"

=2 Document Cover Sheet
& ATeT

for Technical Memorandum

itle: Performance Analysis of a Proposed Parallel Architecture On Matrix Vector Multiply Like
Routines
Authors Location Ext. Company (if other than AT&T-BL)

[. S. Dhillon MH 8D-422 2957

N. K. Karmarkar MH 2C-358 6737

K. G. Ramakrishnan MH 2C-126 6722
Document Nos. Filing Case No. Project Nos.
11216-901004-13TM 20878 311404-2299
11211-901004-17T™M 311404-2399
11212-901004-34TM 311404-2839

Keywords:

compiler; finite geometry; data flow graph; sparse matrix computations; scientific computing

MERCURY Announcement Bulletin Sections
MAS - Mathematics and Statistics CMP - Computing CMM - Communications

Abstract

This paper presents some ideas on the implementation of a compiler which uses the knowledge of the
finite geometry that underlies the novel parallel hardware architecture for sparse matrix
computations [KARS0]. The compiler takes a data flow graph as input, rearranges it to avoid memory,
switch, and processor conflicts, and schedules operations to maximize the efficiency of the parallel
hardware. The action of the compiler can be viewed as a discrete-time-driven simulation of the execu-

tion of the data flow graph on the parallel machine, the simulation capturing the state of the hardware
at a particular time instant.

The paper presents extensive simulation results for matrix-vector multiply routines on the parallel
hardware. The matrices have been chosen from diverse LP applications as well as other scientific
computations. The results indicate that uniformly high efficiency (above 90%) is achievable on prob-
lems with regular as well as arbitrary structure.

Total Pages (including document cover sheet): 67

Mailing Label

AT&T - PROPRIETARY
Use pursuant to Company Instructions

>S (04/30/89)
661010544 AT&T BELL LABORATCR £3

initial Distribution Specifications

11216-901004-13TM (page of

Complete Copy

DPHs 1121, 5284

MTSs 11211, 11212, 11218, 11357
Dept. 59136

A. G. Fraser

M. R. Garey

. L. Graham

. Arnold

. K. Curtis

. J. Houck, Jr.

OrOD

-J. McCallum, Jr.
. Singhal

. Agrawal
Trotter

. Chadha
Fishburn

. Lloyd

. Nham

G. Szymanski
. C. Hsu

. Singhal

. Woo

ZPXATVCDCTDXRO

Cover Sheet Only ¢

Center 1121
DPHs 1127, 1125, 1135, 5285, 5286

H. T. Brendzel

A. A. Penzias

A. V. Aho

J. M. Holtzman
Horing
Kernighan
Lucky
Martersteck

S.
B.W.
R.W.
K. E.
A. N. Netravali

Future AT&T Distribution by ITDS

RELEASE to any AT&T employee (excluding contract employees).

Author Signatures

.l

—~

. Ve i P
! IR /\\ e

-

! -~ .
! el S

i

A6

v

r
“ _jl\'v i

:
A T

1. S. Dhillon N. K. Karmarkar

K. G. Ramakrishnan

Organizat;onal proval (Optional)

haS

o

A. M. Odlyzko

Y //
D. Mitra MY R. Garev

For Use by Recipient of Cover Sheet:

Computing network users may order copies via the library -1 command:
‘or informaten, type man library after the UNIX® system prompt.

Ctrherwise:
Enter PAN if AT&T-BL (or SS# if non-ATAT-BL).
Return this sheet to any ITDS location.

Internal Technical Document Service

() AK 2H-28 () H7M-103 {}DR2F-19 CYNWAITDS
{)ALC 1B-102 {)MV3L-19 {)INH1C-114 () PRS§.2: 22
()CB 1L-220 ¥ WH 3E-204 ()W 2Z.156
() HO aF112 () MT 2C-131

=Y.

AT&T Bell Laboratories

subject: Performance Analysis of a Proposed Parallel
Architecture On Matrix Vector Multiply Like
Routines
Work Project No. 311404-2299 311404-2399
311404-2899
File Case 20878

TECHNICAL MEMORANDUM

1. Introduction

date:

October 4, 1990

from: L. S. Dhillon

Org. 11216
MH 6D-422 (908) 582-2957

N. K. Karmarkar
Org. 11211
MH 2C-358 (908) 582-6737

K. G. Ramakrishnan
Org. 11212
MH 2C-126 (908) §82-6722

11216-901004-13TM
11211-901004-17 T™M
11212-901004-34 TM

A large fraction of scientific and engineering computations involve sparse matrices, the most

typical operations being sparse matrix multiplication and solution of linear system of equations.

Typically, these problems lead to computations involving a fixed data flow graph which is

executed several times with different instances of input data. Such problems arise in diverse

applications like optimization, solution of partial differential equations, finite element methods,

signal processing, circuit simulation, design of integrated circuits, etc.

In this paper we discuss some of the ideas behind the implementation of a compiler, which

exploits the interconnection structure of a novel parallel architecture based on finite geometries

(KAR90]. The compiler takes a data flow graph as input, rearranges it to avoid memory access

and processor usage conflicts subject to switch constraints, and ultimately, schedules the

operations on the processors distributing the load evenly among them. This symbolic

computation of the data flow graph is to be done once in the beginning. After the compiler
schedules the operations, the numerical execution of the data flow graph proceeds on the parallel
machine. The action of the compiler may be thought of as a discrete time-driven simulation of
the execution of a data flow graph on the parallel machine, the simulation capturing the state of
execution at particular time instants enabling synchronous numerical execution of the data flow
graph on the parallel machine after the compilation. The speedup results from the fact that this
numerical execution is done many times, whereas the compiler is required to run only once in the
beginning.

1.1 Computational Environment

The parallel machine is meant to be used as a Co-processor 10 a general purpose host
processor. The two processors share a common global memory. The main program runs on the
host machine. Computationally intensive subroutines, which have fixed symbolic structure but

are to be executed several times with different numerical values, run on the co-processor [refer

Fig. 1.1].
| SHARED - Co-
HOST < MEMORY | PROCESSOR
Fig. 1.1

The co-processor consists of partitioned memory modules, globally shared by a bank of
arithmetic processors through an interconnection network. All the processors of this co-processor
are identical. Each element of the co-processor has local memory for storing instruction
sequences to be used by that element. The instruction sequence to be executed by an arithmetic

processor consists only of the type of operation to be performed (including noops). The

instruction sequence does not include addresses of operands — the processor is to operate on
whatever data comes on its input ports. In addition, move instructions for moving data from one
memory module to another may be present. The instruction sequence for a memory module
consists of lists of addresses along with a read/write bit, while that for a switch simply consists of
a list of configurations, each configuration specifying the connections between the input and
output ports of the switch. Thus, as opposed to the traditional instruction sequence for a
processor, the instruction sequence here is distributed over the various elements of the system,
and there is no duplication of information. Each element of the system follows its own
instruction sequence, and the computation on the whole proceeds synchronously. For a more

detailed discussion of the coprocessor architecture, refer to KAR90.

2. The Compiler

The instruction sequences for various elements of the Co-processor are generated by the
compiler. The compiler analyzes the data flow graph, maps it onto the underlying architecture
and as output, produces a collection of programs, one for each element of the system, each

program consisting of a list of instructions drawn from the instruction set of that element.

A data flow graph consists of nodes representing operations, and edges representing operands.
A node can be fired, i.e. an operation can be initiated, only when its input operands are available.

We shall be considering only unary and binary operations in data flow graphs. The following

information is needed along with each node:
« the type of operation
» the nodes which provide its input operands
. tl?e nodes which consume its output operands.

We now discuss the compiler in somewhat greater detail (refer Fig. 2.1). The compiler.

procedure compiler(dfg, inc)

begin
{ dfg: data flow graph
inc: incidence matrix reflecting the interconnection network)
initialize ready list with operations having input operands
as the input data itself;
while (ready list is not empty)
begin
move operations down the arithmetic pipeline lists;
add the completed operations to the wrize list:
for (all operations in the write list) do
begin
if (there is a free memory module)
begin
assign the memory module to this output operand;
mark the memory module as busy;
mark the appropriate switch interconnection busy;
remove the operation from the write list;
decrement operand counts of all the operations
consuming this output operand;
if (any of the above counts becomes Zero)
add the operation to the ready list;
end
end
for (all operations in the ready list) do
begin
if (a processor to do this operation is free
and the memory operands can be fetched)
begin
mark processor busy;
mark memory modules busy;
mark the appropriate switch interconnection busy;
remove the operation from the ready list:
place this operation in the appropriate pipeline list;
end
end
append processor, memory and switch programs;
end
end

Figure 2.1: A high level description of the compiler

essentially performs a symbolic computation of the data flow graph, rearranging it and matching
the communication pattern of the computation with the underlying interconnection network. The
compiler uses various lists, which reflect the state of computation at a particular stage. At each
stage of computation, the compiler forms a ready list of operations. This list consists of all the
operations which could be performed in the present cycle, if there were unlimited resources. A
processor would typically perform operations in an arithmetic pipeline. Different operations
would require different number of cycles for execution. A multiplication operation, for example,
would need far more cycles than an addition operation. The compiler simulates these arithmetic
pipelines by pipeline lists. The length of each list is equal to the number of cycles needed for
executing the corresponding arithmetic operation. After execution of the operation, the output
operands are moved by the compiler to a write list. The write list consists of all the operations

which could be written in the present cycle if there were unlimited resources.

The ready list is initialized by operations whose input operands are available at the start of
computation, i.e. operations whose input operands are either constants, or input data to the
problem itself such as elements belonging to input matrices or vectors. From this list, only those
operations which don’t result in memory access and processor usage conflicts, subject to switch
constraints, are chosen to be scheduled in the present cycle. These operations are fired and
removed from the ready list to be put into the appropriate pipeline list. After a particular
operation is completed, i.e.after it has traversed through all the stages in its pipeline list, it is put
in the write list. The output operands may be written onto the register file or onto the global
partitioned memory. The compiler assigns addresses to the output operands produced by
operations from the write list in a conflict-free manner, and then removes them from the write list.
New operations, which can now be fired as a result of their input operands becoming available,
are added to the ready list. The programs for each element are appended, and the compiler then

moves onto the next stage in the computation,

In order that the compiler traverse the data flow graph as described above, the data structures
for the data flow graph must be carefully chosen. The following information should be stored

with each node:

[2N

the type of operation

an operand count indicating the number of operands currently needed to fire the operation
« back pointers to operations producing its input operands
» forward pointers to operations consuming its output operand

» memory module where its output operand is stored

processor which performs this operation.

A pipeline list may be viewed as an expansion of the nodes corresponding to that operation in
the data flow graph. An operation, after being initiated, passes through all the stages in the
pipeline list, and it is only after being written that the operand counts of the operations consuming
this output operand are decremented. Thus, the compiler ensures data consistency since the

output operands are made available only after being written onto memory.

The compiler resolves memory access and processor usage conflicts. The manner in which
the compiler resolves conflicts, and assigns memory modules to operands and operations to
processors, depends greatly on the underlying architecture and the switch constraints. The input
data would typically be stored in some memory modules before the computation starts. The
compiler may or may not move this input data. For intermediate data, memory modules are
assigned at the time the particular data item is to be written. Hence, for any operation the
memory modules where the input operands reside are known before the operation is performed.
Depending on the interconnection network, there may be some freedom in choosing the processor

to perform these operations. On the other hand, the processor may be determined by the memory

modules assigned to the input operands. The determination of whether the input operands can be
fetched to initiate an operation depends on the computation scheme adopted. The input operands
(a maximum of two in our case) may always be fetched in consecutive cycles, or they may be
fetched in non-consecutive cycles — we assume that a processor has a single input port. The latter
case would increase the complexity of the compiler. The compiler would need to have some
look-ahead, and also have to generate additional code to identify correctly the pair of operands
required for an arithmetic operation. Also, it would require a greater complexity in the instruction

sequence of a processor.

3. Interconnection Scheme

Until now, we have discussed the compiler independently of the underlying architecture. As
mentioned before, the compiler is greatly influenced by the interconnection network. We now
discuss projective spaces over finite fields, which form the basis of our interconnection network.

The next few sections assume some knowledge of finite fields, which may be found in HALS6.

3.1 Projective Spaces Over Finite Fields

Let us consider the Galois Field, GF(s?*'), s being a prime power. This is a vector space

over its subfield GF(s). Let x be a primitive root of GF(s4*!). The non-zero elements of

GF(s*') may be represented as 1, x, x2, .., x**"'~2. These non-zero elements form a
Sd+1 - 1
multiplicative cyclic group, say G. Let ny = -1 Let H be the multiplicative cyclic
S —"
subgroup generated by x"*. The elements of H are of the form 1, x™, x*™, . x“~9% 44

together with the zero element, they form the subfield, GF (s). Consider the quotient group.
G’ = G/H, |G’| = n,. Two elements of GF(s*!) belong to the same coset of A if and only if
i =j (mod ng). The points of a projective space over the field GF(s), denoted by P?(GF(s)).
are in one-to-one correspondence with the elements of the quotient group G’. Henceforth, we

shall always refer to an element of G’ by its representative x', i < n4. In the projective space, a

point is a subspace of dimension 0, a line is one of dimension 1, and so on.
For n 2 m, define

(Sn+l__l)(sn__l) . (srl~m+l__1)

o(n,m,s) = (sm+1—1)(sm_1) e {s=1)

Let 0</<m<d, and s=p* where p is a prime. Then the number of m-dimensional

subspaces of P4(GF(s)) containing a given /-dimensional subspace is:

o(d~-Il-1,m-1-1,5) .

The number of /-dimensional subspaces of P¢(GF(s)) contained in a given m-dimensional

subspace is:

o(m,l,s) .

From now on, we shall refer to the number of points of P¢ (GF(s)) contained in a J-

dimensional subspace as n ; and the number of j-dimensional spaces in P¢ (GF(s))ash j

n; = ¢(j,0,5) and hj = 6(d,j,s) .

3.2 Structure of P4(GF(s))

We now present some theorems and their proofs which are needed for an efficient

implementation of the compiler.

