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Abstract
Computing the k dominant eigenvalues and eigenvectors of massive graphs is
a key operation in numerous machine learning applications; however, popular
solvers suffer from slow convergence, especially when k is reasonably large.
In this paper, we propose and analyze a novel multi-scale spectral decomposi-
tion method (MSEIGS), which first clusters the graph into smaller clusters whose
spectral decomposition can be computed efficiently and independently. We show
theoretically as well as empirically that the union of all cluster’s subspaces has
significant overlap with the dominant subspace of the original graph, provided
that the graph is clustered appropriately. Thus, eigenvectors of the clusters serve
as good initializations to a block Lanczos algorithm that is used to compute spec-
tral decomposition of the original graph. We further use hierarchical clustering to
speed up the computation and adopt a fast early termination strategy to compute
quality approximations. Our method outperforms widely used solvers in terms of
convergence speed and approximation quality. Furthermore, our method is nat-
urally parallelizable and exhibits significant speedups in shared-memory parallel
settings. For example, on a graph with more than 82 million nodes and 3.6 billion
edges, MSEIGS takes less than 3 hours on a single-core machine while Random-
ized SVD takes more than 6 hours, to obtain a similar approximation of the top-50
eigenvectors. Using 16 cores, we can reduce this time to less than 40 minutes.

1 Introduction
Spectral decomposition of large-scale graphs is one of the most informative and fundamental ma-
trix approximations. Specifically, we are interested in the case where the top-k eigenvalues and
eigenvectors are needed, where k is in the hundreds. This computation is needed in various ma-
chine learning applications such as semi-supervised classification, link prediction and recommender
systems. The data for these applications is typically given as sparse graphs containing information
about dyadic relationship between entities, e.g., friendship between pairs of users. Supporting the
current big data trend, the scale of these graphs is massive and continues to grow rapidly. Moreover,
they are also very sparse and often exhibit clustering structure, which should be exploited. How-
ever, popular solvers, such as subspace iteration, randomized SVD [7] and the classical Lanczos
algorithm [21], are often too slow for very big graphs.
A key insight is that the graph often exhibits a clustering structure and the union of all cluster’s sub-
spaces turns out to have significant overlap with the dominant subspace of the original matrix, which
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is shown both theoretically and empirically. Based on this observation, we propose a novel divide-
and-conquer approach to compute the spectral decomposition of large and sparse matrices, called
MSEIGS, which exploits the clustering structure of the graph and achieves faster convergence than
state-of-the-art solvers. In the divide step, MSEIGS employs graph clustering to divide the graph
into several clusters that are manageable in size and allow fast computation of the eigendecomposi-
tion by standard methods. Then, in the conquer step, eigenvectors of the clusters are combined to
initialize the eigendecomposition of the entire matrix via block Lanczos. As shown in our analysis
and experiments, MSEIGS converges faster than other methods that do not consider the clustering
structure of the graph. To speedup the computation, we further divide the subproblems into smaller
ones and construct a hierarchical clustering structure; our framework can then be applied recur-
sively as the algorithm moves from lower levels to upper levels in the hierarchy tree. Moreover, our
proposed algorithm is naturally parallelizable as the main steps can be carried out independently for
each cluster. On the SDWeb dataset with more than 82 million nodes and 3.6 billion edges, MSEIGS
takes only about 2.7 hours on a single-core machine while Matlab’s eigs function takes about 4.2
hours and randomized SVD takes more than 6 hours. Using 16 cores, we can cut this time to less
than 40 minutes showing that our algorithm obtains good speedups in shared-memory settings.
While our proposed algorithm is capable of computing highly accurate eigenpairs, it can also obtain
a much faster approximate eigendecomposition with modest precision by prematurely terminating
the algorithm at a certain level in the hierarchy tree. This early termination strategy is particularly
useful as it is sufficient in many applications to use an approximate eigendecomposition. We apply
MSEIGS and its early termination strategy to two real-world machine learning applications: label
propagation for semi-supervised classification and inductive matrix completion for recommender
systems. We show that both our methods are much faster than other methods while still attaining
good performance. For example, to perform semi-supervised learning using label propagation on the
Aloi dataset with 1,000 classes, MSEIGS takes around 800 seconds to obtain an accuracy of 60.03%;
MSEIGS with early termination takes less than 200 seconds achieving an accuracy of 58.98%, which
is more than 10 times faster than a conjugate gradient based semi-supervised method [10].
The rest of the paper is organized as follows. In Section 2, we review some closely related work. We
present MSEIGS in Section 3 by describing the single-level case and extending it to the multi-level
setting. Experimental results are shown in Section 4 followed by conclusions in Section 5.

2 Related Work
The spectral decomposition of large and sparse graphs is a fundamental tool that lies at the core of
numerous algorithms in varied machine learning tasks. Practical examples include spectral cluster-
ing [19], link prediction in social networks [24], recommender systems with side-information [18],
densest k-subgraph problem [20] and graph matching [22]. Most of the existing eigensolvers for
sparse matrices employ the single-vector version of iterative algorithms, such as the power method
and Lanczos algorithm [21]. The Lanczos algorithm iteratively constructs the basis of the Krylov
subspace to obtain the eigendecomposition, which has been extensively investigated and applied in
popular eigensolvers, e.g., eigs in Matlab (ARPACK) [14] and PROPACK [12]. However, it is well
known that single-vector iterative algorithms can only compute the leading eigenvalue/eigenvector
(e.g., power method) or have difficulty in computing multiplicities/clusters of eigenvalues (e.g.,
Lanczos). In contrast, the block version of iterative algorithms using multiple starting vectors, such
as the randomized SVD [7] and block Lanczos [21], can avoid such problems and utilize efficient
matrix-matrix operations (e.g., Level 3 BLAS) with better caching behavior.

