvectors
plots are qualitatively nearly as good as PCA; Fig. 10 in Section 2.2.2 gives an exam-
ple. Thus we are able to obtain qualitatively good projections but at a much reduced
cost.

In spirit, our projection schemes are most closely related to the projections of clas-
sical linear discriminant analysis (Duda et al., 2000), see the end of Section 2.1 for
a comparison. However, linear discriminant analysis requires the solution of a large
generalized eigenvalue problem and comparatively, our methods are much more com-
putationally eNcient. Our visualization methodology of showing both local and global
views is closest to the work of Gnanadesikan et al. (1982). These authors considered
two types of projections: (a) local projections that focus on one class and show its
relationship to nearby classes, and (b) a global projection onto the two leading prin-
cipal components of the between-class scatter matrix, SB. The latter projection is very
similar to one of our class-eigenvector plots, see Section 2.2.1 for details. However,
our work diFers from Gnanadesikan et al. (1982) in many ways. We have considered a
much wider variety of projections, each of which gives a local view of a user-speci>ed
subset of the classes. Using class tours (see below), we also attempt to view projec-
tions onto the entire column subspace of SB, and not just onto the two leading principal
components.

2. Class-similarity graphs enhance each individual two-dimensional projection of
the data. These graphs provide a skeleton of the data and serve as guides through the
various projections reminding the user of similarities in the original multidimensional
space.

Our class-similarity graphs have been inspired by the data-similarity graphs of Duda
et al. (2000). In data-similarity graphs, each data point corresponds to a vertex. In
contrast, in class-similarity graphs it is each centroid that corresponds to a vertex. When
faced with more than 10,000 points (as in our PENDIGITS data), data-similarity graphs
are too detailed and incomprehensible. On the other hand, class-similarity graphs give
a high-level and easily understandable view of class relationships.

3. Class tours show sequences of two-dimensional class-preserving projections to
create the illusion of smooth motion through a multidimensional display. Class tours
allow us to “view” higher-dimensional subspaces.

Other types of tours have been considered earlier. Asimov, Buja and colleagues >rst
proposed grand tours in Asimov (1985), Asimov and Buja (1985), Buja et al. (1997).
A grand tour displays a carefully designed sequence of two-dimensional projections
that covers the entire high-dimensional space. However, grand tours are independent
of the underlying data distribution and when the dimensionality of the original data
is high, these tours are computationally prohibitive and can severely test the user’s
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patience as the informative views are few and far between. For even modest dimen-
sionality, grand tours are practically impossible to view in a reasonable amount of
time. For example consider the PENDIGITS data set (with d = 16). To come within
10◦ of any plane in such a feature space would require the user to view 0:3 × 1023

randomly sampled planes (see Asimov, 1985). The interesting information, for exam-
ple, the class structure is spread out over a large number of projections and hence, is
hard to cognitively piece together. To alleviate the computational problems with grand
tours, data-dependent guided tours which show sequences of projections using principal
components, projection pursuit, etc. were proposed in Hurley and Buja (1990), Cook
et al. (1993, 1995). The interactive dynamic data visualization software, XGobi (Swayne
et al., 1998) contains these guided tours.

In contrast to grand tours, our class tours are data-driven and focus on a small
number of judiciously chosen two-dimensional planes all geared towards uncover-
ing the class structure. The class tours we propose are also much more eNcient
than both the grand tours and the PCA-guided tours. In class tours, we con>ne our
projections to a (k − 1)-dimensional subspace whereas grand tours show projections
in the entire d-dimensional space. As noted earlier the diFerence between k and d
can be quite dramatic, for example, in the ISOLET data, d = 617 while k is only
26. In the important application area of text visualization which we have explored
in related research, d ranges in the thousands while k is about 10–50. PCA-guided
tours suFer a similar cognitive problem as grand tours in uncovering class
structure.

Based on the ideas in this paper, we have implemented a software tool named
CViz. The CViz software is written in the platform-independent JAVA language, and is
currently available as free test software from IBM’s Alphaworks site, www.alphaworks.
ibm.com/tech/cviz. 1 In fact, most of the >gures in this paper are screen shots of plots
produced by CViz.

An earlier, shorter version of this paper, where the focus was on visualizing high-
dimensional data arising from text documents, was presented at the 1998 Interface Con-
ference (Dhillon et al., 1998). We have also successfully used our projection scheme
in an application other than visualization; that of constructing compact representations
of large, sparse text data that arise in text mining and information retrieval (Dhillon
and Modha, 2001).

We now brieMy sketch the outline of the paper. Section 2 introduces class-preserving
projections and class-eigenvector plots, and contains several illustrations of the Iris
plant and ISOLET speech recognition data sets (Blake et al., 1998). Class-similarity
graphs and class tours are discussed in Sections 3 and 4. We illustrate the value
of the above visualization tools in Section 5, where we present a detailed study
of the PENDIGITS on-line handwriting recognition data set (Blake et al., 1998).
This visual examination allows us to uncover some surprising class
relationships.

1 There have been over 9166 downloads of the CViz software since it was >rst released in June, 1998.

http://www.alphaworks.ibm.com/tech/cviz
http://www.alphaworks.ibm.com/tech/cviz
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2. Class-preserving projections

Our main tool for visualizing multidimensional data will be linear projections onto
two-dimensional planes which can then be displayed on a computer screen.
The key diNculty is the inevitable loss of information when projecting data from high
dimensions to just 2 dimensions. This loss can be mitigated by carefully choosing the
two-dimensional planes of projection. Thus, the challenge is in the choice of these
planes. We want to choose those planes (projections) that best preserve inter-class
distances.