Let W; be the set of all j-dimensional subspaces of P¢ (GF(s)). We represent we W ; asan

n;-tuple (xi‘ L x" XM), xte G’ where x is the primitive root of GF (s¢*!).
Define an action of G’ on Wi wiW,->W, by w(w)=g w=

i

g{x ,...,x‘") = (gxi‘, gxi"), geG’, we W;. Define the orbit of w 10 be
8(w) = {y,(w) | ge G’}, and the isotropy subgroup of w, I(w) = {ge G’ | y,(w) = n

i

We call x' - w=xi(x", . x") = (x' - x", . x' x™) a shift of the subspace w by step

Intuitively, the orbit of w, O(w) consists of all the j-dimensional subspaces which can be
generated by shifting the subspace by steps i, i 2 1. The isotropy subgroup of w, /(w) consists of
all points x¥*e G’, such that shifting the subspace w by step &, results in the same subspace, i.e.,

permutes all the points on the subspace.

The action of G’ on W; decomposes W; into a collection of mutually disjoint subsets,

W;,= U 8(w). Let [j(w) = l6(w)| be called the length of the orbit of the j-dimensional
we W

1

subspace. Then the following relation holds:

Ljw) - o(l(w)) = 0o(G’) = ng ie Li(w)|ngzVwew,.
Theorem. If (nj, na)* = 1, then the length of the orbit of any j-dimensional subspace equals
the number of points in P4(GF(s)) i.e.

IJ(W) = ny YV we Wj .

Proof. We already have Lj(w) | ngVweW = 3Janintegerrstny =r - Liw) = rlnd.

l;(w) is the smallest integer such that Yg(w) = w where g = xlf(”), ie. ¥, permutes the
points in the j-dimensional subspace w. Represent this permutation by ®. n” must be the identity

permutation since n” corresponds to a shift of stepr- L;(w) =n4 ., rl n;.

Since rlnd andr’nj,rf(nd, n;).andif(nj, ny) =1, r=1= L;(w) = ny,

Corollary 1: [Singer's Theorem]. The hyperplanes of P?(GF(s)) as blocks, points as objects.

form a symmetric cyclic block design. [HALS86]

Proof. In P4(GF(s)), ng = hq_y, i.e., the number of points equals the number of hyperplanes.

Each hyperplane contains n,_, points, whereas each point is contained in o(d-1,d-2.5

*

(i.7) denotes the gcd of integers i and ;.

-10-

hyperplanes. Now, ¢(d-1,d~-2,s) =¢(d-1,0, s) = nq-1. Thus, hyperplanes as blocks and
points as objects form a symmetric block design. Also, na=Sng_1 =1 =(ng,nz_q) = 1.

This implies that the design is cyclic.

In the particular case of a two-dimensional geometry, i.e., p? (GF (5)), the lines as blocks and

points as objects form a symmetric cyclic block design.
3.3 Interconnection Structure Using a Two-Dimensional Geometry

The number of points in PZ(GF(S)), ny =9(2,0,s) =s2+s+1. The number of lines in
P2 (GF(s)), hy = 6(2,1,5) = s*+5+1. Each line contains (s +1) points, and through any
point there are (s + 1) lines. Every distinct pair of points determines a line, and every distinct pair

of lines intersects in a unique point.

Based on this geometry, we construct the incidence structure as follows. The memory
modules are put in one-to-one correspondence with points of P2(GF(s)), and the processors in
one-to-one correspondence with lines. A processor is connected to a memory module if the line

corresponding to the processor contains the point corresponding to the memory module.
Consider a binary operation o, acting on operands a; and b j
a, e« a;-° b/ .

We say that this operation is associated with an index pair (i, j). Suppose i # j. Let the input
operands for this operation reside in M; and M ;- These modules correspond to two distinct points
in P2(GF(s)). Since two points determine a unique line, this binary operation is assigned to a
unique processor. If i=j or if the operation is unary, we have some freedom in choosing the

processor to which this operation is assigned.

Such an interconnection scheme allows efficient computation in cases where a large number

of operations are associated with just one index pair. For example, it can be used for very fast

-11-

matrix-vector multiplication involving sparse matrices with arbitrary on irregular structure. We

shall discuss this in greater detail in Section 4.
3.4 Conflict Free Connection Patterns in the Two-Dimensional Geometry

A connection pattern specifies the connections of processors to memory modules at a
particular instant of time. We represent a connection pattern at time instant ¢ by a set of ordered
pairs, C, = {(P;, M;) 1< £ p. 1< j<m}, where p is the number of processors, and m the
number of memory modules. (P;, M ;)€ C, if and only if processor P; is connected to module
M; attime instant . We assume that a processor can be connected to only one memory module at
a particular instant of time. Therefore, |C ,| < p. A conflict free connection pattern is one where

each processor is connected to a memory module, i.e. |C,| = p.

Represent a line by an ordered s + 1-tuple (xi‘ ,x' ey X). By Singer’s theorem, shifts of
steps {, 0 < i < p~—1 of any line lead to all the distinct lines, which correspond to processors in
the two-dimensional geometry. The ;™ elements xi', of all the p ordered s + 1-tuples are distinct,
and these correspond to all the memory modules. Thus, s + 1 conflict free connection patterns can

be generated by taking all possible shifts of any line.

We now present an example to illustrate the generation of these conflict free connection
patterns. Consider P2(GF(2)). Let y be a primitive root of GF(2%). The elements
1,y,¥%, ..., y® correspond to the points of P2(GF(2)). There are 3 points on any line. The 3-

tuple (1, y, y*) forms a line. We list all the lines generated by shifting this line by all possible

step sizes:

(1,y,5%)
. y3 ¥
0y v
SRR
CARSEN)
SRR
% 1.y

-12-

Giving a labeling to the processors and memory modules, we have the following conflict free

connection patterns:

Cy = {(Po,Mo), (P1,My), (P2, M3) (P3,M3), (P4, My), (Ps,Ms), (Pg, Mg))
Cz = {(PO’Ml)’ (PlsMZ)v (P2vM3)s (P3’M4)v (P4'M5)v (PS’MG)v (PévMO)}

C3 = {(Po, M3), (P1.My), (P2, Ms), (P35, Mg), (P4, My), (Ps, M), (Ps, M)} .

Clearly, the number of possible connection pattemns is much greater than the conflict free
connection patterns. If these conflict free patterns were all the allowable connection patterns of
the parallel machine, the hardware and the compiler would be simpler. Simulations show that

under certain conditions, such a machine does not lose much in efficiency.

There are many other such conflict free connection patterns, but the simulation results

presented later have been compiled only with the conflict free pattemns generated by shifts.

We now discuss the compilation of matrix-vector multiplication on the 2-dimensional

geometry. Simulations have been done on P?(GF(2)) and P2 (GF(3)).

4. Applications

4.1 Compilation of Matrix-Vector Multiplication for the Two-Dimensional Geometry

Let A be an m x n sparse matrix, and x and y be column vectors of dimension n and m

respectively. The matrix-vector product is computed as follows:

y = Ax.
Corresponding to a non-zero element a ij there is a multiply-and-accumulate operation:
Yiey +a;x;.

1]

Since each operation is associated with Jjust one index pair, the 2-dimensional geometry is the

-13-

most appropriate. The elements y; and x; are assigned to memory modules M poand M,
respectively, by hashing functions f and g, such that p = (i) and v = g(j) (the hashing
functions f and g need not be distinct). If M u # M, the processor to perform this operation is
determined uniquely - since there is a unique line which passes through the pair of points
corresponding 1o M, and M,. The matrix entry a;; is stored in the local memory of this
processor. The input operands x; and y; are sent to the processor through the interconnection
network. The processor performs this operation, and writes the result back onto module M pe If

M, = M,, there is some freedom in choosing the processor which performs this operation.

The number of multiply-accumulate operations equals the number of non-zeros in the sparse
matrix A. The compiler forms a ready list consisting of all such operatipns. All the multiply
operations can be performed in arbitrary order. So also can the accumulations; we just have to
ensure data consistency. A processor may be accumulating the product a;x; into y;, but before
¥; 1s written back, another processor may fetch the old value of ¥i- Such a data inconsistency
would lead to wrong results. To prevent this we must provide a mechanism to ensure data
consistency. We observe that the data flow graph for this computation is quite simple. Hence, we

do not need to form an explicit data flow graph for matrix vector multiplication.

We now use the conflict free connection patterns to partition the ready list. Let y, reside in
memory module M, and x; in M,. The multiply-accumulate operation involves fetching, in
some order, y; and x;, performing the operation and updating the value of y;. We assume that the
order of fetching y; and x; is not important. Thus, such an operation can be associated with the
ordered triple (1, v, p) (or (v, u, K)). Let a conflict free bucket contain operation lists, where

all operations from an operation list can be performed without any processor or memory conflict.

Using the conflict free connection pattemns of the machine, we can form 2 - (S ; 1> =(s+1)s

conflict free buckets for operations where K #v. These buckets contain operations associated

-14-

2
with all the possible Z(S +23 +1) = (s?+5+1)(s+1)s triples. Thus, an operation associated

with the triple (1, v, W), L # v, can be put into a unique bucket. The compiler hashes the vector
elements onto memory modules, looks at the triple associated with each operation, and puts its
into the appropriate bucket. Thus, we can partition the ready list into a collection of mutually

disjoint conflict free buckets.

Operauons involving the diagonal elements of the matrix are associated with only a single
index. Hence, there is some freedom of assigning the processor to perform this operation. These
operations are put into another list, called the free list. Locks are associated with memory
addresses to ensure data consistency. Whenever data which is to be modified is fetched by a
processor, the corresponding memory address is locked until the data is written back. In case of
matrix-vector multiplication, locks need to be associated only with the elements of the vector y.
Because of the conflict free buckets, the compiler need not examine each operation in order to
resolve conflicts. The compiler simply picks up a chunk of operations, one per processor, from a
conflict free bucket of the ready list, provided the memory addresses corresponding to their input
operands are not locked. Thus, the topological properties of this architecture help in speeding up
the compiler substantially. The need for the locks could also be avoided by forming the ready list

in such an order that scheduling operations in that order would never result in data inconsistency.

The hashing function must distribute operations uniformly among each bucket in the ready
list. In case it does so, computation proceeds predominantly in an SIMD fashion. Thus, if we
can choose a good hashing function, there is not much degradation in performance if computation
is forced to proceed in an SIMD fashion. Thus, at a particular instant all processors fetch their

input operands, or write the output operand or perform the same operation (refer Fig. 4.1).

.15 -

procedure matvec_compiler()

begin

end

hash indices onto memory modules;
form the partitioned ready list, and free list;
loop: while (ready list is not empty)

begin

end

Figure 4.1:

move operations down the arithmetic pipeline lists;
if (operations have moved onto the write list)
turn write bit on;
if (write bir is on)
begin
m write bit off;
unlock memory addresses of the output operands;
append processor, memory and switch programs;
go to loop;
end
if (a bucket of the ready list is not empty)
if (memory addresses of the input operands are not locked)
begin
lock memory addresses which are to be modified;
append processor, memory and switch programs;
remove the operations from the ready list;
place these operations in the appropriate pipeline list;
go 10 loop;
end
if (the free list is not empty)
if (memory addresses of the input operands are not locked)
begin
lock memory addresses which are to be modified;
append processor, memory and switch programs;
remove the operations from the free list;
place these operations in the appropriate pipeline list;
end

A high level description of the compilation of matrix-vector multiplication

- 16 -

4.2 Data Mapping

The vector elements of x and y are to be mapped onto the global memory modules. A
‘‘good’’ hashing function must distribute operations uniformly among each bucket of the ready
lt'St./ The number of times a particular element of vector y, say y;, is used equals the number of
non-zeros in row i of the matrix A. Similarly, the number of non-zeros in column i of the matrix
A determines the usage of x;. A row or column with a large number of nonzeros, would result in
a large number of elements being mapped onto a particular memory module, and this would lead
to a correspondingly increased load among the processors connected to that memory module. In
order to prevent the above occurrence, we propose the execution of an enlarged similar data-flow
graph instead of the original one. We call two data-flow graphs similar if their initial input
requirements and the final output produced by them are identical. Thus the intermediate
execution on similar data-flow graphs may differ, though they produce the same output given
identical inputs. The enlarged data flow graph has a greater number of intermediate nodes, which
allows greater flexibility in mapping the data onto the global memory modules. We now explain

the concept of splitting the rows and columns of the matrix A, which allows us to form an

enlarged similar data flow graph.

Let A be an mxn matrix, €% be a p-dimensional unit column vector and D{") be an nxn
diagonal matrix with 1’s on the diagonals of row Ppi" through row [-(i +1) ﬁ] - 1, and zeros
elsewhere,

Splitting row r/ into p parts involves writing y, = r7x as yi = e®T Rx where R is a pxn

T
matrix whose ™ row, s7 = (D};} rl-) . Hence, splitting of a row into p parts involves

calculating partial dot products in p Iocations, and then accumulating them in one location.

Splitting column ¢, into p parts involves writing y = ¢; x; as y = Ce(”)xi where C is an

-17-

mxp matrix, whose j™" column, s; = D) ¢;. Hence, splitting of column ¢, involves copying x,

in p locations and then calculating the dot products.

The idea behind splitting rows and columns into p parts, where p is the number of global
merﬁory modules, is to map the vector elements of x and y such that each memory module is
accessed nearly the same number of times. Splitting rows and columns enables us to rewrite the
original computationy = Axasy = RA’Cy, where A” is the matrix obtained from A by splitting
its rows and columns. Thus, we actually execute an enlarged similar data-flow graph (the data-
flow graph is never formed explicitly). In the simulations, the rows and columns of a matrix,
which have a large number of non-zeros, are split only if a simple hashing, as described in the

previous section, is not ‘‘good,’” a measure of ‘‘goodness’’ being explained in Section 5.2.

5. Test Problems and Simulation Results

5.1 Purpose of Empirical Testing

In this section, we describe the main guiding principles we have followed in choosing the test
problems. The purpose of empirical testing is more than just finding out how a particular idea
performs on a set of test examples. One hopes that the testing should enable one to infer
inductively what the performance of an algorithm or hardware might be on other problems or
models of potential interest which are not in the test set. In order that such extrapolation from test
instances actually solved to other unsolved instances can be carried out with a degree of
confidence, it becomes necessary that the test instances be “‘representative’’ of large classes of
applications of current or potential interest. Many scientific and engineering applications involve
sparse matrix computations, the most typical being sparse matrix multiplications and solution of
linear systems of equations. In this paper, we have discussed the compilation of routines which
involve matrix-vector multiplication. Besides the problems which are typically tackled by

matrix-vector multiplication, a lot of real-world applications can be formulated in such a way as

-18 -

to involve matrix-vector multiplications, e.g. fast fourier transforms, wave mechanics, etc. The
test problems we have chosen represent a large variety of applications in sparse matrix
computations. Some problems, such as solution of partial differential equations on a grid lead to
a highly structured matrix whereas others, like the hypergraph covering problem, involve matrices

with an arbitrary structure.