While these are the most commonly used methods to compute the spectral decomposition of a
sparse matrix, they do not scale well to large problems, especially when hundreds of eigenval-
ues/eigenvectors are needed. Furthermore, none of them consider the clustering structure of the
sparse graph. One exception is the classical divide and conquer algorithm by [3], which partitions
the tridiagonal eigenvalue problem into several smaller problems that are solved separately. Then it
combines the solutions of these smaller problems and uses rank-one modification to solve the orig-
inal problem. However, this method can only be used for tridiagonal matrices and it is unclear how
to extend it to general sparse matrices.

3 Multi-Scale Spectral Decomposition
Suppose we are given a graph G = (V, E , A), which consists of |V| vertices and |E| edges such
that an edge between any two vertices i and j represents their similarity wij . The corresponding
adjacency matrix A is a n⇥n sparse matrix with (i, j) entry equal to wij if there is an edge between
i and j and 0 otherwise. We consider the case where G is an undirected graph, i.e., A is symmetric.
Our goal is to efficiently compute the top-k eigenvalues �1, · · · ,�k (|�1| � · · · � |�k|) and their
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corresponding eigenvectors u1, u2, · · · uk of A, which form the best rank-k approximation of A.
That is, A ⇡ Uk⌃kUT

k , where ⌃k is a k⇥ k diagonal matrix with the k largest eigenvalues of A and
Uk = [u1, u2, · · · , uk] is an n⇥k orthonormal matrix. In this paper, we propose a novel multi-scale
spectral decomposition method (MSEIGS), which embodies the clustering structure of A to achieve
faster convergence. We begin by first describing the single-level version of MSEIGS.

3.1 Single-level division
Our proposed multi-scale spectral decomposition algorithm, which can be used as an alternative
to Matlab’s eigs function, is based on the divide-and-conquer principle to utilize the clustering
structure of the graph. It consists of two main phases: in the divide step, we divide the problem into
several smaller subproblems such that each subproblem can be solved efficiently and independently;
in the conquer step, we use the solutions from each subproblem as a good initialization for the
original problem and achieve faster convergence compared to existing solvers which typically start
from random initialization.

Divide Step: We first use clustering to partition the sparse matrix A into c2 submatrices as

A = D+� =

2

4
A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

3

5 , D =

2

4
A11 · · · 0

...
. . .

...
0 · · · Acc

3

5 , � =

2

4
0 · · · A1c
...

. . .
...

Ac1 · · · 0

3

5 , (1)

where each diagonal block Aii is a mi⇥mi matrix, D is a block diagonal matrix and � is the matrix
consisting of all off-diagonal blocks of A. We then compute the dominant r (r  k) eigenpairs of
each diagonal block Aii independently, such that Aii ⇡ U (i)

r ⌃

(i)
r (U (i)

r )

T , where ⌃

(i)
r is a r ⇥

r diagonal matrix with the r dominant eigenvalues of Aii and U (i)
r = [u(i)

1 , u(i)
2 , · · · , u(i)

r ] is an
orthonormal matrix with the corresponding eigenvectors.

After obtaining the r dominant eigenpairs of each Aii, we can sort all cr eigenvalues from the c
diagonal blocks and select the k largest eigenvalues (in terms of magnitude) and the corresponding
eigenvectors. More specifically, suppose that we select the top-ki eigenpairs of Aii and construct an
mi ⇥ ki orthonormal matrix U (i)

ki
= [u(i)

1 , u(i)
2 , · · · , u(i)

ki
], then we concatenate all U (i)

ki
’s and form

an n⇥ k orthonormal matrix ⌦ as
⌦ = U (1)

k1
� U (2)

k2
� · · ·� U (c)

kc
, (2)

where
P

i ki = k and � denotes direct sum, which can be viewed as the sum of the subspaces
spanned by U (i)

ki
. Note that ⌦ is exactly the k dominant eigenvectors of D. After obtaining ⌦, we

can use it as a starting subspace for the eigendecomposition of A in the conquer step. We next
show that if we use graph clustering to generate the partition of A in (1), then the space spanned
by ⌦ is close to that of Uk, which makes the conquer step more efficient. We use principal angles
[15] to measure the closeness of two subspaces. Since ⌦ and Uk are orthonormal matrices, the j-th
principal angle between subspaces spanned by ⌦ and Uk is ✓j(⌦, Uk) = arccos(�j), where �j ,
j = 1, 2, · · · , k, are the singular values of ⌦TUk in descending order. In Theorem 3.1, we show that
⇥(⌦, Uk) = diag(✓1(⌦, Uk), · · · , ✓k(⌦, Uk)) is related to the matrix �.
Theorem 3.1. Suppose �1(D), · · · ,�n(D) (in descending order of magnitude) are the eigenvalues
of D. Assume there is an interval [↵,�] and ⌘ � 0 such that �k+1(D), · · · ,�n(D) lies entirely in
[↵,�] and the k dominant eigenvalues of A, �1, · · · ,�k, lie entirely outside of (↵� ⌘,� + ⌘), then

k sin(⇥(⌦, Uk))k2  k�k2
⌘

, k sin(⇥(⌦, Uk))kF 
p
k
k�kF
⌘

.