2.1. Discriminating three classes

We >rst consider the canonical case where the data is divided into three classes. Let
x1; x2; : : : ; xn denote the d-dimensional data points divided into the three classes C1, C2

and C3. The corresponding class-means (or class-centroids) are de>ned as

mj =
1
nj

∑
xi∈Cj

xi; j = 1; 2; 3;

where nj is the number of data points in Cj.
For the purpose of visualization, we want to linearly project each xi onto a two-

dimensional plane. Let w1; w2 ∈Rd be an orthonormal basis of the candidate plane of
projection. The point xi is projected to the pair (wT

1 xi; w
T
2 xi) and consequently, the

means mj get mapped to

(wT
1mj; w

T
2mj); j = 1; 2; 3:

One way to maintain good separation of the projected classes is to maximize the
distance between the projected means. This may be achieved by choosing vectors
w1; w2 ∈Rd such that the objective function

Q(w1; w2) =
2∑
i=1

{|wT
i (m2 − m1)|2 + |wT

i (m3 − m1)|2 + |wT
i (m3 − m2)|2}

is maximized. The above may be rewritten as

Q(w1; w2) =
2∑
i=1

{
wT
i {(m2 − m1)(m2 − m1)T + (m3 − m1)(m3 − m1)T

+ (m3 − m2)(m3 − m2)T}wi
}

=wT
1 SBw1 + wT

2 SBw2

= trace(W TSBW );

where

W = [w1; w2]; wT
1w2 = 0; wT

i wi = 1; i = 1; 2 and

SB = (m2 − m1)(m2 − m1)T + (m3 − m1)(m3 − m1)T + (m3 − m2)(m3 − m2)T:
(1)
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Fig. 1. A class-preserving projection of the Iris data.

The positive semi-de>nite matrix SB can be interpreted as the inter-class or between-
class scatter matrix. Note that SB has rank 6 2 since m3−m2 ∈ span{m2−m1; m3−m1}.

It is clear that the search for the maximizing w1 and w2 can be restricted to the
column (or row) space of SB. But as we noted above, this space is at most of dimension
2. Thus, in general, the optimal w1 and w2 must form an orthonormal basis spanning
the plane determined by the vectors m2 − m1 and m3 − m1. In the degenerate case
when SB is of rank one, that is, when m1, m2 and m3 are collinear (but distinct), w1

should be in the direction of m2 − m1 while w2 can be chosen to be any unit vector
orthogonal to w1.

Geometrically, the plane spanned by the optimal w1 and w2 is parallel to the plane
containing the three class-means m1, m2 and m3. It should be noted that projection
onto this plane exactly preserves the distances between the class-means, that is, the
distances between the projected means are exactly equal to the corresponding dis-
tances in the original d-dimensional space. Thus, in an average sense, we can say that
inter-class distances are preserved, and we call such a projection a class-preserving
projection.

We illustrate such a class-preserving projection on the famous Iris plant data set in
Fig. 1. This data set is four-dimensional and contains 50 members in each of the three
classes of plants: Iris setosa, Iris versicolor and Iris virginica (the 4 dimensions are
sepal length, sepal width, petal length and petal width). Note that the three classes are
well separated in this >gure. For comparison, in Fig. 2 we have shown the projection
onto a poorly chosen plane where the distinction between the classes is lost. Fig. 1
allows us to infer that the Iris setosa plants (on the left part of the >gure) are easily
distinguished by the feature set from the other two Iris varieties, while the latter two
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Fig. 2. A poor projection of the Iris data.

are harder to distinguish. Furthermore, we see that the Iris setosa class is linearly sepa-
rable from the other classes (since linear separability in any two-dimensional projection
implies linear separability in the entire four-dimensional space).

Projection schemes similar to ours have previously been used in classical linear dis-
criminant analysis. In particular, our class-preserving projections are closely related to
Fisher’s linear discriminant and its generalizations, which maximize the
ratio

trace(W TSBW )
trace(W TSWW )

; (2)

where SB and W are as in (1), and SW is the within-class scatter matrix, see
Duda et al. (2000). Finding W that maximizes (2) requires the solution of a gen-
eralized eigenvalue problem, SBx = �SW x, which can be computationally demanding
for high-dimensional and sparse data sets. We have chosen to ignore the within-class
scatter SW for two reasons: (a) we need to be able to compute projections on the
My for large and high-dimensional data sets, (b) if some scaling of variables is in-
deed desired we can do so a priori, for example, by applying the whitening transform
that scales diFerent variables depending on the total scatter (Duda et al., 2000). For
more details on linear discriminant analysis, the reader is referred to Fisher (1936),
Duda et al. (2000), Mardia et al. (1979), Bryan (1951), Kullback (1959). Earlier in this
section, we observed that our class-preserving projections preserve distances between
the three class-means, i.e., the multidimensional scaling error for these class-means is
zero. For the more general problem of preserving inter-point distances between all the
projected data points, see (Kruskal, 1964, 1977; Duda et al., 2000) and Mardia et al.
(1979, Chapter 14).
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2.2. Discriminating more than three classes

In the above discussion, we arrived at a certain two-dimensional projection that “best”
preserves the relationship between three classes. But in most practical situations, we will
encounter a greater number of classes. The Yahoo! hierarchy, for instance, segments
web pages into thousands of categories. What projections will enable us to examine
the interplay between these multitude of classes?