For many of the problems tackled, it is possible to develop special purpose compiners and
algorithms having better performance than the corresponding general implementations, by
exploiting the special structure and properties of the problem. In this computational study, our
objective is to study the projected performance of the new architecture on a large class of

problems.
5.2 Performance Parameters

One multiply-accumulate operation involves fetching of two input operands from the global
memory, one from the local memory, and writing the output operand back into the global
memory. Let the whole matrix multiplication involving n operations take x machine cycles on
the paralle] machine. If the machine cycle time of each processor in the system is ¢ msec, the
parallel CPU time is x - ¢ msec. Suppose a serial implementation of the matrix-vector

multiplication takes 3 cycles per operation. Then the projected serial CPU time is 3nc msec, and

Serial CPU Time
Parallel CPU TIME x p

Efficiency =

where p is the number of processors. The vector elements yi and x; are hashed onto the global
memory modules. Each multiply-accumulate operation is then put in the appropriate bucket of
the ready list. The load imbalance factor, /, is a measure of the unevenness in the distribution of
the operations among each conflict free bucket of the ready list. Let x? be the number of
operations corresponding to processor i in bucket ». Let x2.. and Ib be the maximum and mean

respectively of all such x;’s in bucket 5. Then,

-19.-

The load imbalance factor, /, can be thought of as the degradation in efficiency introduced by the
unevenness in distribution due to the hashing function in the case where the only allowable

connection patterns in the parallel machine are the conflict free ones.

In the simulation results, tabulated in Section 5.4, we use the hashing function
f(i) = = i mod m where m is the number of global memory modules. This hashing function is
applied to the given ordering of rows and columns of the matrix. However, if this leads to a poor
load imbalance factor, the same hashing function is applied to the matrix which results after
splitting rows and columns [refer Section 4.2]. In our simulation studies, rows and columns

having more than 50 non-zeros are split.

Each element of the parallel machine has an instruction sequence which it follows. The
instruction sequence to be followed by a processor is just the type of operation it is to perform.
Thus, the width of a processor instruction is [log,n 1 bits, where n is the total number of
operations the processor is capable of performing. The instruction sequence for a memory
module consists of a list of addresses along with a read/write bit. The width of such an
instruction sequence is | log, m | + 2 bits where m is the size, in double words, of each memory
module. The switch instruction consists of a list of configurations, each configuration specifying
the connections between the input and output ports of the switch. In the 2-dimensional geometry,
if all connection patterns possible in the machine are allowed, the instruction width for each
switch is rlogz(s+ 1) 1 bits, since (s +1) memory modules are connected to each processor.
However, if only conflict free connection patterns are allowed, all the switches need just one
global instruction of [loga(s+1) 1 bits, Hence, there is a saving of

(25 +2s5+1) [log, (s +1) T bits per machine cycle in the latter case.

-20-

For matrix vector multiplication on the 2-dimensional geometry, non-zero elements of the
matrix are stored in the local memory of the processor, while the vector elements, y:'s and x;’s
are stored in the global memory modules which are accessed through the switching network. The
size of the instruction programs for the global memory modules, switches and processors, added
to the processor local memory and the global memory requirements gives us the total memory for
the parallel implementation. The total memory for a serial implementation is a sum of the
memory requirements for a sparse representation of the matrix. In a serial implementation, we
have assumed the data structure as given in ADL89 for a column-wise representation of the

matrix.
5.3 Simulation Assumptions
In the simulations, the following assumptions have been made:

» Each processor has two input bidirectional ports. One of the ports is connected to the
processor’s local memory, and the other to a switch through which it accesses the global

memory modules connected to it (as determined by the geometry).
* A processor can fetch or write data into memory in one machine cycle.
» The execution of any basic arithmetic operation takes a single machine cycle.
» The switch is capable of changing configuration once per machine cycle.

* Selection of which connection to make is made by switches located at both the processor
and memory ends. Hence, the total number of switches in the system equals the sum of the

processors and memory modules.
» Each processor is assumed to have a clock cycle of 20 ns.

« Each global memory is assumed to have a size of 16K-double words. Hence, size of each

memory instruction = 16 bits.

221 -

» Each processor is capable of executing 4 basic operations: add, multiply, subtract and nop.

Hence, size of each processor instruction = 2 bits.

5.4 Description of Problem Classes

Besides problems which are given as matrix-vector multiplication, there are many problems
which can be formulated in that form. In the following sections we discuss such problems which

arise in real-world applications, and their formulations as matrix-vector multiplications.

5.4.1 Wave Mechanics

The objective is to calculate the progress of a 2-dimensional surface (acoustic) wave through a

set of deflectors [GUS88]. The Wave Equation is

2 V2o =0, (5.1)

where ¢ and ¢ are functions of special variables. In general, ¢ represents the deviation of the
medium from some equilibrium (pressure, height, etc.) and ¢ is the speed of the wave propagation

in the medium (assumed to be isotropic). For non-linear waves, ¢ is also a function of the wave

state.

A discrete form of (5.1) for a 2-dimensional problem on [0,1] x [0,1] is:

CZ[F(i,j+1) +F(,j=1) + F(i+1,j) + F(i-1,)) - 4 F(i,j)]/h?

(5.2)
= Faew () = 2F (L)) + Foa(i,)/ (AD?
where F(i,j) = ¢(ih, jh), h = 1/N.
The above equation can be rearranged as:
Frew(i,j) = k[F(i,j+1) + F(i,j=1) + F(i+1,)) + F(i-1,)]
(5.3

+ (2-4k) F(i,j) = F4q(i,))

where

SU)Z 9 01 pansse 30ssa001d Yord 0 91240 wr0p) .
¢ = 9npow Kouraut € 01 painauuod s105s3001d Jo 0N = 10ssa001d v 01 papouucs Sapnpous A1owaw Jo o .
"L = $2npotu Arowaw Jo oN = 310853301d Jo 0N

USWUONAUG HORRINWIG

» SWAIGOLJ SOIURYIIW ABA U0 (xV =) A dinpy J03139A-x10)R N 10§
(susaped uoNdULOD [YNM) JIBMPIRH PIIBIEJ 3Y) JO DURULIONI] PIjRInuIS (B)] HTGV.L

1 %4 00°Sy 80v'v9 08T'LEL | 9SHLYL | 9SH'LPl | ¥8¢
trey ST P01°91 0TE'v8l | p98'9¢ ¥98°9¢ 761
vy ey £I8°C LU0V 080°9v 917’6 91IT'6 96
(9, Juoneyuowopdun (g)uoneuowdidun (q)uoneruowojdun SQI9ZUOU $]00 smos 2z1g
1o[jered 1oy peoysoaQ Aaowoy | [euog 10) A1owoy 10, | [ojered Joj K1owdp 0] 9Z1S WRqOid pun
00’81 0 61Tt 8t1'8 16L°¢€ 08T'LEL | 9SH'LYL | 9S¥'Lyl | +8E
oSy 0 $60'1 011z 6Ly'8 0T8I $98'9¢ ¥98°9¢ 61
1Y4R 0 y97'0 850 11 0809y 91T'6 91T'6 96
(nqN)oz1s (qu)ozis (nqu)azis (rq)ezis (namw)ozs so1azuou Sj0 smos ong
Woul qOj) | Wow 50 20iJ | "NSWI 001 | “nsul Youms | “nsur KIowsp 1S wjqoIy pun
66 66 LEC VY 0e9 $0000°0 08T LEL 08T'LEL | 9SH'LYL | 9S'Lvl | #8¢
8666 65011 08¢'1 0000 0CEv8I 0TE'VY8L | $98'9¢ ¥98'9¢ <61
£6'66 S9LC S6£0 90000 0809t 08091 917'6 91T’6 96
(%) (*oosu)oun (-ossw)own 10108 uonersowoydwy ey | solzuou |02 SMOJ ug
Kowdroyyg | NI US| NdO IPlIered | Qouepequf peor ut wno) uonesdp 971S WoJqOIg pun

INNl

SUOT X O pAtunsse dossanosd yoars jo oA gy .
g = 2pnpowr Asowaul g 01 pIaunnd $10553001d Jo 0N = 10553001d € 01 popsuued sapnpout Aou jo ON *
L = $apnpow Aowsuw Jo oN = $10552001d Jo ON .

UWLOL AL yonR[RUNG

« SUIRJQOL] SOMBIIIN AR U0 (XY = £) jdnnpy 10)294-X1NRA 10)
(susapred uonIAULNI I31) IMPYUOD AJUO YHM) JIEMPIRH [BlIRIR] 3Y) JO DURWIONIJ PIIenuns (9] A'I9 VL

(AR 00'Sy £L5°9S 08TLEL | 9SKLYVL | 9SH'Lyl | v8€
vL'ST STl Syivl 0TE'v8l | $98°9¢ #98°9¢ 61
LLST ti8T 8L6°E 0809y 917’6 917’6 96
(9)uoneyowopdun (mqw)uoneruowdjdun (mqw)uoneuowojdun SOIZUOU Sj02 SMO1l g
{o11ered 10j peoysoaQ Lrounp | [euss 10 Kowd w0l | jopered 10j K1owop B10], oS wIqoId pun
0081 0 61T Y £09°0 ISL¢t O8TLEL | 9SY'LYE | 9St'Lyl | v8€
0s'vy 0 SSO'l 1S1°0 orv'8 0TE' P81 | +98°9¢ ¥98°9¢ 261
sell 0 970 8t0°0 13114 08091 917'6 91Z'6 96
(nqw)azis (ra)ezs (qu)ezis | (nquw)ozis (nqp)ozis SQIIZuUOU $]00 smoi L4
wow qojH | wow d0] 00id | "ASW %0id | nSW Youms | ‘nsut Kowdpy 71S WjqoIy puo
6666 LETvy 0zL'9 00000 087'LEL 08T'LEL | 9SK'LYL | 9SHLvl | 8¢
L6'66 650°11 085’1 20000 0ze'v81 0TE'v8l | $98°0¢ ¥98°9¢ 61
7666 S9LT S6£°0 90000 080'9¢ 080'9% 917°6 917°6 96
(%) (-oosw)oum ("oosw)ouwm 10108, uoneowejdwi jofjerey | sorzuou Sj02 SMO1 NG
OOuaoyyg | NdD reues NdD Pleed | 9ouejequi peoy u1 Juno)) uonesxdp 1S WVIqoig pLn

iMHNh

-24 -

= (an3c?

The boundary conditions are periodic, i.e.

F(i,j) = F(imod N, j mod N) . (5.4)

We now formulate the above problem as a matrix-vector multiplication. Let us represent the
2-dimensional array F by a vector f. We do this by making the element F (i,j) correspond to the

element f(i - N +j). Then, we can rewrite (5.3) as:

fren = Af = oy (5.5)

where A is an N X N square matrix. The diagonal element in row i of A has the value 2-4k,
while the off diagonal elements in row i of A have the value & corresponding to the elements

F=17, FU+1,),F(i,j=1), F(i,j+1).

The simulated performances on the operation (5.5) are shown in tables 1(a) and 1(b).
Table 1(a) shows the simulation results on a parallel machine with all connection patterns
whereas the results tabulated in table 1(b) assume a parallel machine with only conflict free
connection patterns (see Section 3.4]. The matrix A has a nice and regular structure, and the
efficiency approaches 100% on larger problems. There is not much degradation in performance

by limiting the connection patterns whereas the memory overhead is reduced substantially.

5.4.2 The Fast Fourier Transform (FFT)

The Discrete Fourier Transform (DFT) plays an important role in the analysis, design and

implementation of DSP algorithms and systems. The DFT computation can be written as:

N-1
X(k)= Y am)W§, k=0,1,..,N-1. (5.6)
n=0

where Wy =e/(2nr/N)

SUOT X} OF PAUNSSE 10552004d 4IED JO 924 §OOL) -
£ = 3ot Aowsw € 01 parsuued $10ss:004d Jo 0N = 10$50001d R 01 paautod sapnpo KIOWD Jo 0N .
= sapmpow Aowdut o 0N = $10853001d Jo 0N -

UDWIUOITAUG] UOHRINURG

« ULIOJSURL] 1DUINO] ISeq U0 (XV = £) Aidipnjy J0)03A-XLIR 10)
(suu3yjed UOLDIUUOD [[€ YNIM) JIEMPIRH PI{RIR] 1) JO DUBWIONNG parenuis (8)7 IV L

43 1009y 8E09¢€ CLO'TEL | 9€6°G9 | 9€5°69 9¢6'69
Ly'Si 1007201 LLL L1 89L°CE v8E91 | ¥8E'91 v8E 9l
LSt 979 £6e’s 80T vZ0'l ¥20'1 ¥Z0'l
(9)uonwruowdydun (nqu)uonersownidun (g)uonerudwodun SOIZUOU Sjoo SMOol poug
1P1ered 10) peayroaQ Aowdpy | [euss 10) Aowdp w0l | Ppered joj Kounpy [@oL 271§ XLARW Yors [muowepuny
091 00'95C £00'vT L00'8Y 820°761 CLO'IEL | 9ES°69 | 9ESS9 9¢5°69
ov 00'9¢ [AY4S SOS°01 00ty 89L°T¢ ¥8E'91 | ¥8£91 $8€°91
0520 08T LETO tLy0 68’1 80T vzo'l ¥20'l v20'l
(nqu)ozis (nqu)ozs (mqw)ezis (nqm)ezis (nquw)azis S01ZuOU 5100 SMOs potd
Wow qojf) | Wow d0{ 001d | "NSW 2054 | ASUl youms | -nsul 1ounpw 971§ xR yoey [euowepun,{
8666 8S9'16T 96'SE 10000 SIL60'T CLO'TEL | 9£6°69 | 9€5°69 9£6°69
€666 (44X 13 898°L #0000 TSL8SY 89L°TE v8E'91 | ¥8E9I ¥8E°91
9’66 8T pee0 8000 08+'0¢ ' Yo't v20'l 1ZAN
(%) ("oosw)own ("oosw)own 01004 uoneowdjdury jojjered ur | so1dzuou $100 SMOI pouayg
fouonyyy | NdD 1euds 1dD Plerd | aouejequy peo] uno) uonesdQ eog, Q21§ XLIEW yory [eruwowepuny

lme

/::ﬂ ,X— o “v.::://.. s g Hyora o " YA A :__ y e

¢ = apnpow A1owawr g OF P21ULOD s10ssa005d Jo TON = J0ssa00xd v OF padauuny SR AFoutats O ON .
L= s9mpow Aowau jo o = siossasosd jo oy e