The proof is given in Appendix 6.2. As we can see, ⇥(⌦, Uk) is influenced by �, thus we need to
find a partition such that k�kF is small in order for k sin(⇥(⌦, Uk))kF to be small. Assuming that
the graph has clustering structure, we apply graph clustering algorithms to partition A to generate
small k�kF . In general, the goal of graph clustering is to find clusters such that there are many edges
within clusters and only a few between clusters, i.e., make k�kF small. Various graph clustering
software can be used to generate the partitions, e.g., Graclus [5], Metis [11], Nerstrand [13] and
GEM [27]. Figure 1(a) shows a comparison of the cosine values of ⇥(⌦, Uk) with different ⌦ for
the CondMat dataset, a collaboration network with 21,362 nodes and 182,628 edges. We compute
⌦ using random partitioning and graph clustering, where we cluster the graph into 4 clusters using
Metis and more than 85% of edges appear within clusters. In Figure 1(a), more than 80% of principal
angles have cosine values that are greater than 0.9 with graph clustering, whereas this ratio drops to
5% with random partitioning. This illustrates that (1) the effectiveness of graph clustering to reduce
⇥(⌦, Uk); (2) the subspace spanned by ⌦ from graph clustering is close to that of Uk.
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Figure 1: (a): cos(⇥(⌦, Uk)) with graph clustering and random partition. (b) and (c): comparison
of RSVD, BlkLan, MSEIGS with single level and MSEIGS on the CondMat dataset with the same
number of iterations (5 steps). (b) shows cos(⇥(

¯Uk, Uk)), where ¯Uk consists of the computed top-k
eigenvectors and (c) shows the difference between the computed eigenvalues and the exact ones.

Conquer Step: After obtaining ⌦ from the clusters (diagonal blocks) of A, we use ⌦ to initial-
ize the spectral decomposition solver for A. In principle, we can use different solvers such as
randomized SVD (RSVD) and block Lanczos (BlkLan). In our divide-and-conquer framework,
we focus on using block Lanczos due to its superior performance as compared to RSVD. The
basic idea of block Lanczos is to use an n ⇥ b initial matrix V0 to construct the Krylov sub-
space of A. After j � 1 steps of block Lanczos, the j-th Krylov subspace of A is given as
Kj(A, V0) = span{V0, AV0, · · · , Aj�1V0}. As the block Lanczos algorithm proceeds, an orthonor-
mal basis ˆQj for Kj(A, V0) is generated as well as a block tridiagonal matrix ˆTj , which is a projec-
tion of A onto Kj(A, V0). Then the Rayleigh-Ritz procedure is applied to compute the approximate
eigenpairs of A. More details about the block Lanczos is given in Appendix 6.1. In contrast, RSVD,
which is equivalent to subspace iteration with a Gaussian random matrix, constructs a basis for
Aj�1V0 and then restricts A to this subspace to obtain the decomposition. As a consequence, block
Lanczos can achieve better performance than RSVD with the same number of iterations.

In Figure 1(b), we compare block Lanczos with RSVD in terms of cos(⇥(

¯Uk, Uk)) for the CondMat
dataset, where ¯Uk consists of the approximate k dominant eigenvectors. Similarly in Figure 1(c),
we show that the eigenvalues computed by block Lanczos are more closer to the true eigenvalues.
In other words, block Lanczos needs less iterations than RSVD to achieve similar accuracy. For the
CondMat dataset, block Lanczos takes 7 iterations to achieve mean of cos(⇥(

¯Uk, Uk)) to be 0.99,
while RSVD takes more than 10 iterations to obtain similar performance. It is worth noting that
there are a number of improved versions of block Lanczos [1, 6], and we show in the experiments
that our method achieves superior performance even with the simple version of block Lanczos.

The single-level version of our proposed MSEIGS algorithm is given in Algorithm 1. Some remarks
on Algorithm 1 are in order: (1) kAiikF is likely to be different among clusters and larger clusters
tend to have more influence over the spectrum of the entire matrix. Thus, we select the rank r
for each cluster i based on the ratio kAiikF /

P
i kAiikF ; (2) We use a small number of additional

eigenvectors in step 4 (similar to RSVD) to improve the effectiveness of block Lanczos; (3) It is
time consuming to test convergence of the Ritz pairs in block Lanczos (steps 7, 8 of Algorithm 3 in
the Appendix), thus we test convergence after running a few iterations of block Lanczos; (4) Better
quality of clustering, i.e., smaller k�kF , implies higher accuracy of MSEIGS. We give performance
results of MSEIGS with varying cluster quality in Appendix 6.4. From Figures 1(b) and 1(c), we
can observe that the single-level MSEIGS performs much better than block Lanczos and RSVD.

We can now analyze the approximation quality of Algorithm 1 by first examining the difference
between the eigenvalues computed by Algorithm 1 and the exact eigenvalues of A.
Theorem 3.2. Let ¯�1 � · · · � ¯�kq be the approximate eigenvalues obtained after q steps of block
Lanczos in Algorithm 1. According to Kaniel-Paige Convergence Theory [23], we have

�i  ¯�i  �i +
(�1 � �i) tan

2
(✓)

T 2
q�1(

1+⌫i
1�⌫i

)

.