Clearly, one option is to examine the k classes three at a time by taking projections

identical to those described in the previous section. There are a total of
(
k
3

)
such

two-dimensional projections, each determined by three class-means. Each of these pro-
jections gives us a local view of three classes. We illustrate such local views on an
interesting speech recognition data set, that we >rst describe.

The ISOLET data consists of speech samples of the 26 English alphabets (Fanty
and Cole, 1991) and is publicly available from the UCI Machine Learning Repository
(Blake et al., 1998). The data was collected from 150 subjects who spoke the “name”
of each letter twice. After some preprocessing, 617 real-valued attributes were chosen
to describe each spoken letter. These features consist of various spectral coeNcients
(sonorant, pre-sonorant, post-sonorant, etc.) of the sampled data, plus other measure-
ments that capture pitch and amplitude characteristics. For a complete list of the feature
set and a detailed description, the reader is referred to Fanty and Cole (1991). Each
of the 617 features is mapped to the interval [0:0; 1:0] and is normalized to utilize this
entire range. The entire data set comprises 7797 samples.

For clarity of presentation, we will only consider samples of the seven spoken let-
ters A through G. There are a total of 2098 such samples. Note that this data set
is extremely high-dimensional (d = 617) and occupies nearly 5 MBytes of memory.
In their paper Fanty and Cole (1991) designed a neural network classi>er for spo-
ken letter recognition. Their classi>er used domain knowledge to achieve high accu-
racy, for example, they trained a separate classi>er to distinguish between the let-
ters in the E-set, namely B, C, D and E. We now see how our class-preserving
projections enable us to visually uncover such domain knowledge, and capture var-
ious inter-letter and intra-letter relationships in this multidimensional speech data
set.

In Fig. 3, we show the class-preserving projection determined by the centroids (or
means) of the spoken letters B, C and F. We depict each data point by the corre-
sponding lower-case letter, while the centroid is denoted by the upper-case letter. In
Fig. 3, the upper-case letters enclosed by a box, i.e., B , C and F , denote the centroids
that determine the class-preserving projection. We will use this convention throughout
the remaining plots in this paper. In our ensuing discussion, we will “overload” the
upper-case letters A,B,...,G to denote various quantities. Thus, the letter A may indicate
(i) the spoken letter A, (ii) the class containing all the data samples of the spoken
letter A, or (iii) the corresponding class-centroid. The particular usage should be clear
from the context. The origin along with a pair of orthogonal axes is also shown in
all our >gures. Note that the (x; y) coordinates of each point are dimension-preserving,
i.e., they preserve the scale of each data dimension as provided by the user.



68 I.S. Dhillon et al. / Computational Statistics & Data Analysis 41 (2002) 59–90

Fig. 3. Class-preserving projection to discriminate B, C and F in the ISOLET data. Both left and right panels
show the same projection; the left panel shows samples of all 7 letters, while the right panel does not show
individual samples of A, D, E and G.

Fig. 3 shows that the classes B, C and F are well-separated and almost equally far
apart. The D and E classes seem to be quite close to B, while most A samples lie
between B and F. The left panel of Fig. 3 displays all the 2098 data points and hence
is rather crowded. Note that the A, D, E and G samples do not inMuence the choice
of the plane of projection shown. We can hide such secondary samples in order to get
a clearer view of the discriminated classes. The right panel of Fig. 3 shows the same
projection as the left panel except that A, D, E and G data samples are not displayed.
Only centroids of these classes are shown.

Fig. 3 shows a projection expressly chosen to preserve only the distances between
the B, C and F centroids. Distances from the other centroids are not preserved by this
projection. Thus proximity of the D and E centroids to the B centroid in this >gure
may be misleading, that is, although D and E appear close to B in this two-dimensional
projection they may be quite far in the original 617-dimensional space. To check if
B and D are close, we look at the class-preserving projection that preserves distances
between B, D and F in Fig. 4. Here we see that D is indeed quite close to B, and
they are both well separated from F (as validation, note that the spoken letters B, D
and E can be hard to distinguish). The right plot in Fig. 4 shows a similar relationship
between B, E and F.

In all the above >gures we see that A lies between B and F. We may suspect
that A is closer to F than these >gures indicate (note that none of the above >gures
preserve distances to A). However, in Fig. 5, the class-preserving projection determined
by A, B and F shows that A and F are not particularly close. In fact, the A and F
classes are seen to be linearly separable. In Fig. 5, if we project all the data samples
onto the X -axis, we see that F samples are closer to A than to B. Thus, it can be
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Fig. 4. Projections to discriminate B, D, F and B, E, F in the ISOLET data.

Fig. 5. Projection to discriminate A, B and F in the ISOLET data.

deduced that the F samples share some correlated features with A that distinguish them
from B.

2.2.1. Class-eigenvector plots
The ISOLET data that we have considered contains seven classes. However, thus

far we only have a mechanism to display the inter-class relationships between three
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classes at a time. In general, we would like to di>erentiate between more than three
classes in the same view.