‘pamoyje swoned pawury e

USWIUONAWLY uonRIIUNG

» SULIOJSURL|, JOLINOY IS8 U0 (XY = £) AldiIny 10)23A-X1LIRN 0]
(susaned 4oNIIUU0D 331 1YUOD AJUO YIIM) JIBMPIEH [I|IEIE] Y} JO IIURWLIONIG PIIEINUNS :(q)T AI14VL

(433 100" 9% 09v'i6y TLO'IEL | 9ES°S9 | 9¢6'69 9£6'C9
06'S 100°201 20801 89L°T¢ v8E'91 | v8E'91 y8E91
79 909'¥ 14004 810°'C ¥20°1 ve0'l vZ0'l
(9%)uonerwdwojdun (nq)uoneruowoydun (nqw))uoneyudwoydun SOJOZUOU £ [va) Smos poudg
1o1jered Joj peoysonQ KJowdpy | [euas Jojy Klowop jeroy, | jojpered 1oy KouRp 1e10), 971§ XUIBW yory Jeowepung
091 0095T 00T 6Lt 8¢0'C61 TLOIEL | 9€6°69 | 9¢6°69 9£5°69
oy 009¢ (4143 0SL°0 0T0zy 89L°T¢ v8E9L | ¥8£'01 y8E°91
0520 05T LETO 0’0 £68'1 80T ¥Z0'1 y20°1 vZ0°l
(aw)azis | (maw)ezs | (mqu)ezis | (nqy)ezis (maw)ezis | somzuou | sjod SMos polg
Wow qojn | wow 0] 3014 | "NSuId0ld | "BSUl youms | -nsur Ksouopy 9ZI§ XuIe yoey [eluduRpun,g
8666 869'16C 966'S¢ 10000 TS1'L60'T CLO'IEL | 9€5'69 | 9¢6'69 9€6°C9
$6'66 L6t 898°L 0000 TSL8SY 89L°TE v8E91 | ¥8E'91 ¥8€°91
9066 8SY'C 2341 8000 08107 80T y20'l Y20l ¥20'1
(%) ("oosw)ouwmn (-oasuroum 101084 uonewowdw pjjered Ul | soszuou $]02 SMOI poudyg
Luaoyyg | ndd eS| ndD prerey Jduejequu] peoy 1uno) uoterad() w0, SIS XUep yoey [eluswepun 4

|©N|

-27.

The FFT algorithm decomposes the DFT computation into successively smaller DFT
computations. When N = 2V, the FFT algorithm enables one to evaluate the DFT in log, N

stages, each stage involving O(N) operations.

x(0)] X(0)
x(2)

N/2-PT
o o
° DFT °
|- [N
X(N=2)] X(N/2-1)

x(1)

- X(N/2)

. DFT :/ \
x(N=-1) | : X(N=1)

One can formulate the DFT as a sequence of log, N matrix-vector multiplications, each

sequence involving a matrix with 2 non-zeros per row and column.

Tables 2(a) and 2(b) show the simulation results obtained on Fast Fourier transforms. The

matrix at each of the log, N stages is very regular, and the efficiency approaches 100% on large

problems.
5.4.3 Circuit Simulation

Circuit simulation is essential for fast and reliable design of electronic circuits containing
thousands of interconnected components. Circuit simulaton of large circuits is a compute
intensive problem. In circuit simulation a system of sparse linearized algebraic equations
represents the relationship between voltages and currents in the circuit. Circuit simulation
performs three important tasks, namely DC, AC and transient analysis. Transicni analysis is done
repetitively many times during simulation. A standard technique for transieni I\ <is is to use

an implicit integration scheme to discretize the differential equations. This resuiis . svstem of

228 -

non-linear algebraic equations, which are solved using an iterative scheme such as the Newton

Raphson method.

Consider a system of n non-linear equations f in n variables x;. Denoting the vector of
variables by x and the vector of functions by f we can present the system of equations in compact

form:

f(x) =0. (5.7

Using Taylor series expansion about x", assuming that x is close to x* and neglecting higher

order terms, we get

f(x*) = f(x) + M(x* -x) (5.8)
rafl 9f1 of1
ox, dx, ox,
where M= .
0fn Of, 0fn
3x, 9x, ox,

is the Jacobian matrix of the function f.

Setting (5.8) equal to zero and solving, we get some new value for x. Using superscripts to

indicate iteration sequence we have
f(x*) + M(x**! — x¥y = 0 . (5.9
Defining Ax* = x**1 — x* we can rewrite (5.9) as

MAX* = —f(x*) . (5.10)

This system of linear equations may be solved by iterative methods, such as conjugate

gradient which involve matrix-vector multiplications.

SUOT X OF PIRUNSSE IO 0K YD 0 34 ywy g »
"€ = 2Inpour A10UIIW ¥ 01 pAIdauund s10ss300ud Jo 0N = J0553001d € 01 pA0auueo sapnpout Aouus jo on
‘L = sajapout Kowst jJo oN = $10s5a30ud Jo ON »

DWUOHAW UORHBIDUNG

+ SWIGOLJ uonEnulS HNON)) uo (XY = £) Adunpy 10302A-X11EHN 10)
(Suadnjed uonIIUUOD |18 YIIM) JJBMPIBH PlIRIRJ 3Y) JO DUBWIONII] parenung ()¢ A 14V.L

tiLY 6LCY #08°S SHS'ov 88¢°C | 88¢'C 0se'e
6y 0t wore 14084 065'LT OLL'E | 9LL'E 0SL'E
1Tvt LLS'T 8SP't OLY'€T 908°T | 908°C 05L'T
(g)uoneyuowodun (mq)uoneuowajdun (g uoneyudwsdun SoRZUOU | Sj0D SMOJ nRon) W
[o1iered 10) peoyida(Klowdpy | jeuds Joy Kiounpy 101 | ppesed jo) (owsp @0y 7215 uPqoij SOPON JO 'ON
14340 SLY'T 970 0£S°0 0c1'e 132X:4 88¢°C | 88¢€°C 0S¢t
19¢°0 ¥89°1 €LT0 9t 0 8¢'1 065°LT 9LL'E | 9LL'E 0sL'e
£re0 (434 £S10 90¢°0 114 OLY'€T 908'C | 908'C 0SL'T
(nqu)ozis (nqa)ozIs (g)ozis (naw)ozis (g)ezis S0JOZUOU | §j00 SMOl noosy w
Wouw qojD | Wow 00{ 201d | ‘NSuid0id | nsur youmg | -nasur LAJowop 971S WjqoId SOPON JO "ON
PSL8 tev'e L6£°0 800 919'vy SHS0O 88¢'C | 88E'C 0st'e
yT'16 6Ol 6570 120 LLT'6T 065°LL OLL'E | 9LL'E 0sL'E
9L'L8 80Vl 6LC0 800 89¥'6T OLY'€T 98T | 908C 0SL'T
(%) (oosur)own (-oasw)own 10108 uoneuowdjdui] pojeIed | sorzuou Sj0d SMOI nnon) ut
Aoworoyyg | NdD 1euoS NdD PHEIRY | dduejequij peo] u1 juno)) uonesadQ 9215 woqoId SIPON JO "ON

|©N|

SU() X O3 pounsse 10s5a004d Yory jo o YA N0y e

g = 2[npows Kowout e 01 papauund $10853001d Jo ON = 10553001d B 0] papauues sopnpows Alouw JooN -

"L = sapnpow Klowsw Jo "N = S10853001d JO ON

TUIUIUOMAUL UoNenung
+ SUR|QOIJ UONRIUNG }NIAN) U0 (XY = £) Aidnniy J0103A-XLHE 10)
(susapred uonIIUNOI 231) PIIYUO) AJUO YIM) JIBMPIRE PJIEIR] 3Y) JO DUBWLIOJIJ pIjrenuns (q)€ A1 VL
09°LT 6LV 96 SrSop 88¢'C | 88¢'C 0St'e
86°0C 0t orL'e 06S°LT 9LL'E | 9LL'E 0SL'E
00°ST LLST 17C¢ OLY'€T 908°C | 908'C 0SL'T
(9)uoneuowopdun (q)uoneuowdjdun (mqW)uoneuowydun SOIIZUOU $j02 SMOI o) u
1o11ered 10j peayioaQ Kounpy | [puas 10j Alowpy [mol | opered Joy Kounpy e10], 9715 WRJqOId SOPON JO "ON
14140 SLY'L yLT0 6£00 S61°C SHC'ov 88¢'C | 88¢€'C 0S¢'e
19v°0 V891 SLIQ ST00 96¢°1 065°LT OLL'E | 9LL'E 0SL'E
12444 (4534 8S10 200 S9C'1 0LV €T 908°C | 908°C 0SL°C
(mqu)ozis (ng)ozis (nqw)ezis (nq)ozis (nqmw)ozis S0J9Zuou $100 SMOJ ooy ur
Wow QoY) | wWow 0] 2014 | "ASWI 201 | ‘ASUl Youms | “nsur AIowsp 9Z1S WIqOLd SIPON JO "ON
LSP8 159 44 5840 800 919'vy SYS'op 88¢'t | 88¢'C 0St°E
9%°06 SOl 197°0 00 LLT'6T 065°LT OLL'E | 9LL'E 0SL°E
06'v8 80t'1 LETO 800 891°CT OLY'€T 908'C | 908'C 0SLT
(%) ("oosw)awn ("ooswr)own Joey vonewddwi jojjered | somzuou $102 SMOL nndND) ur
Kouanyyg | NdD [BUdS 1dD Blfered | d0uejequif proty ut juno) uonesadp oZ18 WwoqoId SOPON JO "ON

-0t -

-31-

Tables 3(a) and 3(b) show the results obtained on matrix-vector multiplication arising in
Circuit Simulation Problems. For better data mapping, the rows and columns of the matrix are
split. The difference in the Operation Count and the number of nonzeros in the matrix is due to
the increased number of intermediate operations introduced. Efficiency approaches 90%, and this
includes some loss in efficiency due to the intermediate operations. There is a further 2-3%

decrease in efficiency on a machine with limited connection pattemns.
5.4.4 Problems Arising in Linear Programming

We present simulation results for the matrix-vector multiplication routines which arise in the

following linear programming problems:
1) Fractional Hypergraph Covering (FHC)
ii) Minimum Cost Network Flow (MCNF)
iii) Partial Differential Equations with Inequality Constraints (PDE)
iv) Linear Ordering
v) Completely Dense Problems
vi) Control Systems Problems
5.4.5 Fractional Hypergraph Covering (FHC)

A hypergraph H = (V, A) where V is a set of nodes and A is a set of hyperedges. Each
hyperedge is a subset of V. Linear programming problems in which the constraint matrix is an
incidence matrix of a hypergraph can be used to model many real-world problems. As an
example, consider airline scheduling between a collection of cities of V and a collection of round
trip flights. Observe that the subset of cities visited by a round-trip flight can be thought as a
hyperedge. Associated with this hyperedge is the cost of the round-trip flight. Thr airline would

like to find a set of flights such that each established route between cities is cov . - ¢ by at least

-32.

one such flight, and achieving minimum cost at the same time. This is an instance of the
hypergraph covering problem. Since this problem can be combinatorially hard, one often solves a

fractional relaxation of it.

For our computational experiments, we developed a problem generator, that generates a

particular class of hypergraphs, described below.

Consider the tripartite graph G = (V, E) shown in Fig. 5.1. For simplicity, we will assume
that each partition has the same number of nodes *‘n’’. Let the node sets of the partitions be
denoted by V;,V,,V3; UV, =V, and let the edges be partitioned into E,, E,, and Ej;
U E, = E. Edges in E| have end points in V, and V,; edges in E; have end points in V, and
Vi3i edges in £3 have end points in V5 and V. Define a hyperedge [BER73] as a triplet (i, Js k),
ieVy, jeV,, ke V,, such that (i, j)e Ey; (J, k)eE,; and (k,i)e E5. Thus (i, j, k) is a
triangle consisting of 3 nodes in V,, V, and V3 and three edges in E,, E; and E5. Define a
hypergraph H [BER73], whose nodes are the nodes of G, and whose edges e, are the triangles
denoted by the triplets (i, j, k) defined before. A sample graph G with n=3 and its
corresponding hypergraph H are shown in Fig. 5.2. We define a hypergraph cover as a subset C
of hyperedges of H such that if there is an edge (vy, vy) in G then there is a hyperedge
(vi,v2,x) in C; ie., every edge in G is covered by at least one hyperedge. For example, in

Fig. 5.2 the hyperedges (3, 5, 7), (3, 5, 8), (1, 4, 8),(1,5,7),and (2, 6, 9) form a cover.

If we associate a cost with each hyperedge, then the hypergraph covering problem is to find
the minimum cost hypergraph cover. The mathematical programming formulation of this results
in an integer linear program, the relaxation of which gives rise to thc FHC problem. Let X ijk be a
0-1 variable. Xijx is 1 if the hyperedge (i, j, k) is included in the cover, X, is O otherwise.

Associate the cost C,; jk With each X ;jk- Then the FHC problem becomes:

-33.

©)

Partition 1 Partition 2 Partition 3

Fig. 5.1. A Tripartite Graph with 37 nodes.

(a) (b)

Fig. 5.2, (a) A graph G with 3 nodes in each partition; (b) The corresponding hypergraph H
with hyperedges (3, 5, 8), (1, 4, 8), (2, 6, 9),(3,5,7),(1,5,8),and (1, 5, 7).