Using Theorem 3.1, we further have

�i  ¯�i  �i +
(�1 � �i)k�k22

T 2
q�1(

1+⌫i
1�⌫i

)(⌘2 � k�k22)
,

where Tm(x) is the m-th Chebyshev polynomial of the first kind, ✓ is the largest principal angle of
⇥(⌦, Uk) and ⌫i =

�i��k+1

�i��1
.
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Next we show the bound of Algorithm 1 in terms of rank-k approximation error.
Theorem 3.3. Given a n⇥n symmetric matrix A, suppose by Algorithm 1, we can approximate its k
dominant eigenpairs and form a rank-k approximation, i.e., A ⇡ ¯Uk

¯

⌃k
¯V T
k with ¯Uk = [

¯u1, · · · , ¯uk]

and ¯

⌃k = diag(¯�1, · · · , ¯�k) . The approximation error can be bounded as

kA� ¯Uk
¯

⌃k
¯V T
k k2  2kA�Akk2

✓
1 +

sin

2
(✓)

1� sin

2
(✓)

◆ 1
2(q+1)

,

where q is the number of iterations for block Lanczos and Ak is the best rank-k approximation of A.
Using Theorem 3.1, we further have

kA� ¯Uk
¯

⌃k
¯V T
k k2  2kA�Akk2

✓
k�k22

⌘2 � k�k22

◆ 1
2(q+1)

.

The proof is given in Appendix 6.3. The above two theorems show that a good initialization is
important for block Lanczos. Using Algorithm 1, we will expect a small k�k2 and ✓ (as shown in
Figure 1(a)) because it embodies the clustering structure of A and constructs a good initialization.
Therefore, our algorithm can have faster convergence compared to block Lanczos with random
initialization. The time complexity for Algorithm 1 is O(|E|k + nk2).

Algorithm 1: MSEIGS with single level
Input : n⇥ n symmetric sparse matrix A, target rank k and number of clusters c.
Output: The approximate dominant k eigenpairs (¯�i, ¯ui), i = 1, · · · , k of A.

1 Generate c clusters A11, · · · , Acc by performing graph clustering on A (e.g., Metis or Graclus).
2 Compute top-r eigenpairs (�(i)

j , u(i)
j ), j = 1, · · · , r, of Aii using standard eigensolvers.

3 Select the top-k eigenvalues and their eigenvectors from the c clusters to obtain U (1)
k1

, · · · , U (c)
kc

.
4 Form block diagonal matrix ⌦ = U (1)

k1
� · · ·� U (c)

kc
(

P
i ki = k).

5 Apply block Lanczos (Algorithm 3 in Appendix 6.1) with initialization Q1 = ⌦.

3.2 Multi-scale spectral decomposition
In this section, we describe our multi-scale spectral decomposition algorithm (MSEIGS). One chal-
lenge for Algorithm 1 is the trade-off in choosing the number of clusters c. If c is large, although
computing the top-r eigenpairs of Aii can be very efficient, it is likely to increase k�k, which in
turn will result in slower convergence of Algorithm 1. In contrast, larger clusters will emerge when
c is small, increasing the time to compute the top-r eigendecomposition for each Aii. However,
k�k is likely to decrease in this case, resulting in faster convergence of Algorithm 1. To address
this issue, we can further partition Aii into c smaller clusters and construct a hierarchy until each
cluster is small enough to be solved efficiently. After obtaining this hierarchical clustering, we can
recursively apply Algorithm 1 as it moves from lower levels to upper levels in the hierarchy tree.

By constructing a hierarchy, we can pick a small c to obtain ⌦ with small ⇥(⌦, Uk) (we set c = 4 in
the experiments). Our MSEIGS algorithm with multiple levels is described in Algorithm 2. Figures
1(b) and 1(c) show a comparison between MSEIGS and MSEIGS with a single level. For the single
level case, we use the top-r eigenpairs of the c child clusters computed up to machine precision.
We can see that MSEIGS performs similarly well compared to the single level case showing the
effectiveness of our multi-scale approach. To build the hierarchy, we can adopt either top-down or
bottom-up approaches using existing clustering algorithms. The overhead of clustering is very low,
usually less than 10% of the total time. For example, MSEIGS takes 1,825 seconds, where clustering
takes only 80 seconds, for the FriendsterSub dataset (in Table 1) with 10M nodes and 83M edges.

Early Termination of MSEIGS: Computing the exact spectral decomposition of A can be quite
time consuming. Furthermore, highly accurate eigenvalues/eigenvectors are not essential for many
applications. Thus, we propose a fast early termination strategy (MSEIGS-Early) to approximate
the eigenpairs of A by terminating MSEIGS at a certain level of the hierarchy tree. Suppose that
we terminate MSEIGS at the `-th level with c` clusters. From the top-r eigenpairs of each cluster,
we can select the top-k eigenvalues and the corresponding eigenvectors from all c` clusters as an
approximate eigendecomposition of A. As shown in Sections 4.2 and 4.3, we can significantly
reduce the computation time while attaining comparable performance using the early termination
strategy for two applications: label propagation and inductive matrix completion.

Multi-core Parallelization: An important advantage of MSEIGS is that it can be easily parallelized,
which is essential for large-scale eigendecomposition. There are two main aspects of parallelism
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Algorithm 2: Multi-scale spectral decomposition (MSEIGS)
Input : n⇥ n symmetric sparse matrix A, target rank k, the number of levels ` of the

hierarchy tree and the number of clusters c at each node.
Output: The approximate dominant k eigenpairs (¯�i, ¯ui), i = 1, · · · , k of A.