More formally, we want to obtain a two-dimensional projection that best discrimi-
nates the q classes with class-means m1; m2; : : : ; mq, each containing n1; n2; : : : ; nq data
points, respectively. Taking an approach similar to that of Section 2.1, we can formulate
the above objective as the search for orthonormal w1; w2 ∈Rd that maximizes

Q(w1; w2) = trace(W TSBW ); (3)

where

W = [w1; w2]; wT
1w2 = 0; wT

i wi = 1; i = 1; 2;

and

SB =
q∑
i=2

i−1∑
j=1

ninj(mi − mj)(mi − mj)T: (4)

Note that the positive semi-de>nite matrix SB has rank 6 q − 1 since the vectors
mi−mj, j �= 1 are linearly dependent on the q−1 vectors mi−m1, i=2; : : : ; q. It is well
known that the vectors w1 and w2 that maximize the objective function in (3) are the
eigenvectors (or principal components) corresponding to the two largest eigenvalues of
SB. The reader should note that for q¿ 3, in general, there is no two-dimensional plane
that exactly preserves the distances between the q centroids m1; m2; : : : ; mq. The plane
spanned by the optimal w1, w2 preserves inter-class distances to the largest extent
possible, where the error due to projection is measured in the 2-norm or Frobenius
norm, or any unitarily invariant norm (Golub and Loan, 1996; Mardia et al., 1979).

The reader might have noticed the extra factor ninj in (4) that was not present in
(1). By weighting each (mi − mj)(mi − mj)T term in (4) by the factor ninj, we are
placing greater emphasis on preserving distances between the class-means of larger
classes.

The matrix SB as given above in (4) is the sum of
( q

2

)
rank-one matrices. We can

show that SB can be expressed more compactly as the sum of q rank-one matrices. In
particular,

SB = n(q)
q∑
i=1

ni(mi − m(q))(mi − m(q))T; (5)

where

n(q) = n1 + n2 + · · · + nq

and

m(q) =
1
n(q) (n1m1 + n2m2 + · · · + nqmq)

is the mean of all the data points in the q classes under consideration. This alternate
expression for SB is more compact and better for computational purposes. The interested
reader can look at the appendix for a proof of the equivalence of formulae (4) and
(5).
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Fig. 6. Projection to discriminate B, D, E and F in the ISOLET data.

Fig. 7. Projection to discriminate B, C, D, E and G in the ISOLET data.

In Fig. 6, we show a two-dimensional projection (obtained using the 2 largest eigen-
vectors of the corresponding SB in (5)) that preserves inter-class distances between four
of the seven classes—B, D, E and F. This view con>rms our earlier observations that
B, D and E are close to each other and quite distant from F. Fig. 7 attempts to diFer-
entiate between the B, C, D, E and G classes. Here, we see that G is closer to B, D
and E while C is more distant. Observe that A and F appear close to each other and
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Fig. 8. Projection to discriminate all the 7 letters in the ISOLET data.

to B, D and E in Fig. 7, but note that this projection does not preserve distances to
the A and F classes. Recall Fig. 5 which showed that A and F are not so close. Fig. 8
has q= k = 7, and gives a more accurate estimate of the relationships between all the
classes.

Finally, in Fig. 9, we consider all 7797 data samples of the 26 English alphabets
that comprise the complete ISOLET data. This >gure shows a projection that tries to
discriminate between all 26 letters. The letters B, C, D, E, G, P, T, V and Z, which
constitute the so-called E-set are seen to be very close in this projection. The reader
should note that the above observations seem “correct” and “natural” in the context of
this intuitive speech data. In cases where there is not much domain knowledge about
the data, such visual discoveries could be even more valuable.

Thus, given k classes we have presented a mechanism for viewing the inter-class
relations between any q of them. There are a total of

k∑
q=3

(
k

q

)
= 2k − k(k + 1)

2
− 1

such informative class projections. However, as q gets larger, the distinction between
classes starts getting blurred in these views. Fig. 9 gives a crowded view that attempts
to discriminate all 26 classes. Such crowding is inevitable since our linear projections
are limited to two-dimensional planes. Ideally, we would like to “view” projections
onto higher-dimensional subspaces.

2.2.2. Projections to higher-dimensional subspaces
Suppose for a moment that we can visualize class-eigenvector projections of the

data onto a p-dimensional subspace, p¿ 3. As before, we want to preserve distances



I.S. Dhillon et al. / Computational Statistics & Data Analysis 41 (2002) 59–90 73

Fig. 9. Projection to discriminate all 26 letters in the entire ISOLET data.

between all the centroids after projection. Thus, given k classes, we want to >nd
orthonormal w1; w2; : : : ; wp ∈Rd such that the objective function

Q(w1; : : : ; wp) = trace(W TSBW )

is maximized, where

W = [w1; : : : ; wp]; wT
i wj = 0; wT

i wi = 1; 16 i; j6p; i �= j

and SB is as in (4) or (5) with q replaced by k.
The optimal wi are given by the p eigenvectors (principal components) of SB cor-

responding to its p largest eigenvalues. When p = k − 1, the desired subspace is the
entire column (or row) subspace of SB, and w1; w2; : : : ; wp can be any orthonormal
basis of this subspace. In this case, distances between all the class-means are exactly
preserved. Since we are considering all k classes we say that these projections capture
a global view of the data.