SU (7 39 01 paumsse 10552001d Yo JO 20AD Y0p) e
€ = 3npows Asowaut € 01 pa1ousod s10ss3001d Jo "oN = 10ss300id B 01 parauuos sanpow Aowous Jo ON =
L = sajnpowt Aowaw Jo "oN = s10ss3004d Jo 0N

WOWVONAYS] UongjAUNg

«'SURIQOLg 3ul1240)) ydeidaadiy euondesy uo (xy = £) jdnnp 10129A-X1gRW 10}
(susapred uodIUUOD [IIM) JIEMPIRE PIIBIE] Y} JO 2IURULIOII] PIICINUNS :(B)p T4 VL

1781 6¥9'6 90 11 $6T'SL 860'ST | 00S'L 0s
6981 w9 99T'L ISL'LY LI6'S1 | 008't 1414
6881 (2341 80y v8L°9C 8768 | 00L'T 0t
(%)uoneiuousojdu (nquw)uoneiuowojdun (ngw)uoneyuowoydun S0JozZuou Sj02 smos | ydesdrodAH jo vonnied
1ojiered Joj peoysoaQ Asouop | [eLdS 10§ KI0Wdp [RI0], 1911esed Joj 10w [e10 L JZIS uIqold OBD U1 SOPON JO 'ON
0661 965+ 8ev0 9.8°0 90¢°¢ Y6L'SL 860°ST | 00S°L 0s
$9C°1 yi6'C 187°0 196°0 SYT'C ISL'LY L16'C1 | 008't 414
01L0 SE9'l 8S1°0 91£°0 9Tl ¥8L°97 8768 | 00L'T 0t
(nq)ozis Mmqu)ozis (mq)ozis mqu)ezis MmqW)azis $OJdZUOU 5j02 smos | ydesdiadAy jo uomed
Wow qoj) | Wow d0| 50id | “nsul o0id | “Asul youmg | -nsur Kiowopy 1S WIqOIY 1JOB2 Ul SOpPON] JO "ON
1£°86 8ISy 9690 6200 $67°SL 6T SL 860°ST | 00S°L 0¢
SE'L6 S98°C 0Zvo LEOO ISLLY ISL LY LI6'ST | 008y oy
t0'L6 LO9'] LET0 900 ¥8L°9C ¥8L'9T 826'8 | 00L'T 0¢
(%) (ooswowm | (oosun)owr) 10o8,] uoneuawRdwy jojeRy | S0IdZUOU 502 smor | ydesdiadAy jo vonnsed
Aoudnyyq | NdDTRWIS | NdD PHERY | ddueRquI] prOT] W uno) uonesad 9715 WRJqOIJ oD Ul SOPON JO "ON

l?Mx.l

SU ()7) 01 poumsse 10553004d Yord jo 2L ¥o0[) .
g = 3npout Asoumaw ¢ o1 pa1oauu0d s10ss3001d Jo 0N = Jossaoid e 01 papauuco sapnpow Aowaus jo oN
‘L = sonpow Klowaus Jo 0N = $10552901d Jo 0N

UDWUONAUS] BONBINUAG

« SURIQO1J 3uria0)) ydeadsadLy jpuondeayg uo (xy = £) Aidnpnpy 103133A-x1€ N 10§
(susaned uondIUL0I 3.4 PIYUOD AJUO YIIM) JIEMPIRH PPlRIRG Y} JO DULULIOJIIJ PARInUIS {(Q)p AT VL

LT 01 6¥9'6 0r9°01 Y67 SL 860°ST | 00S°L 0§
LS01 [44% 69L°9 ISL°LY L16'ST | 008'F oy
9601 14141 118'¢ v8L°9C 87268 | 00L'C 0t
(9 Juonersowajdus (mquw)uoneyuwowajdun (ng)uoneuowadun S01ZUOU Sj0d smos | ydes3sadAy jo uonrued
[Pliered 10y peaysoa(Aiousopy | [BUOS 10] KIOWON [210], | [ofered joj Ksowapy (o], ZIS WOqOIg Yord U1 SOPON JO "ON
066’1 96S' 11441 £90°0 815 v6T SL 860°ST | 00S°L 0s
Tl yi6'c t8C0 000 9T 1SLLY L16°ST | 008'F oy
01L0 L9l 1o £20°0 £8C'1 ¥8L°9C 8268 | 00L'T 0t
(mgqp)ous maw)ozis (nqm)azis (mqw)ezis mq)ous S019ZUoU Sj0d smo1 | ydesFrodAH jo uonnred
wow qOfH | wuw d0[304 | "Asui d0id | “nsul Youms | nsu Kowop 971S WIAqOI] YOB3 Ul SOPON] JO 'ON
SI'L6 8ISh 990 6200 Y6T'SL PoT SL 860°ST | 00S°L 0s
Y96 $98°C X440 L£00 ISL'LY ISL'LY | LI6'ST | 008'Y oy
LS'S6 L09'1 0vzo W00 ¥8L'9T Y8L'9T 8268 | 00L'T 0t
(%) (- >osun)own (-oosw)own 10108y uonelwounjdwy piERryd | Sowzuou Sj00 smo1 | ydesdrodLy jo uonnued
Kouwordy)g | NdD reuos NdD pHerRd | oourpequip pro ut uno)) uonerdp 971 WRQO1Y 108D W SOPON JO ON

|m-m\.

-36-

min ¥ Cie Xy (5.11)
G,j, k)eH
subject to

Z Xijg=1, forall (j,k)eE, (5.12)
2 Xijp=1, forall (k,i)eE; (5.13)

J
2 Xje=1, forall (i, j)eE, (5.149)

k
OsX <1, forall (i, j, k)eH . (5.15)

The fractional hypergraph covering problems were randomly generated. The problem
generator takes three parameters; the number of nodes in each partition of the hypergraph, the
probability of generating a hyperedge, and the range for the cost coefficient of the hyperedge.
The hypergraph is then randomly generated by sampling the uniform distribution of appropriate

range. The FHC problems have a sparse constraint matrix A (only 3 nonzeros per column).

Tables 4(a) and 4(b) show the simulation results for Yy = Ax. The matrix structure is arbitrary.
Inspite of that, efficiency is nearly 98% and reduces by 2-3% on a machine with limited

connection patterns.
5.4.6 Minimum Cost Network Flow (MCNF)

This class of LP models arises in many applications. A prominent example is the distribution
industry, which we use for illustration. We have a directed graph G = (V, E) (representing the
distribution network) with a pair of weights (C ij» Wy;) for each edge in the graph, representing
the unit cost of shipment along that edge, and the carrying capacity of that edge. Nodes
(representing warehouses or retail outlets) have supplies and demands for a single commodity.
The linear programming problem is to identify the flows along the edges such thar a1l demands

are satisfied, no supply and capacity limits are violated, and the cost nf shipment is minimized.

-37-

If we let X,; denote the amount of the commodity shipped along the edge (i, J), then the

linear programming problem is given by

min Z C,‘j X,'j (5.16)
(i.))eE
subject to
z X,'j'- Z XijDj-Sj; jeV (5.17)
(i,)eE (J. ke E
OSX,']‘SW,‘I‘; (i,j)GE. (518)

In (5.17) D; and §; denote the demand and supply for the commodity at node j. V and E

represent the vertex and edge sets of the directed graph.

Our network flow problem generator formulates the LP problem on square grid graphs of a
given size. A sample grid graph of size 4 is shown in Fig. 5.3. In the fi gure, the node denoted by
S is the source node. The node denoted by D is the destination node. The nodes in the grid are

transhipment nodes (no supplies or demands). The directed edges from each node are oriented to

the right, and down.

The capacities of the edges and the costs associated with them are randomly generated
integers (sampled from a uniform distribution, the range of which is user-specifiable). The supply
of node § is determined by first solving a maximum flow problem (another LP), and then
assigning that maximum flow as the supply and demand of nodes S and D, respectively. Thus,
the network flow generator generates a “‘maximum-flow, minimum-cost’’ network flow problem.
The constraint matrix, A of an n X n grid has n%+1 rows (vertices) 2n? columns (edges) and
(4n? - n) non-zeros, with each edge except those with an end point at node D (the demand row

being deleted since it is linearly dependent), being associated with 2 non-zeros.

SUGT X O PIUINSSE JOss00d ORI Jo A gy)y e
'€ = 3npow AOWwats ¥ 01 pa1autn s10s52001d Jo ‘0N = 10ss3001d € 01 pa1auton sopnpow Aot O oN .
L = SApott Alowdw Jo 0N = 510553301d Jo "ON

UIWUONAUY UOnEIUNG

«"SUIGOLJ MO[] FIOMIIN JS0)) mnulu uo (Xy = £) Ljdninpy 10109A-x11R A 10)
(su1ayjed uonIIULOD J|B Y)IM) JIBMPIRH PHIRIE] 3Y) JO DUBULIOJII] PIenmIg (e)s 4'19v.L

6511 96L v VoLt 008651 | 00008 | 100°0% 00T
(4: 31! 609 S18'9 006°6¢ 0000 | 100°01 001
(%)uonesdwdjdun (mqu)uoneuswojdun (nqu)uoneuowopdun SOXIZUOU 5|00 SMOJ o718
1911esed 10§ pRoYIoAQ K1owd | [eudS Joj AIowdl [E1oL | prered Joj Aowop g0 9ZIS uRqoIy ydean) pun
yit'L tSL'6 60 ShE'l 6LE’L 008'6S1 | 000'08 | 0000 007
1£8°1 SEpe [4%4\ t9r0 £68'1 006°6¢ 000'0T | 10001 001
(qu)ozis (nqp)ozss (nq)ozis (nqy)ezis (nqu)ozs S019Zuou S100 SMOJ aus
Wow qof) | wow 20] J0i | NSul 50id | ASUL YOUMS | “Asur KIowapy 9Z1S WjQOL4 ydean pun
£1°66 8856 Z8¢°1 1100 008'6S1 008'6S1 | 00008 | 1000V 00¢
v6'86 ({3 L0 €200 006°6¢ 006'6¢ 000°0Z | 10001 001
(%) umnd) | sumndd 101§ vonwuowjdwy joqereg | sorazuou $102 SMOI 718
Kduaroyyg [euog PIEed | doueequi peo ut uno) uonesadg 9ZIS uR|qo1g ydesp pun

lxm..

‘g = 9|npow AJOWILE B O} PRIULOD $10852001d JOON = 108s004d ® 0} PIDUUOD SONpOW Atouraus JO oN -

SU (7 3 O) PAIUNSSE 080K YIRS o A ywp) .

"L = sappows Alowsw o ‘0N = 510853303d Jo 0N

« SUWRQOLJ MO NIOMIIN 150D wnuuiA B0 (xXy = £) Ajdnnpy 10309A-XLIJR A 10)
(susaned uo1RINUD 3215 IIYUOD AJU0 YJIM) JICMPIBH |I]|BIE4 Y} JO IDUBWIONI] PABINUNS (Q)S F TG VL

“JUDLILOIIALG] UONR UG

99’y 96¢ v eSSt 008'6S1 | 00008 | 100°0¥ 00T
t0's 609 10v'9 006°6¢ 0000 | 10001 001
(9)uonewdwojdun (mgw)uoneiuowdpdun (nqu)uonesawojdun S0JoZUOU Sj02 SMOI dzis
jonjered oy peayioaQ AJowap | [eUaS 10) KIoWW [P0l | ojered Joj Kowop a0, 971S uRjqoid ydein pun
e L tSL'6 §T6°0 o 86¢°L 008'651 | 00008 | 000°0F 00C
1£8°1 13844 1 3Y4\) £t00 8981 006°6£ 0000 | 100°01 001
(nq)ozis (nqu)ozis (nq)ezis (nqw)ezis (nqN)azis S0J9ZUOU 5100 Smoi oz1s
wow qojn | wow d0]dug | nsuioold | nsur youms | nsui Lowop 1S WRJqoId ydeso pun
8886 886°6 $8¢°1 1100 008651 008°6S1 | 00008 | 1000 00C
8L'L6 6£'T 0S¢0 200 006°6¢ 006°6£ 0000T | 10001 001
(%) awn NdD | sumndd 10108,{ vonunudwjdwi pojesed | soswzuou 5100 SMOJ azis
Koudroyyy [Buog PPljered | odue[ERqUI] pROT] ut wno)) uonexdo 1S WIqoLd ydeany pun

|@M|

*

-40 -

|
s |
)

| DU, SEED, SE-.

Fig. 5.3. Square Grid Graph of Size 4.

Tables 5(a) and 5(b) show the simulation results on the network flow problems. The matrix

has a very regular structure, and efficiency is nearly 99%.

5.4.7 Partial Differential Equations with Inequality Constraints

Many engineering design problems like aircraft wing design, thermal dissipation in VLSI
circuits, etc. involve solving partial differential equations with inequality constraints. We study a
particular class of this problem, in which we are given a function f (x,y), and we want to find
f{x, y) which satisfies the Laplace equation and is as close to }:(x, y) as possible in the L norm.
This LP formulation has two sets of constraints: the discretized version of the PDEs, and a set of
inequality constraints describing the closeness of f(x, y) to f (x,y). These second set of
constraints can also be viewed as smoothing constraints commonly encountered in adaptive least

squares [FRO86]; i.e., f (x, y) has embedded in it some noise in the data of the PDEs, and f(x, y)

smooths out the noise.
To model these classes of LP problems, we studied the Laplace system of equations

V2 f(x,y) =0 (5.19)

on a square region ¥. We assume that f(x, y) is periodic, with the period i/ - e equal to the

-41 -

size of the square.

To numerically solve the Laplace equations, we discretize R? into a grid. The south-west
corner of & is translated to the origin (0, 0) of R?. Let any grid point in R? be labelled
(xi,y;) = Si,jS +eo. The grid points of the square region ¥ are labelled (xi¥))
0<i,j < n-1, with the understanding that x; = i, yj = jh, where h is the uniform spacing.
The periodicity of f(x, y) in R? implies that

f(xi,y;) = f(x; mod n, yjmodn); —co<iS+4o0; —0< < oo, (5.20)
For convenience, let us define

i@ f(xiy;); —wSiS4o; =00)< +oo. 52D

The discretized version of the Laplacian uses the second order finite difference formulas [HIL74].
Introducing the variables b;;, the LP problem for finding a function fij that is close to a given fi,-

is given by

min Z b,‘j (522)
0si,jsn-1

subject to

= fi-rj = fijsr +4f = fijer = fie1j=0; 0Sisn-1; 0<j<n-1 (523

fy = fil Sby: Osi<n-1; 0<jsn-1. (5.24)
In (5.22)-(5.24) the variables of the LP problem f; and b;; are unconstrained.