1 Perform hierarchical clustering on A (e.g., top-down or bottom-up).
2 Compute the top-r eigenpairs of each leaf node A(`)

ii for i = 1, · · · , c`, using block Lanczos.
3 for i = `� 1, · · · , 1 do
4 for j = 1, · · · , ci do
5 Form block diagonal matrix ⌦

(i)
j by (2).

6 Compute the eigendecomposition of A(i)
jj by Algorithm 1 with ⌦

(i)
j as the initial block.

7 end
8 end

in MSEIGS: (1) The eigendecomposition of clusters in the same level of the hierarchy tree can
be computed independently; (2) Block Lanczos mainly involves matrix-matrix operations (Level 3
BLAS), thus efficient parallel linear algebra libraries (e.g., Intel MKL) can be used. We show in
Section 4 that MSEIGS can achieve significant speedup in shared-memory multi-core settings.

4 Experimental Results
In this section, we empirically demonstrate the benefits of our proposed MSEIGS method. We
compare MSEIGS with other popular eigensolvers including Matlab’s eigs function (EIGS) [14],
PROPACK [12], randomized SVD (RSVD) [7] and block Lanczos with random initialization (Blk-
Lan) [21] on three different tasks: approximating the eigendecomposition, label propagation and
inductive matrix completion. The experimental settings can be found in Appendix 6.5.

4.1 Approximation results
First, we show in Figure 2 the performance of MSEIGS for approximating the top-k eigenvectors
for different types of real-world graphs including web graphs, social networks and road networks
[17, 28]. Summary of the datasets is given in Table 1, where the largest graph contains more than 3.6
billion edges. We use the average of the cosine of principal angles cos(⇥(

¯Uk, Uk)) as the evaluation
metric, where ¯Uk consists of the computed top-k eigenvectors and Uk represents the “true” top-k
eigenvectors computed up to machine precision using Matlab’s eigs function. Larger values of the
average cos(⇥(

¯Uk, Uk)) imply smaller principal angles between the subspace spanned by Uk and
that of ¯Uk, i.e., better approximation. As shown in Figure 2, with the same amount of time, the
eigenvectors computed by MSEIGS consistently yield better principal angles than other methods.

Table 1: Datasets of increasing sizes.
dataset CondMat Amazon RoadCA LiveJournal FriendsterSub SDWeb

# of nodes 21,263 334,843 1,965,206 3,997,962 10.00M 82.29M
# of nonzeros 182,628 1,851,744 5,533,214 69,362,378 83.67M 3.68B

rank k 100 100 200 500 100 50

Since MSEIGS divides the problem into independent subproblems, it is naturally parallelizable. In
Figure 3, we compare MSEIGS with other methods under the shared-memory multi-core setting
for the LiveJournal and SDWeb datasets. We vary the number of cores from 1 to 16 and show the
time to compute similar approximation of the eigenpairs. As shown in Figure 3, MSEIGS achieves
almost linear speedup and outperforms other methods. For example, MSEIGS is the fastest method
achieving a speedup of 10 using 16 cores for the LiveJournal dataset.

4.2 Label propagation for semi-supervised learning and multi-label learning
One application for MSEIGS is to speed up the label propagation algorithm, which is widely used
for graph-based semi-supervised learning [29] and multi-label learning [26]. The basic idea of
label propagation is to propagate the known labels over an affinity graph (represented as a weighted
matrix W ) constructed using both labeled and unlabeled examples. Mathematically, at the (t+1)-th
iteration, F (t + 1) = ↵SF (t) + (1 � ↵)Y , where S is the normalized affinity matrix of W ; Y is
the n⇥ l initial label matrix; F is the predicted label matrix; l is the number of labels; n is the total
number of samples; 0  ↵ < 1. The optimal solution is F ⇤

= (1�↵)(I �↵S)�1Y . There are two
standard approaches to approximate F ⇤: one is to iterate over F (t) until convergence (truncated
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(d) RoadCA
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(e) LiveJournal
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(f) SDWeb
Figure 2: The k dominant eigenvectors approximation results showing time vs. average cosine of
principal angles. For a given time, MSEIGS consistently yields better results than other methods.
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Figure 3: Shared-memory multi-core results showing number of cores vs. time to compute similar
approximation. MSEIGS achieves almost linear speedup and outperforms other methods.

method); another is to solve F ⇤ as a system of linear equations by using an iterative solver like
conjugate gradient (CG) [10]. However, both methods suffer from slow convergence, especially
when the number of labels, i.e., columns of Y , grows dramatically. As an alternative, we can apply
MSEIGS to generate the top-k eigendecomposition of S such that S ⇡ ¯Uk

¯

⌃k
¯UT
k and approximate

F ⇤ as F ⇤ ⇡ ¯F = (1� ↵) ¯Uk(I � ↵¯

⌃k)
�1

¯UT
k Y . Obviously, ¯F is robust to large numbers of labels.

In Table 2, we compare MSEIGS and MSEIGS-Early with other methods for label propagation on
two public datasets: Aloi and Delicious, where Delicious is a multi-label dataset containing 16,105
samples and 983 labels, and Aloi is a semi-supervised learning dataset containing 108,000 samples
with 1,000 classes. More details of the datasets and parameters are given in Appendix 6.6. As we
can see in Table 2, MSEIGS and MSEIGS-Early significantly outperform other methods. To achieve
similar accuracy, MSEIGS takes much less time. More interestingly, MSEIGS-Early is faster than
MSEIGS and almost 10 times faster than other methods with very little degradation of accuracy
showing the efficiency of our early-termination strategy.