It is interesting to compare the quality of such class-eigenvector projections with the
traditional projections provided by principal components analysis (PCA) of the entire
data set. The quality of various projection schemes can be measured by the so-called
“energy lost” due to the projections, which we call the approximation error. In precise
terms, let X = [x1 − m; x2 − m; : : : ; xn − m] , where xi is the ith data point and m is
the mean of the entire data set. Then the approximation error due to projection on
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Fig. 10. Plots showing that the approximation errors in our class-preserving projections closely track those
in the optimal PCA projections. The left plot shows the error for the entire ISOLET data set (n = 7797,
d = 617, k = 26) while the right plot shows the error for the PENDIGITS data set (n = 10; 992, d = 16,
k = 10). Details of the PENDIGITS data set are given later in Section 5.2.

to the orthonormal vectors w1; w2; : : : ; wp is given by the matrix

E = X −
p∑
i=1

wiwT
i X:

The squared Frobenius norm of E is simply the sum of squares of all entries in E and
provides a way to measure the size of the error. Note that setting the wi in the above
formula to the p leading principal components of X gives the approximation error in
PCA.

Fig. 10 shows that the approximation errors due to class-eigenvector projections are
comparable to those due to PCA. Note that PCA is provably optimal in minimizing
the approximation error (Mardia et al., 1979, Section 8.2.3), but involves computations
on the entire d × n data matrix. Thus, our class-eigenvector projections oFer a com-
putationally superior method without compromising on the quality of the projections.
We have also observed this behavior in another application—dimensionality reduction
of high-dimensional and sparse document vectors, see (Dhillon and Modha, 2001) for
details.

Of course, it is not directly possible to visualize a p-dimensional subspace for p¿ 3.
We are limited to two-dimensional computer displays. In Section 4, we propose a way
to explore the entire column space of SB. But before we do so, we look at a tool that
enhances each individual projection.

3. Class-similarity graphs

Two-dimensional linear projections are a continuous transformation of the data; two
points which are close in Rd will remain close in each of these projections. However,
two points which are close in a two-dimensional projection need not be close in the
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Fig. 11. Class-similarity graph overlaid on two projections in the ISOLET data: B, D and E are seen to
form a clique at the chosen threshold �.

original space Rd. To mitigate this information loss, we add class-similarity graphs to
our two-dimensional plots.

We de>ne a class-similarity graph as follows. The vertices of this graph are the class
centroids m1; m2; : : : ; mk , and there is an edge between the means (or vertices) mi and
mj if

d2(mi; mj)6 �; (6)

where d2 denotes the Euclidean distance, while � is a user-controlled threshold param-
eter. If � is very large, then all centroids will be connected. On the other hand, if �
is very small, then no centroids will be connected. It is thus intuitively clear that the
choice of this threshold parameter is important in revealing similarities (or dissimilari-
ties) between the class-means. To obtain “natural” connections between the centroids,
� will have to be greater than typical distances between related classes but less than
typical distances between unrelated ones.

We can display class-similarity graphs by overlaying them on our two-dimensional
class-preserving projections. The left plot in Fig. 11 shows one such graph on the
projection that discriminates between all the seven classes (this projection is identi-
cal to the one in Fig. 8). Note that to show the similarity graph clearly in this >g-
ure, we have shown only the seven centroids and removed the individual data points.
The B, D and E classes are seen to form a clique, which is consistent with our ob-
servations about their closeness in Figs. 6–8. The class-similarity graph provides a
skeleton of the data and reminds us of the proximity relationships between classes
through various views of the data. For example, the right plot in Fig. 11 shows the
same similarity graph as the left plot, but overlaid on the projection that discrimi-
nates between B, D and E. This graph reminds us that B, D and E are the closest
among the seven letters even though they appear far apart in this view. Thus, the class
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Fig. 12. B, D, E and G form a clique at a higher threshold �.

similarity graph adds another valuable information dimension to linear projections.
Finally, in Fig. 12 we display the similarity graph at a higher threshold � (see (6)
above), and observe that B, D, E and G form a clique indicating the nearness of these
letters.

In the context of speech recognition systems, the closeness of B, D, E and G to
each other indicates that these letters may be the most diNcult to classify and hence
“recognize”. Indeed, in Fanty and Cole (1991, p. 223) the authors remark that they
“trained separate (neural) networks for just the letters in the E-set” (see also Fanty and
Cole, 1990).

Our class-similarity graphs are extensions of the data-similarity graphs between all
the data points given in Duda et al. (2000, p. 567). However, in data-similarity graphs
each data point corresponds to a vertex, whereas in class-similarity graphs it is each
centroid that corresponds to a vertex. Consider the projection of Fig. 9 which displays
7797 data points. Clearly a data-similarity graph in this case would be too detailed and
incomprehensible. On the other hand, Fig. 11 shows that class-similarity graphs give a
high-level and easily interpretable view of a data set’s class structure.

4. Class tours

Thus far we have limited ourselves to static two-dimensional snapshots of the data
set, each of which conveys some limited information. Projection onto the entire (k −
1)-dimensional subspace spanned by the vectors mi − m1, i = 2; : : : ; k, contains more
global inter-class information since it exactly preserves the distances between all the
k class-means. Ideally, we would like a mechanism for viewing this class-preserving
linear subspace.
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In order to simulate multidimensional displays, Asimov (1985) proposed the use
of motion graphics. Speci>cally, he introduced the concept of tours which are se-
quences of two-dimensional projections interspersed with a number of intermediate pro-
jections. These intermediate projections are obtained by interpolation, and thus tours
create an illusion of continuous smooth motion through a multidimensional display.
The grand tours proposed in Asimov (1985), Asimov and Buja (1985) try to dis-
play a carefully designed sequence of two-dimensional projections that are dense in
the set of all such projections. However, such sequences are independent of the data
set to be visualized, require substantial computation and can severely test the user’s
patience when the data is high-dimensional. Guided tours proposed in Hurley and Buja
(1990) alleviate this problem by choosing sequences tailored to the underlying data;
these tours may be guided by principal components, canonical correlations, data spher-
ing or projection pursuit. See (Hurley and Buja, 1990; Cook et al., 1993, 1995) for
details.