After a series of transformations the primal problem generated by our matrix generator has the

following form:

min Z 2}“} xfj - Z }ij (5.25)

subject to

U7 3 01 pownsse 10ssa00ud Yord Jo 1A yo0py .

"¢ = 3pnpowt Aourw g 01 pa109u0d $10553001d J0 0N = 10s52001d B 01 pR1d3ULD sapnpow A1ow JOON *

'L = sapnpout Aowdw jo ON = $10552001d Jo ON

« Suonenby jenuaRyIQ [BNIRg UO (XY = £) KidyngA 10)29A-x1)R N J0)
(su1aned uonIIUUO) JjE YHm) JIempIRH PijeIR] 3Y) JO uewrioj1d pAenung (8)9 J1dV.L

UDWLONAU UoHRINURG

y8°91 8ELIE 80°LE 000'0¥Z | 00008 | 000°0v | 00T
98'91 SE6'L tLT6 000'09 | 0000z | 00001 | 001
(% yuonewswopdun (g)uonerudwopdun (mqu)uonewdwopdun S0J97uUouU D 1] SMO1 g
191jesed Joj peayroaQ) oW | [euRS 10§ Asowop [e10], | [ojfered oy Kiowopy oL 71S URjqoly pun
Vel e hd] PLE'] LvL'T 88601 000'0¥C | 00008 | 000'0F | 00T
1£8'1 99t e0 L890 6yYL'T 00009 | 000'0Z | 00001 | 001
(nqu)ozis (nqu)ozs (nq)ozis (nquw)ezis (naw)ozs S017u0u $j02 smol g
Wow GO | uw 30] 3014 | "ASUI D01 | “ISul Youmg | “nsur Kiouop 271S WRjqoId pun
8666 ovvil LSO'T 10000 000°0vT 000'0¥C | 00008 | 000°0F | 00T
7666 09°¢ SIS0 1000 00009 000'09 | 0000 | 00001 | 001
(%) (-oosw)own ("oosw)own 101084 uonewowRdwi ey | sorzuou Sj0d SMOI g
Luaogyg | ndD UdS | NdD PIEred | 2ouejequip peor] ur uno)) uonesadp 971S WRjqoId pun

vNV«

«suonjenbsy jenuasagg fenaeg uo (xy = £) Kidunpy 10133A-x11je A 10)
(susapred UONDIAULOD 331 JNPYUOD A[UO YNIM) JIBMPIRYH [I][eIR 3Y) JO DULULIOLIJ PIjejnuis :(q)9 T VL

'SU (7 % 01 pawnsse 10s5an0sd 4o J0 912K §oop) .

‘g = anpow Asowa g 01 pa132uu0d s10853001d JoON = s0s59008d v o1 PAIUUOO SANPpOLU Kiowaus JOON »

‘L = sopnpowt Kiowaut Jo ‘oN = $10552001d Jo ON »

“TUDLIBOIAUL| UOHRINUIG

08’8 8tLI¢ 1E6°1¢ 000°0¥T | 00008 | 0000V | 00T
788 SE6'L 6t9'8 00009 | 000°0Z | 00001 | 001
(%) uonewdwodun (g))uoneuowojdun (g)uonewowojdun SOIIZUOU $j02 SMOl 741N
Prrred Joj peayroaQ LIowdp | [eLRS 10) Aowdn [e10], | jarfesed 10j K1oup je10], 2218 WoqoId pun
pee'L 8Y9'v1 pLE'] 9610 88601 000°0vC | 00008 | 0000V | 00T
1£8°1 799t 14444 6100 6vL'C 00009 | 0000 | 000°01 | 001
(g)ozis (nqu)ozs (ng)ozis (g)ens (nq)ezis S019zuoH 102 Smol zI§
wour qOj) | woW d0] 00X | "ASUI 501 | "Asul youms | -nsutl Kiouwop 971 WIGOI] pun
8666 44 LSO 10000 0000+ 000°0¥Z | 00008 | 000'0¥ | 00T
7666 09t SIS0 1000 000°09 00009 | 00002 | 00001 | 001
(%) (oasw)owny (-ooswr)own 10108, uoneoudwy plerd | SoRZUoY Sj09 SMOI BYAIN
Aowdnyyg | NdD [EUAS 1dD Pliesed | 2ourRqUI] pRoT] ui juno) uonesodQ 9Z1S WoqoLd pun

xmv.»

*

-44 -

-xi_1'j—»x,-,j_1 +4x,-j—x,~'j+1 —I;+1’j+2X2j=1; OSiSﬂ—l; OSjSI’l"I (526)
x;20; 0<x;<1; 0<isn-1; 0<j<n-1. (527

Thus, the constraint matrix of an n x n grid has n? rows, 2n2 columns and 622 non-zeros

with 6 non-zeros per row.

Tables 6(a) and 6(b) show simulation results on the partial differential equations. The

matrices arising in such problems have a regular structure, and efficiency approaches 100%.

5.4.8 Linear Ordering (LNORD)

The linear ordering problem is related to the optimal triangulation problem [GRO84], which
can be stated as follows: we have a square matrix A of size n whose coefficients are in R. The
problem is to find a simultaneous permutation of rows and columns of A such that the sum of
strictly upper triangular coefficients of the permuted matrix is as large as possible. The optimal

triangulation problem is NP-hard [GAR79]. This problem also has many applications in

econometric modelling.

The linear ordering problem can be modelled as an integer linear program: Let A = (a;] be
an n X n matrix. We introduce integer variables Xij» i < j, having the following interpretation: If

in the linear ordering being sought, node i comes before node J, then x;; = 1; it is O otherwise.

H

The LP relaxation of the linear program is given by

maximize z (a,~j - aj,-)x;j + Z a;; (5.28)
Isi<jgn 1si<jsn

subject to

SU (7 3 01 paunsse 10553504d Yor J0 A FO0p) .
£ = 3npows AIOWIU € 01 pA1SUL0 $10553001d Jo “ON = 10552001d £ 01 PARIAULOD $NpOW AsouBU jo ON ¢
'L = soqnpow Aownuw Jo oN = $10553201d Jo 0N

UIHUONAUG] UOHRIIUNG

» SWNQOA] Bua3pa() Jv3UL] Uo (xV = K) AN 10)33A-x11)B A 10)
(susaped uonIULOD [YJIM) JIBMPIRH PlIBIRJ Y] JO DURWLI0NI] PIjRINUNS ((B)L AT1GV.L

t0'1¢ Ly§ 0Tl 068°Svl 001086 | 00L'€€E | 0S6'v 001
1£°CT 0v9°08 1$6'19 00L°01¥ | 009°0¥1 | SLLT SL
STIT 6L8v1 17081 050°0T1 0s9'ty | szl 0s
(% Juoneowopdun (ng)uoneawojdun (Grg)uoneisoussydun SOIZUOU $j00 smol | xumew uonenuens],
[of1ered 10y peayIoaQ A10wdpy | [euog 10) KIowdp (0], | jojrered oy Kowop (o], 1S WRIqoId oyl Jo ouig
SH90T 1Z8°6¢ 8P6'S L6811 88S'LY 001°086 | 00E'€EE | 0S6'v 001
16L°8 L90ST LSST LIS 133404 00L01y | 009°0v1 | SLL'T SL
L19T Le'L 9EL0 (434! 688'S 0s0'0z1 0S9'1y | STT'l 0§
(nqu)ezis (nqw)ezs (naw)ozss | (uq)azs (nqw)ozis Soxzuou 5100 SMQOI | XINRW uonen3uensy,
Wow QoD | WRW 50| 501d | NSUI 00Ld | “ASW Youms | “nsur Kowopw 715 WaqoIg ayl Jo oz1g
8T 6 90885 1168 00 6vLvI0'] 001086 | 00E°ELE | 0S6'Y 001
w16 Tove 0L8't 000 ve1oey 00L01y | 009'0v1 | SLLT SL
[4%X1) t0c'L Ol 1000 ¥29'8z1 050°0T1 0S9'1y | STT'l 0s
(%) (ooswowm | (-oasw)own 10108, uoneuowdjduy pajerey | sorszuou S0 SMOI | XInepy uonenguer |,
fouandyyg | NdD eS| NdD IdlRed | douejequij peoT] ur uno) uonesadg 9Z1S WjqO1g a Jo o71g

|WVD

SU(T 2 01 paumsse 10ss2000d Yord Jo 2K o0y y .

£ = 9mpows Aowow € 01 papauted s10553001d Jo 0N = 10s52003d 01 parauueo sappow Aownus Jo oN ¢
"L = sanpow A1owaw jo oN = $10559004d jo 0N

“UIWUOIALL] UOnE[NUIG

« SWIqOLg 3urapaQ) Jeaur] o (xy = £) Aidingy 101934-x10ep 10§
(susapred uoIAUUOD 3345 IUOD AJUO YNM) JIEMPIEH PRI Y] JO IURULIONI PIARINMIS ()L AT VL

1611 LS 0TI 65661 001°086 | 00L'€EE | 0S6'y 001
6Tl 0r9°08 Pol'LS 00L01¥ | 009'0¥1 | SLL'T SL
LOTl 6L8V1 yL9'91 050°0T1 0S9'1y | szt 0s
(9% yuoneuowojdun (rgwuoneuswojdun (g Juoneowopdun $0JOZUOU $j02 smor | xinep uonenduens
19j1eed 10§ peoysoaQ A1owdpy | [eUS J0) Asowdl [e10), | [ojfesed 1oy AJowsp [B10), 9Z1S WRqOI] ap jo sz1g
SP0T 12865 PS6'S 0580 1e9°Ly 001°086 | 00E'€EE | 0S6'y 001
ISL'8 L9O'ST LSST §9t0 44 00L°0lF | 009°'0F1 | SLL'T SL
L1977 Lee'L 9EL0 S01'0 688°C 050°0C1 0S9'1y | szz'l 0$
(maw)ezis | (ug)ezis | (maw)ezis | (Nquezs (rqn)ezs so1ozuou §[02 Smal | xinepy uonenguen,
WoWw QOj) | WowW 0] 301d | "ASUI 0L | “ASUlyYoums | nsui Kiowopy 9Z1S WBYqoIg ap jo ozig
61'v6 908'8¢ 6168 00 6vL' V10l 001°086 | 00£'€EE | 0S6'v 001
16’16 (42 0Lt 00 yZI'oLy 00L'01y | 009'0vI | siL'T SL
(4% t0T'L 011 10000 ¥29'8z1 050°0T1 0S9'1y | szl 0s
(%) (-esw)owm (-oosur)oun) 101084 voneowodwy ey | sosdzuou sj0o Smor | xme uonemn3uen |
Aownyyg | NdD BUAS | (1D PlIeed | douefequij peo ut uno)) uonesadg 971S WwojqoId ayl jo ozig

)cvl

.47 .

Xij+ Xjpe — xS 1 1€i<j<k<n (5.29)
(1-—x‘-j) + Xy + (l-—xjk) < 2; 1€i<j<ks<n (5.30)
- x;<0 lsi<js<n (5.31)
and-
ngS], 1<i<ijl (5.32)

The dual of this problem is in the standard primal form. The constraint matrix of the primal

(n—1)

n(n—13)('l"2) + n(r=1) columns and 2

problem has rows with 2(»n - 1) non-zeros in

each row.
Tables 7(a) and 7(b) show simulation results on linear ordering problems. All the rows, each

of which have 2(n — 1) nonzeros are split. The load imbalance factor is quite low, and the loss

in efficiency is due to the intermediate operations introduced.

5.4.9 Completely Dense Problems

The completely dense problems are Kuhn-Quandt type random problems having a m x 2m

constraint matrix A [KUH63]. These problems are of the form

min ¢’x (5.33)

subject to
Ax = b (5.34)
x20. (5.35)

The coefficients of the vector ¢ and b are —1 and 10,000, respectively. In addition, the

coefficients of A (excluding slack columns) are uniformly distributed integers between 1 and

1000.

Thus, after including the slack variables the constraint matrix is 7 v 2m and 66.6% dense: the

structure of A is completely amorphous.

»SWAIQOLJ 3sud(q £Ppd1dwio]) uo (xy = £) Adunpy 10)091-x1098 A J0§
(sulapjed uo1IUUO) [B Yim) J1EMPIRH PIIR] 3Y) JO DUBWLI0NI] PIHIRINWIS ((B)g IV L

s CN nX- (3} -ﬁ::«avva 1oss o woud 2 WD jo M RN ¥ Wiy e
€ = 9npouwr Alowsu g 0) pouULO) s10832003d JO ON = 10882001d v O PADUKYY sahpow Asoun JO ON -

L = sapnpows Kowdut Jo "N = s10s5001d Jo ON -

st tese8l SLS'8pT 000'100°T | 000€ | 0001 £
LSSt vL1'99 CIL68 009°0ZL 0081 | 009 [4
6V St 80991 [Y44 00£081 006 00t 1
(9%)uonerdwapdun (nmgu)uonejuowdydu (nqm)uoneruowdydun S01ZUOU S|03 | SmMO1 | Joquunp
1o1jered 105 peoysaaQ Asounpy | eung 1oy Klowdp [mo], | jojjered J0j KIouRp [e10 ZIS WIIqOI4 ujqod
1444 1£1°¢ 1724] S¥6'TT 8L'16 000100 | 000€ | 0001 13
910 86ty 14404 887’8 [41 %33 009'0ZL | 0081 | 009 [4
£L00 0011 6£0°1 LL0T 60t'8 00£°081 006 00t I
(mqu)ous (mqn)ezis (mg)ous (ngqu)ozis (mqu)ezis S0JZUOU S[02 | smOr | JoqunN
WoW qojH) | Ww 50] 3014 | “NISUI 001 | NS YOUMS | “nsur KIounp 9ZIS WdIqOId ujqoig
0866 090021 981°L1 2000 000°100°C 000 100'T | 000€ | 0001 £
05°66 9aTEY 8079 L000 009°02L 009°0ZL | 0081 | 009 (4
PL 66 81801 9681 LO00 00£°081 00£°081 006 00t I
(%) (*dosur)own (-oosw)oumn loey uonuuawopduif jofereg | sosazuou S[02 | smO0r | saquiny
Aoudtoyyg | NdD [euas 1dD Plered | soueequi proT] ut wno) uonesdp 9Z1s wiRlqo1d w1qo1g

AMWVI

WAWUOHALS] UOHRINUNG

SUOT 3G 01 paumss 10ss20ad 4Rd o 3Ky yu) .