4.3 Inductive matrix completion for recommender systems
In the context of recommender systems, Inductive Matrix Completion (IMC) [8] is another important
application where MSEIGS can be applied. IMC incorporates side-information of users and items
given in the form of feature vectors for matrix factorization, which has been shown to be effective
for the gene-disease association problem [18]. Given a user-item ratings matrix R 2 Rm⇥n, where
Rij is the known rating of item j by user i, IMC is formulated as follows:

min

W2Rfc⇥r,H2Rfd⇥r

X

(i,j)2⌦

(Rij � x

T
i WHT

yj)
2
+

�

2

(kWk2F + kHk2F ),

where ⌦ is the set of observed entries; � is a regularization parameter; xi 2 Rfc and yj 2 Rfd

are feature vectors for user i and item j, respectively. We evaluated MSEIGS combined with IMC
for recommendation tasks where a social network among users is also available. It has been shown
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Table 2: Label propagation results on two real datasets including Aloi for semi-supervised classifi-
cation and Delicious for multi-label learning. The graph is constructed using [16], which takes 87.9
seconds for Aloi and 16.1 seconds for Delicious. MSEIGS is about 5 times faster and MSEIGS-
Early is almost 20 times faster than EIGS while achieving similar accuracy on the Aloi dataset.

Method Aloi (k = 1500) Delicious (k = 1000)
time(seconds) acc(%) time(seconds) top3-acc(%) top1-acc(%)

Truncated 1824.8 59.87 3385.1 45.12 48.89
CG 2921.6 60.01 1094.9 44.93 48.73

EIGS 3890.9 60.08 458.2 45.11 48.51
RSVD 964.1 59.62 359.8 44.11 46.91
BlkLan 1272.2 59.96 395.6 43.52 45.53

MSEIGS 767.1 60.03 235.6 44.84 49.23
MSEIGS-Early 176.2 58.98 61.36 44.71 48.22

that exploiting these social networks improves the quality of recommendations [9, 25]. One way to
obtain useful and robust features from the social network is to consider the k principal components,
i.e., top-k eigenvectors, of the corresponding adjacency matrix A. We compare the recommendation
performance of IMC using eigenvectors computed by MSEIGS, MSEIGS-Early and EIGS. We also
report results for two baseline methods: standard matrix completion (MC) without user/item features
and Katz1 on the combined network C = [A R;RT

0] as in [25].

We evaluated the recommendation performance on three publicly available datasets shown in Table 6
(see Appendix 6.7 for more details). The Flixster dataset [9] contains user-movie ratings information
and the other two datasets [28] are for the user-affiliation recommendation task. We report recall-
at-N with N = 20 averaged over 5-fold cross-validation, which is a widely used evaluation metric
for top-N recommendation tasks [2]. In Table 3, we can see that IMC outperforms the two baseline
methods: Katz and MC. For IMC, both MSEIGS and MSEIGS-Early achieve comparable results
compared to other methods, but require much less time to compute the top-k eigenvectors (i.e., user
latent features). For the LiveJournal dataset, MSEIGS-Early is almost 8 times faster than EIGS
while attaining similar performance as shown in Table 3.

Table 3: Recall-at-20 (RCL@20) and top-k eigendecomposition time (eig-time, in seconds) results
on three real-world datasets: Flixster, Amazon and LiveJournal. MSEIGS and MSEIGS-Early re-
quire much less time to compute the top-k eigenvectors (latent features) for IMC while achieving
similar performance compared to other methods. Note that Katz and MC do not use eigenvectors.

Method Flixster (k = 100) Amazon (k = 500) LiveJournal (k = 500)
eig-time RCL@20 eig-time RCL@20 eig-time RCL@20

Katz - 0.1119 - 0.3224 - 0.2838
MC - 0.0820 - 0.4497 - 0.2699

EIGS 120.51 0.1472 871.30 0.4999 12099.57 0.4259
RSVD 85.31 0.1491 369.82 0.4875 7617.98 0.4294
BlkLan 104.95 0.1465 882.58 0.4687 5099.79 0.4248

MSEIGS 36.27 0.1489 264.47 0.4911 2863.55 0.4253
MSEIGS-Early 21.88 0.1481 179.04 0.4644 1545.52 0.4246

5 Conclusions
In this paper, we proposed a novel divide-and-conquer based framework, multi-scale spectral de-
composition (MSEIGS), for approximating the top-k eigendecomposition of large-scale graphs. Our
method exploits the clustering structure of the graph and converges faster than state-of-the-art meth-
ods. Moreover, our method can be easily parallelized, which makes it suitable for massive graphs.
Empirically, MSEIGS consistently outperforms other popular eigensolvers in terms of convergence
speed and approximation quality on real-world graphs with up to billions of edges. We also show
that MSEIGS is highly effective for two important applications: label propagation and inductive
matrix completion. Dealing with graphs that cannot fit into memory is one of our future research
directions. We believe that MSEIGS can also be efficient in streaming and distributed settings with
careful implementation.
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6 Appendix

6.1 Block Lanczos algorithm

The block Lanczos algorithm is a widely used eigendecomposition method for computing the domi-
nant k eigenvalues and eigenvectors of a symmetric matrix A [21]. The basic idea of block Lanczos
is to use an n ⇥ b initial matrix V0 to construct the Krylov subspace of A. After j � 1 steps,
the algorithm generates an orthonormal basis ˆQj = [

Q1, Q2, · · · , Qj ] of the j-th Krylov sub-
space of A as Kj(A, V0) = span{V0, AV0, · · · , Aj�1V0}, which satisfies the three-term recurrence
Qj+1Bj = AQj�QjAj�Qj�1BT

j�1. Simultaneously with the iteration, a sequence of block tridi-
agonal matrices ˆTj is obtained, each of which is an orthonormal projection of A onto Kj(A, V0):

ˆTj =
ˆQT
j A ˆQj =

2

66664

A1 BT
1 · · · 0

B1 A2
. . .