We have found our class-preserving projections to give good local data displays, for
example, see the >gures in Section 2. To get a more global view of the data, we pro-
pose class tours which are sequences of class-preserving two-dimensional projections,
and are an eFective tool to “view” the (k − 1)-dimensional class-preserving subspace.
Metaphorically speaking, a class tour constructs a dynamic, global “movie” of this
subspace from a number of static, local snapshots.

The basic idea behind class tours is simple: choose a target two-dimensional pro-
jection from the subset of nearly 2k class-preserving projections and class-eigenvector
plots, move smoothly from the current projection to this target, and continue. The
main questions of interest are (a) the choice of the intermediate two-dimensional pro-
jections, and (b) the choice of the orthonormal basis used for viewing each projection
so that the motion appears smooth. For this purpose, the use of geodesic interpolation
paths between the current and the target planes has been proposed in Asimov (1985),
Asimov and Buja (1985). Each geodesic path is simply a rotation in the (at most)
four-dimensional linear subspace containing both the current and the target 2d planes.
Various smoothness properties of such geodesic paths are explored in great detail in
Buja et al. (1997).

For the sake of completeness, we now describe how to construct a geodesic path
between a current plane U and a target plane V .

1. Compute the so-called principal vectors and associated principal angles, which
have the following important properties.

(a) The >rst pair of principal vectors, u0 ∈U and v0 ∈V , makes the smallest possible
angle �0 among all pairs of vectors, one drawn from U and the other from V , i.e.
{u0; v0} = arg maxu∈U;v∈V cos“(u; v). The angle �0 = “(u0; v0) is called the largest
principal angle.

(b) The second pair of principal vectors, u1 ∈U and v1 ∈V , makes the smallest
possible angle in the orthogonal complement of u1 in U and v1 in V . The corresponding
angle �1 is called the second principal angle.

The pairs (u0; u1) and (v0; v1) give orthonormal bases for U and V , respectively.
Computationally, these principal angles and principal vectors can be obtained from the
singular value decomposition of the 2×2 matrix QT

UQV , where the columns of QU and
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QV comprise (arbitrary) orthonormal bases of U and V , respectively. More details can
be found in BjWorck and Golub (1973) and Golub and Loan (1996, Section 12.4.3).

2. Orthogonalize v0 against u0, and normalize to obtain the unit vector u⊥0 . Similarly
obtain u⊥1 by orthogonalizing v1 against u1.

3. Let the intermediate projection planes between U and V have basis vectors
(x0(t); x1(t))), which are given by

x0(t) = cos(t X�0)u0 + sin(t X�0)u⊥0 ; x1(t) = cos(t X�1)u1 + sin(t X�1)u⊥1 ;

where X�0 = �0=
√
�2

0 + �2
1 and X�1 = �1=

√
�2

0 + �2
1. The parameter t is varied from 0 to√

�2
0 + �2

1, and the planes spanned by the bases (x0(t); x1(t)) give a geodesic from U
to V .

Note that the above procedure speci>es a geodesic between a current plane and a
target plane. However, such a path may be embedded in a long sequence of two-
dimensional planes. In such a case, we must use properly rotated principal vectors
for the horizontal and vertical axes. This avoids subjecting the user to meaningless
within-screen rotations whenever a new geodesic path is to be resumed. Thus, the above
procedure results in interpolating planes rather than speci>c pairs of basis vectors. More
computational details may be found in Hurley and Buja (1990, Section 2.2.1).

Although we have presented the main ideas above, it is hard to illustrate class tours
through static snapshots. We encourage the interested reader to experiment with our
CViz software, which is currently available at www.alphaworks.ibm.com/tech/cviz.

5. A case study

In this section, we present a case study that illustrates how we can use the tech-
niques developed above to explore a real-life multidimensional handwriting recognition
data set. As we shall see, our visual exploration allows us to uncover some surprising
characteristics of the data set. Although we cannot hope to fully convey the discov-
ery process, we present snapshots of the interesting >ndings to illustrate how we can
incrementally build upon our discoveries.

5.1. CViz software

Our CViz visualization software is built upon the tools developed in the earlier
sections, namely, class-preserving projections, similarity graphs and class tours. The
CViz software allows the user to choose from among the nearly 2k class-preserving
projections and class-eigenvector plots, providing a seamless way to move from one
projection to another. This enables the user to navigate through various local and
global views of the data. To facilitate visual discovery, the CViz software provides the
following additional features:

1. A facility for brushing selected points with a separate color, thus making it easier
to follow the relationship of the brushed points to the rest of the data through various
projections.

http://www.alphaworks.ibm.com/formula/cviz
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2. A “zoom-in” or magni>cation feature that allows closer examination of a sub-region
occupied by the data.

3. At the user’s request, a matrix of diFerent local and global projections can be
viewed. Each individual projection is miniaturized and the user can then choose to
enlarge any of these projections to examine in greater detail. Further ideas on using
such tables of projections may be found in Chi et al. (1997).

4. A feature to view contour plots of the data thus enabling eNcient display and
easy recognition of high-density regions in each plot.