'€ = AN oW § 03 pRI0 $10553004d jo ‘0N = Jossooid € 01 papouto sapnpow Aoun jo oN «
"L = sanpowt Asowaw Jo "o = $1055300ud Jo ‘0N o

WDWUOIIAUY UOHRINUNG

« SWAqOL] sua(A13391duio)) uo (xy = £) Ajdunpy 10)09A-X11IR N 10§
(suraped HONDIUU0D 3315 IHNPUOD AJU0 YHA) dIBMPIBY [P[1Rsed 34) JO DUBWLIOLIDS PIIRINUNS ()8 A TH V. L

£8'¢7 £eoe8l 69C°LTT 000°100°T | 000€ | 0001 £
110044 PL199 6L0'C8 009°0ZL | 0081 | 009 [4
L8'¢el 80991 tLS0 00£°081 006 00t 1
(95)uonersowopdun (ng)uoneyuowdun (ngw)uoneruowsidun $0197u0u SI00 | SMOI | Joquny
1911ered 10j peaoaQ Axowdp | [eLRG 10§ Koudp mol | [ejesed Joj Kowo [e1o], 71S WqoIg wopqoy
vy 0 144! tLvil 6£9'1 8L16 000°100°CT | 000€ | 0001 t
10 86ty $384 £65°0 LOT'tL 009°0ZL | 0081 | 009 C
£L00 LU 6801 810 60t’8 00£°081 006 00t 1
(nqm)ozis (nq)azis (nqm)ezis (nq)azis (nqn)azis S0IoZuou | §j00 | smo1 | rqunN
Woul qo[0) | wew 30] 204d | "ASUI 0K | nsun youmg | -nsur KIowap 9ZIS WOIQOL] wopqog
0866 090°0C1 981°LI 2000 000°100'C 000°100T | 000€ | 0001 12
ve 66 WLy 8179 LO00 009°0TL 0090z, | 0081 | 009 (4
¥L'66 818701 96671 L000 00£°081 00£°081 006 00t 1
(%) (-oosur)own (-oosw)owny Iopeq uonewowidwy poerRgd | sosozuou S[03 | $MO1 | 1oquiny
Adudndylg | NdD [BUAS | NdD PIEIRd | 0ueequi peor ut uno)) uonesdo 971§ Wjqold wodqoid

l©v|

-50-

Tables 8(a) and 8(b) show simulation results on y = Ax where A is completely dense.
Efficiency is very high (99%) and no splitting of rows and columns is required even though each

row and column has a large number of non-zeros.
5.4.10 Control Systems
A linear control system is given by
x** = Ax* + Bu* 1<k<: (5.36)

x is a vector of state variables of size m and u is a vector of control variables of size n. The
superscript £ on x and u denotes the discretized time. A is an mxm state transition matrix and B
is an mxn control matrix. Thus the state of the system at time (k+1) is determined as a linear
combination of the current state at time k and the control variables at time k. For the purposes of
defining the LP model assume that we are given a desired “trajectory’’ of x values, say x*¥,
1 < k < 1. The objective is to determine u*, 1 < k£ < r—1 such that small perturbations in u* do
not alter the resulting x*, 2 < k < ¢ too much from the desired trajectory, i.e., the actual control
variable values ﬁk may have small deviations from u* when they are applied, because of errors in

the instrumentation, resolution of the mechanical or electrical control system, etc. These errors

should not cause the state variables x* to deviate too much from the desired trajectory.

Formulating robust control systems as LP models, has been studied in [KAR89]. The
principal idea behind the robust formulation is to define a simplex around each control point u*.
(For brevity we omit the details of the formulation.) Let the extreme points of the simplex
around the point u® (in control space) be denoted by v!, yk:2

, oes VE"* 1 Then the robust

control systems formulation is given by:

* The conwol variables u’ at time ¢ are rrelevant. Similarly, the state variables x! (the first time instance) are also
irrelevant.

<51 -

min €
subject to
X1 = AxR 4 BRI 1<k<t-1; 1< <n+1
vhi = u* 4+ o/ 1<k<t-1; 1<j<n+1
Ixk/ — x"*| < g; 2<k<t 1S <n+1
Ib* < uf < ub*; 1<k<t-1; 1sism.

(5.37)

(5.38)
(5.39)
(5.40)

(541

Here, ¢/ are constant vectors (time independent) that specify the size of the simplex. This

formulation strives to determine state space variables x%/, where each x* is a linear recurrence

on the simplex vertex j; 1 £ j < n+1.

After a series of transformations, this problem is posed naturally in the following dual form:

min €
subject to
[A(k"z)Bul + A% NBul + .. 4 ABUR? 4 Bu"“l} - ¢ef
i
SEAYDX Y+ min (- yki)y; 1<ism: 2<k<:
Isjsn+l
—A* DByl A% py? o .. gByk2 _ gyk-1| — gk

‘

S@A* DX+ min Y -xK): 1<i<m: 2<k<:

1sjsn+1
ef < ek 1Sism; 2<k<t
ek<e; 2<ks<t
b* < uf <ub*; 1<k<i-1: 1<is<m.

(5.42)

(5.43)

(5.44)

(5.45)
(5.46)

(5.47)

In the above, the superscript in parentheses, A”), denotes the P power nf the matrix A, and

SU(Z 39 01 pawmnsse 10550005d Yora Jo 924 Yooy .

£ = dnpow Asownw € 01 paioouund s10553001d Jo 0N = 10ss3001d € 01 papatuos sapnpout Aouwnu Jo oN e

»'SUR|QOLJ URISLS [0)u0)) o (XY = A) AIdMA 1032A-X1L1JRI 10)
(susaned uonIIUUOI 3345 1I1YUOD U0 YNM) JIBMPIRY [IJIRIR Y} JO IDUBWLIONIIJ parejnung :(v)g TIGV.L

L = $3jnpows Kiowdut Jo “oN = 510852001 Jo 0N

DWUO AU UonR[nUNG

*

1y S98°L01 8L6'EEl 89'6S1°1[608°CH |SOI'Y 0¢C Si 00
11'¥T 866°'tS 910°'L9 821°08S | 60T'8 |SOT'T 07 St 001
88T 617¢l 80591 86L°6L1 | 688°¢ |SHO'L 01 Sl 001
(95)uonvruswodun (maw)uonewowoidun | (uqpy)uonewowoidun | sorozuou | sjoo | smor [sdorg own 9zi§ ooedg jonuo)) |azig ooedg aeig
1o1[esed 10) peayoa() AIOWSA | [eLIDS 10] AIOWOR (€101, | [dj1ered Joj AJoup [0, 971S WqoIg 971 WSk januo)
STl 8LLOL 08L9 8960 LET VS 89'6S1°1{608°S1]S01'Y 0T S 007
9¢9°0 80¥°SE 88t¢ y8Y'0 001'LT 8C1°08S | 607’8 |S0T'T 07 SI 001
10£°0 £ec'8 6£8°0 010 SIL'9 86L°6E1 | 688°€ |SHO' Ot S1 001
(quezis| (aw)ezis | (ngw)ozis| (nqu)azis (1gN)ozis | sosozuou | s[od | smos [sdorg own|, 921§ 20edg jonuo) |vz1g sovdg g
WoW GO0 | widw 50| 5014 | "NISUI 01 | "ASUI YOUMS | “nsut KIowop 9zis wRIqOId 9215 WAISAG [0nu0))
L8'L6 8L5°69 95101 <00 879'6S1°1 829°651°1|608°S1 501y 0T Sl 00C
66'L6 808'v¢ vLO'S 0700 8C1°08¢ 821°08S | 6078 |S0T°T 0T Sl 001
0E'S6 88¢'8 LST1 6100 86L°6¢€1 86L°6£1 | 688'C | SHO'I 0l Sl 001
(%) ("ooswouwm | (“oosur)ouwm 10108 uoneluowaidwy dyjrred | sorozuou | sj0d | smos sdag sun g, |oz1g ooedg 10nu0) | 971§ doudg oing
Kouodyyg | NdD 1BURS | NdD PIIBMR |2ouejequi yse| w uno) uonesadp 9ZIS WoIqoIg 1§ wANSAS jonuo)

lel

'S ()7 A 01 POHUNSSE 10533004d Yoed J0 DAY §O0)) -

'f = 2npottt AI0Wwatl B 01 pa13aunon s10853001d Jo 0N = 10ss300sd B 01 paosunes sapnpowt Aowsw jo ON °

"L = $9npow Kowaw jo ‘0N = s10853501d Jo 0N .

& SWR|QOIJ WINSAS [0JU0) U0 (xy = £) Ay 10J23A-XIIJRIA| J0)
(susaped uo1PIUUOD [|E YNM) ITEMPIR [I[[BIR] Y} JO DUBULIOJIIJ parenuns (q)6 A TAV.L

WUSWUOIAUT] UONBIELS

88°6¢ $98°L01 69591 879°6S1°1[608°C1|{SOI'Y 0C Gl 00C
9L'St 866'LS LOL'EL 8C1°08S | 60T°8 |SOT'T 0Z Sl 001
L99¢ 61Tt L9081 86L'6E1 | 688°C |SHO'I ot Sl 001
(9)uoneruowoydun (maw)uonewowodun | (uqu)uonesowojdun | sozuou | §j0d | smos | sdoig owny [ozig ooeds jonuo)) | 971§ sordg awg
1911esed 10§ pRoYIOAQ K10Wdp | feLI0S J0) AIOWIN [RI10L | jaffered 10j Kounp @10 271 WIqOIJ 971§ WANSAS jonuo)
SITl 8LLOL 08L9 655t LET S 879°6S1°11608'S1|S01'y 0C ! 00T
9¢9°0 80b St 88¢°¢ SLL9 001'LT 821°08S | 60T'8 {S0T'T 0T Sl 001
10£°0 £es's 6£8°0 6L9'1 SIL9 86L6E1 | 688°C |SHO'1 01 Sl 001
(awpzis| (awdzis | (g)azis| (IQNDAZIS | (MQW)ezIs | sosozuou | $[00 | smo | sdorg oun L |ozig 9oeds jonuo)) [ozig oordg arerg
W qOD | W 50f 2014 | "Nsul 5014 | "nsur Youmg | -nsur AJowop 971S WIjqoIy 921§ WISAS [0Nuo))
L8L6 8LS 69 96101 00 879°651°1 829°6S1°1 |608'ST|SO1'Y 07 ¢l 00T
66'L6 808 vt vLO'S 0200 8T1°08¢S 8C1°08S | 60T'8 |S0T'T 0T Sl 001
0L's6 88’8 LSTL 6100 86L°6E1 86L°6L1 | 688°C |SHO'I 01 61 001
(%) (ooswoum| (oosun)own opey uoneywdldwy jjered | soxzuou | sj0o | smas {sdorg owsj oz1§ 20edg jonuo) |az1g oovdg g
Aouodyyg | NdD [BUAS | NdD 1I[RIed | ourjequi] yseH | ul juno)) uonesado 9715 WRjqod IZ1 WANSAS jonuo)

1mml

*

-54.

yrli 8 AyRl 4 Bels 1<k<i-1; 1<j<n+1 (5.48)

vy =0, 1gjsn+1. (3.49)

The constraint matrix for the primal has (m+n)(t—1)+¢ rows and Cn+dm)(t-1)+21-1

columns.

Tables 9(a) and 9(b) show simulation results on control system problems. Efficiency
approaches 98%, and there is almost no reduction in efficiency on a machine with limited

connection pattems.
5.4.11 Optimal Routing in Queueing Networks

Linear programming has always played a vital role in design and analysis of computer and
communication systems that involve congestion and queueing. Examples of such applications
abound the literature. The LP is usually used in determining some parameters of the systems
such as the optimal service rate of the server, buffer sizing, etc. We consider a problem of routing

and flow control in a network of parallel processors where the LP is employed in determining

optimal routing parameters.

This problem was originally proposed by Bovopoulos and Lazar [BOV85]. The optimization
problem they considered was to maximize the expected throughput of a multiprocessor system by
determining the state-dependent routing probabilities. We have extended the model of
Bovopoulos and Lazar, by introducing ‘‘reneging’’, as explained below. The queueing network

model of the system we wish to study is shown in Fig. 54.

-55.

(O

O_

c

Fig. 5.4. Queueing network model of a multiprocessor.

The M queues model the M processors each with a service rate of p; and a finite queue
capacity K;. There is a source with a service rate ¢ that models the generation of packets. ¢
represents the maximum rate at which packets can be transmitted, An arriving packet is routed to
one of the processors’ queues provided there is space in the finite queue of that processor. This
routing decision is made based on the ;:urmnt state of the queues of the processor. If all the
queues are full, then the arriving customer recycles back to the generator’s queue. After
completion of service, the job sends an acknowledgement to the generator which can then decide
to transmit one more job to the processors. The problem we are trying to solve is to determine
the routing probabilities that maximizes the expected throughput of the processors. In the

following discussion we label the generator node with 0. We first define the notation:

-56-

E £ state space of the multiprocessor queues; (n = (n,, ny, .oyl <k;)
p(n) - steady state probability that the system is in state n
Oi 4 routing probability that a job leaving the generator joins processor i's queue,

while the state of the system is n;

Y =1, (5.50)
O0sisM

The optimization problem then becomes

max ¥ p(n) ¥ u; 1(n; > 0) (5.51)
n 1sjsM

subject to

a. Normalization of state probabilities

> p(n) =1, (5.52)

ne E
b. Normalization of routing probabilities

T rY=1 neE. (5.53)
0sjsM

¢. Global balance, equation for the Markov chain

p(n){ T e/ l(nj<kp)+)3 u,l(n,>0)}=zp(n—ej)crﬁ.o;fgl(0<n,-SK,)
J

1$/sM 15/sM
+ 3 p(n+ej)p; I(nj+1<K)) . (5.54)
1sjsM

In (5.51)-(5.54) the notation 1(relational expression) evaluates to a 1 if the relational expression
is true; it evaluates to a zero otherwise. Bovopoulos and Lazar introduced an additional

constraint to (5.50)-(5.54) which demanded that the response time of a packet be less than a

specified amount.