...
...

. . . . . . BT
j

0 · · · Bj Aj+1

3

77775
.

Then, the governing equation for block Lanczos can be written as

A ˆQj � ˆQj
ˆTj = REj ,

where R is the residual matrix and Ej = [0, 0, · · · , Ib] (Ib is the identity matrix of size b). Sub-
sequently, the Rayleigh-Ritz procedure is applied by using the extreme eigenpairs (ˆ�i, ˆui) of ˆTj to
obtain the Ritz values ˆ�i and Ritz vectors ˆQjˆui as the approximate eigenpairs (¯�i, ¯ui) of A. If the
residuals kA¯ui � ¯�i¯uik are small enough, we stop the procedure and output (¯�i, ¯ui), i = 1, · · · , k,
as the approximate eigenpairs of A. The main procedure of block Lanczos is listed in Algorithm 3.

Algorithm 3: Block Lanczos
Input : n⇥ n symmetric sparse matrix A, rank k and initial matrix V0.
Output: The approximate dominant k eigenpairs (¯�i, ¯ui), i = 1, · · · , k, of A.

1 Initialize block Lanczos: B0 = 0; Q0 = 0; Q1 = V0
2 for j = 1, 2, · · · do
3 R = AQj �Qj�1BT

j�1 (Let R be orthogonal to Qj�1)
4 Aj = QT

j R (Obtain Aj by projecting R onto Qj)
5 R = R�QjAj (Let R be orthogonal to Qj)
6 Qj+1Bj = R (QR-factorization of R to obtain Qj+1 and Bj)
7 Form ˆTj and ˆQj and compute the top-k eigenpairs (ˆ�i, ˆui) of ˆTj to obtain the Ritz values

¯�i =
ˆ�i and Ritz vectors ¯ui =

ˆQjˆui of A.
8 If the residuals kA¯ui � ¯�i¯uik, i = 1, · · · , k, are sufficiently small, then stop and output

(

¯�i, ¯ui) as the approximate eigenpairs.
9 end

6.2 Proof of Theorem 3.1

Proof. The proof is based on the sin ✓ theorem in [4]. Let the eigenvectors of the n⇥ n symmetric
matrices D and D +� be E = [E0|E1] and F = [F0|F1], respectively, where E0, F0 2 Rn⇥k and
E1, F1 2 Rn⇥(n�k). Then

D = E


⌃

D
0 0

0 ⌃

D
1

�
ET ,

D +� = F


⌃

D+�
0 0

0 ⌃

D+�
1

�
FT ,

ET
0 F0 = U cos⇥V T ,
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where ⇥ are the principal angles between E0 and F0. Assume that ⌃D
0 ✓ [a, b] and ⌃

D+�
1 ✓

(�1, a� �) [ (b+ �,1). Then

kFT
1 E0k = kFT

0 E1k = k sin⇥k.

Assume that the eigenvalues ⌃

D
0 lie in some interval, while the eigenvalues ⌃

D+�
1 lie in some

distance ⌘ � 0 from that interval (possibly on both sides of it). Then

k sin(⇥(E0, F0))k2 
k�E0k2

⌘
 k�k2

⌘
, k sin(⇥(E0, F0))kF 

k�E0kF
⌘


p
k
k�kF
⌘

.

We can set ⌘ = min |�� ˆ�| with � 2 ⌃

D
0 and ˆ� 2 ⌃

D+�
1 .

6.3 Proof of Theorem 3.3

Proof. According to Lemma 6.1,

kA� ¯Uk
¯

⌃k
¯UT
k k2 = kA�QQTAQQT k2  2kA�QQTAk2.

where Q is an orthogonal basis for the Krylov subspace [⌦, A⌦, · · · , AqA⌦].

First, let Z = [⌦, A⌦, · · · , AqA⌦], QBQT
B is a projector for B = Aq+1 and QZQT

Z is a projector
for Z. Since we know that range(AqA⌦) ⇢ range([⌦, A⌦, · · · , AqA⌦]), by Lemma 6.4, we have

k(I �QZQ
T
Z)Ak  k(I �QBQ

T
B)Ak.

Furthermore, by Lemma 6.2, we have

k(I �QBQ
T
B)Ak  k(I �QBQ

T
B)Bk

1
(q+1) .

Next, we need to bound k(I �QBQT
B)Bk

1
(q+1) . According to Lemma 6.3, we have

k(I �QBQ
T
B)Bk

1
q+1

 (k⌃B
2 k2 + k⌃B

2 ⌦
B
2 (⌦

B
1 )

†k2)
1

2(q+1)

 (k⌃B
2 k2(1 + k⌦B

2 k2k(⌦B
1 )

†k2))
1

2(q+1)

= �k+1(1 + k⌦B
2 k2k(⌦B

1 )
†k2))

1
2(q+1) ,

where �k+1 is the (k + 1)-th largest singular value of A.