5. The user can choose to display various points as glyphs that may make more
semantic sense in an application. Note that we have used alphabets as glyphs in the
display of the ISOLET data (see Figs. 3–8), and will use digits as glyphs in plots of
the upcoming PENDIGITS data. For more details on the use of glyphs in visualization,
see (Ribarsky et al., 1994).

6. A facility to highlight outliers, which can be de>ned as data points furthest from
the class centroid, in order to detect them and view the spread of a cluster.

7. A dynamic slider to choose the threshold � in displaying class-similarity graphs
(see (6) in Section 3).

5.2. The on-line handwriting recognition data set

The PENDIGITS data set consists of 250 handwriting samples from 44 writers
(AlimoIglu, 1996; AlimoIglu and Alpaydin, 1996), and is publicly available from the
UCI Machine Learning Repository (Blake et al., 1998). The authors (AlimoIglu and
Alpaydin, 1996) collected the raw data from a pressure sensitive tablet that sent x and
y coordinates of the pen at >xed time intervals of 100 ms. Two preprocessing steps
were performed to reduce meaningless variability arising from variations in writing
speed and sizes of the written digits:
Normalization makes the data invariant to translations and scale distortions. Both x

and y coordinates of the raw data were scaled so that the coordinate which has the
maximum range varied between 0 and 100.
Resampling represents each digit as a constant length feature vector. In this data

set, spatial resampling with simple linear interpolation was used to obtain 8 regularly
spaced points on the trajectory of each digit.

Thus, each digit is represented by 8 (x; y) coordinates leading to a 16-dimensional
feature vector. Each of the 16 attributes is an integer varying from 0 to 100. In Fig. 13,
we show some of the reconstructed digit samples, where the directions of the arrows
indicate the pen’s trajectory. The starting point of the pen’s path is indicated by a
‘o’, the end point by a ‘ ’, while the 6 intermediate points are marked by ‘+’. Note
that these displayed samples are not replicas of the pen’s original trajectory but are
reconstructed from the 8 (x; y) coordinates by connecting adjacent coordinates by a
straight line. Hence, even though the 8 (x; y) coordinates are regularly spaced in arc
length of the pen trajectory, they do not appear so in Fig. 13. Also note that since the
pen pressure values are not stored the “pen lifts” are lost, as in the handwritten 7 in
Fig. 13.
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Fig. 13. Sample “reconstructed” handwritten digits—1, 2, 6 and 7.

The entire PENDIGITS data set consists of 10; 992 samples. More information on
this data set may be obtained from AlimoIglu (1996), AlimoIglu and Alpaydin (1996),
Blake et al. (1998).

5.3. Visual exploration of the PENDIGITS data

We start our visual examination with Fig. 14 which displays the class-preserving
projection that preserves distances between the centroids of digits 0, 1 and 2. As in
most of the >gures of Section 2.2, we only show centroids of the other classes, and not
their individual data points. The centroids that determine the class-preserving projection
are denoted by the corresponding digit enclosed by a box, for example, 0 , 1 and 2
in Fig. 14.

We now enumerate our >ndings in an order in which the discovery process might
progress.

1. Fig. 14 shows that the digits 1 and 2 are closer to each other than to 0. The 0
class appears to have a large variance, while the cluster of 2’s is more coherent. In
fact, we see that the 0 class forms a boomerang-like shape. The large variance implies
that there are a variety of ways of writing 0, while the boomerang shape suggests a
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Fig. 14. Class-preserving projection discriminates between 0, 1 and 2 in the PENDIGITS data.

continuum in the diFerent written 0’s. We can delve deeper into this hypothesis by
looking at diFerent written 0 samples, some of which are shown in Fig. 15. Indeed,
we see that these diFerent 0’s seem to be rotations of each other—each 0 traces an
anti-clockwise arc but has diFerent starting and ending points.

In Fig. 14, we also see that centroids for the digits 5, 6 and 8 lie near each other,
while centroids of 3 and 9 are also close. But this projection tries to preserve distances
only between the 0, 1 and 2 centroids, and the proximity of other digits may be mis-
leading here. To get an estimate of inter-class distances in the original 16-dimensional
space, we turn to class-similarity graphs.

2. Class-similarity graphs at an interesting threshold � are shown in Fig. 16. Note
that the projection on the left plot of Fig. 16 is identical to the one in Fig. 14. Since
they are connected by edges, centroids for digits 2 & 7, and digits 3 & 9 are close
to each other in the original space. The similarity between the written digits 2 and 7
is also clearly seen in Fig. 13. The third “edge” in the class-similarity graph seems
to connect the three digits 5, 6 and 8. However it is not clear if this triplet forms a
clique, so we look at the same class-similarity graph in another projection.

3. The right plot in Fig. 16 clearly shows that the centroids for 5 and 8 are close.
However, 6 is not particularly close to either 5 or 8. Note that this projection attempts to
discriminate between all ten digits and gives a good estimate of their relative distances
from each other.

4. We may now wish to examine the pairs 2 & 7, 3 & 9, 5 & 8 more closely. To
do so, we look at each pair relative to the 0 class. These three projections are shown
in Figs. 17 and 18. These views allow us to make the following inferences:

(a) The two pairs 2 & 7, 3 & 9 appear quite close to each other, and rather distant
from 0.
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Fig. 15. DiFerent handwritten zeros.

Fig. 16. Class similarity graph for the PENDIGITS data overlaid on two projections.
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Fig. 17. Projections to discriminate (a) 0, 2 and 7 and (b) 0, 3 and 9.