-57.

This time delay constraint can be written as (using Little’s Law):

) {p(n)) n,-}-T) {p(n) T oW n >0)}so (5.55)

ne £ 1S/sM ne E 1s/sM

where T is the specified time delay requirement.
The decision variables of the above problem are p(n)and 73/, 0 < j < M: n € E.

Reneging. The model described above does not capture one aspect of real systems. In
distributed processing, each processor has the expertise to serve specific jobs. Thus the optimal
routing policy may conflict with the requirement that job can only be served by a specific
processor. Thus, when a job is routed to processor i based on the optimal routing policy, the job
may have to “‘renege’’ to processor j where it can be served. Let b;; be the state-independent

reneging rate of jobs from processor i’s queue to processor j's queue. Then the global balance

equation (5.54) becomes

p(n){ T odln<kp+ Y wilin >0+ 3 bi,}

1sjsM 1sjsM 1sisM
1Sj<M
iz
= X p-epcrpd, 1(0 < n;<K;)
1SjsM
+ Y p(n+ej)ujl(nj+lSKj)
1s;sM
+ E p(n+e,»——ej)b,»j 1(n;+1 <K, and nj—l 20). (5.56)
1SisM
1sjsM
i#j

Observe that Eqn. (5.56) is a nonlinear equation since the decision variables p(n) and 3/ occur
in a product form. To convert (5.56) to a linear equation we introduce, following the

methodology of Bovopoulos and Lazar, the transformation

-58.-

x(n, n) p(n)r,, (5.57)
x(n, n+ej) p(n)rd 1(n; < Kj) (5.58)
x(n,n-e;) & p(n)1(n; > 0) . (5.59)

Now the problem (5.51), (5.52), (5.55) and (5.56) can be written in terms of x(n, n) variables,

thus converting the problem into a linear programming problem. We give the final LP problem in

the primal form below, omitting the details of the transformations.

min Y “x(n,n) + 3 x(n,n+e,~)} > K 1(n; > O)} (5.60)
ne £ 1S/sM 1S/sM
subject to
) {x(n, n) + x(n, n+ej)} = 1 (5.6
ne E

1

{ > cx(n,n+ej)l(nj<Kj):I+ Hx(n,n) + 3 x(n,n+e,~)} > ujl(n]>0)

1sjsM 1sjsM 1S5 M

+Mx(n,n)+ > x(n,n+e,)}
1<

IsM

7
-{ 3 cx(n—ej,n)l(0<n K):!

1sjsM

[> “x(n-*—ej,n-i-ej)

1sjsM

+ 3 x(n+e;, n+e; + e,)} Hj 1(nj, SK]-)H
1sisM

f“""“"“}

..V\V\

“x(nﬁ-ei—ej, n+e;-e;)

W~
\.l/\l/\

+ Z x(n+ei—ej+e1)}b,j I(n;+1 <K; and nj-l 2 O)J} =0 (5.62
1sisM

ST REOLPOUHINSE oy sond HWwape e ey o

fE ADpOw AIOWINE B O] Paauto) s10553001d Jo 0N - J05a 30 01 parsusoy sapapons Aroneng jo o s

stossoud Jo 0N .

L= sapnpoud Asowia Jo ON

+ SWIqoJ dunand) uo (xy = £) AdunN 10)32A-X1L)RW 10§
(su131ed UOHIIUUOD ||E YNM) dIeMPIRY |I]jedR] IY) JO DUBULIONIJ PAEINUKS (B)0] ATAV.L

16°¢¢ 6090t 680y LTI'66C | TST'IE | 79T9 14)
66 vt SOI'LI 060t L9E°T91 | TOI'EL | vO8'Y 9 14
9t LT 89 8S6'L LYS'9S v6'6 ¥99°'T 01 t
(9 Juoneiuowopdun (mq)uoneuowjdun (ngw)uoneyuowdpdun SO1IZUoY $j00 smos | Anoede) | sopoN
1ojered Jof peoyiaa(y Koupy | [eLRS 10§ AIOWOW [BI0L | [opeied Joj AIowop 10 71S WqoIg Jyng JO 'ON
68C°C LST'8I1 0S8l 669't 86L vl LTV'66T | TST'IE | TST'9 L4 S
165°1 016’6 €S0l LO1'T 88 L9E°91 | Tol‘el | v08'y 9 L4
89L°0 ISh'e ore o 0890 81LC LYS 98 ¥26°6 99T 01 £
(nqp)ezis (q)ozs (maw)ozis (nqw)ozis (nqu)ezis Sofozuou Sj0d smos | Anoede) | sopoN
wow qojH | wow %0[2014 | NSw 3014y | Bsul yonums | “nsur KIowopy 9ZIS WIIqOL] nyng JO 'ON
1245 8oL 1LL'T 100 8L1TE LTI'66T | TST'IE | TST9 14
6188 rL'6 8LS°1 L00 LY SLE L9ET91 | 89T'1T | v08'Y 9
[445) £6L't 6050 $0°0 168'LS LYS'9¢ v6'6 y99°'C 01
(%) (-oosun)own ("oosw)owm 10108 uoneuowjdw pojeIeg | S0xZUOU s5j00 smos | Anoede) | sopon
Aoudtoypg | NdDIBMOS | NdD IPIBIRg | douefequi] peo] ut uno) vonexdo 971 wajqoid nyng | jo oN

|@Wl

SU(T X} O PIUNSse 105529010 4ora Jo 3PAY yropy -
'§ = 9npout 10wat E 01 paidauiiod s10553001d Jo 0N = 1055300id € 01 papauueo sapppotl Kousw JoON e
L= S9Inpow Arowdut Jo oN = $10883001d Jo ON

DUILOLNAL] UOHBIRUNG

+SuRjqoay Buranand) uo (xy = A) Adnnpy 10139A-X1.43BA] 10§
(susapred uonIIULOI 3245 PIJUD A[UO YNIM) JIBMPIRH [3]]RIE] AY) JO DUBULIOLID PACINWIS (Q)0] A TAV.L

86T 609°0¢ EpSLE LTI'66C | TST'IE | TST'9 4 1
6L5vC SOULY t0L1C L9ET9L | 89T'1T | 08V 9 14
08'Ll 8¥T9 19¢°L LYS'9S v26'6 ¥99'C ol £
(%)uoneiudwojdun (nqpw)uoneyudwojdun (uqu)uoneiuounyduw $030ZUoU s100 smor | fioede) | sapon
19jjeJed 1o pedysoa() Kxounpy | [euds 10j Kowoly [elof | [ofered 105 Klowspy [e10], 9715 WdjqoIg nymng JooN
68CC LST'81 658’1 970 ti8vl LTI'66T | TST'IE | TST'9 4 S
1651 0le'6 Lol £61°0 9LS'8 L9ET91 | 89T'1T | 08'y 9 14
89L°0 $543 Pre 0 600 8¥L'T LYS9¢ ¥76'6 ¥99°'C ot t
(1q)azis (rqw)ezis (nqw)ezis (1q)ezis (nqu)ezis SOJoZUOU §100 smol Aidede) SIpON
WoWw qOjD | WowW 0] 2014 | “BSW 004 | “nsul youms | nsu Lowsp 9z1s wdjqoId Anoede) sapng | jo -on
LOT6 8¥6'L1 S8LT 100 8LICE LTI'66T | TST'IE | 15T'9 4 S
9998 L6 909°1 LO0 1y'sLl L9ETIL | 89T'1T | +08'y 9 14
6116 toL't SIS0 00 168°LS LYS'9¢ v26'6 ¥99°C 01 t
(%) (-oosw)owmn (oosur)own 10108, uoneouwdjdus] [ojereg | sozuou S[00 SMO13 Anoede SOPON
Auorypg | NdD 1eudS NdD IPlereq | douefequif peo| uruno)) uonesodo 9ZIS uR|qoiq jjng JOON

..Av@»

-61 -

> [{x(n,n)+ T x(n,n+e,~)} ZMn,}

ne E 1<jsM 151¢

1
-—TI:Z hx(n.n)-«— > x(n,n+e,~)} P u,l(n1>0)_i <0 (5.63)

neE 1S/sM 1sisM
x(n,m) 290 nekE, mekE. (5.64)

Tables 10(a) and 10(b) show simulation results on queueing problems. Rows have t0 be split

for better data mapping, and the efficiency varies between 86% to 95%.

6. Conclusions

From the extensive simulations done, we observe that the efficiency obtained is uniformly
high irrespective of the problem class. The fact that the matrices have a regular or arbitrary
structure does not lead to much variation in the results obtained. This is as opposed to traditional
existing “‘supercomputers’’, which perform extremely well on problems with a regular structure
but fail miserably on problems with arbitrary structure. This is observed in the Perfect Club
Benchmarks [PER 90] where most of the “‘supercomputers’’ perform well on problems with
regular structure but give extremely poor performance on problems, such as SPICE for Circuit

Simulation, which have arbitrary structure and are difficult to vectorize or parallelize at a course-

grain level.

On this hardware, we observe that the efficiency is greater than 90% for most of the problems.
There is not much loss in efficiency by restricting the machine to have only conflict free
connection patterns. Such a restricted machine simplifies the hardware, speeds up the compiler
and the savings in the memory overhead are seen to be about 10-20%. Computation may be
allowed to proceed in an SIMD fashion for matrix-vector multiplication without any degradation
in performance and would lead to further savings in memory requircments. Simulations have also

been carried out on P?(GF(3)), and similar encouraging results h.. ‘~-n obtained on it.

-62 -

Repetition Count of

LP Problems Problem Number Data-Flow Graph

1 16,098
Fractional Hypergraph 2 6,267
Covering 3 7,643
Minimum Cost 1 2,299
Network Flow 2 1,974
Partial Differential 1 1,427
Equations 2 12,572

1 4,053
Linear 2 9,547
Ordering 3 2,543

1 659
Completely Dense 2 878
Problems 3 1,179

1 731
Control Systems 2 1,201

3 7,084

Table 11: Tterations on Same Data-Flow Graph

-63 -

The compiler is required to run only once in the beginning when it schedules operations for
later numerical executions. Speedup results from the fact that there are many subsequent
numerical executions of the same data-flow graph which justify the initial cost of compilation.
Table 11 shows some repetition counts of some of the data flow graphs encountered in typical LP
problems. Certain routines, such as an N-point fast fourier transform which are used frequently
with the same input data could be compiled once and stored in secondary memory. Thus, when

these routines are to be used, their compiled code need Just be loaded into main memory and

executed.
1. S. Dhillon
N. K. Karmarkar
11216
MH-11211 - ISD/NKK/KGR —sam K. G. Ramakrishnan
11212
Att.

References

REFERENCES

[ADL89] Adler, I, Karmarkar, N. K., Resende, G. C. R., Veiga, G., Data Structure and
Programming Techniques for the Implementation of Karmarkar’s Algorithm, ORSA

Journal on Computing, Vol. 1, No. 2, Spring 1989.

[(BER73] Berge, C., Graphs and Hypergraphs, North Holland Publishing Company, New

York, 1973,

(BOV85] Bovopoulos, A. D., and Lazar, A. A., Optimal Routing and Flow Control of a
Nerwork of Parallel Processes with Individual Buffers, Proc. 23™ Annual Allerton
Conference on Comm., Control and Computing, Monticello, Ilinois, 1985 (pp. 564-

573).

(DHI89-1] Dhillon, I. S., A Compiler for Sparse Marrix Computations on New Parallel

Architectures, Conference on Interior Point Methods, Bombay, Jan. 1989.

(DHI89-2] Dhillon, 1. S., Parallel Architectures for Sparse Matrix Computations, B. Tech.

Project Report, Indian Institute of Technology, Bombay, 1989.

[FRO86] Frost, O. L., Adaptive Least Squares Optimization Subject to Linear Equaliry

Constraints, Ph.D. Thesis, Stanford University, 1970.

(GAR79] Garey, M. R. and Johnson, D. S., Computer and Intractability: A guide to the

theory of NP-completeness, Freeman, San Francisco, 1979.

[GRO84] Grotschel, M., Jiinger, M., and Reinelt, G.. Optimal Triangulation of Large Real

World Input-Output Matrices, Statistiche Hefte, 25, 1984, pp. 261-295.

(GUS88] Gustafson, J. L., Montey G. R. and Benner, R. E., Development of Parallel Methods
for a 1024-Processor Hypercube, SIAM Joumal on Scientific and Statistical

Computing, Vol. 9, No. 4, July 1988.

[HAL 86]

[HIL 74]

[KAR 88]

[KAR 89]

[KAR 90]

[KUH 63]

[PER 90]

-R-2.-

Hall, Marshall, Jr., Combinatorial Theory, Wiley-Intescience Series in Discrete

Mathematics, 1986.

Hildebrand, F. B., Introduction to Numerical Analysis, second edition, McGraw-

Hill, New York, 1974.

Karmarkar, N. K., Parallel Architectures for Sparse Matrix Computations, B. Tech.

Project Proposal Seminar, Bombay, 1988.

Karmarkar, N. K. and Ramakrishnan, K. G., Implementation and Computational
Results of the Karmarkar Algorithm for Linear Programming, Using an lterative
Method for Computing Projections, 1o appear in Mathematical Programming — B,

1991.

Karmarkar, N. K., A New Parallel Architecture for Sparse Matrix Computation,

Siam Conference on Discrete Mathematics, Atlanta, June, 1990.

Kuhn, H. W, and Quandt, R. E., An Experimental Study of the Simplex Method in
Experimental Arithmetic, High Speed Computing, and Mathematics, Proceedings of
Symposia in Applied Mathematics xv i (N. C. Mertropolis, et al., eds.), American

Mathematical Society, Providence, Rhode Island, 1963, pp. 107-124,

Berry, M. et al, The PERFECT Club Benchmarks: Effective Performance Evaluation

of Supercomputers, International Journal Supercomputer Applications, 1989.