Next, we show how to bound the error for both k⌦B
2 k and k(⌦B

1 )
†k. We already know ⌦1 = UT

1 ⌦,
⌦2 = UT

2 ⌦ and ⌦  diag(U (1)
k1

, U (2)
k2

, . . . , U (c)
kc

), which shows that ⌦ is the top-k eigenvectors for
the (unperturbed) matrix D. With Theorem 3.1, we can now bound k⌦B

2 k and k(⌦B
1 )

†k as

k⌦B
2 k = k sin⇥k 

k�k
⌘

,

k(⌦B
1 )

†k = k 1

cos⇥

k = 1p
1� k sin⇥k2

 1q
1� k�k2

⌘2

.

As a consequence, we have

kA� ¯Uk
¯

⌃k
¯UT
k k2  2kA�QZQ

T
ZAk

 2k(I �QBQ
T
B)Ak

 2k(I �QBQ
T
B)Bk

1
(q+1)

 2�k+1

✓
1 +

sin

2 ✓

1� sin

2 ✓

◆ 1
2(q+1)

,

where ✓ is the largest principal angle of ⇥.
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Lemmas used in the above proof are listed as follows [7]:
Lemma 6.1. Suppose A is Hermitian and Q is an orthogonal basis, then

kA�QQ⇤AQQ⇤k  2kA�QQ⇤Ak = 2k(I �QQ⇤
)Ak.

Lemma 6.2. Let A be an m ⇥m matrix and ⌦ be an m ⇥ ` matrix. Fix a non-negative integer q,
from B = AqA, and compute the sample matrix Z = B⌦. For an orthogonal basis Q for Z,

k(I �QQ⇤
)Ak  k(I �QQ⇤

)Bk
1

q+1 ,

where k · k represents unitary-invariant norm including the spectral norm and the Frobenius norm.
Lemma 6.3. Let A be an m⇥ n matrix with singular value decomposition

A = U⌃V ⇤
= U


⌃1

⌃2

� 
V ⇤
1

V ⇤
2

�

and fix k � 0, where the size of V1 and V2 are n ⇥ k and n ⇥ (n � k), respectively. Choose a test
matrix ⌦ and construct the sample matrix Y = A⌦. Let ⌦1 = V ⇤

1 ⌦ and ⌦2 = V ⇤
2 ⌦. Assuming ⌦1

and ⌦2 has full column rank, the approximation error satisfies

k(I � PY )Ak2  k⌃2k2 + k⌃2⌦2⌦
†
1k2,

where k · k denotes either the spectral norm or the Frobenius norm and PY is the projector for Y .
Lemma 6.4. Suppose range(N) ⇢ range(M). Then, for a matrix A, it holds that kPNAk 
kPMAk and k(I � PM )Ak  k(I � PN )Ak, where PN and PM are projectors for range(N) and
range(M), respectively.

6.4 Performance of MSEIGS with varying cluster quality

To vary the clustering quality, we first cluster the CondMat graph into 4 clusters and then randomly
perturb clusters by moving a portion of vertices from their original cluster to another random cluster,
which reduces the number of within-cluster edges. Table 4 presents the performance of MSEIGS
with different percentages of vertices shuffled. We can see that (1) the quality of clustering influences
the performance of MSEIGS, i.e., better quality of clustering implies higher accuracy of MSEIGS;
(2) even with poor clustering structure, MSEIGS can still obtain reasonably good approximations.

Table 4: Performance of MSEIGS with varying cluster quality.
Percent of vertices shuffled 0% 20% 40% 60% 80% 100%

Percent of within-cluster edges 86.31% 64.57% 47.08% 35.43% 27.42% 24.92%
Avg. cosine of principal angles 0.9980 0.9757 0.9668 0.9475 0.9375 0.9268

6.5 Experimental settings

All experiments are conducted on computing nodes that have two Intel Xeon E5-2680 (v2) CPUs
with either 256 GB or 1 TB of main memory. Our algorithms are implemented in C++ with OpenMP
and all methods use Intel Math Kernel Library (MKL) as the underlying BLAS/LAPACK library.

6.6 Statistics of datasets used for label propagation

In the experiments, we use the RBF kernel Wij = exp(��kxi � xjk2) to measure the similarity
between samples i and j. In Table 5, we present statistics and parameters of the dataset used for
label propagation in Section 4.2. The parameters are chosen by cross-validation.

Table 5: Statistics of datasets used for label propagation.
Dataset # of training points # of test points # of classes/labels dimension � ↵

Delicious 12,920 3,185 983 500 10�1 0.99
Aloi 10,000 98,000 1,000 128 10�7 0.99
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6.7 Statistics of datasets used for inductive matrix completion

In Table 6, we give a summary of the datasets used for inductive matrix completion in Section 4.3.
Note that r is the rank of W and H in IMC and we set the regularization parameter � = 0.1, which
are chosen by cross-validation. For the Amazon and LiveJournal datasets, we randomly sampled
items (affiliations) with at least 10 users.

Table 6: Statistics of datasets used for inductive matrix completion.
Dataset # of users # of items # of ratings in R # of links in A r

Flixster 1.0M 48.8K 8.2M 11.8M 100
Amazon 334.8K 73.2K 2.7M 1.9M 200

LiveJournal 4.0M 2.0K 2.4M 69.4M 100
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