Fig. 18. Projections to discriminate 0, 5 and 8.

(b) Fig. 18 shows that some of the 8’s are similar to the 0’s. Some other samples,
such as 5’s and 8’s, also appear intermingled. In the context of designing a classi>er,
these samples could be misclassi>ed by a linear classi>er.

(c) The classes 2 and 3 are very coherent and indicate a consistency among the
writers in writing these digits.

(d) The classes 8 and 9 are seen to have large variances. This observation is con-
>rmed by the variety of ways of writing 8 and 9 seen in Figs. 19 and 20.
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Fig. 19. DiFerent types of 8.
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Fig. 20. DiFerent types of 9.

5. While sur>ng through other projections, we found a particularly interesting one
that we now present. Fig. 21 attempts to maximally preserve the distances between the
centroids of digits 3, 5, 8 and 9. As expected, we see that 3 and 9 samples lie close
to each other. However, the class-structure of 5 is revealing. The 5 samples appear in
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Fig. 21. Projection to discriminate 3, 5, 8 and 9.
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Fig. 22. DiFerent types of 5.

two very distinct clouds—the Frst is near 3 and 9, while the second is to the left of
8 and far from 3 and 9. The centroid for the digit 5 is seen to lie in the middle of
these two clouds and very close to the 8 centroid, but there are no individual data
samples near the centroid! This behavior invites a closer look at handwritten samples
of 5.

Fig. 22 shows two quite diFerent ways of writing 5 and explains the two diFerent
clouds in Fig. 21. The left plot of Fig. 22 gives the cursive way of writing 5 where
there is no “pen lift”, and these 5’s are seen to lie in a cloud near 9 and 3. Indeed,
the left plots in Figs. 20 and 22 exhibit the similarity between 9 and the cursive 5.
The right plot of Fig. 22 shows the non-cursive 5 where the writer lifts the pen during
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Fig. 23. Projection discriminates all the ten digits in the PENDIGITS data.

writing. These 5’s are somewhat similar to some of the 8’s shown in Fig. 19. The two
clouds of 5 are also visible in Fig. 23 (one below 8 and one near 3 and 9), which
displays a projection that attempts to discriminate between all 10 digits.

This visual discovery was unexpected but pleasing. It underscores the power of
visualization—in this case, visual discovery can play a role in the design of a better
handwriting recognition system by making the classi>er recognize two types of 5, and
thus recognize eleven “diFerent” digits.

6. Finally, in Fig. 24 we draw the centroids of all the ten digits in the same manner
we displayed individual digit samples in Fig. 13. We observe that the class centroids for
2, 3, 4 and 6 look like “normal” written digits. This observation is consistent with our
visual explorations where we found these classes to be quite coherent, for example,
see Fig. 17. We also observe that the 5 and 9 centroids bear little resemblance to
the corresponding written digits. The centroid for 5 is the average of the cursive and
non-cursive 5, while the average 9 reMects the confusion between the clockwise and
anti-clockwise arcs in writing 9 (see Figs. 20 and 22).

6. Conclusions

In this paper, we have proposed the use of class-preserving projections and class-
eigenvector plots for visual discriminant analysis. These projections satisfy a certain
optimality criterion that attempts to preserve distances between the class-means. Our
projections are similar to Fisher’s linear discriminants that are commonly used in clas-
sical discriminant analysis, but are faster to compute and hence are better suited for
interactive visualization. Class-similarity graphs remind us of proximity relations be-
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Fig. 24. The “average digits” in the PENDIGITS data.

tween classes in each of our class-preserving projections. We also use class tours which
enable us to view sequences of class-preserving projections, interspersed with interpo-
lating projections that create an illusion of smooth motion through a multidimensional
subspace. Class tours allow the touring of all the data points in an informative class
preserving linear subspace. All the above ideas comprise our visualization software
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toolbox CViz that allows us to capture the inter-class structure of complex, multidi-
mensional data.

We have illustrated the use of our visualization tool in discovering interesting class
relationships in the Iris, ISOLET and PENDIGITS data. Such discoveries underscore
the value of visualization as a quick and intuitive way of understanding a data set. For
illustration purposes, we have deliberately used intuitive speech and handwriting data
sets, where our visual explorations lead to “natural” conclusions. In cases where there
is not much domain knowledge about the data, such visual discoveries would be even
more valuable.
Free Software: We encourage interested readers to try CViz–the JAVA software tool

based on ideas in this paper which can be downloaded from: http://www.alphaworks.ibm.
com/tech/cviz.
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Appendix.

Proposition. The matrices SB given in Eqs. (4) and (5) are identical.

Proof. Expanding each term in Eq. (4) and using symmetry in i and j, we get

SB =
q∑
i=1

q∑
j=1; j �=i

ninj(mimT
i − mimT

j )

=
q∑
i=1

{ni(n1 + n2 + · · · + nq)mimT
i − n2

i mim
T
i }

−
q∑
i=1

q∑
j=1; j �=i

ninjmimT
j

= n(q)
q∑
i=1

nimimT
i −

q∑
i=1

q∑
j=1

ninjmimT
j

= n(q)

( q∑
i=1

nimimT
i − n(q)m(q)m(q)T

)

= n(q)
q∑
i=1

ni(mi − m(q))(mi − m(q))T:

http://www.alphaworks.ibm.com/tech/cviz
http://www.alphaworks.ibm.com/tech/cviz
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